文档库 最新最全的文档下载
当前位置:文档库 › 浅谈数列求和

浅谈数列求和

浅谈数列求和
浅谈数列求和

浅谈数列求和

摘要:我们知道,除了等差数列和等比数列有求和公式外,大部分数列的求和

都没有求和公式,需要一定的转化,即将那些数列转化成等差、等比数列,再根据等差、等比数列的求和方法求解,关键要学会技巧,怎样转化。利用求和符号及初等数学方法得到这类问题的处理方法、结论及应用的实例。 关键词:数列 差数数列 等比数列 数列求和

数列求和是数列的一个重要内容,又是学习高等数学的基础。数列求和问题对能力要求高,特别是对运算能力、归纳猜想能力、转化能力、逻辑推理能力发要求更为突出,因此在数学应用题中运用非常广泛,在解答某些数学题目时,我们会遇到一类数列的求和问题,它经常和集合,数学期望,导数,三角函数联系起来。在高考和各种数学竞赛中都占有重要的地位。而且题型复杂,灵活多样, 它是数列与极限、数列与数学归纳法有机联系的桥梁, 所以学好数列求和非常必要。在学这部分知识时, 首先要认真分析数列的通项,再就是应熟练掌握。下面,就几个方面来谈谈数列求和的基本方法和技巧。 一、常用公式法

直接利用公式求和是数列求和的最基本的方法.常用的数列求和公式有:

1. 等差数列求和公式:

11()(1)

22n n n a a n n s na d +-=

=+ 2. 等比数列求和公式: 11,(1)1n

n a a q s q q

-=≠-

1,(1)n s na q ==

3. 根式形式 如: 1

11n a n n n n

=

=

+-

++ 4. 乘积形式,如: 1

(1)[(1)(2)(1)(

1)]

3

n a n

n n n n n n n =+=++--

+ 5. 1

1

(1)2n

n k s k n n ===+∑

6. 21

1

(1)(2)6n

n k s k n n n ===++∑

7. 321

1

[(1)]2n

n k s k n n ===+∑

例1 求和:23n n s x x x x =++++ 解:1、当x=0时,,0=n S

2、当x=1时,,n S n =

3、当x ≠0,且x ≠1时,()

x

x x x x x S n n n --=--=+1111

.

说明:本题没有什么特别之处,主要是要求学生能对x 进行分组讨论,由结果可知,当x 取不同值时,求和结果也不一样

例2 已知3log 1

log 23-=x ,求∑=n

k k x 1。

解:由2

1

2log log 3log 1log 3323=?-=?-=x x x

由等比数列求和公式得

∑==n k k n x S 1

n n n x x x 2112

11)211(2

11)1(-=--=--= 二 拆项相消法

如果数列{n a }的通项能拆成两项之差即:(1)()n a f n f n =+- 则 123....n n s a a a a =+++

[(2)(1)][(3)(2)]...[(1)()](1)(1)f f f f f n f n f n f =-+-+++-=+-

这种方法称为拆项相消法。

注意:此类变形的特点是将原数列每一项拆为两项之后,其中中间的大部分项都互相抵消了。只剩下有限的几项。余下的项具有如下的特点: 1. 余下的项前后的位置前后是对称的。 2. 余下的项前后的正负性是相反的。

主要的拆项公式有:

(1))()1(n f n f a n -+= (2)

n n n n tan )1tan()

1cos(cos 1sin -+=+ (3)111)1(1+-=+=n n n n a n (4))1

21

121(211)12)(12()2(2+--+=+-=n n n n n a n

(5)])

2)(1(1

)1(1[21)2)(1(1++-+=+-=

n n n n n n n a n 例3:求111...12123123...n s n

=+++++++++ 解:1211

2()123...(1)1

n a n n n n n =

==?-+++++

11111

2[(1)()...()2231n s n n =-+-++-

+ 12(1)1n =-

+ 21

n n =+

说明:对于分母是两二次根式的和,且被开方数是等差数列,利用乘法 公式,使分母上的和变成了分子上的差,从而S n 又因中间项相消而可求。 三.错位相减法

有些数列的通项可以看成一个等差数列的通项与一个等比数列的通项的乘积,此时将数列的和乘以公比,做差就可求得此数列的和。

例4:求和:21123...n n s x x nx -=++++ 解:由21123...n n s x x nx -=++++ (1)

得 23123...(1)n n n xs x x x n x nx -=++++-+……(2) (1)-(2)得

21(1)1...n n n x s x x x nx --=++++-

当1x ≠时,1(1)1n

n n x x s nx x

--=

-- 即 21(1)1n n

n x nx s x x -=-

-- 当1x =时 (1)

12 3 (2)

n n n s n +=+++=

四 .阶差法

有些数列的通项公式不易得到,此时可考虑阶差法,如果阶差数列(阶差=后项-前项)是一个求和公式已知的数列,可求出原数列的前n 项和 例5:求数列1,3,7,13,21,31,…的前n 项和

解:原数列{}n a :1,3,7,13,21,31,…1,n n a a -…

则其阶差数列{}n b :2,4,6,8,10,…n b …是通项为2n b n =的等差数列 以下求n a 因为:

21132224

a a

b a a b -==-==

……

1122n n n a a b n ---==- 以上各式两边分别相加得: 1

11222

(2)(1)(1)2

n n k n a a k n n n -=+--==

-=-∑ 又11a = 得21n a n n =-+

所以

2

1

1

1

n

n

n

n n k k k s a k k n =====-+∑∑∑

2(1)(21)(1)

62

(2)3

n n n n n n

n n +++=

-++=

五. 分解重组法

分析数列的通项及其特征,将数列的通项分解为几项的和(或差)的形式,再通过重新组合的方法,从而达到求和的目的。它与拆项相消法有点不同,拆项相消法可以把中间项消除,而分解重组法不能。 例6:求和:求

1

1111111111个n ???+???+++之和。 解:由于)110(9199999111111

1

-=????=???k

k k

个个 ∴

1

1111111111个n ???+???+++ =

)110(91

)110(91)110(91)110(91321-+???+-+-+-n =)1111(91)10101010(911

321 个n n

+???+++-+???+++ =9110)110(1091n

n ---?

=)91010(8111

n n --+

六.分组转化法

有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,能分为几个等差、等比或常见的数列,则对拆开后的数列分别求和,再将其合并即可求出原数列的和。

例7:已知集合{|294,n A a a n n N ==+-∈且02000}a <<,求A 中元素的个数,以及这些元素的和

解: 由 101121024,22048== 知

10291042000+?-<

11291142000+?->

∴ A 中有10个元素,记这些元素的和为10s ,则

123101010

222...2992...9104102(21)955402501

s =++++++?++?-?=-+?-=

说明:本题中A 是一个集合,集合中的元素是不可重复的,也是没有顺序,

所以集合与数列是不同的,但在求和时与10个元素的顺序无关,所以可借用数列的方法求和。 七. 公式法

如果给定的数列是由等差数列和等比数列或一些已知求和公式的特殊数

列通过和的形式组成的数列,其前n 项和可用已知公式求得其解。

例8:一个数列{}n a :当n 为奇数时,51n a n =+;当n 为偶数时,2

2n n a =,求这个数列的前2k 项和。(k 为正整数)

解:由题意可知该数列的前2k 项之和2k s 其实就是数列

2362,162,262,...(104)2k k +++-+…

的前k 项之和,因此

2121

1

(104)(2)522k

k

i k k i i s i k k +===-+=++-∑∑

八. 反序相加法求和

这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +.

例9:证:n n n n n n n C n C C C 2)1()12(53210+=++???+++

证明: 设n

n n n n n C n C C C S )12(53210++???+++=………………………….. ① 把①式右边倒转过来得

113)12()12(n

n n n n n n C C C n C n S ++???+-++=- (反序) 又由m

n n

m n C C -=可得 n n

n n n n n C C C n C n S ++???+-++=-1103)12()12(…………..…….. ② ①+②得

n n

n n n n n n n C C C C n S 2)1(2))(22(2110?+=++???+++=-

∴ n n n S 2)1(?+=

九.待定系数法

类似等差数列,如果n a 是关于n 的k 次式,那么它的前n 项和n s 是关于n 的

1k +次式,且不含常数项。因此,只要求出这个1k +次式的各项系数即可。

例10:求和1223...(1)n s n n =?+?+++

解析:由于通项

2

n a n n =+是n 的二次式,则n s 是n 的三次式,且不含常数项。 设32n s An Bn Cn =++,令1,2,3,n =得

28428279320a b c a b c a b c ++=??

++=??++=?

解得 13123a b c ?=??

=???=

?

所以32121

(1)(2)333

n s n n n n n n =++=++。

十.特殊数列的三角数列的求和法

此种数列基本上是利用三角公式中积化和差公式,将每一项拆成两项之差,然后用相消法求解

例11: 数列23(1)cos ,cos

,cos ,...cos ...n n n n n

ππππ

-的前n-1项和 解: 令123(1)cos cos cos ...cos n n s n n n n

ππππ

--=++++

123(1)sin

cos

sin

cos

sin cos sin ...cos sin

222221357(21)(23)[(sin sin )(sin sin )(sin sin )...(sin sin )]2222222221(21)(21)[sin sin ]cos sin 02222n n s n n n n n n n n n n n n n n n n n n n n n n n n n

πππ

ππππππππππππππππππ--=++++--=-+-+-++--=-==得10n s -=

十一.特殊方法

数列通项n a 的下标n N *

∈,否则就没有实际意义,但倘如单纯从计算的角

度出发,允许这种小数的存在,则可以得到一个奇妙的非常规的性质,它给等差

数列求和带来了新思路,并给计算带来了很大的方便

定理:等差数列{}n a ,(1,2,...)i k N i n *∈=,则

12 (1)

2

...n k k k n

k k k n

a a a na ++++++=

例12:已知等差数列{}n a 的通项公式为42n a n =-,求13689a a a a a ++++

解:我们由定理得原式=13689275

5

27

555(42)985

a a ++++==??

-= 十二.利用导数求解

导数进入中学数学教材, 给传统的中学数学内容注入了新的生机与活力,怎样利用导数这一工具重新认识原中学课程中的有关问题并为其研究提供新的途径和方法,这里介绍导数在一类数列求和问题中的应用,以开阔学生视野,拓宽解决这类问题的方法

例13:21123...(1)n n s x x nx x -=++++≠

解:由1()

(1,2,...)k k d x kx k n dx

-== 可设

21()

123...n df x x x nx dx

-=++++ 则 23()1...n f x x x x x =+++++

而1

2

3

11...(1)1n n

x x x x x x x

+-+++++=

≠- 上式两端对x 求导,并整理得

12

1

1(1)123...1n n n n x nx x x nx

x

+--++++++=-

几种常见数列求和方法的归纳

几种常见数列求和方法的归 纳 -标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

几种常见数列求和方法的归纳 1.公式法:即直接用等差、等比数列的求和公式求和。主要适用于等差,比数列求和。 (1)等差数列的求和公式:d n n na a a n S n n 2 ) 1(2)(11-+=+= (等差数列推导用到特殊方法:倒序相加) (2)等比数列的求和公式??? ??≠--==) 1(1)1()1(11q q q a q na S n n (切记:公比含字母时一定 要讨论) (3)222221(1)(21) 1236n k n n n k n =++=++++=∑(不作要求,但要了解) 例:(1)求=2+4+6+ (2) (2)求=x+++…+(x ) 2.倒序相加:适用于:数列距离首尾项距离相同的两项相加和相同。 例:(1)求证:等差数列{}的前n 项和d n n na a a n S n n 2 ) 1(2)(11-+=+= (2)222 2sin 1sin 2sin 3sin 89+++ + . 3.分组求和法:把数列的每一项分成若干项,使其转化为等差或等比数列,再求和。 例:(1)求和:(1) 个 n n S 111111111++++= 81 10 9101--+n n (2)2 2222)1 ()1()1(n n n x x x x x x S ++++++=

当1±≠x 时, n x x x x S n n n n 2) 1()1)(1(2 2222+-+-=+ 当n S x n 4,1=±=时 4.裂项相消法:把数列的通项拆成两项之差、正负相消剩下首尾若干项。(分式求和常用裂项相消) 常见的拆项公式: 111)1(1+-=+n n n n ,) 121 121(21)12)(12(1+--=+-n n n n , 1111 ()(2)22 n n n n =-++, ) 12)(12(1 1)12)(12()2(2+-+=+-n n n n n , 2= 例:(1)求和:111 1 ,,,,, 132435 (2) n n ???+ . (2)求和)12)(12()2(5343122 22+-++?+?=n n n S n 1 2)1(2++= n n n S n 5.错位相减法:比如{}{}.,,2211的和求等比等差n n n n b a b a b a b a +++ (适用于:等差数列乘以等比数列的通项求和) 例:求和:23,2,3, ,, n a a a na

数列求和的常用方法

数列求和的常用方法 永德二中 王冬梅 数列是高中数学的重要内容,又是学习高等数学的基础。在高考和各种数学竞赛中都占有重要的地位。数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧。 下面,简单介绍下数列求和的基本方法和技巧。 第一类:公式法 利用下列常用求和公式求和是数列求和的最基本最重要的方法。 1、等差数列的前n 项和公式 2 )1(2)(11d n n na a a n S n n -+=+= 2、等比数列的前n 项和公式 ?? ???≠--=--==)1(11)1()1(111q q q a a q q a q na S n n n 3、常用几个数列的求和公式 (1)、)1(213211 += +?+++==∑=n n n k S n k n (2)、)12)(1(6132122221 2++= +?+++==∑=n n n n k S n k n (3)、233331 3)]1(21[321+=+?+++==∑=n n n k S n k n 第二类:乘公比错项相减(等差?等比) 这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列}{n n b a ?的前n 项和,其中}{n a ,}{n b 分别是等差数列和等比数列。 例1:求数列}{1-n nq (q 为常数)的前n 项和。 解:Ⅰ、若q =0, 则n S =0 Ⅱ、若q =1,则)1(2 1321+= +?+++=n n n S n Ⅲ、若q ≠0且q ≠1, 则12321-+?+++=n n nq q q S ① n n nq q q q qS +?+++=3232 ② ①式—②式:n n n nq q q q q S q -+?++++=--1321)1(

数列求和7种方法(方法全,例子多)

数列求和的基本方法和技巧(配以相应的练习) 一、总论:数列求和7种方法: 利用等差、等比数列求和公式 错位相减法求和 反序相加法求和 分组相加法求和 裂项消去法求和 分段求和法(合并法求和) 利用数列通项法求和 二、等差数列求和的方法是逆序相加法,等比数列的求和方法是错位相减法, 三、逆序相加法、错位相减法是数列求和的二个基本方法。 数列是高中代数的重要内容,又是学习高等数学的基础. 在高考和各种数学竞赛中都占有重要的地位. 数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧. 下面,就几个历届高考数学和数学竞赛试题来谈谈数列求和的基本方法和技巧. 一、利用常用求和公式求和 利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2 ) 1(2)(11-+=+=

2、等比数列求和公式:??? ??≠--=--==) 1(11)1()1(111 q q q a a q q a q na S n n n 3、 )1(211+==∑=n n k S n k n 4、)12)(1(611 2 ++==∑=n n n k S n k n 5、 21 3 )]1(21[+== ∑=n n k S n k n [例1] 已知3 log 1 log 23-= x ,求???++???+++n x x x x 32的前n 项和. 解:由2 1 2log log 3log 1log 3323=?-=?-= x x x 由等比数列求和公式得 n n x x x x S +???+++=32 (利用常用公式) =x x x n --1)1(=2 11) 21 1(2 1--n =1-n 21 [例2] 设S n =1+2+3+…+n ,n ∈N *,求1 )32()(++= n n S n S n f 的最大值. 解:由等差数列求和公式得 )1(21+= n n S n , )2)(1(2 1 ++=n n S n (利用常用公式) ∴ 1)32()(++= n n S n S n f =64 342++n n n

数列中裂项求和的几种常见模型

数列中裂项求和的几种常见模型

数列中裂项求和的几种常见模型 数列问题是高考的一大热点,而且综合性较强,既注重基础知识的掌握,又注重数学思想与方法的运用。而此类问题大多涉及数列求和,所以数列求和方法是学生必须掌握的,主要的求和方法有:公式法、拆项重组法、并项求和法,裂项相消法、错位相加法、倒序相加法等等,而裂项相消法是其中较为基础、较为灵活的一种,也是出现频率最高,形式最多的一种。下面就例举几种裂项求和的常见模型,以供参考。 模型一:数列{}n a 是以d 为公差的等差数列,且),3,2,1(0,0 =≠≠n a d n ,则 )1 1(111 1++-=n n n n a a d a a 例1已知二次函数()y f x = 的图像经过坐标原点,其导函数为 '()62f x x =-,数列{}n a 的前 n 项和为n S ,点(,)()n n S n N *∈均在函数()y f x = 的 图像上。 (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设1 1 n n n b a a += ,n T 是数列{}n b 的前n 项和,求使得20 n m T <对所有n N * ∈都成立的最小 正 整 数 m ; (2006年湖北省数学高考理科试题) 解:(Ⅰ)设这二次函数f(x)=ax 2 +bx (a ≠0) ,则 f`(x)=2ax+b,由于f`(x)=6x -2,得 a=3 , b=-2, 所以 f(x)=3x 2 -2x. 又因为点(,)()n n S n N *∈均在函数()y f x = 的图像上,所以n S =3n 2 -2n. 当n ≥2时,a n =S n -S n -1=(3n 2-2n )-[])1(2)132---n n ( =6n -5. 当n =1时,a 1=S 1=3×12 -2=6×1-5,所以,a n =6n -5 (n N *∈) (Ⅱ)由(Ⅰ)得知13+= n n n a a b =[]5)1(6)56(3---n n =)1 61 561( 21+--n n ,

数列求和方法和经典例题

数列求和方法和经典例题 求数列的前n 项和,一般有下列几种方法: 一、公式法 1、等差数列前n 项和公式 2、等比数列前n 项和公式 二、拆项分组求和法 某些数列,通过适当分组可得出两个或几个等差数列或等比数列,进而利用等差数列或等比数列求和公式求和,从而得出原数列的和。 三、裂项相消求和法 将数列中的每一项都分拆成几项的和、差的形式,使一些项相互拆消,只剩下有限的几项,裂项时可直接从通项入手,且要判断清楚消项后余下哪些项。 四、重新组合数列求和法 将原数列的各项重新组合,使它成为一个或n 个等差数列或等比数列后再求和 五、错位相减求和法 适用于一个等差数列和一个等比数列对应项相乘构成的数列求和 典型例题 一、拆项分组求和法 例1、求数列1111123,2482n n ??+ ???,,,,的前n 项和 例2、求和:222 221111n n x x x x x ??????++++++ ? ? ?????? ?

例3、求数列2211,12,122,,1222,n -+++++++的前n 项和 例4、求数列5,55,555,5555,的前n 项和 二、裂项相消求和法 例5、求和:()()11113352121n S n n =+++??-+ 例6、求数列1111,, ,,,12123123n +++++++的前n 项和 例7、求和:()11113242n S n n =+++??+

例8、数列{} n a 的通项公式n a =,求数列的前n 项和 三、重新组合数列求和法 例9、求2222222212345699100-+-+-++- 四、错位相减求和法 例10、求数列123,,,,,2482n n 的前n 项和 例11、求和:()23230n n S x x x nx x =++++≠

数列求和的8种常用方法(最全)

求数列前n 项和的8种常用方法 一.公式法(定义法): 1.等差数列求和公式: 11()(1)22 n n n a a n n S na d ++==+ 特别地,当前n 项的个数为奇数时,211(21)k k S k a ++=+?,即前n 项和为中间项乘以项数。这个公式在很多时候可以简化运算; 2.等比数列求和公式: (1)1q =,1n S na =; (2)1q ≠,( )111n n a q S q -= -,特别要注意对公比的讨论; 3.可转化为等差、等比数列的数列; 4.常用公式: (1)1 n k k ==∑1 2 123(1)n n n ++++=+L ; (2)21n k k ==∑222211 63 1123(1)(21)()(1)2 n n n n n n n ++++=++==++L ; (3)31n k k ==∑33332(1)2 123[ ]n n n +++++=L ; (4)1 (21)n k k =-=∑2135(21)n n ++++-=L . 例1 已知3log 1 log 23-= x ,求23n x x x x ++++ 的前n 项和. 解:由21 2log log 3log 1log 3323=?-=?-=x x x 由等比数列求和公式得 23n n S x x x x =++++L =x x x n --1)1(=2 11)211(2 1--n =1-n 2 1 例2 设123n S n =++++ ,*n N ∈,求1 )32()(++=n n S n S n f 的最大值. 解:易知 )1(21+=n n S n , )2)(1(2 1 1++=+n n S n ∴ 1)32()(++=n n S n S n f =64 342++n n n =n n 64341++=50 )8(1 2+-n n 50 1≤ ∴ 当 8 8 -n ,即8n =时,501)(max =n f . 二.倒序相加法:如果一个数列{}n a ,与首末两端等“距离”的两项的和相等或等于同一常数,那么求这个数列的前n 项和即可用倒序相加法。如:等差数列的前n 项和即是用此法推导的,就是

求数列通项公式和前n项和的常用方法(含高考题精选)

求数列通项公式和前n 项和的常用方法 一、求数列通项公式的常用方法 1.公式法:等差数列或等比数列的通项公式。 2.归纳法:由数列前几项猜测出数列的通项公式,再用数学归纳法证明其正确性。 3.累乘法:利用3 21 121 (0,2)n n n n a a a a a a n a a a -=???≠≥型如: 1()n n a g n a += 4.构造新数列: 类型1累加法 )(1n f a a n n +=+ 类型2 累乘法 n n a n f a )(1=+ 类型3 q pa a n n +=+1(其中p ,q 均为常数,)0)1((≠-p pq )。解法(待定系数法):把原递 推公式转化为:)(1t a p t a n n -=-+,其中p q t -=1,转化为等比数列求解。 类型4 n n n q pa a +=+1(其中p ,q 均为常数,)0)1)(1((≠--q p pq ) 。 (或1n n n a pa rq +=+,其中p ,q, r 均为常数) 解法:先在原递推公式两边同除以1 +n q ,得:q q a q p q a n n n n 111+?=++引入辅助数列{}n b (其中n n n q a b =),得:q b q p b n n 1 1+=+再待定系数法解决。 类型5 递推公式为n S 与n a 的关系式。(或()n n S f a =) 解法:1.利用?? ?≥???????-=????????????????=-) 2() 1(11n S S n S a n n n 2.升降标相减法 二、数列求和的常用方法 1.直接或转化等差、等比数列的求和公式求和 (1)等差数列求和公式:d n n na a a n S n n 2 ) 1(2)(11-+=+= (2)等比数列求和公式:?????≠--=--==) 1(11)1()1(111q q q a a q q a q na S n n n 2.错位相减法 设数列{}n a 的等比数列,数列{}n b 是等差数列,则求数列{}n n b a 的前n 项和n S 。 3.裂项求和法 (1)1 1 1)1(1+- =+=n n n n a n (2))121121(211)12)(12()2(2+--+=+-=n n n n n a n 等。4.分组求和法:对一类既不是等差数列,也不是等比数列的数列,若将这类数列适当拆开,可分为 几个等差、等比或常见的数列,然后分别求和,再将其合并。 5.逆序相加法 把数列正着写和倒着写再相加(即等差数列求和公式的推导过程的推广)

数列求和7种方法(方法全_例子多)

一、利用常用求和公式求和 利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2 )1(2)(11-+=+= 2、等比数列求和公式:?????≠--=--==)1(11)1()1(111q q q a a q q a q na S n n n 3、 )1(211+==∑=n n k S n k n 4、)12)(1(6112++==∑=n n n k S n k n [ [∴当8 -n ,即n =8时,50)(max =n f 题1.等比数列的前n项和S n=2n-1,则= 题2.若12+22+…+(n -1)2=an 3+bn 2+cn ,则a =,b =,c = . 解:原式=答案:

二、错位相减法求和 这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{a n }、{b n }分别是等差数列和等比数列. [例3]求和:132)12(7531--+???++++=n n x n x x x S ………………………① 解:由题可知,{1)12(--n x n }的通项是等差数列{2n -1}的通项与等比数列{1-n x }的通项之积 设n n x n x x x x xS )12(7531432-+???++++=……………………….②(设制错位) n n 1432-∴[例4]2 练习题1已知,求数列{答案: 练习题2的前n 项和为____ 答案: 三、反序相加法求和 这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +. [例5]求证:n n n n n n n C n C C C 2)1()12(53210+=++???+++

数列求和的常用方法

数列求和的常用方法 主要方法: 1.求数列的和关键是看数列的通项公式形式注意方法的选取: 2.求和过程中注意分类讨论思想的运用;转化思想的运用; 一、公式法 二、分组求和法:把数列的每一项分成若干项,使其转化为等差或等比数列,再求和。 1、求和:①321ΛΛ个 n n S 111111111++++= ②22222)1 ()1()1(n n n x x x x x x S ++++++ =Λ ③求数列1,3+4,5+6+7,7+8+9+10,…前n 项和n S 2 、 求 数 列 的 前 n 项 和 : 231 ,,71,41, 1112-+???+++-n a a a n ,… 三、 合并求和法: 1、求22222212979899100-++-+-Λ的和。 2、1-2+3-4+5-6+7-8+9-……….+ n 1-1 n +)( 3(2014山东19文) 在等差数列{}n a 中,已知2d =,2a 是1a 与4a 等比中项. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设()12 ,n n n b a += 记()1231n n n T b b b b =-+-++-L ,求n T . 4.( 2014山东19理) 已知等差数列}{n a 的公差为2,前n 项和为n S ,且1S ,2S ,4S 成等比数列。 (I )求数列}{n a 的通项公式; (II )令n b =,4) 1(1 1 +--n n n a a n 求数列}{n b 的前n 项和n T 。 5、(2011山东理数20)等比数列{}n a 中,123,,a a a 分别是下表第一、二、三行中的某一个数,且123,,a a a (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)若数列{}n b 满足:()1ln n n n n b a a =+-,求数列{}n b 的前n 项和n S . 6、(2011山东文数20)等比数列{}n a 中,123,,a a a 分别是下表第一、二、三行中的某一个数,且123,,a a a (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)若数列{}n b 满足:(1)ln n n n n b a a =+-, 求数列{}n b 的前2n 项和2n S . 四、 错位相减法:.×. 1、已知数列)0()12(,,5,3,11 2 ≠--a a n a a n Λ,求前 n 项和。 2、 132)12(7531--+???++++=n n x n x x x S 3、求数列 ??????,2 2,,26,24,2232n n 前n 项的和 4、{2}.n n n ?求数列前项和 5、设{}n a 是等差数列,{}n b 是各项都为正数的等比数列,且111a b ==,3521a b +=,5313a b +=

高中数列求和的几种方法

高中数列求和的几种方法 包括累加法累乘法倒序相加法什么的,请告诉我所有的方法的内容及适用范围以及例题. 1.公式法: 等差数列求和公式: Sn=n(a1+an)/2=na1+n(n-1)d/2 等比数列求和公式: Sn=na1(q=1) Sn=a1(1-q^n)/(1-q)=(a1-an×q)/(1-q) (q≠1) 其他 1+2^2+3^2+4^2+.+n^2=n(n+1)(2n+1)/6 1+2^3+3^3+4^3+.+n^3=[n(n+1)/2]^2 2.错位相减法 适用题型:适用于通项公式为等差的一次函数乘以等比的数列形式和等差等比数列相乘 { an }、{ bn }分别是等差数列和等比数列.Sn=a1b1+a2b2+a3b3+...+anbn 例如: an=a1+(n-1)d bn=b1·q^(n-1) Cn=anbn Tn=a1b1+a2b2+a3b3+a4b4.+anbn qTn= a1b2+a2b3+a3b4+...+a(n-1)bn+anb(n+1) Tn-qTn= a1b1+b2(a2-a1)+b3(a3-a2)+...bn[an-a(n-1)]-anb(n+1)

Tn(1-q)=a1b1-anb(n+1)+d(b2+b3+b4+...bn) ______① =a1b1-an·b1·q^n+d·b2[1-q^(n-1)]/(1-q) =a1b1-(a1+nd-d)·b1q^n+d·b2[1-q^(n-1)]/(1-q) Tn=上述式子/(1-q) 此外.①式可变形为 Tn(1-q)=a1b1-anb(n+1)+d(Sn-b1) Sn为{bn}的前n项和. 此形式更理解也好记 3.倒序相加法 这是推导等差数列的前n项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n个(a1+an) Sn =a1+ a2+ a3+.+an Sn =an+ a(n-1)+a(n-2).+a1 上下相加得到2Sn 即 Sn= (a1+an)n/2 4.分组法 有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可. 例如:an=2^n+n-1 5.裂项法 适用于分式形式的通项公式,把一项拆成两个或多个的差的形式,即an=f(n+1)-f(n),然后累加时抵消中间的许多项. 常用公式: (1)1/n(n+1)=1/n-1/(n+1) ,1/(n-1)-1/n

(完整版)数列求和经典题型总结

三、数列求和 数列求和的方法. (1)公式法:①等差数列的前n 项求和公式 n S =__________________=_______________________. ② 等 比 数 列 的 前 n 项 和 求 和 公 式 ? ? ?≠===)1(___________________)1(__________q q S n (2)....++=n n n b a C ,数列{}n C 的通项公式能够分解成几部分,一般用“分组求和法”. (3)n n n C a b =?,数列{}n C 的通项公式能够分解成等差数列和等比数列的乘积,一般用“错 位相减法”. (4)1 n n n C a b = ?,数列{}n C 的通项公式是一个分式结构,一般采用“裂项相消法”. (5)并项求和法:一个数列的前n 项和中,可两两结合求解,则称之为并项求和。适用于形如()()n f a n n 1-=的类型。举例如下: ()()() 5050 12979899100129798991002 22222=++???++++=-+???+-+-= n S 常见的裂项公式: (1) 111)1(1+-=+n n n n ;(2) =+-) 12)(12(1 n n ____________________;(3)1 1++n n =__________________ 题型一 数列求解通项公式 1. 若数列{a n }的前n 项的和1232 +-=n n S n ,则{a n }的通项公式是n a =_________________。 2. 数列}{n a 中,已知对任意的正整数n ,1321-=+???++n n a a a ,则22221n a a a +???++等 于_____________。 3. 数列中,如果数列是等差数列,则________________。 4. 已知数列{a n }中,a 1=1且 3 1 111+=+n n a a ,则=10a ____________。 5. 已知数列{a n }满足)2(1 1≥-= -n a n n a n n ,则n a =_____________.。 6. 已知数列{a n }满足)2(11≥++=-n n a a n n ,则n a =_____________.。 {}n a 352,1,a a ==1 { }1 n a +11a =

(完整)高中数列求和方法集锦

数列求和的常用方法 数列是高中数学的重要内容,又是学习高等数学的基础。在高考和各种数学竞赛中都占有重要的地位。数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧。 下面,简单介绍下数列求和的基本方法和技巧。 第一类:公式法 利用下列常用求和公式求和是数列求和的最基本最重要的方法。 1、等差数列的前n 项和公式 2 )1(2)(11d n n na a a n S n n -+=+= 2、等比数列的前n 项和公式 ?? ???≠--=--==)1(11)1()1(111q q q a a q q a q na S n n n 3、常用几个数列的求和公式 (1)、)1(213211 += +?+++==∑=n n n k S n k n (2)、)12)(1(6132122221 2++= +?+++==∑=n n n n k S n k n (3)、233331 3)]1(21[321+=+?+++==∑=n n n k S n k n 第二类:乘公比错项相减(等差?等比) 这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列}{n n b a ?的前n 项和,其中}{n a ,}{n b 分别是等差数列和等比数列。 例1:求数列}{1-n nq (q 为常数)的前n 项和。 解:Ⅰ、若q =0, 则n S =0 Ⅱ、若q =1,则)1(2 1321+= +?+++=n n n S n Ⅲ、若q ≠0且q ≠1, 则12321-+?+++=n n nq q q S ① n n nq q q q qS +?+++=3232 ② ①式—②式:n n n nq q q q q S q -+?++++=--1321)1(

数列求通项公式及求和9种方法

数列专题1:根据递推关系求数列的通项公式 根据递推关系求数列的通项公式主要有如下几种类型一、 n S是数列{}n a的前n项的和 1 1 (1) (2) n n n S n a S S n - = ? =? -≥ ? 【方法】:“ 1 n n S S - -”代入消元消n a。 【注意】漏检验n的值(如1 n=的情况 【例1】.(1)已知正数数列{} n a的前n项的和为n S, 且对任意的正整数n满足1 n a =+,求数列{} n a的通项公式。 (2)数列{} n a中,1 1 a=对所有的正整数n都有 2 123n a a a a n ????= L,求数列{}n a的通项公式 【作业一】 1-1.数列{} n a满足 21* 123 333() 3 n n n a a a a n N - ++++=∈ L,求数列 {} n a的通项公式. (二).累加、累乘型如 1 () n n a a f n - -=, 1 () n n a f n a - =

导等差数列通项公式的方法) 【方法】 1()n n a a f n --=, 12(1)n n a a f n ---=-, ……, 21(2)a a f -=2n ≥, 从而1()(1)(2)n a a f n f n f -=+-++L ,检验1n =的情 况 ()f n =,用累乘法求通项公式(推导等比数列通项公式的方法) 【方法】2n ≥,12 121 ()(1)(2)n n n n a a a f n f n f a a a ---???=?-??L L 即1 ()(1)(2)n a f n f n f a =?-??L ,检验1n =的情 况 【小结】一般情况下,“累加法”(“累乘法”)里只有1n -个等式相加(相乘). 【例2】. (1) 已知21 1=a ,)2(1 1 21≥-+=-n n a a n n ,求 n a . (2)已知数列{}n a 满足1 2n n n a a n +=+,且3 21=a ,求n a .

高考数列求和解题方法大全

高考数列求和解题方法 大全 YUKI was compiled on the morning of December 16, 2020

高考数列求和解题方法大全 数列求和问题是数列的基本内容之一,也是高考的热点和重点。由于数列求和问题题型多样,技巧性也较强,以致成为数列的一个难点。鉴于此,下面就数列求和问题的常见题型及解法技巧作一归纳,以提高同学们数列求和的能力。 一、利用常用求和公式求和 利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2 ) 1(2)(11-+=+= 2、等比数列求和公式:??? ??≠--=--==) 1(11)1()1(111 q q q a a q q a q na S n n n 3、 )1(211+==∑=n n k S n k n 4、)12)(1(61 1 2++==∑=n n n k S n k n 例1. 已知3 log 1 log 23-= x ,求???++???+++n x x x x 32的前n 项和. 解:由2 1 2log log 3log 1log 3323=?-=?-= x x x , 由等比数列求和公式得 n n x x x x S +???+++=32=x x x n --1)1(=211) 21 1(2 1--n =1-n 21 二、错位相减法求和

这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列. 例2. 求和:132)12(7531--+???++++=n n x n x x x S ………………………① 解:由题可知,{1)12(--n x n }的通项是等差数列{2n -1}的通项与等比数列{1-n x }的通项之积 当时1=x ,()()[]22 121127531n n n n S n =-+=-+++++= 当时1≠x 设n n x n x x x x xS )12(7531432-+???++++=……………② (设制错位) ①-②得 n n n x n x x x x x S x )12(222221)1(1432--+???+++++=-- (错位相减) 再利用等比数列的求和公式得:n n n x n x x x S x )12(1121)1(1 ----? +=-- ∴ 2 1) 1() 1()12()12(x x x n x n S n n n -+++--=+ 例3.已知1,0≠>a a ,数列{}n a 是首项为a ,公比也为a 的等比数列,令 )(lg N n a a b n n n ∈?=,求数列{}n b 的前n 项和n S 。 解析: ①-②得:a na a a a S a n n n lg )()1(12+-+++=-

数列求和7种方法(方法全_例子多)

一、利用常用求和公式求和 利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2 ) 1(2)(11-+=+= 2、等比数列求和公式:?????≠--=--==) 1(11)1()1(111 q q q a a q q a q na S n n n 3、 )1(211 +==∑=n n k S n k n 4、)12)(1(6112 ++==∑=n n n k S n k n 5、 21 3 )]1(21[+== ∑=n n k S n k n [例1] 已知3 log 1log 23-= x ,求???++???+++n x x x x 32的前n 项和. 解:由2 1 2log log 3log 1log 3323=?-=?-= x x x 由等比数列求和公式得 n n x x x x S +???+++=32 (利用常用公式) =x x x n --1)1(= 2 11) 211(21--n =1-n 21 [例2] 设S n =1+2+3+…+n ,n ∈N *,求1 )32()(++= n n S n S n f 的最大值. 解:由等差数列求和公式得 )1(21+=n n S n , )2)(1(2 1 ++=n n S n (利用常用公式) ∴ 1)32()(++= n n S n S n f =64 342++n n n = n n 64341+ += 50 )8(12+- n n 50 1≤ ∴ 当 8 8- n ,即n =8时,501)(max =n f 题1.等比数列的前n项和S n=2n-1,则=

数列求和的常用方法(三课时)

数列求和的常用方法(三课时) 数列求和是数列的重要内容之一,也是高考数学的重点考查对象。数列求和的基本思路是,抓通项,找规律,套方法。下面介绍数列求和的几种常用方法: 一、直接(或转化)由等差、等比数列的求和公式求和 利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2 ) 1(2)(11-+=+= 2、等比数列求和公式:?????≠--=--==) 1(11)1()1(111 q q q a a q q a q na S n n n 3、 )1(211 +==∑=n n k S n k n 4、)12)(1(6112 ++==∑=n n n k S n k n 5、 2 1 3)]1(21[+==∑=n n k S n k n 例1(07高考山东文18)设{}n a 是公比大于1的等比数列,n S 为数列{}n a 的前n 项和.已知37S =,且123334a a a ++,,构成等差数列. (1)求数列{}n a 的等差数列. (2)令31ln 12n n b a n +== ,,,, 求数列{}n b 的前n 项和T . 解:(1)由已知得12313 27:(3)(4)3.2 a a a a a a ++=?? ?+++=??, 解得22a =. 设数列{}n a 的公比为q ,由22a =,可得132 2a a q q ==,. 又37S =,可知2 227q q ++=,即22520q q -+=, 解得121 22 q q ==,.由题意得12q q >∴=,. 11a ∴=.故数列{}n a 的通项为12n n a -=. (2)由于31ln 12n n b a n +== ,,,, 由(1)得3312n n a += 3ln 23ln 2n n b n ∴==, 又13ln 2n n n b b +-= {}n b ∴是等差数列. 12n n T b b b ∴=+++ 1()2 (3ln 23ln 2) 23(1)ln 2. 2 n n b b n n n += += += 故3(1) ln 22 n n n T += .

等差数列求和的几种方法

数列求和的几种情形 11()(1)22 n n n a a n n S na d +-==+ ()-n m n d =-m a a 一、分组法 例1 求11357(1)(21)n n S n -=-+-++--L . 变式练习1:已知数列{}n a 的前n 项和250n S n n =-,试求: (1)n a 的通项公式; (2)记n n b a =,求{}n b 的前n 项和n T 二、倒序相加

()1112()()n n n n n S a a a a a a =++++++644444474444448 L 个 1()n n a a =+ 1()2 n n n a a S += 例2 求2222o o o o sin 1+sin 2+sin 3+.......sin 89 三、错位相减 11n n a a q -= 11(1)(01)n n n a a q a q S q q --==≠≠且1-q 1-q 例3 21123(0)n n S x x nx x -=++++≠L 变式练习3(1)已知数列{}n a 的通项.2n n a n =,求其n 项和n S

(2)已知数列{}n a 的通项()121.3n n a n ??=- ??? ,求其n 项和n S 四、裂项相消 例4 已知数列1{},n n a a =的通项公式为求前n 项和.n (n+1) 变式练习4:(1) 1111132435(2) n n ++++????+L .

(2)求数列 , (1) 1,...,321,321,211+++++n n 的前n 项和n S }{() ()()()}{1111,,21152. n n n n a a a a n n n a -==+≥-在数列中,写出数列的前项; 求数列的通项公式 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。

数列求和7种方法(方法全~例子多)

数列求和的基本方法和技巧 一、总论:数列求和7种方法: 利用等差、等比数列求和公式 错位相减法求和 反序相加法求和 分组相加法求和 裂项消去法求和 分段求和法(合并法求和) 利用数列通项法求和 二、等差数列求和的方法是逆序相加法,等比数列的求和方法是错位相减法, 三、逆序相加法、错位相减法是数列求和的二个基本方法。 一、利用常用求和公式求和 利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2 ) 1(2)(11-+=+= 2、等比数列求和公式:?????≠--=--==) 1(11)1()1(111 q q q a a q q a q na S n n n 3、 )1(211+==∑=n n k S n k n 4、)12)(1(611 2 ++==∑=n n n k S n k n 5、 21 3)]1(21[+== ∑=n n k S n k n [例1] 已知3 log 1log 23-= x ,求???++???+++n x x x x 32的前n 项和. 解:由2 1 2log log 3log 1log 3323=?-=?-= x x x 由等比数列求和公式得 n n x x x x S +???+++=32 (利用常用公式)

=x x x n --1)1(= 2 11) 211(21--n =1-n 21 [例2] 设S n =1+2+3+…+n ,n ∈N *,求1 )32()(++= n n S n S n f 的最大值. 解:由等差数列求和公式得 )1(21+=n n S n , )2)(1(2 1 ++=n n S n (利用常用公式) ∴ 1)32()(++= n n S n S n f =64 342++n n n = n n 64341+ += 50 )8(12+- n n 50 1≤ ∴ 当 8 8- n ,即n =8时,501)(max =n f 题1.等比数列的前n项和S n=2n-1,则= 题2.若12+22+…+(n -1)2=an 3+bn 2+cn ,则a = ,b = ,c = . 解: 原式= 答案: 二、错位相减法求和 这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列. [例3] 求和:132)12(7531--+???++++=n n x n x x x S ………………………① 解:由题可知,{1 )12(--n x n }的通项是等差数列{2n -1}的通项与等比数列{1 -n x }的通项之积 设n n x n x x x x xS )12(7531432-+???++++=………………………. ② (设制错位) ①-②得 n n n x n x x x x x S x )12(222221)1(1432--+???+++++=-- (错位相减) 再利用等比数列的求和公式得:n n n x n x x x S x )12(1121)1(1 ----? +=--

数列求和常用方法(经典讲解)

求数列前n 项和常用方法(经典讲解) 一.公式法(定义法): 1.等差数列求和公式: 11()(1)22 n n n a a n n S na d ++==+ 特别地,当前n 项的个数为奇数时,211(21)k k S k a ++=+?,即前n 项和为中间项乘以项数。这个公式在很多时候可以简化运算; 2.等比数列求和公式: (1)1q =,1n S na =; (2)1q ≠,( )111n n a q S q -= -,特别要注意对公比的讨论; 3.可转化为等差、等比数列的数列; 4.常用公式: (1)1n k k ==∑1 2 123(1)n n n ++++=+L ; (2)21n k k ==∑222211 63 1123(1)(21)()(1)2 n n n n n n n ++++=++==++L ; (3)31n k k ==∑33332(1)2 123[ ]n n n +++++=L ; (4)1(21)n k k =-=∑2135(21)n n ++++-=L . 例1 已知3log 1 log 23-= x ,求23n x x x x ++++的前n 项和. 解:由2 1 2log log 3log 1log 3323=?-=?-= x x x 由等比数列求和公式得 23n n S x x x x =++++L =x x x n --1)1(=2 11) 21 1(2 1--n =1-n 2 1 例2 设123n S n =++++,*n N ∈,求1 )32()(++=n n S n S n f 的最大值. 解:易知 )1(21+=n n S n , )2)(1(2 1 1++=+n n S n ∴ 1)32()(++=n n S n S n f =64 342++n n n =n n 64341++=50)8(12+-n n 50 1 ≤ ∴ 当 8 8-n ,即8n =时,501 )(max =n f . 二.倒序相加法:如果一个数列{}n a ,与首末两端等“距离”的两项的和相等或等于同一常数,那 么求这个数列的前n 项和即可用倒序相加法。如:等差数列的前n 项和即是用此法推导的,就是

相关文档