文档库 最新最全的文档下载
当前位置:文档库 › 基于单片机的超声波液位测量系统

基于单片机的超声波液位测量系统

基于单片机的超声波液位测量系统
基于单片机的超声波液位测量系统

介绍了超声波测距的基本原理和系统框图,给出了超声波发射和接收电路,通过盲区的消除以及环境温度的采样,提高了测距的精确度。利用超声波传输中距离与时间的关系,采用8051单片机进行控制及数据处理,设计出了能精确测量两点间距离的超声波液位检测系统。系统主要由超声波发射器电路、超声波接收器电路、单片机控制电路、环境温度检测电路及显示电路构成。利用所设计出的超声波液位检测系统,对液面进行了测试,采集当时的环境温度获得精确的速度,计算出液面距离。此系统具有易控制、工作可靠、测量精度高的优点,可实时检测液位。

关键词:超声波,液位测量,温度传感器

前言 (1)

1 总体概述 (1)

2 超声波和超声波传感器 (3)

2.1 超声波 (3)

2.1.1 定义 (3)

2.1.2 超声波的主要参数 (3)

2.1.3 超声波的特性 (3)

2.1.4 超声波的特点 (3)

2.1.5 超声波传感器的主要应用 (3)

2.2 超声波传感器测距原理 (4)

2.2.1 超声波传感器 (4)

2.2.2 超声波传感器的性能指标 (4)

2.2.3 超声波传感器的结构 (5)

2.2.4 超声波测距原理 (5)

3 MCS-51系列单片机 (7)

3.1 8051单片机的总体结构 (7)

3.1.1 8051单片机的总体框图和功能 (7)

3.1.2 8051的引脚功能 (8)

3.2 8051单片机的定时器/计数器 (10)

3.2.1 8051的定时器/计数器功能 (10)

3.2.2 定时器控制寄存器 (10)

3.2.3 工作方式控制寄存器 (11)

3.2.4 中断允许控制寄存器(IE) (11)

3.2.5 定时器/计数器的工作方式 (11)

3.3 8051单片机的中断 (12)

3.3.1 中断的定义 (12)

3.3.2 8051单片机的中断源 (12)

3.3.3 中断控制的专用寄存器 (13)

4 硬件设计 (16)

4.1 8051 单片机的最小系统组成 (16)

4.2 超声波发射电路设计 (17)

4.2.1 超声波频率及探头的选择 (17)

4.2.2 超声波发射电路 (17)

4.3 超声波接收电路设计 (18)

4.3.1 超声波接收器 (18)

4.3.2 超声波接收电路图 (19)

4.4 温度检测电路 (20)

4.4.1 温度检测方案的分析 (20)

4.4.2数字温度传感器DS18B20简介 (20)

4.4.3 DS18B20的结构及电路 (20)

4.5 显示方案的论证与选择 (21)

4.5.1 LED显示电路图 (21)

4.6 稳压电源 (22)

4.6.1 稳压电源构成 (22)

4.6.2 +5V电源电路 (23)

4.6.3 +12V电源电路 (23)

5 软件设计 (25)

5.1 主程序设计 (26)

5.1.1 主程序流程图 (26)

5.1.2 主程序 (27)

5.2 中断服务子程序 (27)

5.2.1 中断初始化 (27)

5.2.2 中断子程序流程图 (29)

5.3 温度检测子程序 (29)

5.4 距离的计算 (30)

结论 (31)

致 (32)

参考文献 (33)

附录 A (34)

附录 B (35)

前言

近年来,随着电子技术和信号处理技术的迅速发展,液位测量仪表中的测量技术也发展很快,经历了由机械式向机电一体化再到自动化的发展过程。结合这两大技术,尤其是将微处理器引进液位测量系统以后,使得液位计的精度越来越高,越来越向智能化、一体化、小型化的方向发展。从上世纪八十年代开始,一些发达国家就借助微电子、计算机、光纤、超声波、传感器等高科技的研究成果,将各种新技术、新方法应用到储罐液位测量领域。电子式测量方法便是其中的重要成果之一。在电子式液位测量方法中,有许多新的测量原理,包括压电式、应变式、雷达式、超声波式、浮球式、电容式、磁致伸缩式、伺服式、混合式等二十多种测量技术。由于该方法测量精度高,可靠性强,持续时间长,安装维护简单,因而正在逐步取代旧的机械式液位测量方法。用于储罐液位测量的众多电子式技术中,压电式、超声波式、应变式、浮球式、电容式五种测量技术应用最为广泛,约占总数的 60%以上。其中,超声波式测量技术的应用份额最大。

超声波液位测量有很多优点:它不仅能够定点和连续检测液位,而且能够方便地提供遥控或遥控所需的信号。与放射性技术相比,超声技术不需要防护。与目前的激光测量液位技术相比,超声方法比较简单而且价格较低。一般说来,超声波测位技术不需要有运动的部件,所以在安装和维护上有很大的优越性。特别是超声测位技术可以选用气体、液体或固体来作为传声媒质,因而有较大的适应性。所以在测量要求比较特殊,一般液位测量技术无法采用时,超声测位技术往往仍能适用。

在未来,超声波的液位测量将有更大的用途,更大的应用围。它不但可以帮助人们解决很多生活中的困难,还可以作为科学探测和研究的手段。特别是水位的测量,可以帮助确定水位的高度,以便于其他工作的顺利进行。

1.总体概述

我们把频率高于20000赫兹的声波称为“超声波”[1]。超声波发射器发出的超声波以速度v在空气中传播,在到达被测物体时被反射返回,由接收器接收,其往返时间为t,由s=vt/2即可算出被测物体的距离。由于超声波也是一种声波,其声速v与温度有关,下表列出了几种不同温度下的声速。在使用时,如果温度变化不大,则可认为声速是基本不变的。

表1.1 超声波波速与温度的关系表

超声波液位测距原理框图如图1.1单片机发出40kHZ的信号,通过超声波发射器输出;超声波接收器将接收到的超声波信号经放大器放大,进行处理后,启动单片机中断程序,测得时间为t,再由软件进行判别、计算,得出距离数并送

LED 显示。

图1.1 超声波测距系统设计框图

1.1工作原理

本文采用超声脉冲回波法测液位[5]。超声脉冲回波法的基本原理是由超声波传感器的发射探头发射超声波,当超声波遇到障碍物时会被反射,利用单片机记录超声波发射的时间和接收到回波的时间,根据当前环境下超声波的传播速度,即可通过公式 1.1 计算出超声波传播的距离,也就得到了障碍物离测试系统的距离。测距原理如图 1.2 所示。

S=C ×[t /2] (1.1)

式中 S 为被测距离,C 为超声波的传播速度,t 为回波时间,t=Tl+T2。

图 1.2 超声波测距原理图

利用超声波在液体中传播时,有较好的方向性,且传播过程中能量损失较少,遇到分界面时能反射的特性,可用回波测距的原理,测定超声波发射后遇液面反射回来的时间,以确定液面的高度。超声波液位检测的原理图如图 1.3 所示。 超声波接收

超声波发送

8051

单片机 LED 显示 温度检测

555 电路

图 1.3 超声波液位检测原理图

由图1.3可知

h=H-S (1.2)

式中 S 为超声波探头到液面的距离,可由式 1.1 求得, H 为超声波探头到容器底的距离,需要提前测定,h 为所要测的液位高度。为了防止超声波发射探头发出的超声波直接传入接收探头引起误差,两个探头在安装时应平行并且相距 4~8cm。在软件设计时,为了消除这个误差,INT0 应当在超声波发射探头发射超声波后 0.3ms 再开启,以防从发射探头发出的超声波直接进入接收探头触发中断。在 20℃条件下超声波的传播速度为 344m/s,超声波在 0.3ms 时间在空气中可以传播 10.32cm,已经超出发射和接收探头之间的距离,此时超声波接收探头已经接收不到从发射探头直接发射过来的超声波,此时再开启 INT0 中断,就不会因为发射探头发出的超声波直接进入接收探头触发中断产生时间误差。

2.超声波和超声波传感器

2.1 超声波

2.1.1 定义

科学家们将每秒钟振动的次数称为声音的频率,它的单位是赫兹。我们人类耳朵能听到的声波频率为20~20000赫兹。当声波的振动频率大于20000赫兹或

小于20赫兹时,我们便听不见了。因此,我们把频率高于20000赫兹的声波称为“超声波”。

2.1.2 超声波的主要参数

超声波的两个主要参数:频率:F≥20K/Hz;功率密度:p=发射功率(W)/发射面积(cm2);通常p≥0.3w/cm2; 在液体中传播的超声波能对物体表面的污物进行清洗,其原理可用“空化”现象来解释:超声波振动在液体中传播的音波压强达到一个大气压时,其功率密度为0.35w/cm2,这时超声波的音波压强峰值就可达到真空或负压,但实际上无负压存在,因此在液体中产生一个很大的压力,将液体分子拉裂成空洞—空化核。此空洞非常接近真空,它在超声波压强反向达到最大时破裂,由于破裂而产生的强烈冲击将物体表面的污物撞击下来。这种由无数细小的空化气泡破裂而产生的冲击波现象称为“空化”现象。太小的声强无法产生空化效应。

2.1.3 超声波的特性

(1)超声波可在气体、液体、固体、固熔体等介质中有效传播。

(2)超声波可传递很强的能量。

(3)超声波会产生反射、干涉、叠加和共振现象。

(4)超声波在液体介质中传播时,可在界面上产生强烈的冲击和空化现象。

2.1.4 超声波的特点

(1)超声波在传播时,方向性强,能量易于集中。

(2)超声波能在各种不同媒质中传播,且可传播足够远的距离。

(3)超声波与传声媒质的相互作用适中,易于携带有关传声媒质状态的信息(诊断或对传声媒质产生效应)。

超声波是一种波动形式,它可以作为探测与负载信息的载体或媒介(如B 超等用作诊断);超声波同时又是一种能量形式,当其强度超过一定值时,它就可以通过与传播超声波的媒质的相互作用,去影响,改变以致破坏后者的状态,性质及结构(用作治疗)。

2.1.5 超声波传感器的主要应用

超声波传感技术应用在生产实践的不同方面,而医学应用是其最主要的应用之一,下面以医学为例子说明超声波传感技术的应用。超声波在医学上的应用主要是诊断疾病,它已经成为了临床医学中不可缺少的诊断方法。超声波诊断的优点是:对受检者无痛苦、无损害、方法简便、显像清晰、诊断的准确率高等。因而推广容易,受到医务工作者和患者的欢迎。超声波诊断可以基于不同的医学原理,我们来看看其中有代表性的一种所谓的A型方法。这个方法是利用超声波的

反射。当超声波在人体组织中传播遇到两层声阻抗不同的介质界面是,在该界面就产生反射回声。每遇到一个反射面时,回声在示波器的屏幕上显示出来,而两个界面的阻抗差值也决定了回声的振幅的高低。

在工业方面,超声波的典型应用是对金属的无损探伤和超声波测厚两种。过去,许多技术因为无法探测到物体组织部而受到阻碍,超声波传感技术的出现改变了这种状况。当然更多的超声波传感器是固定地安装在不同的装置上,“悄无声息”地探测人们所需要的信号。在未来的应用中,超声波将与信息技术、新材料技术结合起来,将出现更多的智能化、高灵敏度的超声波传感器。

2.2 超声波传感器测距原理

2.2.1 超声波传感器

超声波传感器是利用超声波的特性研制而成的传感器。超声波是一种振动频率高于声波的机械波,由换能晶片在电压的激励下发生振动产生的,它具有频率高、波长短、绕射现象小,特别是方向性好、能够成为射线而定向传播等特点。超声波对液体、固体的穿透本领很大,尤其是在不透明的固体中,它可穿透几十米的深度。超声波碰到杂质或分界面会产生显著反射形成反射成回波,碰到活动物体能产生多普勒效应。因此超声波检测广泛应用在工业、国防、生物医学等方面。

以超声波作为检测手段,必须产生超声波和接收超声波。完成这种功能的装置就是超声波传感器,习惯上称为超声换能器,或者超声探头。

2.2.2 超声波传感器的性能指标

超声探头的核心是其塑料外套或者金属外套中的一块压电晶片。构成晶片的材料可以有许多种。晶片的大小,如直径和厚度也各不相同,因此每个探头的性能是不同的,我们使用前必须预先了解它的性能。超声波传感器的主要性能指标包括:

(1)工作频率。工作频率就是压电晶片的共振频率。当加到它两端的交流电压的频率和晶片的共振频率相等时,输出的能量最大,灵敏度也最高。

(2)工作温度。由于压电材料的居里点一般比较高,特别是诊断用超声波探头使用功率较小,所以工作温度比较低,可以长时间地工作而不会失效。医疗用的超声探头的温度比较高,需要单独的制冷设备。

(3)灵敏度。主要取决于制造晶片本身。机电耦合系数大,灵敏度高;反之,灵敏度低。

2.2.3 超声波传感器的结构

超声波探头主要由压电晶片组成,既可以发射超声波,也可以接收超声波。小功率超声探头多作探测作用。它有许多不同的结构,直探头、斜探头、表面波探头、兰姆波探头、双探头等。

当电压作用于压电瓷时,就会随电压和频率的变化产生机械变形。另一方面,当振动压电瓷时,则会产生一个电荷。利用这一原理,当给由两片压电瓷或一片压电瓷和一个金属片构成的振动器,所谓叫双压电晶片元件,施加一个电信号时,就会因弯曲振动发射出超声波。相反,当向双压电晶片元件施加超声振动时,就会产生一个电信号。基于以上作用,便可以将压电瓷用作超声波传感器。

如超声波传感器,一个复合式振动器被灵活地固定在底座上。该复合式振动器是谐振器以及,由一个金属片和一个压电瓷片组成的双压电晶片元件振动器的一个结合体。谐振器呈喇叭形,目的是能有效地辐射由于振动而产生的超声波,并且可以有效地使超声波聚集在振动器的中央部位。

室外用途的超声波传感器必须具有良好的密封性,以便防止露水、雨水和灰尘的侵入。压电瓷被固定在金属盒体的顶部侧。底座固定在盒体的开口端,并且使用树脂进行覆盖。对应用于工业机器人的超声波传感器而言,要求其精确度要达到1mm,并且具有较强的超声波辐射。

利用常规双压电晶片元件振动器的弯曲振动,在频率高于70KHz的情况下,是不可能达到此目的的。所以,在高频率探测中,必须使用垂直厚度振动模式的压电瓷。在这种情况下,压电瓷的声阻抗与空气的匹配就变得十分重要。压电瓷的声阻抗为 2.6×107kg/m2s,而空气的声阻抗为4.3×102kg/m2s。5个幂的差异会导致在压电瓷振动辐射表面上的大量损失。一种特殊材料粘附在压电瓷上,作为声匹配层,可实现与空气的声阻抗相匹配。这种结构可以使超声波传感器在高达数百kHz频率的情况下,仍然能够正常工作。

2.2.4 超声波测距原理

超声波发射器向某一方向发射超声波,在发射时刻的同时开始计时,超声波在空气中传播,途中碰到障碍物就立即返回来,超声波接收器收到反射波就立即停止计时。超声波在空气中的传播速度为340m/s,根据计时器记录的时间t,就可以计算出发射点距障碍物的距离(s),即:s=340t/2 。这就是所谓的时间差测距法[2]。

超声波测距的原理是利用超声波在空气中的传播速度为已知,测量声波在发射后遇到障碍物反射回来的时间,根据发射和接收的时间差计算出

发射点到障碍物的实际距离。由此可见,超声波测距原理与雷达原理是一样的。

测距的公式表示为:L=C×T

式中L为测量的距离长度;C为超声波在空气中的传播速度;T为测量距离传播的时间差(T为发射到接收时间数值的一半)。

超声波测距主要应用于倒车提醒、建筑工地、工业现场等的距离测量,虽然目前的测距量程上能达到百米,但测量的精度往往只能达到厘米数量级。

由于超声波易于定向发射、方向性好、强度易控制、与被测量物体不需要直接接触的优点,是作为液体高度测量的理想手段。

3.MCS-51系列单片机

3.1 8051单片机的总体结构

MCS-51系列单片机主要包括8031、8051和8751等通用产品。

8051是MCS-51系列单片机中的代表产品,它部集成了功能强大的中央处理器,包含了硬件乘除法器、21个专用控制寄存器、4kB的程序存储器、128字节的数据存储器、4组8位的并行口、两个16位的可编程定时/计数器、一个全双工的串行口以及布尔处理器。

3.1.1 8051单片机的总体框图及功能

部总体结构如下:

8位CPU

4kbytes 程序存储器(ROM)

128bytes的数据存储器(RAM)

32条I/O口线

111条指令,大部分为单字节指令

21个专用寄存器

2个可编程定时/计数器

5个中断源,2个优先级

一个全双工串行通信口

外部数据存储器寻址空间为64kB

外部程序存储器寻址空间为64kB

逻辑操作位寻址功能

双列直插40PinDIP封装

单一+5V电源供电

图3.1 8051单片机的部基本结构

图3.1是8051的部结构框图,从图中可以看出,单片机部各功能部件都是挂靠在部总线上的,它们通过部总线传送地址信息,各功能部件分时使用总线,即所谓的部但总线结构。

3.1.2 8051的引脚功能

8051单片机采用40脚双列直插式封装,其引脚排列及逻辑符号如图3.2所示。

图3.2 8051单片机引脚图

下面分别说明各引脚的含义和功能[3]。

(1)主电源引脚Vcc和Vss

Vcc──电源端。工作电源和编程校验(+5V)。

Vss──接地端。

(2)时钟振荡电路引脚XTAL1和XTAL2

XTAL1和XTAL2分别用作晶体振荡电路的反相器输入和输出端。在使用部振荡电路时,这两个端子用来外接石英晶体,振荡频率为晶振频率,振荡信号送至部时钟电路产生时钟脉冲信号;若采用外部振荡电路,则XTAL2用于输入外部振荡脉冲,该信号直接送至部时钟电路,而XTAL1必须接地。

(3)控制信号引脚RST/Vpp、ALE/PROG、PSEN和EA/Vpp

RST/Vpp ──RST为复位信号输入端。当RST端保持两个机器周期(24个时钟周期)以上的高电平时,使单片机完成复位操作。第二功能Vpp 为部RAM的备用电源输入端。当主电源Vcc一旦发生断电(称掉电或失电),降到一定低电压值时,可通过Vpp为单片机部RAM提供电源,以保护片RAM中的信息不丢失,使上电后能继续正常运行。

ALE/PROG──ALE为地址锁存允许信号。在访问外部存储器时,ALE用来锁存P0扩展地址低8位的地址信号。在不访问外部存储器时,ALE也以时钟振荡频率的1/6的固定速率输出,因而它又可用作外部定时或其它需要。但是,在遇到访问外部数据存储器时,会丢失一个ALE脉冲。ALE能驱动8个LSTTL门输入。第二功能PROG是对部ROM编程时的编程脉冲输入端。

PSEN──外部程序存储器ROM的读选通信号。当访问外部ROM时,PSEN产生负脉冲作为外部ROM的选通信号。而在访问外部数据RAM或片ROM时,不会产生有效的PSEN信号。PSEN可驱动8个LSTTL门输入端。

EA/Vpp──访问外部程序存储器控制信号。对80C51,它们的片有4KB的程序存储器,当EA为高电平时,CPU访问程序存储器有两种情况:第一种情况是访问的地址空间在0~4K围,CPU访问片程序存储器;第二种情况是访问的地址超出4K时,CPU将自动执行外部程序存储器的程序,即访问外部ROM。当EA接地时,只能访问外部ROM。第二功能Vpp 为编程电源输入。

(4)4个8位I/O端口P0、P1、P2和P3

P0口(P0.0~P0.7)是一个8位漏极开路型的双向I/O口。第二功能是在访问外部存储器时,分时提供低8位地址线和8位双向数据总线。在对片ROM 进行编程和校验时,P0口用于数据的输入和输出。

P1口(P1.0~P1.7)是一个部带提升电阻的准双向I/O口。在对片ROM编程和校验时,P1口用于接收低8位地址。

P2口(P2.0~P2.7)是一个部带提升电阻的8位准双向I/O口。第二功能是在访问外部存储器时,输出高8位地址。在对片ROM进行编程和校验时,P2口用作接收高8位地址和控制信号。

P3口(P2.0~P2.7)是一个部带提升电阻的8位准双向I/O口。

3.2 8051单片机的定时器/计数器

3.2.1 8051的定时器/计数器功能

(1)计数功能

所谓计数是指时外部脉冲进行计数。外部脉冲通过T0(P3.4)、T1(P3.5)两个信号引脚输入。输入的脉冲在负跳变时有效,进行计数器加1(加法计数)。计数脉冲的频率不能高于晶振频率的1/24。

(2)定时功能

定时功能也是通过计数器的计数来实现的,不过此时的计数脉冲来自单片机的部,即每个机器周期产生一个计数脉冲。也就是每个机器周期计数器加1。

3.2.2 定时器控制寄存器

表 3.1 定时器控制寄存器(TCON)

(1)TF0(TF1)计数溢出标志位

当计数器计数溢出(计满)时,该位置“1”

查询方式时,此位作状态位供查询,软件清“0”;

中断方式时,此位作中断标志位,硬件自动清“0”。

(2)TR0(TR1)定时器运行控制位

TR0(TR1)=0 停止定时器/计数器工作

TR0(TR1)=1 启动定时器/计数器工作

软件方法使其置“1”或清“0”。

3.2.3 工作方式控制寄存器

各位定义如下:

表3.2 工作方式控制器寄存器 TMOD

(1)GATE 门控位

GATE=0以运行控制位TR启动定时器

GATE=1以外中断请求信号(/INT0或/INT1)启动定时器

(2)C/T 定时方式或计数方式选择位

C/T=0定时工作方式

C/T=l计数工作方式

(3)M1、M0 工作方式选择位

M1、M0=00 方式0

M1、M0=01 方式1

M1、M0=10 方式2

M1、M0=11 方式3

3.2.4 中断允许控制寄存器(IE)

(1)EA中断允许总控制位

(2)ET0和ET1定时/计数中断允许控制位

ET0(ET1)=0禁止定时/计数中断

ET0(ET1)=1允许定时/计数中断

3.2.5 定时器/计数器的工作方式

(1)方式0

方式0是13位计数结构的工作方式,其计数器由TH0全部8位和TL0的低5位构成。TH0的高3位弃之不用。

当为定时工作方式时,定时时间的计算公式为:

(213-计数初值)×晶振周期×12

(2)方式1

方式1是16位计数结构的工作方式,计数器由TH0全部8位和TL0全部8位构成。其电路和工作情况与方式0完全相同。

在方式1下的定时时间的计算公式为:

(216-计数初值)×晶振周期×12

(3)方式2

初始化时,8位计数初值同时装入TL0和TH0中。当TL0计数溢出时,置位

TF0,同时把保存在预置寄存器TH0中的计数初值自动加载TL0,然后TL0重新计数。

当为定时工作方式时,定时时间的计算公式为:

(255-计数初值)×晶振周期×12

(4)方式3

①工作方式3下的定时器/计数器0

在工作方式3下,定时器/计数器0被拆成两个独立的8位计数器TL0和TH0。其中TL0既可以计数使用,又可以定时使用,定时器/计数器0的各控制位和引脚信号全归它使用。TH0则只能作为简单的定时器使用。

②工作方式3下的定时器/计数器1

如果定时器/计数器0已工作在工作方式3,则定时器/计数器1只能工作在方式0、方式1或方式2下,因为它的运行控制位TR1及计数溢出标志位TF1已被定时器/计数器0借用,如图所示。在这种情况下,定时器/计数器1通常是作为串行口的波特率发生器使用,以确定串行通信的速率。

3.3 8051单片机的中断

3.3.1 中断的定义

所谓的中断就是,当 CPU 正在处理某项事务的时候,如果外界或者部发生了紧急事件,要求 CPU 暂停正在处理工作而去处理这个紧急事件,待处理完后,再回到原来中断的地方,继续执行原来被中断的程序,这个过程称作中断。

从中断的定义我们可以看到中断应具备中断源、中断响应、中断返回这样三个要素。中断源发出中断请求,单片机对中断请求进行响应,当中断响应完成后应进行中断返回,返回被中断的地方继续执行原来被中断的程序。

3.3.2 8051单片机的中断源

8051单片机的中断源共有两类,它们分别是:外部中断和部中断。

(1)外部中断源

外部中断0:来自 P3.2 引脚,采集到低电平或者下降沿时,产生中断请求。

外部中断1:来自 P3.3 引脚,采集到低电平或者下降沿时,产生中断请求。

(2)部中断源

定时器∕计数器0( T0 ):定时功能时,计数脉冲来自片;计数功能时,计数脉冲来自片外 P3.4 引脚。发生溢出时,产生中断请求。

定时器∕计数器1( T1 ):定时功能时,计数脉冲来自片;计数功能时,计数脉冲来自片外 P3.5 引脚。发生溢出时,产生中断请求。

串行口:为完成串行数据传送而设置。单片机完成接受或发送一组数据时,

产生中断请求。

3.3.3 中断控制的专用寄存器

MCS-51单片机为用户提供了四个专用寄存器,来控制单片机的中断系统。

(1)定时器控制寄存器(TCON)

该寄存器用于保存外部中断请求以及定时器的计数溢出。进行字节操作时,寄存器地址为88H。按位操作时,各位的地址为88H~8FH。寄存器的容及位地址表示如下:

表3.3 寄存器TCON

位地

8FH 8EH 8DH 8CH 8BH 8AH 89H 88H 址

位符

TF1 TR1 TF0 TR0 IE1 IT1 IE0 IT0 号

IT0 和IT1——外部中断请求触发方式控制位

IT0 (IT1)=1 脉冲触发方式,下降沿有效

IT0 (IT1)=0 电平触发方式,低电平有效

IE0和IE1——外中断请求标志位

当CPU采样到INT0(或INT1)端出现有效中断请求时,IE0(IE1)位由硬件置“1”。

当中断响应完成转向中断服务程序时,由硬件把IE0(或IE1)清零。

TR0 和TR1——定时器运行控制位

TR0 (TR1 )=0 定时器/计数器不工作

TR0 (TR1 )=1 定时器/计数器开始工作

TF0和TF1——计数溢出标志位

当计数器产生计数溢出时,相应的溢出标志位由硬件置“1”。当转向中断服务时,再由硬件自动清“0”。计数溢出标志位的使用有两种情况:采用中断方式时,作中断请求标志位来使用;采用查询方式时,作查询状态位来使用。

(2)串行口控制寄存器(SCON)

进行字节操作时,寄存器地址为98H。按位操作时,各位的地址为98H~9FH。寄存器的容及位地址表示如下:

表3.4 串行口控制寄存器SCON

位地址9FH 9EH 9DH 9CH 9BH 9AH 99H 98H

位符号SM0 SM1 SM2 R EN TB8 RB8 TI RI

其中与中断有关的控制位共2位:

TI——串行口发送中断请求标志位

当发送完一帧串行数据后,由硬件置“1”;在转向中断服务程序后,用软件清“0”。

RI——串行口接收中断请求标志位

当接收完一帧串行数据后,由硬件置“1”;在转向中断服务程序后,用软件清“0”。串行中断请求由TI和RI的逻辑或得到。就是说,无论是发送标志还是接收标志,都会产生串行中断请求。

(3)中断允许控制寄存器(IE)

进行字节操作时,寄存器地址为0A8H。按位操作时,各位的地址为0A8H~0AFH。寄存器的容及位地址表示如下:

表3.5 中断允许控制寄存器IE

其中与中断有关的控制位共6位:

EA——中断允许总控制位

EA=0 中断总禁止,禁止所有中断

EA=1 中断总允许,总允许后中断的禁止或允许由各中断源的中断允许控制位进行设置。

EX0和EX1——外部中断允许控制位

EX0(EX1)=0 禁止外部中断

EX0(EX1)=1 允许外部中断

ET0和ET1——定时器/计数器中断允许控制位

ET0(ET1)=0 禁止定时器/计数器中断

ET0(ET1)=0 允许定时器/计数器中断

ES——串行中断允许控制位

ES=0 禁止串行中断

ES=1 允许串行中断

可见,MCS-51单片机通过中断允许控制寄存器对中断的允许(开放)实行两级控制。即以EA位作为总控制位,以各中断源的中断允许位作为分控制位。当总控制位为禁止时,关闭整个中断系统,不管分控制为状态如何,整个中断系统为禁止状态;当总控制位为允许时,开放中断系统,这时才能由各分控制位设置各自中断的允许与禁止。

MCS-51单片机复位后(IE)=00H,因此中断系统处于禁止状态。单片机在

中断响应后不会自动关闭中断。因此在转中断服务程序后,应根据需要使用有关指令禁止中断,即以软件方式关闭中断。

4. 硬件设计

硬件电路主要由单片机系统及显示电路、超声波发射电路、超声波检测接收电路以及温度检测电路组成。单片机选用8051,经济易用,且片有4K的ROM,便于编程。采用12MHz高精度的晶振,以获得较稳定的时钟频率,减小测量误差。单片机8051通过P1.0引脚经振荡器来控制超声波的发送,然后单片机不停的检测INT0引脚,当INT0引脚的电平由高电平变为低电平时就认为超声波已经返回。计数器所计的数据就是超声波所经历的时间,并进行温度的测量,通过换算就可以得到传感器与障碍物之间的距离。最后通过数码管LED显示出来。用LED显示数字比较清晰,而且电路结构简单,成本低廉。

4.1 8051单片机的最小系统组成

单片机最小系统,或者称为最小应用系统,是指用最少的元件组成单片机可以工作的系统。对8051单片机来说,最小系统应该包括:单片机、晶振电路、复位电路。下面是8051单片机的最小系统电路。

图4.1 最小系统电路图

图4.1中,P0.0~P0.7用来控制LED的段码,P2.0~P2.3用来控制LED的位码,P1.3用来和温度传感器DS18B20连接,超声波发射电路和单片机8051的P1.0口连接,而超声波接收电路连接到8051的外部中断INT0。因此单片机8051不需要进行外部扩展就可满足超声波测距电路的系统要求[4]。电源采用+5V电源供电。晶振X1的频率是12MHZ。

4.2 超声波发射电路设计

4.2.1 超声波频率及探头的选择

超声波在空气中频率越高,功率越大,精度越高,但在空气中衰减越快;相反频率越低,功率越小,在空气中衰减越慢,但误差大。综合考虑75KHZ、40KHZ、25KHZ等几个常用超声波频率的特点,取40KHZ可以较好的解决这个矛盾。为了便于超声波的发射和接收,采用共振频率为40KHZ的超声波探头,其发射探头选用TCT40-10F1。

4.2.2 超声波发射电路

超声波发射电路由超声波换能器(或称超声波振头)和超声波发生器两部分组成, 40KHz的超声波信号是利用555时基电路振荡产生的,振荡频率f ≈1.43/

((R

9+2×R

10

) ×C

5

),通过R

10

调节信号频率,使之与换能器的40KHz固有频率

一致,为保证555时基具有足够的驱动能力,宜采用+12V电源[5]。工作时,单片机通过P1.0口向超声波发生电路发出控制信号从555振荡电路的4脚输入到驱动器,经驱动器驱动后推动探头产生超声波,超声波发生电路产生40KHz的调制脉冲,经换能器转换为超声波信号向前方空间发射。

图4.2 超声波发射电路

用来调节信号频由555型电路组成多谐振荡器,它的振荡频率为40kHz。R

10

率。多谐振荡器产生的40kHz的脉冲由3脚输出,通过超声波发射器向外发射。

4.3 超声波接收电路设计

4.3.1 超声波接收器

超声波接收器包括超声波接收探头、信号放大电路和波形变换电路三部分电路组成。电源VCC采用12V电源供电。超声波接收探头选择与发射探头配对的TCT40-10S1。波形变换采用集成运放芯片(LM324)作为比较器对放大后的信号进行波形变换[6]。当输入信号的电压大于基准电压时,输出为“1”;当输入信号的电压小于基准电压时,输出为“0”;这样就实现了对输入信号进行变换的目的。

4.3.2 超声波接收电路图

51单片机超声波测距程序

//晶振:11.0592 //TRIG:P1.2 ECH0:P1.1 //波特率:9600 #include #include #include #define uchar unsigned char #define uint unsigned int sbit RX=P0^2; sbit TX=P0^3; unsigned int time=0; unsigned int timer=0; float S=0; bit flag =0; void Conut(void) { time=TH0*256+TL0; TH0=0; TL0=0; S=(time*1.87)/100; //算出来是CM if(flag==1) //超出测量 { flag=0; printf("-----\n"); } printf("S=%f\n",S); } void delayms(unsigned int ms) { unsigned char i=100,j; for(;ms;ms--) { while(--i)

{ j=10; while(--j); } } } void zd0() interrupt 1 //T0中断用来计数器溢出,超出测距范围{ flag=1; //中断溢出标志 } void StartModule() //T1中断用来扫描数码管和计800ms启动模块{ TX=1; //800MS启动一次模块 _nop_(); _nop_(); _nop_(); _nop_(); _nop_(); _nop_(); _nop_(); _nop_(); _nop_(); _nop_(); _nop_(); _nop_(); _nop_(); _nop_(); _nop_(); _nop_(); _nop_(); _nop_(); _nop_(); _nop_(); _nop_(); TX=0; } void main(void) { TMOD=0x21; //设T0为方式1,GATE=1; SCON=0x50; TH1=0xFD; TL1=0xFD; TH0=0; TL0=0;

基于51单片机的超声波测距毕业设计(论文)

一设计题目基于51单片机的超声波测距 二设计者 姓名班级学号组号 三、设计思路及框图、原理图 任务:以单片机为核心,设计并制作一超声波测距系统基本要求: 利用时间差测距,不考虑温度变化 用数码管显示测试结果 工作频率:450kHz 测距范围:0.5~10米 测试精度: 10% 发挥部分尽量增大测控范围,提高测试精度 1.系统的硬件结构设计 1.1. 超声波发生电路 发射电路主要由反相器74LS04和超声波发射换能器T构成,单片机P1.0端口输出的450kHz的方波信号一路经一级反向器后送到超声波换能器的一个电极,另一路经两级反向器后送到超声波换能器的另一个电极,用这种推换形式将方波信号加到超声波换能器的两端,可以提高超声波的发射强度。输出端采两个反向器并联,用以提高驱动能力。上位电阻R1O、R11一方面可以提高反向器74LS04输出高电平的驱动能力,另一方面可以增加超声波换能器的阻尼效果,缩短其自由振荡时间。 1.2超声波检测接收电路 采用集成电路CX20106A为超声波接收芯片。实验证明用CX20106A接收超声波(无信号时输出高电平),具有很好的灵敏度和较强的抗干扰能力。适当更改电

容C4的大小,可以改变接收电路的灵敏度和抗干扰能力。 1.3 显示电路 显示电路主要由74ls273芯片驱动,用PNPC8550三级管进行位选,七段共阳极数码管显示。 2.系统的软件结构设计 设计思路 主程序中包括温度补偿子程序,计算子程序,显示子程序。采用汇编编程。首先进行系统初始化。其次利用循环产生4个40KHZ的方波,由输出口进行输出,并开始计时。第三等待中断,若超声波被接收探头捕捉到,那么通过中断可测得

储油罐液位测量技术比较

储油罐液位测量技术比较 作者姓名:张靓 作者单位:集输公司管道分公司 摘要:从目前集输公司原油储罐常用的液位测量仪表的测量原理和方法方面,分析了原油储罐液位测量技术的现状,主要归纳为以下几种:人工检尺、雷达液位测量仪表、浮子钢带式液位测量仪表等。对现采用的油罐测量技术作对比,选用合适的测量技术,保证原油储罐的安全,降低劳动强度,取得良好的经济效益。 关键词:储油罐;液位测量;仪表;现状; 1.储油罐液位测量技术现状 液位测量主要是对储油罐中油品的液位、体积和重量等参数进行直接或间接测量。目前集输公司原油储罐液位测量技术方法存在较多的问题和弊端,有的原油储罐虽安装了自动化测量系统,但测量精度普遍不高,误差较大。针对储油罐的液位测量技术归纳起来主要有以下几种。 1.1人工检尺 油罐测量始于人工检尺,这种方法目前仍广泛采用,并且作为其它液位计性能校验的工具之一。即用带有重锤的米制钢带卷尺或带有刻度的标尺计量,手工记录读数,人工查表换算,最后得到油量数据。这种测量方法不仅劳动强度大,同时存在不安全因素。人工检尺的方法可参阅国际标准API2545。人工液位测量一般有±2 mm的人为误差。人工检尺又分为检实尺和检空尺。 1.1.1检实尺

利用浸入式刻度钢皮尺通过原油储罐的量油孔,自量油孔上沿至铜锤至液面以下止,此方法为检实尺。计算罐内原油液位,根据所测得的液位,查《立式金属罐容量表》,得到罐内原油的体积数。体积数乘以原油密度,最后得到罐内原油的质量数。 1.1.2检空尺 由于冬天天气寒冷,气温下降,量油孔内的上层原油凝结,故不能采用检实尺的方法。自原油储罐内壁最上沿下尺,至铜锤接触原油储罐浮顶止,即为检空尺。经计算得到罐内原油的液位,根据所测得的液位,查《立式金属罐容量表》,得到罐内原油的体积数。体积数乘以原油密度,最后得到罐内原油的质量数。 1.2浮体式液位测量仪表 浮体式液位测量仪表分为浮筒式与浮子式。 浮筒式液位仪是在滑轮组上用钢丝绳一端挂浮球,另一端挂重锤,通过浮球与重锤的运动距离达到液位测量的目的。其缺点是钢丝绳与滑轮间存在滑动摩擦力,回位误差较大,特别是在钢丝绳和滑轮生锈时,回位误差更大,甚至无法测量。在浮子式液位仪中钢带浮子式液位仪在原理及使用方面更为典型,钢带浮子式液位仪是一种最简单的液位测量装置,由一根不锈钢管和一个空心球组成。不锈钢管内部装有若干个干簧继电器,空心球内装有一块永久磁铁,当空心球随着液位上下运动时,空心球的运动被干簧继电器转换为相应的液位。20世纪60年代到80年代初期,开始研制和使用各种钢带浮子式液位仪。由于滑轮机械装置的摩擦力和钢带重量,这类液位仪的测量误

基于单片机的超声波测距

测控技术与仪器专业课程设计报告 班级姓名学号起始时间 课程设计题目: 测控技术与仪器专业课程设计报告 摘 要:本文介绍了一种基于单片机的超声波测距仪的设计。详细给出了超声波测距仪的工作原理、超 声波发射电路和接受电路、测温电路、显示电路等硬件设计,以及相应的软件设计。设计中采用升压电路,提高了超声换能器的输出能力;采用红外接收芯片,减少了电路间相互干扰,提高了灵敏度;同时,考虑了环境温度对超声波测距的影响,采用温度传感器,提高了测量精度。该设计试验运行良好,系统结构简单、操作方便、价格低廉,具有广阔的推广前景。 关键字:超声波测距仪;超声波换能器;单片机;温度传感器 1 对题目的认识和理解 目前,常用的测距方法主要有毫米波测距、激光测距和超声波测距三种。超声波测距较前两种测距方法而言,具有指向性强、能耗缓慢、受环境因素影响较小等特点,广泛应用于如井深、液位、管道长度、倒车等短距离测量。 超声波测距适用于高精度中长距离测量。因为超声波在标准空气中传播速度为331.45m/s ,由单片机负责计时,单片机使用12.0M 晶振,所以此系统测量精度理论上可以达到毫米级。 目前比较普遍的测距的原理是:通过发射具有特征频率的超声波对被摄目标的探测,通过发射出特征频率的超声波和反射回接受到特征频率的超声波所用的时间,换算出距离,如超声波液位物位传感器,超声波探头,适合需要非接触测量场合,超声波测厚,超声波汽车测距告警装置等。 本设计选用频率为40kHZ 左右的超声波,它在空气中传播的效率最佳。由于超声波测距主要受温度影响较大,所以本设计增加了温度补偿电路。本设计具有电路简单、操作简便工作稳定可靠、测距精确和能耗小、成本低等特点,可实现无接触式测量,应用广泛。 1.1 超声波测距原理 超声波测距是通过超声波发射器向某一方向发射超声波,在发射时刻的同时开始计时,超声波在空气中传播,途中碰到障碍物就立即反射回来,超声波接收器收到回波就立即停止计时。根据计时器测出发射和接收回波的时间差t ,可以计算出发射点距障碍物的距离s :2 = t c s ,其中t c 为超声波在空气中的传 播速度,它随温度的变化而变化,其变化关系如下:331.50.6=+t c T 式中T 为环境摄氏温度,可由温 度传感器获取。

超声波液位测量系统设计

超声波液位测量系统设计阳华忠孙传友长4女学电,;学M4¨025 鞭蛹隧鞠獬黼黜裂簿螽缓灏醺戳黼{t*t☆sPcEoBl^女m●^‰,LMl812≈,《{目^《tE“&”^#&*雎*t{《.*#自&m£i”1“女T一**¨t《,”‘f#十∞}m*.mtT≈,《ttt湿度.*^.B§f#境目t*Ⅻt十¥∞#自.tm7}#《*目^#^*&镕■t十来目f&.#^i&&■t¨#*t.豳■蕾鞠积整黼燃霸麟醐黼}E#.}m*,《’女;LMlB12 1引言 n【】__超市披挂求班}K迅速.4、M渗墟刮*个镯域.¨仃军¥Ⅸ玎驯缭婶冉IIii#8有rL£的“川.漓f±☆1删*和托M也址日常t僻巾十最盛的邻j域+披ft的删*片证卉他毒。恻如羞Ⅲ往洲n液俺U锌“,删屉池位,赳胜补偿趟自浊扯删量池似等等m采邢t些方法会J、腰劣∞环境和抽悼峦‘£的坐化给删*带m#k的瞄莘…毕“;fm悼具有蝇蚀什…嘲蚀删抽越^¨埘I№-陋,奉&计性出r坫f浮rn0磐【匕浊ms},cl,∞l^.1…单Jt扎LMl8l二越r々渡々m推成,0片#【f占,l的古洼自g{kI。硅U越。水《统可蒜性-≈.近H1fj:%精度高。 2参比法液位测量原理 警比洼H娘理是利用超}"往换能8发一¨110趟-;浊忸冲]Ⅲ过’Ln《传播0g鹰崔ft转^的并【日处掰成fi针日睦f々到搀能*片搏M接收。精Ⅲ忧5超声被¨垃日十纠挡牧自坩_{,J就“J眦牯确地计算Ⅲ随Ⅻ4披体的触协。其原H圳Ⅵl,j超声藏#射Ji掳4£趟十波∞传感*就鼻m趺控憧剑州柬m泄f:号求…濉足“枉准环处r“生的删∞帅时问为【o。B求H“#是I_I_泞r灶产’p的,删址的时问山r6掉F陆触洲浦傩的披1Ⅳ峦fLm坐化超J:一被“行早以j,的7L秆m。…々播。山十越钠【d的j{罐中1怍,超F*纠K,*q■fJ}”}千肌蛳的琏鹰+H‘÷,山ft可得 咖} P止巾vf)是超,r漓到拉准环∞迹Ⅱ。V是超声涟刊iTr顺_fii自0Jl嚏.“r“推111: ⅢJ+ H一=_』 胜艟Ⅻ目演津的液化- ¨】|0_hd }r=H卜坐1一d l^?hH是储删砝液体的涟n h-挂地奇被传晦%爿存*睡带的m离;h 是超■被心堪*Ⅻ",琐部的H捕.酒过 删%的时州“弹其值?ho是超声被f々盛* 判}tt*M一的啦离.一q椒擗址日】肫m】稠整棱 挂环的r*度;d是泞r项而刊油自帕* 离。m此”rⅢ删址日f々出#艘∞谴虚£ 芏*仃枉州温睦m鹿,≮H描{啊超 Jh挫∞速疃拚呆统带沫舶m菇。 法i坑錾盛观J#功矩{【l减少i统琨 蕈麓世gm满Mmr要求苴M t管的底口?‘o№删f&体连通恒f*删陂 似进^【I|II最昔:¨’,浮于的密度90川、 T触目哺体的密嘘.JL汗子具备托惭蚀 忡;其。,抟c*环_胛丁^选有利于起} *i川nⅡ“抖;】lH,Ⅲl量管录I¨抗腐蚀 忡蝗的十诱钢村料. 囤1臆理犀 3硬件原理电路 牟系统纳简嘤碰什}b路¨RI!.性自f 和拄牧Ⅻ什电路目ⅢIM1s11趟■胜々… 鞋成oI_l。M1sl二硅种既能K进《能 接性超声波的0H呆¨』适块鞋戍,,l以简 ft№m“牿提高{统的一,J稚性。0l-内 郫乜拈:胩f-p州制c生妊落#,,*增& 接收∞,脉冲啁,¨拴删#啭自抑制≈, ‘j8%【☆j自电。Fn、f.1MI812处于发时 模式.箱】符嘟外拄c1lik亡m瞎的世蚶 矗摊投的[怍撷牛LlCI扳蒿增蚰被憾为 振荡醺走,振荡信≈!{驱r女坡★后,M13管 wⅡ6管脚输m。 ’_8管Ⅷ为Ⅱl“平时.iMl8l!处于 拉收懊文,趣声踺1々媾g摇收“连日的衄 市披1j号%电彝耦仟…4符脚输^再经 内郫哺级般^艘凡岳的f;}轴U】管删 的喈扳日路取出的竹母起送剑幢删£. 目时竹檗F一也披捡删,-4“通过l7管W外 接的电料进行滤眭。’1管M【L的电Ⅲ盘 拜小州*能触牲怪Ⅻ蝌祝j,器&蜒蚓簋 T转¥”IⅢ” 圉3主程序流程圈 图2简要磋件电路目

20余种液位测量方法分析比较

20余种液位测量方法分析比较

20余种液位测量方法分析比较作者:发布时间:2009-5-5 11:34:14 阅读次数:985

物位包括液位和料位两类。液位又包括液位信号器和连续液位测量两种。液位信号器是对几个固定位置的液位进行测量,用于液位的上、下限报警等。连续液位测量是对液位连续地进行测量,它广泛地应用于石油、化工、食品加工等诸多领域,具有非常重要的意义。文中对20余种连续液位测量方法进行比较分析。 1、玻璃管法、玻璃板法、双色水位法、人工检尺法 玻璃管法:该方法利用连通器原理工作,如图1—1所示[1]。图中1-被测容器;2-玻璃管;3-指示标度尺;4、5-阀;6、7-连通管。液位直接从指示标度尺读出。 玻璃板法:玻璃板可通过连通器安装,也可在容器壁上开孔安装,并可串联几段玻璃板以增大量程。液位数值直接从玻璃板刻度尺读出。 双色水位计法:该方法利用光学原理,使水显示绿色,而使水蒸汽显示红色,

从而指示出水位[2]。 人工检尺法:该方法用于测量油罐液位。测量时,测量员把量油尺投入油品中,并在尺砣与罐底接触时提起量油尺。根据量油尺上的油品痕迹,读出油面高度;根据量油尺末端试水膏颜色的变化确定水垫层的高度,从而确定油高和水高[3]。 以上4种方法都是人工测量方法,具有测量简单、可靠性高、直观、成本低的优点。 2、吹气法、差压法、HTG法 吹气法:该方法的工作原理如图2—1所示[4]。图中,1-过滤器;2-减压阀;3-节流元件;4-转子流量计;5-变送器。因吹气管内压力近似等于液柱的静压力,故P=ρgH 式中,ρ-液体密度;H-液位。故由静压力P即可测量液位H。吹气法适用于测量腐蚀性强、有悬浊物的液体,主要应用在测量精度要求不高的场合。 差压法:该方法的工作原理如图2-2所示[4]。图中,1、2-阀门;3-差压变送器。对于开口容器或常压容器,阀门1及气相引压管道可以省掉。压力差与液位的关系为ΔP=P2-P1=ρgH

超声波测距仪单片机课设实验资料报告材料

微机原理与单片机系统课程设计 业:专轨道交通信号与控制 级:班1305 交控

姓名:贺云鹏 学号: 201310104 指导教师:建国 交通大学自动化与电气工程学院 30 日 12 2015 年月 超声波测距仪设计设计说明1 设计目的1.1 测量声波在发超声波测距的原理是利用超声波在空气中的传播速度为已知,根据发射和接收的时间差计算出发射点到障碍射后遇到障碍物反射回来的时间,物的实际距离。超声波测距主要应用于倒车提醒、建筑工地、工业现场等的距离测量。 超声波在气体、液体及固体中以不同速度传播,定向性好、能量集中、传输过程中衰减较小、反射能力较强。超声波能以一定速度定向传播、遇障碍物后形成反射,利用这一特性,通过测定超声波往返所用时间就可计算出实际距离,从而实现无接触测量物体距离。超声波测距迅速、方便,且不受光线等因素影响,广泛应用于水文液位测量、建筑施工工地的测量、现场的位置监控、振动仪车辆倒车障碍物的检测、移动机器入探测定位等领域。 1.2 设计方法 本课题包括数据测距模块、显示模块。测距模块包括一个HC-SR04超声波测距模块和一片AT89C51单片机,该设计选用HC-SR04超声波测距模块,通过单片机对超声波进行计时并根据超AT89C51发射和接受超声波,使用HC-SR04.声波在空气中速度为340米每秒的特性计算出距离。显示模块包括一个4位共阳极LED数码管和AT89C51单片机,由AT89C51单片机控制数码管动态显示距离。 1.3 设计要求 采用单片机为核心部件,选用超声波模组,实现对距离的测量,测量距离能够通过显示输出(LED,LCD)。 2 设计方案及原理 2.1超声波测距模块设计

基于单片机的超声波测距系统实验报告

基于单片机的超声波测距系统实验报告

一、实验目的 1.了解超声波测距原理; 2.根据超声波测距原理,设计超声波测距器的硬件结构电路; 3.对设计的电路进行分析能够产生超声波,实现超声波的发送与接收,从而实现利用 超声波方法测量物体间的距离; 4.以数字的形式显示所测量的距离; 5.用蜂鸣器和发光二极管实现报警功能。 二、实验容 1.认真研究有关理论知识并大量查阅相关资料,确定系统的总体设计方案,设计出系 统框图; 2.决定各项参数所需要的硬件设施,完成电路的理论分析和电路模型构造。 3.对各单元模块进行调试与验证; 4.对单元模块进行整合,整体调试; 5.完成原理图设计和硬件制作; 6.编写程序和整体调试电路; 7.写出实验报告并交于老师验收。 三、实验原理 超声波测距是通过不断检测超声波发射后遇到障碍物所反射的回波,从而测出发射和接收回波的时间差t,然后求出距S=Ct/2,式中的C为超声波波速。由于超声波也是一种声波,其声速C与温度有关。在使用时,如果温度变化不大,则可认为声速是基本不变的。如果测距精度要求很高,则应通过温度补偿的方法加以校正。声速确定后,只要测得超声波往返的时间,即可求得距离。这就是超声波测距仪的机理,单片机(AT89C51)发出短暂的40kHz信号,经放大后通过超声波换能器输出;反射后的超声波经超声波换能器作为系统的输入,锁相环对此信号锁定,产生锁定信号启动单片机中断程序,得出时间t,再由系统软件对其进行计算、判别后,相应的计算结果被送至LED显示电路进行显示。 (一)超声波模块原理: 超声波模块采用现成的HC-SR04超声波模块,该模块可提供 2cm-400cm 的非接触式距离感测功能,测距精度可达高到 3mm。模块包括超声波发射器、接收器与控制电路。基本工作原理:采用 IO 口 TRIG 触发测距,给至少 10us 的高电平信号;模块自动发送 8 个 40khz 的方波,自动检测是否有信号返回;有信号返回,通过 IO 口 ECHO 输出一个高电平,高电平持续的时间就是超声波从发射到返回的时间。测试距离=(高电平时间*声速(340M/S))/2。实物如下图1。其中VCC 供5V 电源,GND 为地线,TRIG 触发控制信号输入,ECHO 回响信号输出等四支线。

液位测量方法分析课件

20余种液位测量方法分析 物位包括液位和料位两类。液位又包括液位信号器和连续液位测量两种。液位信号器是对几个固定位置的液位进行测量,用于液位的上、下限报警等。连续液位测量是对液位连续地进行测量,它广泛地应用于石油、化工、食品加工等诸多领域,具有非常重要的意义。文中对20余种连续液位测量方法进行比较分析。 1玻璃管法、玻璃板法、双色水位法、人工检尺法 玻璃管法:该方法利用连通器原理工作,如图1—1所示。图中1-被测容器;2-玻璃管;3-指示标度尺;4、5-阀;6、7-连通管。液位直接从指示标度尺读出。 玻璃板法:玻璃板可通过连通器安装,也可在容器壁上开孔安装,并可串联几段玻璃板以增大量程。液位数值直接从玻璃板刻度尺读出。 双色水位计法:该方法利用光学原理,使水显示绿色,而使水蒸汽显示红色,从而指示出水位。 人工检尺法:该方法用于测量油罐液位。测量时,测量员把量油尺投入油品中,并在尺砣与罐底接触时提起量油尺。根据量油尺上的油品痕迹,读出油面高度;根据量油尺末端试水膏颜色的变化确定水垫层的高度,从而确定油高和水高。 以上4种方法都是人工测量方法,具有测量简单、可靠性高、直观、成本低的优点。 2吹气法、差压法、HTG法 吹气法:该方法的工作原理如图2—1所示。图中,1-过滤器;2-减压阀;3-节流元件;4-转子流量计;5-变送器。因吹气管内压力近似等于液柱的静压力,故P=ρgH 式中,ρ-液体密度;H-液位。故由静压力P即可测量液位H。吹气法适用于测量腐蚀性强、有悬浊物的液体,主要应用在测量精度要求不高的场合。

差压法:该方法的工作原理如图2-2所示。图中,1、2-阀门;3-差压变送器。对于开口容器或常压容器,阀门1及气相引压管道可以省掉。压力差与液位的关系为ΔP=P2-P1=ρgH 式中:ΔP-变送器正、负压室压力差;P2、P1-引压管压力;H-液位。差压变送器将压力差变换为4~20 mA的直流信号。如果压力处于测量范围下限时对应的输出信号大于或小于4 mA,则都需要采用调整迁移弹簧等零点迁移技术,使之等于4 mA。 HTG法:该方法应用于油罐差压液位测量中,如图2—3所示。图中:P1、P2、P3-高精度压力传感器;RTD-温度检测元件;HIU-接口单元。P1位于罐底附近的罐壳处,P2比P1高8英尺,P3位于罐顶附近的罐壳处。对于常压油罐,压力传感器P3可以省去。设压力传感器P1、P2、P3测得的压力分别为p1、p2、p3,则 式中:G-油品重量;Sav-油罐平均截面积;ρav-介于压力传感器P1、P2之间油品平均密度;g是重力加速度;H是压力传感器P1、P2之间的距离;h是油品高度;h0是压力传感器P1的高度。RTD用于测量油品温度,以对测量数值进行温度补偿。HTG测量系统价格较低,但液位测量精度较低,安装须在罐壁开孔。 以上3种方法都是利用液体的压力差来测量液位的。 3浮子法、浮筒法、浮球法、伺服法、沉筒法 浮子法:该方法采用浮子作为液位测量元件,并驱动编码盘或编码带等显示装置,或连接电子变送器以便远距离传输测量信号。

基于51单片机的超声波测距系统

基于51单片机的超声波测距系统 贾源 完成日期:2011年2月22日

目录 一、设计任务和性能指标 (3) 1.1设计任务 (3) 1.2性能指标 (3) 二、超声波测距原理概述 (4) 2.1超声波传感器 (5) 2.1.1超声波发生器 (5) 2.1.2压电式超声波发生器原理 (5) 2.1.3单片机超声波测距系统构成 (5) 三、设计方案 (6) 3.1AT89C2051单片机 (7) 3.2超声波测距系统构成 (8) 3.2.1超声波测距单片机系统 (9) 图3-1:超声波测距单片机系统 (9) 3.2.2超声波发射、接收电路 (9) 图3-1:超声波测距发送接收单元 (10) 3.2.3显示电路 (10) 四.系统软件设计 (11) 4.1主程序设计 (11) 4.2超声波测距子程序 (12) 4.3超声波测距程序流程图 (13) 4.4超声波测距程子序流程图 (14) 五.调试及性能分析 (14) 5.1调试步骤 (14) 5.2性能分析 (15) 六.心得体会 (15) 参考文献 (16) 附录一超声波测系统原理图 (18) 附录二超声波测系统原理图安装图 (19) 附录三超声波测系统原理图PCB图 (20) 附录四超声波测系统原理图C语言原程序 (21) 参考文献 (26)

一、设计任务和性能指标 1.1设计任务 利用单片机及外围接口电路(键盘接口和显示接口电路)设计制作一个超声波测距仪器,用LED数码管把测距仪距测出的距离显示出来。 要求用Protel 画出系统的电路原理图,印刷电路板,绘出程序流程图,并给出程序清单。 1.2性能指标 距离显示:用三位LED数码管进行显示(单位是CM)。 测距范围:25CM到 250CM之间。误差:1%。

基于单片机的超声波测距仪设计

基于单片机的超声波测距仪设计

基于单片机的超声波测距仪设计 1总体设计方案介绍 1.1超声波测距原理 发射器发出的超声波以速度υ在空气中传播,在到达被测物体时被反射返回,由接收器接收,其往返时间为t,由s=vt/2即可算出被测物体的距离。由于超声波也是一种声波,其声速v 与温度有关,下表列出了几种不同温度下的声速。在使用时,如果温度变化不大,则可认为声速是基本不变的。如果测距精度要求很高,则应通过温度补偿的方法加以校正。 表1-1 超声波波速与温度的关系表 表1-1 1.2超声波测距仪原理框图如下图 单片机发出40kHZ的信号,经放大后通过超声波发射器输出;超声波接收器将接收到的超声波信号经放大器放大,用锁相环电路进行检波处理后,启动单片机中断程序,测得时间为t,再由软件进行判别、计算,得出距离数并送LED

显示。 图1-1 超声波测距仪原理框图 2 系统的硬件结构设计 硬件电路的设计主要包括单片机系统及显示电路、超声波发射电路和超声波检测接收电路三部分。单片机采用AT89C51或其兼容系列。采用12MHz高精度的晶振,以获得较稳定时钟频率,减小测量误差。单片机用P1.0端口输出超声波换能器所需的40kHz的方波信号,利用外中断0口监测超声波接收电路输出的返回信号。显示电路采用简单实用的4位共阳LED数码管,段码用74LS244驱动,位码用PNP三极管8550驱动。 2.1 51系列单片机的功能特点及测距原理 2.1.1 51系列单片机的功能特点 5l系列单片机中典型芯片(AT89C51)采用40引脚双列直插封装(DIP)形式,内部由CPU,4kB的ROM,256 B的RAM,2个16b的定时/计数器TO和T1,4个8 b的工/O端I:IP0,

液位测量

20余种液位测量方法分析比较 物位包括液位和料位两类。液位又包括液位信号器和连续液位测量两种。液位信号器是对几个固定位置的液位进行测量,用于液位的上、下限报警等。连续液位测量是对液位连续地进行测量,它广泛地应用于石油、化工、食品加工等诸多领域,具有非常重要的意义。文中对20余种连续液位测量方法进行比较分析。 1、玻璃管法、玻璃板法、双色水位法、人工检尺法 玻璃管法:该方法利用连通器原理工作,如图1—1所示[1]。图中1-被测容器;2-玻璃管;3-指示标度尺;4、5-阀;6、7-连通管。液位直接从指示标度尺读出。 双色水位计法:该方法利用光学原理,使水显示绿色,而使水蒸汽显示红色,从而指示出水位[2]。 人工检尺法:该方法用于测量油罐液位。测量时,测量员把量油尺投入油品中,并在尺砣与罐底接触时提起量油尺。根据量油尺上的油品痕迹,读出油面高度;根据量油尺末端试水膏颜色的变化确定水垫层的高度,从而确定油高和水高[3]。 以上4种方法都是人工测量方法,具有测量简单、可靠性高、直观、成本低的优点。 2、吹气法、差压法、HTG法 吹气法:该方法的工作原理如图2—1所示[4]。图中,1-过滤器;2-减压阀;3-节流元件;4-转子流量计;5-变送器。因吹气管内压力近似等于液柱的静压力,故P=ρgH

差压法:该方法的工作原理如图2-2所示[4]。图中,1、2-阀门;3-差压变送器。对于开口容器或常压容器,阀门1及气相引压管道可以省掉。压力差与液位的关系为ΔP=P2-P1=ρgH 式中:ΔP-变送器正、负压室压力差;P2、P1-引压管压力;H-液位。差压变送器将压力差变换为4~20 mA的直流信号。如果压力处于测量范围下限时对应的输出信号大于或小于4 mA,则都需要采用调整迁移弹簧等零点迁移技术,使之等于4 mA。 HTG法:该方法应用于油罐差压液位测量中,如图2—3所示。图中:P1、P2、P3-高精度压力传感器;RTD -温度检测元件;HIU-接口单元。P1位于罐底附近的罐壳处,P2比P1高8英尺,P3位于罐顶附近的罐壳处。对于常压油罐,压力传感器P3可以省去。设压力传感器P1、P2、P3测得的压力分别为p1、p2、p3,则 式中:G-油品重量;Sav-油罐平均截面积;ρav-介于压力传感器P1、P2之间油品平均密度;g是重力加速度;H是压力传感器P1、P2之间的距离;h是油品高度;h0是压力传感器P1的高度。RTD用于测量油品温度,以对测量数值进行温度补偿。HTG测量系统价格较低,但液位测量精度较低,安装须在罐壁开孔。 以上3种方法都是利用液体的压力差来测量液位的。

用51单片机实现HC-SR04超声波测距程序

#include //包括一个52标准内核的头文件 #define uchar unsigned char //定义一下方便使用 #define uint unsigned int #define ulong unsigned long sbit Trig = P1^0; //产生脉冲引脚 sbit Echo = P3^2; //回波引脚 sbit test = P1^1; //测试用引脚 uchar code SEG7[10]={~0xC0,~0xF9,~0xA4,~0xB0,~0x99,~0x92,~0x82,~0xF8,~0x80,~0x90};//数码管0-9 uint distance[4]; //测距接收缓冲区 uchar ge,shi,bai,temp,flag,outcomeH,outcomeL,i; //自定义寄存器 bit succeed_flag; //测量成功标志 //********函数声明 void conversion(uint temp_data); void delay_20us(); void main(void) // 主程序 { uint distance_data,a,b; uchar CONT_1; i=0; flag=0; test =0; Trig=0; //首先拉低脉冲输入引脚 TMOD=0x11; //定时器0,定时器1,16位工作方式 TR0=1; //启动定时器0 IT0=0; //由高电平变低电平,触发外部中断 ET0=1; //打开定时器0中断 EX0=0; //关闭外部中断 EA=1; //打开总中断0 while(1) //程序循环 { EA=0; Trig=1; delay_20us(); Trig=0; //产生一个20us的脉冲,在Trig引脚 while(Echo==0); //等待Echo回波引脚变高电平 succeed_flag=0; //清测量成功标志 EX0=1; //打开外部中断 TH1=0; //定时器1清零 TL1=0; //定时器1清零 TF1=0; //

基于51单片机超声波测距

一设计要求 (1)设计一个以单片机为核心的超声波测距仪,可以应用于汽车倒车、工业现场的位置监控; (2)测量范围在0.50~4.00m,测量精度1cm; (3)测量时与被测物无直接接触,能够清晰稳定地显示测量结果。 二超声波测距系统电路总体设计方案 本系统硬件部分由AT89S52控制器、超声波发射电路及接收电路、温度测量电路、声音报警电路和LCD显示电路组成。汽车行进时LCD显示环境温度,当倒车时,发射和接收电路工作,经过AT89S52数据处理将距离也显示到LCD 上,如果距离小于设定值时,报警电路会鸣叫,提醒司机注意车距。超声波测距器的系统框图如下图所示: 图5 系统设计总框图 由单片机AT89S52编程产生10us以上的高电平,由指定引脚输出,就可以在指定接收口等待高电平输出。一旦有高电平输出,即在模块中经过放大电路,驱动超声波发射探头发射超声波。发射出去的超声波经障碍物反射回来后,由超声波接收头接收到信号,通过接收电路的处理,指定接收口即变为低电平,读取单片机中定时器的值。单片机利用声波的传播速度和发射脉冲到接收反射脉冲的

时间间隔计算出障碍物的距离,并由单片机控制显示出来。 由时序图可以看出,超声波测距模块的发射端在T0时刻发射方波,同时启动定时器开始计时,当收到回波后,产生一负跳变到单片机中断口,单片机响应中断程序,定时器停止计数。计算时间差,即可得到超声波在媒介中传播的时间t,由此便可计算出距离。 图6 时序图 三超声波发射和接收电路的设计 分立元件构成的发射和接收电路容易受到外界的干扰,体积和功耗也比较大。而集成电路构成的发射和接收电路具有调试简单,可靠性好,抗干扰能力强,体积小,功耗低的优点,所以优先采用集成电路来设计收发电路。 3.1 超声波发射电路 超声波发射电路包括超声波产生电路和超声波发射控制电路两部分,可采用软件发生法和硬件方法产生超声波。在超声波的发射电路的设计中,我们采用电路结构简单的集成电路构成发射电路:

液位测量方法

[摘要]该文对磁致伸缩法、核辐射法、光纤传感器法和雷达法等20余种液位测量方法进行了分类归纳,并对各自的原理、特点等进行了较系统的比较分析。 [关键词]液位;测量方法;分析 物位包括液位和料位两类。液位又包括液位信号器和连续液位测量两种。液位信号器是对几个固定位置的液位进行测量,用于液位的上、下限报警等。连续液位测量是对液位连续地进行测量,它广泛地应用于石油、化工、食品加工等诸多领域,具有非常重要的意义。文中对20余种连续液位测量方法进行比较分析。 1 玻璃管法、玻璃板法、双色水位法、人工检尺法 玻璃管法:该方法利用连通器原理工作,如图1—1所示[1]。图中1-被测容器;2-玻璃管;3-指示标度尺;4、5-阀;6、7-连通管。液位直接从指示标度尺读出。 玻璃板法:玻璃板可通过连通器安装,也可在容器壁上开孔安装,并可串联几段玻璃板以增大量程。液位数值直接从玻璃板刻度尺读出。 双色水位计法:该方法利用光学原理,使水显示绿色,而使水蒸汽显示红色,从而指示出水位[2]。 人工检尺法:该方法用于测量油罐液位。测量时,测量员把量油尺投入油品中,并在尺砣与罐底接触时提起量油尺。根据量油尺上的油品痕迹,读出油面高度;根据量油尺末端试水膏颜色的变化确定水垫层的高度,从而确定油高和水高[3]。 以上4种方法都是人工测量方法,具有测量简单、可靠性高、直观、成本低的优点。 2 吹气法、差压法、HTG法 吹气法:该方法的工作原理如图2—1所示[4]。图中,1-过滤器;2-减压阀;3-节流元件;4-转子流量计;5-变送器。因吹气管内压力近似等于液柱的静压力,故P=ρgH 式中,ρ-液体密度;H-液位。故由静压力P即可测量液位H。吹气法适用于测量腐蚀性强、有悬浊物的液体,主要应用在测量精度要求不高的场合。 差压法:该方法的工作原理如图2-2所示[4]。图中,1、2-阀门;3-差压变送器。对于开口容器或常压容器,阀门1及气相引压管道可以省掉。压力差与液位的关系为ΔP=P2-P1=ρgH 式中:ΔP-变送器正、负压室压力差;P2、P1-引压管压力;H-液位。差压变送器将压力差变换为4~20 mA的直流信号。如果压力处于测量范围下限时对应的输出信号大于或小于4 mA,则都需要采用调整迁移弹簧等零点迁移技术,使之等于4 mA。 HTG法:该方法应用于油罐差压液位测量中,如图2—3所示。图中:P1、P2、P3-高精度电子变送器以便远距离传输测量信号。 浮筒法:该方法采用中间带孔的磁浮筒作为液位敏感元件,如图3—1所示。不锈钢套管从浮筒中间孔穿过,固定在罐顶和罐底之间。液位变化带动空心磁浮筒(内藏永久磁铁)沿套管上下移动,并吸引套管内的磁铁沿套管内壁上下移动,二次仪器|仪表根据磁铁的移动量计算出液位。 浮球法:该方法利用杠杆原理工作,如图3—2所示[4]。图中:1-浮球;2-连杆;3-转轴;4-平衡重;5-杠杆。浮球跟随液位变化而绕转轴旋转,带动转轴上的指针转动,并与杠杆另一端的平衡重平衡,同时在刻度盘上指示出液位数值。浮球法有内浮球式和外浮球式两种,如图3—2所示。浮球法主要用于测量温度高、粘度大的液位,但量程较小。 伺服法:该方法采用波动积分电路,消除抖动、延长寿命、提高液位测量精度。现代伺服液位仪的测量精度较高,已达到40 m量程内小于1 mm的精度,且一般都具有测量密度分布和平均密度的功能。 沉筒法:沉筒的位置随着液位的变化而变化,但其变化量并不与液位变化量相等。在图3-3a中[4],液位与浮筒位置的关系如下: 上式中:ΔH-液位变化量;C-弹簧的弹性系数;A-沉筒截面积;ρ液体密度;ΔX-沉筒位置变化量。通常情况下,浮筒位置变化量ΔX远小于液位变化量ΔH。图3—3b是扭力管式沉筒法原理[4],图中:1-沉筒;2-杠杆;3-扭力管;4-芯轴;5-外壳。沉筒位置随液位变化而变化,在杠杆的作用下,扭力管芯轴的扭角发生变化,二次仪表根据扭角的变化量计算出液位。

液位测量的几种常用方式

液位测量的几种方式 https://www.wendangku.net/doc/7119108774.html, 2011年04月06日07:57 中国仪器仪表网 生意社04月06日讯 在工业领域中,要测量液位,除了投入式液位计的静压液位测量外,还有许 多其他的方式和原理。 1、浮球液位计是一种依靠浮力原理测量液位的方法。通常是通过浮球与刻度尺配合的方式,使观测者能够直观读取液位的高度。优点:能够快速、直观地读数;价格低廉;安装简便。缺点:精度低;安装受容器形状结构的限制比较大; 不适合用于腐蚀性强、有危险性的介质;无法实现远传和调节。 2、磁翻板液位计是靠安装在容器内部的磁力浮子,带动容器外部的磁力翻板翻转实现信号转换和液位显示。优点:能够快速、直观地读数;价格较低;可实现远传和调节。缺点:精度低;安装复杂;量程限制;安装体积比较大。 3、电容式液位传感器是利用电容两极板间电容值变化测量液面的高低。优点:体积较小,容易实现远传和调节;适用于具有腐蚀性和高压介质。缺点:介质和液面上部的介电常数必须保持恒定才能准确测量;测量范围受金属棒长度限制;对容器材质有较高的要求;被测介质具有导电性。 4、雷达液位计是通过探测自身发出的微波(波长很短的电磁波)被液面反射后的信息换算液/物面位置。优点:可以测量压力容器内液位,可以忽略高温、高压、结垢和冷凝物的影响;精度较高;与介质无直接接触;耐腐蚀性强;可在真空环境中使用;安装简便。缺点:价格昂贵;受容器几何结构和材料特性影响;容易 受电磁波干扰。 5、超声波液位计是通过探测自身发出的超声波被液面反射后的信号换算液/物面位置的。优点:与介质无直接接触;耐腐蚀性强;精度较高;安装简便。缺点:价格比较昂贵;超声波受传输媒介的气体成分影响较大;受容器几何结构特性影响较大;不适用于有气泡或悬浮物的介质;容易受电磁波干扰。 6、气泡法是通过气源从容器底部向介质内充气。供气系统内的吹气压力只有与容器底部的液体静压平衡时,气体才会从气管内进入容器形成气泡。这时测量供气系统内的气压可换算出测量点的静压,进而得到液位值。优点:耐腐蚀性强;能够测量高温介质。缺点:维护费用较高;精度较低。 更多资讯,请点击中国仪器仪表网资讯中心 参考链接: 中国仪器仪表网:https://www.wendangku.net/doc/7119108774.html,/detail/5724565.html 中国仪器仪表资讯中心网:https://www.wendangku.net/doc/7119108774.html,/detail/5724565.html 中国仪器仪表搜索中心网:https://www.wendangku.net/doc/7119108774.html,/detail/5724565.html

基于单片机的超声波测距报警系统设计

综合性课程设计报告基于proteus仿真软件的超声波测距报警控制器设计 院系:计算机与通信工程学院 专业:电子信息工程 学号: 姓名: 指导教师: 设计时间:2012/6/27 综合课程设计任务书

专业:电子信息工程班级:4091603: 设计题目:基于proteus仿真软件的超声波测距报警控制器设计 一、设计实验条件 keil C和proteus仿真软件 二、设计任务 1)总体功能设计 2)硬件电路设计 3)软件设计 4)工作总结 三、设计说明书的容 1.设计题目与设计任务(设计任务书) 2.前言(绪论)(设计的目的、意义等) 3.主体设计部分(各部分设计容、总结分析、结论等) 4.结束语 5.参考文献 (答辩时间18周星期日晚7:30,地点:综合楼1313室) 四、设计时间与设计时间安排 1、设计时间:2周 2、设计时间安排: 熟悉实验设备、实验、收集资料:2 天 设计计算、绘制技术图纸:5 天 编写课程设计说明书:2 天 答辩:1 天 目录

一、设计题目 (2) 二、设计任务及要求 (3) 三、设计容 (3) 1.绪论 (3) 2.总体方案 (4) 2.1 总体设计方案 (4) 2.2超声波测距框图 (4) 3.系统硬件设计 (5) 3.1 硬件设计方案 (5) 3.2 各主要模块的硬件设计 (6) 4.系统软件设计 (10) 4.1 程序设计 (10) 4.2 程序流程图 (10) 四、结束语 (13) 五、参考文献 (13) 附录A 系统仿真图 (14) 附录B程序代码 (15) 一、设计题目 基于proteus仿真软件的超声波测距报警控制器设计

基于单片机的超声波测距系统的研究与设计

基于单片机的超声波测距系统的研究与设计 发表时间:2010-05-26T14:50:36.437Z 来源:《赤子》2010年第2期供稿作者:贾岩孙彩英 [导读] 随着汽车的日益普及,停车场越来越拥堵,车辆常常需要在停车场穿行,掉头或倒车 贾岩孙彩英(哈尔滨学院,黑龙江哈尔滨 150000) 摘要:简析超声波测踞原理,探讨基于单片机的超声波测距系统的研究与设计。 关键词:单片机;超声波;测距 随着汽车的日益普及,停车场越来越拥堵,车辆常常需要在停车场穿行,掉头或倒车。由于这些低速行驶的车辆与其他车辆非常的接近,司机的视野也颇受限制,碰撞与拖挂的事故经常发生,在夜间时则更加显著。为了确保汽车的安全,现介绍一种超声波测距离的报警装置,可有效的避免此类事故的发生。 1 超声波测距原理 超声波传感器分机械方式和电气方式两类,它实际上是一种换能器,在发射端它把电能或机械能转换成声能,接收端则反之。本次设计超声波传感器采用电气方式中的压电式超声波换能器,它是利用压电晶体的谐振来工作的。它有两个压电晶片和一个共振板。当它的两极外加脉冲信号,其频率等于压电晶片的固有振荡频率时,压电晶片将会发生共振,并带动共振板振动,产生超声波。反之,如果两电极间未外加电压,当共振板接收到超声波时,将压迫压电晶片作振动,将机械能转换为电信号,就成为超声波接收器。在超声波电路中,发射端输出一系列脉冲方波,脉冲宽度越大,输出的个数越多,能量越大,所能测的距离也越远。超声波发射换能器与接收换能器其结构上稍有不同,使用时应分清器件上的标志。 超声波测距的方法有多种:如往返时间检测法、相位检测法、声波幅值检测法。本设计采用往返时间检测法测距。其原理是超声波传感器发射一定频率的超声波,借助空气媒质传播,到达测量目标或障碍物后反射回来,经反射后由超声波接收器接收脉冲,其所经历的时间即往返时间,往返时间与超声波传播的路程的远近有关。测试传输时间可以得出距离。 假定s为被测物体到测距仪之间的距离,测得的时间为t/s,超声波传播速度为v/m·s-1表示,则有关系式(1) s=vt/2(1) 在精度要求较高的情况下,需要考虑温度对超声波传播速度的影响,按式(2)对超声波传播速度加以修正,以减小误差。 v=331.4+0.607T(2) 式中,T为实际温度单位为℃,v为超声波在介质中的传播速度单位为m/s。 2 系统结构 本系统由超声波发射、回波信号接收、温度测量、显示和报警、电源等硬件电路部分以及相应的软件部分构成。 3 超声波发射电路 在本系统中采用的超声传感器是一种开发型的,固有频率为40Khz。超声波发射电路如。 该电路采用由双非门组成的三点RC振荡电路,频率为40Khz,与非门A是超声波发射控制门,振荡器的振荡信号经4049放大后可直接推动超声波发射探头。二极管D1,D2起限制电压的作用,电容C1用于隔离直流。 4 超声波接收电路 超声波接收电路由以MC3403为核心的三级滤波放大电路和二极管的倍压稳流电路等组成。处理好的回波信号被送到ARM的A/D转换模块进行A/D采样,从而触发得到返回的时间。德州仪器公司的MC3403的具体引脚配置。 5 声光报警电路 声光报警电路AP8821来完成。AP8821是API型21秒一次性编程语音芯片。它具有高质量的录音功能,采用ADPCM制,声音信息存储在512K的EPROM中,6K取样频率能存储21秒的声音数据。AP8821避免采用复杂的电路,但是能录制出不同的声音。它的声音可以根据需要分14段录制,分段组合可达到长时间录音,效果并不是简单的音符曲调。而是极其逼真的话语或模拟声音。AP8821有两个PWM引脚,VOUT1与VOUT2直接驱动喇叭或蜂鸣器,电流输出引脚VOUT。通过一个NPN晶体管来驱动喇叭或蜂鸣器,不需要复杂的滤波和放大电路。具有自动平滑功能,在放音结束时消除噪音。 6 LCD显示部分 本设计显示部分采用字符型TC1602液晶显示所测距离值。TC1602显示的容量为2行16个字。液晶显示屏有微功耗、体积小、显示内容丰富、超薄轻巧、使用方便等诸多优点,与数码管相比,显得更专业、美观。 7 超声波汽车倒车防撞系统的软件设计 超声波传感器安装在汽车的尾部,其接收和发射传感器距离较近,之间容易有较强的干扰信号。为防止误测现象,在软件上采用延迟接收技术,一次提高系统的抗干扰能力。 系统软件设计采用模块化设计,主要包括主程序设计、T1中断服务子程序、INT0外部中断服务子程序、测温子程序、距离计算子程序、显示子程序、延时子程序和报警子程序设计等。 系统软件编制时应考虑相关硬件的连线,同时还要进行存储空间、寄存器以及定时器和外部中断引脚的分配和使用。定时器T1,T0均工作在工作方式1,为16位计数,T1定时器被用来开启一次测距过程以它的溢出为标志开始一个发射测量循环,T0定时器是用来计算脉冲往返时间,它们的初值均设为0。 系统初始化后就启动定时器T1从0开始计数,此时主程序进入等待,当到达65 ms时T1溢出进入T1中断服务子程序;在T1中断服务子程序中将启动一次新的超声波发射,同时开启定时器T0计时,为了避免直射波的绕射,需要延迟1 ms后再开INT0中断允许;INT0中断允许打开后,将提出中断请求进入INT0中断服务子程序,在INT0中断服务子程序中将停止定时器T0计时,读取定时器T0时间值到相应的存储区,同时设置接收成功标志;主程序一旦检测到接收成功标志,将调用测温子程序,采集超声波测距时的环境温度,并换算出准确的声速,存储到RAM存储单元中;单片机再调用距离计算子程序进行计算,计算出传感器到目标物体之间的距离;此后主程序调用显示子程序进行显示;若超过设定的最小报警距离还将启动扬声器报警;当一次发射、接收、显示的过程完成后,系统将延迟100ms重新让T1置初值,再次启动T1以溢出,进入下一次测距。如果由于障碍物过远,超出量程,以致在T0溢出时尚未接收到回波,则显示“ERROR”重新回到

相关文档
相关文档 最新文档