文档库 最新最全的文档下载
当前位置:文档库 › 欧盟蔬菜硝酸盐限量新规范

欧盟蔬菜硝酸盐限量新规范

欧盟蔬菜硝酸盐限量新规范
欧盟蔬菜硝酸盐限量新规范

欧盟蔬菜硝酸盐限量新规范

行政院卫生署药物食品检验局锺仁健、游祯义

壹、前言

民众和政府日益关心食物中硝酸盐及亚硝酸盐污染含量所产生的危害问题,分为两个层面:一方面,硝酸盐可因转变为亚硝酸盐,而与血红素反应代谢生成过多的变性血红素(met-haemoglobin),若长期摄取含过量硝酸盐的食物,可能会导致毒性效应,如发绀(cyanosis) 症状,婴儿及特定个体特别易罹患之(1),严重的话会造成宝宝呼吸急促、震抖、心律困难,甚至窒息(2);另一方面,硝酸盐可造成内生性氮-亚硝基化合物(N-nitroso compounds) 的合成,如亚硝胺(nitrosamines)(3),亚硝胺是一种经由大量动物实验而已被确认的致癌物质,同时对动物具有致畸胎和致突变作用(4,5)。因此,欧盟认为食物中硝酸盐含量应予适当管控与规范,并订定蔬菜硝酸盐最大限量标准。

贰、食品中硝酸盐使用限量

依据1996年联合国粮农组织/世界卫生组织联合食品添加物专家委员会(The Joint FAO/WHO Experts Committee on Food Additives, JECFA) 之规定(6),硝酸盐及亚硝酸盐之每日摄取安全容许量(acceptable daily intake, ADI) 分别为0~3.7 mg/kg body weight/day (以硝酸盐计) 与0~0.06 mg/kg body weight/day (以亚硝酸盐计),但ADI 标准不可适用于年龄小于3个月之婴儿。而如果饮用水之硝酸盐氮含量超过10 mg/L,则小于6个月以下的婴儿及孕妇须特别注意,尽量勿饮用之或以之制备婴儿配方食品。欧盟建议亚硝酸盐不得用于婴儿食品,而硝酸盐应予限制添加量。硝酸盐及亚硝酸盐为许多国家核准之食品添加物(Council Directive 95/2/EC on Food Additives),硝酸盐使用限量(以硝酸钾计) 为50 mg/kg (奶酪制品) ~250 mg/kg (肉类及其制品);在美国,应用于烟熏肉类及烟熏鲑鱼其最终成品之硝酸盐及亚硝酸盐残留限量分别为500 ppm及200 ppm;而应用于烟熏鲔鱼,其最终成品之亚硝酸盐限量为10 ppm。在我国,硝酸盐及亚硝酸盐添加于肉类品及鱼肉制品,用量以NO2残留量计为0.07 g/kg以下,但生鲜肉类、鱼类不得使用。

参、欧盟之蔬菜硝酸盐限量法规

近年来,由于环保及消保意识的高涨,欧盟已于2001年订定公告少数蔬菜(包括菠菜及莴苣) 之硝酸盐限量标准(7)。以下说明归纳出欧盟规范食物中硝酸盐限量标准,主要实行下列两条法规(8, 9):

一、1995年2月20日欧洲国会及议会于食品添加物卫生法规会议(Directive No 95/2/EC) 制定出硝酸盐作为保色剂用途之最大残留量标准;硝酸盐使用于奶酪,用量为50 mg/kg以下(以硝酸盐残留量计);使用于腌制肉制品,用量为250 mg/kg 以下(以硝酸盐残留量计);大体上,本条例过分估算硝酸盐用于食物贮存的需求量,因此,未来将予重新评估。最近文献报告指出,腌制肉类及其制品之硝酸盐含量平均值大约在10~30 mg/kg范围,由此可知,食品工业在减少使用硝酸盐作为添加物所作的努力与贡献。

二、欧盟法规委员会于1997年1月制定食品中特定污染物的最大残留量标准(8)(表

1 / ) EC Regulation No. 194/97),本条例制定出菠菜(spinach) 及莴苣(lettuce) 之最大硝酸盐标准,依收成季节之不同而有不同的标准,如表1所示。以新鲜菠菜而言,范围为2,500~3,000 mg/kg,以莴苣而言,范围为2,500~4,500 mg/kg,以冷冻(或冻藏) 之菠菜而言,最大硝酸盐标准为2,000 mg/kg。

欧盟于1998年重新评估这些标准,这些制定食物中特定污染物之最大残留量,并无任何安全评估的参考依据来证明此方法为适切,而制定此标准之主要理由为:实行这些标准的会员国为了确保市场的统一标准因而制定出最大残留量之标准,这些会员国包括比利时、德国、荷兰及奥地利等,而所规定的蔬菜包括莴苣、菠菜、甜菜根、芹菜,是否采用硝酸盐最大标准限量仍然争论不休,不仅是单由公共卫生的观点,且可能因这项限量准则,而造成会员国之间相互竞争的扭曲,因此,欧盟食品委员会(EC Standing Committee for Foodstuffs, EC StCF) 决定延至2001年底俟获得足够数据并行评估后再正式公告(EC Regulation No. 466/2001),亦已于2001年正式公告(7, 9)。欧盟于2002年对此限量标准进行再评估,并将此法规中之莴苣硝酸盐标准亦作了修订(EC Regulation No. 563/2002),如(表2 / )所示,并已于2002年4月5日正式施行(7, 8, 9)。

在英国,于1997年2月正式执行欧盟制定之法规(The Contaminants in Food Regulations Act 1997, S.I. (1997) No. 1499),但欧盟法规No. 194/97 (被EC Regulation No. 864/99修订) 有一项特别的免除条款(7),允许各会员国之莴苣及菠菜,可有条件于一段规定之缓冲期间内免除限量标准之限制种植及贩卖,其条件为这些食物之硝酸盐含量需在符合公共卫生之基础下,并且种植者须切实遵守良好农业规范(good agricultural practice, GAP),但是,从其它会员国及第三国家输入英国之莴苣及菠菜仍然必须遵循最大限量标准之规范,但于2002年4月欧盟正式公告实施此法规之后,英国亦将欧盟公告规范纳入食品法规,并强制全面执行。在欧美亚洲等先进国家及欧盟会员国家亦已于多年前建立并执行食物中硝酸盐之监测计划(food monitoring program)。

肆、硝酸盐限量政策之争议

从另一观点视之,1995年联合国粮农组织/世界卫生组织联合食品添加物专家委员会于特定食品添加物及污染物评估会议(1) 中认为:以蔬菜之众所周知的好处,如:胡萝卜素、维生素C及维生素E扮演阻断亚硝酸盐转换成氮-亚硝基化合物的功能,同时亦是抗氧化剂,能将亚硝酸盐还原为一氧化氮,且缺乏确切根据证明蔬菜硝酸盐之生物利用性及蔬菜摄取与内生性氮-亚硝基化合物形成的关联性( 4),并认为直接比较蔬菜之硝酸盐含量与每日摄取安全容许量,衍生出限制蔬菜之硝酸盐含量是不妥当的,对于从食物中摄取硝酸盐与亚硝酸盐,并无确切量化之科学化证据,证实氮-亚硝基化合物之内生性合成,因而,像是食品法规委员会(Codex Alimentarius Commission) 及美国、加拿大及澳洲等国目前尚无制定蔬菜中硝酸盐之限量标准规范。

伍、结语

欧盟所制定的这项法规的诞生,被赋予使命并寄予厚望,不仅期待它能够降低使用硝酸盐于土壤培养或改良方面,也期待它能对水资源及农作物产生保护免于硝酸盐污染的效用,再者,欧盟亦规定其会员国必须建立一套强制的管理措施及计划,以规范其土地利用及肥料的储放标准制度;在依循良好农业规范的条件下,欧盟未来将考虑评估降低硝酸盐限量,并计划最终延伸至其它种类蔬菜,亦一并施行最大限量之政策,期能对人类环境生态改善作出重大的贡献。

参考文献

WHO 1995. Evaluation of Certain Food Additives and Contaminants. Joint FAO/WHO Expert Committee on Food Additives, pp. 29-35 (WHO Technical Report Series No. 859). WHO, Geneva.

Sanchez-Echainz, J., Benito-ui-Raso, S. 2001. Methemoglobinemia and consumption of vegetables in infants. Pediatrics 107: 1024-1028.

Walker, R. 1990. Nitrates, nitrites and N-nitroso compounds:A review of the occurrence in food and diet and the toxicological implications. Food Additives and Contaminants 7: 717-768.

Eichholzer, M. and Gutzwiller, F. 1998. Dietary nitrates, nitrites, and N-nitroso compounds and cancer risk: A review of the epidemiologic evidence. Nutrition Reviews 56: 95-105.

Gangolli, S. D., van den Brandt P., Feron, V., Janzowsky, C., Janz-wsky, C., Koeman, J., Speijers, G., Speigelhalder, B., Walker, R. and Winshnok, J. 1994. Assessment of nitrate, nitrite, and N-nitroso compounds. European Journal of Pharmacology Environmental Toxicology and Pharmacology Section 292: 1-38.

WHO 1996. Toxicological Evaluation of Certain Food Additives and Contaminants. Prepared by the Forty-Fourth Meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA). International Programme on Chemical Safety (WHO Food Additives Series 35). WHO, Geneva.

European Community 2002. European Commission Regulation (EC) No. 563/2002. Official Journal of the European Communities L 86/5.

European Community 1997. European Commission Regulation (EC) No. 194/97. Official Journal of the European Communities L 31/48.

European Community 2001. European Commission Regulation (EC) No. 466/2001. Official Journal of the European Communities L 77/6.

蔬菜中亚硝酸盐

贮藏条件和时间对蔬菜中亚硝酸盐含量的影响 摘要现代研究表明,蔬菜中的亚硝酸盐是比农药危害更大的一种成分。由于过度施用氮肥,蔬菜中的硝酸盐含量经常偏高,转化成亚硝酸盐之后,可能和蛋白质分解产物合成亚硝胺,成为诱发胃癌等疾病的隐患。调查发现,我国膳食中80%左右的亚硝酸盐来自蔬菜。本课题选择研究不同贮藏条件和不同贮藏时间对蔬菜中亚硝酸盐含量影响,以期对为减少亚硝酸盐对人体的危害提供依据,以指导人们合理安全食用蔬菜。 本试验采用盐酸萘乙二胺分光光度法测定市场上常见的果类、叶菜类、根茎类蔬菜各两种(既黄瓜,茄瓜,菠菜,白菜,萝卜,土豆)在常温,冷藏,冷藏密封三种贮藏条件下连续五天时间每天的亚硝酸盐含量,并与亚硝酸钠溶液标准曲线进行对比。 结果表明:一般情况,在0~5 d贮藏时间中,随着贮藏时间的延长,三种贮藏条件下,蔬菜中亚硝酸盐含量均呈明显增加趋势,但含量和增加趋势有差异;叶菜类蔬菜中的亚硝酸盐含量及其变化速率高于根茎类和瓜果类蔬菜;相同贮藏时间下,冷藏不密封条件下贮藏的蔬菜中亚硝酸盐含量及其变化速率低于冷藏密封条件下;冷藏条件下贮藏的蔬菜中亚硝酸盐含量及其变化速率低于室温条件下。 关键词亚硝酸盐;蔬菜;贮藏条件;贮藏时间;测定 1.前言 蔬菜富含硝酸盐,许多蔬菜能从土壤中富集更多的硝酸盐。蔬菜中的硝酸盐在硝酸盐还原酶的作用下可转变为亚硝酸盐,凡有利于某些还原菌生长和繁殖的各种因素(如温度,湿度,ph值等)都可促进硝酸盐还原为亚硝酸盐。亚硝酸盐摄入过多会对人体健康产生危害。而蔬菜是人们必不可少的生活必需品,测定蔬菜中亚硝酸盐含量随贮存时间的变化,控制亚硝酸盐摄入量,预防亚硝酸盐对人体潜在的危害,对保护人们的健康和生命安全有重要意义。 现今,国内外不少研究者在研究蔬菜中硝酸盐和亚硝酸盐的测定分析方法,从测定原理、定量分析和影响因素等几方面比较各分析方法的特点和适用范围,

农残限定2006年欧盟版本C_17_normativa_1773_allegato

Ministero della Salute DIPARTIMENTO PER LA SANITà PUBBLICA VETERINARIA, LA NUTRIZIONE E LA SICUREZZA DEGLI ALIMENTI DIREZIONE GENERALE DELLA SICUREZZA DEGLI ALIMENTI E DELLA NUTRIZIONE DECRETO Prodotti fitosanitari: recepimento della direttiva 2006/62/CE della Commissione del 12 luglio 2006, della direttiva 2007/55/CE della Commissione del 17 settembre 2007, della direttiva 2007/62/CE della Commissione del 4 ottobre 2007 e aggiornamento del decreto del Ministro della salute 27 agosto 2004 concernente i limiti massimi di residui delle sostanze attive nei prodotti destinati all’alimentazione. Sedicesima modifica. IL MINISTRO DELLA SALUTE Visti gli articoli 5, lettera h), e 6, della legge 30 aprile 1962, n. 283, successivamente modificata con legge 26 febbraio 1963, n. 441; Visto l'articolo 19 del decreto legislativo 17 marzo 1995, n. 194, che prevede l'adozione con decreto del Ministro della salute di limiti massimi di residui di sostanze attive dei prodotti fitosanitari; Visto l'articolo 34 del decreto del Presidente della Repubblica 23 aprile 2001, n. 290, relativo ai residui ed intervalli di carenza; Visto il decreto del Ministro della salute 27 agosto 2004 “Prodotti fitosanitari: limiti massimi di residui della sostanze attive nei prodotti destinati all’alimentazione” (pubblicato nella Gazzetta Ufficiale – Serie generale n. 292 del 14 dicembre 2004, supplemento ordinario n. 179), modificato dal decreto del Ministro della salute 17 novembre 2004 (pubblicato nella Gazzetta Ufficiale n. 30 del 7 febbraio 2005), dal decreto del Ministro della salute 4 marzo 2005 (pubblicato nella Gazzetta Ufficiale n. 121 del 26 maggio 2005), dal decreto del Ministro della salute 13 maggio 2005 (pubblicato nella Gazzetta Ufficiale n. 184 del 9 agosto 2005), dal decreto del Ministro della salute 15 novembre 2005 (pubblicato nella Gazzetta Ufficiale n. 28 del 3 febbraio 2006), dal decreto del Ministro della salute 19 aprile 2006 (pubblicato nella Gazzetta Ufficiale n. 162 del 14 luglio 2006), dal decreto del Ministro della salute 20 aprile 2006 (pubblicato nella Gazzetta Ufficiale n. 161 del 13 luglio 2006), dal decreto del Ministro della salute 23 giugno 2006 (pubblicato nella Gazzetta Ufficiale n. 204 del 2 settembre 2006), dal decreto del Ministro della salute 3 ottobre 2006 (pubblicato nella Gazzetta Ufficiale n. 282 del 4 dicembre 2006), dal decreto del Ministro della salute 26 febbraio 2007 (pubblicato nella Gazzetta Ufficiale n. 102 del 4 maggio 2007); dal decreto del Ministro della salute 13 giugno 2007 (pubblicato nella Gazzetta Ufficiale n. 199 del 28 agosto 2007); dal decreto del Ministro della salute 13 giugno 2007 (pubblicato nella Gazzetta Ufficiale n. 200 del 29 agosto 2007); dal decreto del Ministro della salute 13 giugno 2007 (pubblicato nella

蔬菜中重金属(Pb、Cd)含量的测定 实验报告

蔬菜中重金属(Pb、Cd)含量的测定 摘要:本实验目的在于测定蔬菜中重金属(Pb、Cd)含量。以芥菜为样品,用干法灰化处理样品,用悬汞电极微分脉冲极谱法对铅离子和镉离子进行测定,用标准加入法做定量分析。测得结果为芥菜根中铅含量为2.5579mg/kg,镉含量为3.1836mg/kg。超过国标中对铅镉含量的测定。 关键词:蔬菜;重金属(铅Pb、镉Cd);微分脉冲极谱法 1 引言 1.1 测定蔬菜中Pb、Cd含量的现实意义 随着现代工业的发展,环境污染加剧,工业“三废”的排放及城市生活垃圾、污泥和含重金属的农药、化肥的不合理使用,导致蔬菜中重金属污染加剧。蔬菜是人们生活中的重要农产品,蔬菜中具有积累性和持续性危害的重金属含量的多少,将直接影响人们的健康。其中,铅及其化合物对人体有毒,摄取后主要贮存在骨骼内,部分取代磷酸钙中的钙,不易排出,中毒较深时引起神经系统损害,严重时会引起铅毒性脑病;镉会对呼吸道产生刺激,长期暴露会造成嗅觉丧失症、牙龈黄斑或渐成黄圈,镉化合物不易被肠道吸收,但可经呼吸被体内吸收,积存于肝或肾脏造成危害,尤以对肾脏损害最为明显。因此对蔬菜中的重金属铅、镉测定的研究具有极大的现实意义。 1.2目前有关蔬菜中重金属(Pb、Cd)含量的测定方法的概述 根据《GB 5009.12-2010 食品安全国家标准食品中铅的测定》,测定食品中铅含量包括以下方法:石墨炉原子吸收光谱法、氢化物原子荧光光谱法、火焰原子吸收光谱法、二硫腙比色法、单扫描极谱法。 根据《GB/T 5009.15-2003 食品安全国家标准食品中镉的测定》,测定食品中镉含量包括以下方法:石墨炉原子吸收光谱法、原子吸收光谱法之碘化钾-4-甲基戊酮-2法、原子吸收光谱法之二硫腙-乙酸丁酯法、比色法、原子荧光法。 此外,测定食品中铅镉含量方法还有电感耦合等离子体质谱法(ICP-MS)法、二次导数极谱法、催化极谱分析法、离子选择性电极法、溶出伏安法、高效液相色谱法。用毛细管区带电泳法可准确有效地测定了奶粉中的镉、铅、铜;通过观察试纸显色法可实现了快速检测食品中镉含量的要求。 火焰原子吸收法操作简单、分析速度快、测定高浓度元素时干扰小、信号稳定;石墨炉原子吸收法灵敏、准确、选择性好,但基体干扰严重,不适合多种元素分析;电感耦合等离子体质谱法灵敏度高,选择性好,能同时分析多种元素,但价格昂贵,易受污染;紫外分光光度法简便、快速、灵敏度高、仪器简单、价格低廉、容易普及,但干扰因素较多,选择性较差。阳极溶出伏安法灵敏度高、分辨率好,仪器价格低廉,可同时测定几种元素。其次还有间接碘量法,但这一方法测定误差较大;而比色法方法虽简单,但由于要使用有毒和易挥发的三氯甲烷等试剂,有害于分析人员的健康和污染环境。

农药残留限量标准

目前农产品贸易中的技术性贸易措施主要包括:农药残留限量标准、生物毒素残留量、重金属含量、食品包装和标签要求、动植物检验检疫制度、食品安全与卫生要求、环境保护及“绿色补贴”等等。近年来,发达国家对我国农产品的出口实施了很多限制措施,如美国于2003年12月开始执行食品和农产品注册通报制度;欧盟通过修订关于食品标签的指令、增加对我国出口商品抽验批次;日本通过修改《食品和农产品卫生法》及实施强制检验等,都对我国出口农产品设置了障碍,进一步加强了对我国农产品出口的限制。 农产品出口遭遇农药残留限量标准壁垒 由于发达国家对进口农产品中的农药残留限量标准等卫生要求越来越多(仅2003年,国外在进口农产品和食品方面就新增标准260多项),限量指标越来越苛刻,所以农产品(食品、水产品、畜禽产品)中的农药残留限量标准问题成为我国应对国外技术性贸易措施亟需解决的问题之一。 由农药残留限量标准引发的贸易纠纷已经给我国农产品出口带来了巨大的经济损失。例如2002年5月,美国食品药品管理局(fda)宣布中国蜂蜜氯霉素残留检测限为0.31μg/kg,并有可能提高到0.1μg/kg,受此影响,中国蜂蜜2002年对美出口约7614吨,比上年下降52.35%,出口额约809万美元,比上年下降43.56%。欧盟不断实行新的茶叶检测标准,农药残留限量标准指标不断增加,到2003年已经增加到196项,截止到2004年8月27日,欧盟共出台26个欧盟委员会指令涉及茶叶,从今年8月1日起,欧盟又将硫丹在茶叶中的残留限量从30mg/kg调整为0.01mg/kg,这些措施使得我国茶叶的出口雪上加霜;据海关人士介绍,今年1-7月广东累计出口茶叶8938吨,价值1868万美元,分别比去年同期下降33.9%和26%,其中对欧盟出口茶叶167吨,与去年同期相比降幅达88.8%。此外我国出口的水产品中抗生素超标及2002年的台州西兰花出口风波等问题都对我国农产品的出口产生负面影响。 如何正确认识农药残留问题 农药残留是指残存在环境及生物体内的微量农药,包括农药原体、有毒代谢物、降解物和杂质等。农产品中的农药残留主要来自化学农药,是关系食品安全的重要因素,农产品中的农药残留超标不仅危害人和动物的健康,破坏环境,而且影响世界农产品的正常贸易。 我国地域辽阔,农作物品种虽然丰富,但农业生产力还是比较落后,绿色经济所占比重不高,农药的生产和使用对我国农业的发展有着重要的影响作用。我们既要看到农药的使用在害虫、病菌等有害生物的防治中具有快速、高效、经济等的特点及在保证农业稳产、增收等方面发挥的巨大作用,同时也要积极关注自身健康,不断加强对农药残留的监测工作。 目前,在农业发展中完全禁用化学农药是不现实的,同时在土壤中残留的已经禁用的部分农药对农产品的影响仍然存在,所以世界各国农产品都存在着程度不同的农药残留问题。 限制农药残留的原因 随着经济全球化和贸易自由化的发展,各国政府在鼓励、扩大出口的同时,以各种手段限制进口,保护本国利益。利用发达科学技术,以保护人类、动物和环境为理由,采取技术性贸易措施是目前世界上很普遍的一种做法。由于农产品中的农药残留达到一定的数量时,会对人类、动物和环境造成危害,所以将农药最高残留限量作为农产品贸易中的技术性贸易

减少蔬菜里的硝酸盐

科技苑:减少蔬菜里的硝酸盐 我们来说说蔬菜的那些事。蔬菜里含有丰富的维生素和矿物质,这都是人体必需的,咱们每天餐桌上必不可少。可是有件事情一直困扰着大家,那就是炒好的蔬菜吃不完怎么办呢?蔬菜几乎是每个家庭做饭的时候必不可少的,它能补充丰富的维生素。可是,有的时候把握不好,做多了,就成了家庭主妇伤脑筋的问题。大部分人选择留着下顿再吃。也有少部分人坚决不吃。不吃的理由就是,不健康。炒好的蔬菜放置的时间一长,不但原本的口感破坏了,而且里面的成分也悄悄地发生了变化。网络上经常出现这样的报道。剩菜都会产生一种名叫亚硝酸盐的物质。根据蔬菜种类的不同,产生的亚硝酸盐含量也不一样。在根茎类,果实类、叶菜类的蔬菜里,叶菜类的蔬菜产生的亚硝酸盐是最多的。亚硝酸盐是有毒的。它会阻断人体中的血红细胞运输氧气的作用,从而导致组织细胞缺氧。如果亚硝酸盐的含量比较多,就有可能导致中毒。长期食用亚硝酸盐,甚至会诱发胃癌。 亚硝酸盐虽然有毒,但是日常生活中也不用谈亚硝酸盐色变,因为每个人体质不同,饮食习惯不一样,体内吸收亚硝酸盐的情况也不一样。而且,一般蔬菜中亚硝酸盐的含量不足以引起急性中毒。日常生活中,剩菜不至于引起肠胃不适,但毕竟不是好东西,还是要尽量少吃。为了避免亚硝酸盐在体内日积月累,日常生活中就要养成好的饮食习惯。蔬菜尽量买新鲜的,吃多少买多少。煮过的蔬菜一次吃完,实在吃不完,一定要在低温的环境下密封保存。叶菜类的蔬菜最好不要剩。说了这么久的亚硝酸盐,那么这个亚硝酸盐到底是怎么产生的呢? 在烹调的过程中,蔬菜中的细菌本来被高温杀得差不多了。但是在吃的时候,筷子上会有一些细菌进入剩菜;保存过程中,空气中有一些细菌也会进入剩菜。很多细菌附着在煮熟的蔬菜上,2个小时就会大量繁殖。这些细菌产生分解作用,把蔬菜里面一种名叫硝酸盐的物质转化成亚硝酸盐。这样看来,剩菜中亚硝酸盐的产生不可避免,只是多少的问题。究其根源,就是蔬菜中的硝酸盐。那是不是所有的蔬菜都含有硝酸盐?我们请到了四川省农科院的秦老师跟我们一块做了一个测试,就是选取瓜果类、叶菜类不同种类的蔬菜,然后进行硝酸盐含量的一个检测。为了保证检测结果的准确性,记者和秦老师3个小时内赶到了四川省农科院的土壤肥料研究所。在实验室,经过一系列打碎、提取等检测步骤,终于得出了黄瓜、豇豆和莴笋这三种蔬菜里面硝酸盐含量的数据。秦鱼生:“瓜果类的黄瓜,硝酸盐测出来是39.9mg/kg,然后豆类蔬菜,豇豆测出来的结果是34.1mg/kg,然后莴笋,我们把它作为根茎类和叶菜类这两种都可以用的,相当于是两用蔬菜,它的测试结果,茎含量是155.4mg/kg,叶含量是258.1mg/kg,从莴笋来看,它的叶的含量明显高于它的茎的硝酸盐含量。检测结果证明,三个种类的蔬菜中都有硝酸盐,而其中叶菜类的蔬菜硝酸盐含量最高。也就是说,硝酸盐是所有蔬菜都含有的成分。国家对硝酸盐在食物中的含量有安全范围,而刚才经过检测的蔬菜硝酸盐含量都在安全范围之内。那硝酸盐是从哪来的呢? 蔬菜是有生命的,它要生长。长大的过程中就得吃东西。吃什么?营养,离不开。这营养中,占首要位置的就是氮。氮在自然界很活跃,大气里有,土壤里有,生物有机体里面也有,它们还可以互相交换。比如,打雷的时候,大气中的氮气就有可能转化成土壤中的固态氮。当然,在种植蔬菜的土壤中,大部分氮肥是来自于人工施用的化肥。它能促进蔬菜的生长。适量的氮肥,无疑对蔬菜的生长是有好处的。可是如果过量,有可能导致蔬菜中的硝酸盐含量过高。因为氮肥会被蔬菜吸收,转化成硝酸盐。所以氮肥的使用量,直接关系到蔬菜中的硝酸盐含量。不同的地块,因为土壤条件和化肥用量的大小,地里长出来的蔬菜可能它的硝酸盐含量也不一样。有两块地它们差不多在同时间种下了莴笋,记者分别要在两块地里进行取样,然后把它们送往四川省农科院,对它们的硝酸盐含量进行了检查。检测结果显示,毗邻两块土壤中的莴笋,不管是茎还是叶,硝酸盐含量都有明显的不同。秦鱼生:“主要是因为不同的农户,他的施肥习惯差异比较大,还有不同的土壤,地块也有所差异,所以形成

蔬菜中重金属含量测量

蔬菜中重金属含量分析 摘要 本文分析了中国蔬菜重金属污染现状并介绍了铅、镉的危害。实验探究以常见蔬菜为样品,运用火焰原子吸收光谱法对其铅、镉含量进行了测定。加标回收率为93.9%~98.6%。通过实验数据对比分析,得出以下结论: 1. 白萝卜不同部位其铅、镉含量不同。露土部分的铅、镉含量分别为0.24mg/kg、0.12mg/kg,地下部分的铅、镉含量分别为0.22mg/kg、0.17mg/kg。露地部分的铅含量比地下部分高,但其镉含量比地下部分低。且白萝卜样品中铅的含量高于镉的含量,铅尚未达到污染程度,而镉已远超国标范围。 2. 不同等级的青菜、菠菜、鸡毛菜其铅、镉含量不同。普通等级的铅含量(2.18mg/kg、1.56mg/kg、0.605mg/kg)都高于精品类(1.62mg/kg、0.635mg/kg、0.276mg/kg);普通等级的镉含量(0.0780mg/kg、0.118mg/kg、0.0386mg/kg)也都高于精品类(0.0382mg/kg、0.0446mg/kg、0.0220mg/kg)。且普通蔬菜的铅含量均已超标,精品类只有鸡毛菜的铅含量未超标。而镉含量的测定结果相对要乐观些,只有普通等级的青菜与菠菜的镉含量超标,其他都正常。 3. 不同产地土豆的铅、镉含量存在差异。铅含量由高到低的顺序为:上海(1.14mg/kg)>苏州(0.682mg/kg)>南通(0.621mg/kg);镉含量由高到低的顺序为:南通(1.00mg/kg)>苏州(0.220mg/kg)>上海(0.101mg/kg)。三种产地的土豆的铅、镉含量均已超标。 关键词:火焰原子吸收光谱法;铅;镉;蔬菜

蔬菜中亚硝酸盐含量测定

+ 本科毕业论文 题目:几种蔬菜中亚硝酸盐含量的动态分析 学院:食品科学与工程学院 姓名:XXX 学号:xxxxxxx 专业:食品质量与安全 班级:食安091班 指导教师:xxx 职称:讲师 二〇一三年四月

目录 摘要 ........................................................................................................................................ I ABSTRACT ........................................................................................................................... II 1 引言 . (1) 1.1概述 (1) 1.2测定方法及研究的意义 (1) 2 实验材料与方法 (2) 2.1实验材料 (2) 2.1.1 原材料 (2) 2.1.2 主要仪器 (2) 2.2实验方法 (3) 2.2.1 亚硝酸盐的测定 (3) 2.2.2 菌落总数的测定 (4) 2.3蔬菜在家庭贮藏与加工条件下的亚硝酸盐含量的测定 (8) 2.3.1 不同贮藏温度对蔬菜中亚硝酸盐含量的影响 (8) 2.4煮熟菠菜在常温条件下,亚硝酸盐含量与菌落总数的关系 (8) 3 实验结果与分析 (8) 3.1标准曲线的绘制 (8) 3.2消除抗坏血酸对实验的影响 (9) 3.3家庭加工及加工后贮藏对亚硝酸盐含量的影响 (9) 3.3.1 不同贮藏温度对蔬菜中亚硝酸盐含量的影响 (9) 3.3.2 不同煮沸时间对蔬菜中亚硝酸盐含量的影响 (9) 3.3.3 煮熟菠菜在常温条件下,亚硝酸盐含量与菌落总数的关系 (10) 4 结论 (11) 参考文献 (14) 致谢 (15)

中国水果蔬菜农药残留限量标准汇总新选.

中国水果蔬菜农药残留限量标准汇总 根据我国2005年发布的食品中农药最大残留限量GB2763-2005的规定,具体列出我国对水果蔬菜中农药的残留限量值(单位为:mg/kg)的规定: 甲胺磷 禁止在蔬菜中使用 对硫磷 不得在蔬菜和水果中使用 甲基对硫磷 不得在蔬菜和水果中使用 呋喃丹 不得检出 马拉硫磷 不得检出 甲拌磷

不得检出 乙酰甲胺磷 水果:0.5 蔬菜: 1 双甲脒 果菜类蔬菜: 0.5 梨果类水果: 0.5 柑橘类水果: 0.5 敌菌灵: 番茄: 10 黄瓜: 10 三唑锡 梨果类水果: 2 柑橘类水果: 2 联苯菊酯 梨果类水果: 0.5 柑橘类水果:0.05

溴螨酯 梨果类水果:2 柑橘类水果:2 噻嗪酮 柑橘类水果:0.5 硫线磷 柑橘:0.005 克菌丹 梨果类水果:15 甲萘威 蔬菜:2 多菌灵 番茄:0.5 黄瓜:0.5 芦笋:0.1 辣椒:0.1

梨果类水果:3 葡萄:3 其他水果:0.5 克百威 马铃薯:0.1 柑橘类水果:0.5 丁硫克百威 柑橘类水果:0.1 灭幼脲 甘蓝类蔬菜:3 百菌清 叶菜类蔬菜:5 果菜类蔬菜:5 瓜菜类蔬菜:5 梨果类水果:1 葡萄:0.5 柑橘:1

毒死蜱 叶菜类蔬菜:0.1 甘蓝类蔬菜:1 番茄:0.5 茎类蔬菜:0.05 韭菜:0.1 梨果类水果:1 柑橘类水果:2 四螨嗪 梨果类水果:0.5 柑橘类水果:0.5 氟氯氰菊酯 甘蓝类蔬菜:0.1 苹果:0.5 氯氟氰菊酯 叶菜类蔬菜:0.2 果菜类蔬菜:0.2 梨果类蔬菜:0.2 柑橘:0.2

氯氰菊酯 叶菜类蔬菜:2 果菜类蔬菜:0.5 黄瓜:0.2 豆类蔬菜:0.5 梨果类水果:2 柑橘类水果:2 2,4-滴 大白菜:0.2 果菜类蔬菜:0.1 滴滴涕 豆类:0.05 薯类:0.05 蔬菜:0.05 水果:0.05 溴氰菊酯 叶菜类蔬菜:0.5 甘蓝类蔬菜:0.5

蔬菜中硝酸盐含量的测定(精)

蔬菜中硝酸盐含量的测定 摘要 :基于硝酸根在 219 nm处有强烈吸收 , 且干扰少 , 测定提取液的吸光度, 从标准曲线上查得相应浓度。提取液用 pH=9.6-9.7的氨缓冲液,从待测样品中提取硝酸根离子。此法测定的结果表明回收率在 95.1%-100.9%之间 , 相对标准偏差为1.55%-4.14%。操作方法简便 , 适用于蔬菜中的硝酸盐含量的测定。 关键词:蔬菜 ; 硝酸盐 ; 紫外分光光度法 前言:蔬菜 ( 尤其叶菜类是一种容易累积硝酸盐的作物,硝酸盐含量超标已成为影响蔬菜品质的重要因素之一。由于当前我国蔬菜在种植过程中化肥过量施用 , 而且有些蔬菜生产者采用工业废水和生活污水浇地 , 造成许多蔬菜中硝酸盐含量过 高 , 已证明 , 硝酸盐在人体内经微生物作用可被还原为有毒的亚硝酸盐 , 它可与人体血红蛋白作用 , 使之失去载氧功能 , 造成高铁血红蛋白症 , 长期摄入硝酸盐会造成智力迟钝等危害 [ 1]。因此 , 蔬菜中硝酸盐的含量可作为衡量亚硝酸盐对人体潜在危害的一个指标 [ 2]。 蔬菜硝酸盐含量的测定方法很多,如镉柱还原分光光度法、离子色谱法。其中镉柱还原分光光度法为检测蔬菜中硝酸盐含量的国家标准方法 , 但由于干扰因素多, 操作步骤过于繁琐, 很难满足批量常规分析之需要,而其它几种方法则需要精密仪器, 测定条件较为严格,不适宜作常规监测分析 [3]。本实验采用操作简单、准确度高 的紫外分光光度法测定蔬菜中硝酸盐含量。 1 实验仪器与材料 1.1 主要仪器与试剂 1.1.1仪器 紫外分光光度计 ; 容量瓶;乳钵 1 .1.2试剂

①氨缓冲液(pH=9.6~9.7:2ml 浓盐酸加入 50ml 蒸馏水中,混合后再加入 5ml 浓 氨水, 最后用蒸馏水稀释至 100ml 。②粉末状活性炭(除去待测样品中的色素。③蛋白质沉淀剂Ⅰ,蛋白质沉淀剂Ⅱ (除去蛋白质及混浊物。④溶液Ⅰ:15克铁氰化 钾 (K3Fe(CN6 溶于 50ml 蒸馏水中, 定容于 100ml 。⑤溶液Ⅱ:30g 硫酸锌 (ZnSO4 溶于 60ml 蒸馏水中,定容于 100ml 。⑥硝酸盐标准液:称 0.722g 在 110℃条件下烘 干的 KNO3用蒸馏水溶解后定容至 1000ml 。此溶液为 100ug/ml标准贮液,放入冰 箱内保存。 1.1.3样品材料 京白菜 (Brassica campestris L. ssp. chinensis (L. Makino. var. communis Tsen et Lee、小瓜(Cucurbita moschata、胡萝卜 (Daucus carota 、莲花白 (Brassica oleracea L. var.capitata 、土豆 (Solanum tuberosum L 、黄瓜 (Cucumis sativus Linn. (以上各蔬 菜均在昆明蒜村农贸市场购买,产地昆明茨坝,高海拔的冬天摘取。 2 实验方法 2.1 标准曲线的绘制 依次配制 NO 浓度为 0.4ug/ml, 0.8ug/ml, 1.2ug/ml, 1.6ug/ml, 2.0ug/ml, 2.4ug/ml, 2.8ug/ml的溶液,以重蒸馏水做空白,用石英比色皿在 219nm 处测定吸光度(A 。以 标准溶液浓度为横坐标, 吸光度为纵坐标绘制标准曲线。如图 2, 得回归方程为 A = 0 . 00919 +0 . 0596C,相关系数 r = 0 . 9996( n = 5。

蔬菜中重金属含量测量

蔬菜中重金属含量测量 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

蔬菜中重金属含量分析 摘要 本文分析了中国蔬菜重金属污染现状并介绍了铅、镉的危害。实验探究以常见蔬菜为样品,运用火焰原子吸收光谱法对其铅、镉含量进行了测定。加标回收率为%~%。通过实验数据对比分析,得出以下结论: 1. 白萝卜不同部位其铅、镉含量不同。露土部分的铅、镉含量分别为kg、kg,地下部分的铅、镉含量分别为kg、kg。露地部分的铅含量比地下部分高,但其镉含量比地下部分低。且白萝卜样品中铅的含量高于镉的含量,铅尚未达到污染程度,而镉已远超国标范围。 2. 不同等级的青菜、菠菜、鸡毛菜其铅、镉含量不同。普通等级的铅含量(kg、kg、kg)都高于精品类(kg、kg、kg);普通等级的镉含量(kg、kg、kg)也都高于精品类(kg、kg、kg)。且普通蔬菜的铅含量均已超标,精品类只有鸡毛菜的铅含量未超标。而镉含量的测定结果相对要乐观些,只有普通等级的青菜与菠菜的镉含量超标,其他都正常。 3. 不同产地土豆的铅、镉含量存在差异。铅含量由高到低的顺序为:上海(kg)>苏州(kg)>南通(kg);镉含量由高到低的顺序为:南通(kg)>苏州(kg)>上海(kg)。三种产地的土豆的铅、镉含量均已超标。 关键词:火焰原子吸收光谱法;铅;镉;蔬菜 Analysis of heavy metals in vegetables ABSTRACT The present situation of heavy metal pollution in Chinese vegetables and the harms of lead and cadmium were introduced. Flame atomic absorption spectrophotometry was used to determine contents of lead and cadmium in seasonal vegetables. The addition standard recoveries are %~%. Conclusions have been drawn as follows: 1. The contents of lead and cadmium in the soil-exposing part are kg and kg respectively; the contents in the underground part are kg and kg respectively. The former is higher than the latter. And the contents of lead are larger than those of cadmium. The levels of lead in ternip

几种蔬菜的硝酸盐含量测定与比较(精)

几种蔬菜的硝酸盐含量测定与比较云南农业大学 10级农学 2010312861 李哲 摘要:通过用紫外分光光度法测定了蒜村农贸市场所出售的京白菜、小瓜、莲花白,马铃薯、胡萝卜、黄瓜等蔬菜中硝酸盐的含量。结果表明:蒜村农贸市场蔬菜中的硝酸盐含量不算太高,并且不同类型的蔬菜中硝酸盐含量的差异较大。其中叶菜类的要大于根茎类的。关键词:蒜村农贸市场;蔬菜;硝酸盐 前言 随着人们生活水平的提高,蔬菜已经成为成为了餐桌上必不可少的食物之一。因此,对蔬菜的研究和培育越来越受到人们的关注和重视。但蔬菜是一种容易富集硝酸盐的作物,而蔬菜中硝酸盐的污染主要来自化学肥料尤其是氮肥的施用[1]。中国是一个农业大国,人口大国,为了满足国民的生活食物供给,化肥在农业中的应用越来越普遍,但有些人为了获得高额利润,大量的使用肥料尤其是氮肥,使得蔬菜中的硝酸盐含量过高。氮肥施用过多,作物吸收氮素的速度大于作物体内硝酸盐还原的速度。硝酸盐就在作物体内积累[2].蔬菜被人类食用后,至少还会有5%的NO3-可在人的肠胃中经硝酸还原细菌的作用转化成NO2-[3],而NO2-是一种强致癌并可引起高铁血红蛋白症的物质,对人身体健康构成威胁。因此蔬菜中的硝酸盐含量越来越受到人们的重视,所以对蔬菜中硝酸盐含量的研究具有很重要的现实意义。 1. 材料与方法 1.1材料 采样地点:昆明市盘龙区蒜村农贸市场 材料为:①. 京白菜②. 莲花白③. 小瓜④. 胡萝卜⑤. 黄瓜⑥. 马铃薯 1.2方法 紫外吸收分光光度法

2. 结果与分析 从表1中可以看出,不同蔬菜中得亚硝酸盐含量相差较大。6种蔬菜中硝酸盐含量为9.8~409.18mg/kg。最小值和最大值之间差是399.38. 在这个实验里,结果并不满足规律根类>叶菜类>瓜果类,原因可能是操作误差,作物施肥因素和蔬菜保鲜程度的影响影响。 表1:鲜样蔬菜中硝酸盐含量单位(mg/kg) 3. 讨论 不同类型蔬菜硝酸盐累积含量有比较明的显差异。通过做实验可以发现即使是同一种蔬菜,硝酸盐含量也有着巨大的差异。虽然有报道硝酸盐累积的差异主要归结于遗传因素[4],因子不仅控制蔬菜硝酸盐的吸收也决定硝酸还原酶的活性和多

《有色金属标准》各国重金属和农残限量和标准

部分国家、地区草药重金属和农药残留限量标准汇总 甘草 重金属及有害元素: 铅、镉、砷、汞、铜含量限定如下:铅不得过百万分之五,镉不得过千万分之三,砷不得过百万分之二,汞不得过千万分之二,铜不得过百万分之二十。 有机氯农药残留量: 六六六(总BHC)不得过千万分之二,滴滴涕(总DDT)不得过千万分之二,五氯硝基苯(PCNB)不得过千万分之一。 黄芪 重金属及有害元素: 铅、镉、砷、汞、铜含量限定如下:铅不得过百万分之五,镉不得过千万分之三,砷不得过百万分之二,汞不得过千万分之二,铜不得过百万分之二十。 有机氯农药残留量: 六六六(总BHC)不得过千万分之二,滴滴涕(总DDT)不得过千万分之二,五氯硝基苯(PCNB)不得过千万分之一。 丹参 重金属及有害元素: 铅、镉、砷、汞、铜含量限定如下:铅不得过百万分之五,镉不得过千万分之三,砷不得过百万分之二,汞不得过千万分之二,铜不得过百万分之二十。 白芍 重金属及有害元素: 铅、镉、砷、汞、铜含量限定如下:铅不得过百万分之五,镉不得过千万分之三,砷不得过百万分之二,汞不得过千万分之二,铜不得过百万分之二十。 西洋参 重金属及有害元素: 铅、镉、砷、汞、铜含量限定如下:铅不得过百万分之五,镉不得过千万分之三,砷不得过百万分之二,汞不得过千万分之二,铜不得过百万分之二十。 金银花 重金属及有害元素: 铅、镉、砷、汞、铜含量限定如下:铅不得过百万分之五,镉不得过千万分之三,砷不得过百万分之二,汞不得过千万分之二,铜不得过百万分之二十。 石膏 重金属:含重金属不得过百万分之十;含砷量不得过百万分之二。 煅石膏 重金属:含重金属不得过百万分之十。

蔬菜中重金属(Pb、Cd)含量的测定 方案

蔬菜中重金属(Pb、Cd)含量的测定 11化教4班20112401072 陈天明20112401073 陈博殷摘要: 铅离子和镉离子分别于-0.42V和-0.63V电位处能产生良好的极谱波,两者的峰电位相差较大,用悬汞电极微分脉冲极谱溶出法对蔬菜不同部位(茎、叶)中铅、镉的含量测定。 关键词:重金属(铅Pb、镉Cd);微分脉冲极谱法;蔬菜; 一、引言: (一)测定蔬菜中重金属(Pb、Cd)含量的现实意义 随着现代工业的发展,环境污染加剧,工业“三废”的排放及城市生活垃圾、污泥和含重金属的农药、化肥的不合理使用,导致蔬菜中重金属污染加剧。,蔬菜是人们生活中必不可少的重要农产品, 其品质优劣, 尤其是蔬菜中具有积累性和持续性危害的重金属含量的多少,将直接影响人们的健康。食用重金属含量超标的食品, 能产生急性或慢性毒性反应, 还有致畸、致癌和致突变的潜在危害。因此对蔬菜中的重金属铅、镉研究具有极大的现实意义。 (二)目前有关蔬菜中重金属(Pb、Cd)含量的测定方法的概述 (1)光化学法 1、光度法:如国家标准中第三标准法双硫腙比色法测食品中铅含量。它主要是利用PH=8.5~9.0时,硫离子与双硫腙生成红色配合物,溶于三氯甲烷,加入柠檬酸铵,氰化钾与盐酸羟铵等,防止铁、铜、锌等杂质离子的干扰,与标准系列比较定量。国际中测镉的第三法则是用在碱性溶液中镉离子与6-溴苯并噻唑偶氮萘酚形成红色络合物,溶于三氯甲烷,氰化钾等剧毒物质。因此应用有一定局限性。 2、原子荧光光谱法:准确配制铅镉系列的标准溶液,在实验工作条件下,测定这两个元素的荧光强度,得到线性回归方程,再将待测样品的荧光强度代入方程即可得到样品中铅镉的浓度。该法快速、简便、准确且灵敏度高。 3、石墨炉原子吸收光谱法:分别准确量取一定量的铅镉储备液,配置一系列标准溶液后按所选工作仪器条件用原子吸收分光光度计测出各溶液吸光度并制作A-C标准曲线,得出其一元线性回归方程。再测出一定量试样溶液吸光度,代入回归方程中即可得到铅镉含量。 4、火焰原子吸收法(标准加入法):分别移取适量样品于容量瓶中,分别加入一系列不同体积相同浓度的铅镉标准溶液,用盐酸定容。使用空气-乙炔火焰,于原子吸收光谱仪波长283.30nm,228.85nm处分别测量铅镉的吸光度,以标准系列浓度为横坐标,以扣除空白溶液的吸光度值为纵坐标作图,根据所绘制的直线外延与横轴的交点求出铅镉元素浓度。 5、电感耦合等离子体质谱法(ICP-MS)法:精密吸取铅镉标准储备溶液,用稀硝酸稀

蔬菜中硝酸盐和亚硝酸盐含量的测定

蔬菜中硝酸盐和亚硝酸盐含量的测定 摘要:蔬菜中的硝酸盐和亚硝酸盐是一种对人体有害的化学物质,其含量比其它植物都高,人体摄入它会引起多种疾病.本实验采用分光光度发分别对拜 城县恰玛古,柯坪县恰玛古,伊宁市恰玛古,大白菜,黄萝卜,黄瓜中亚硝酸盐及硝酸盐含量进行测定。结果表明:(1)亚硝酸盐:六种蔬菜中亚硝酸盐含量有明显的差异,测定结果是:大白菜0.7919mg/g,黄萝卜0.6930mg/g,黄瓜0.5763mg/g,拜城恰玛古0.5528mg/g,伊宁恰玛古1.1294 mg/g,柯坪恰玛古0.5174mg/g。 (2)硝酸盐:大白菜1.6098mg/g,黄萝卜0.0598mg/g,黄瓜0.7421mg/g,拜城恰玛古0.2608mg/g,伊宁恰玛古2.5308mg/g,柯坪恰玛古0.0317mg/g,蔬菜中亚硝酸盐含量的回收率88.80%。 关键词:硝酸盐;亚硝酸盐;蔬菜;测定方法;

前言: 蔬菜尤其是叶菜类蔬菜,是一种易于富集硝酸盐的植物。人体摄入的硝酸盐81.2%来自蔬菜[1]。硝酸盐本身毒性不大,对人畜无直接的危害,但含量过高对人体可能造成危害,因为在微生物的作用下极易还原为亚硝酸盐。亚硝酸盐是一种有毒物质,可直接使动物中毒!造成亚铁血红蛋白症,严重可致死亡[2]。 亚硝酸盐,一类无机化合物的总称。主要指亚硝酸钠.亚硝酸钠为白色至淡黄色粉末或颗粒状,味微咸,易溶于水。外观及滋味都与食盐相似,并在工业、建筑业中广为使用,肉类制品中也允许作为发色剂限量使用。由亚硝酸盐引起食物中毒的机率较高。食入0.3~0.5克的亚硝酸盐即可引起中毒甚至死亡[3]。 硝酸盐,亚硝酸盐广泛存在于人类环境中,其对人类健康和生态环境的危害,日益受到人们的普遍关注。硝酸盐在细菌的作用下可还原成亚硝酸盐,使血液的载氧能力下降,从而导致高铁血红蛋白症。联合国世界卫生组织和粮农组织[4]早在1973 年就制定了食品中硝酸盐的限量标准,以ADI值为基础,提出蔬菜可食部分中硝酸盐含量的卫生标准为432mg/kg (鲜样),亚硝酸盐成人每人每日容许量为7.8mg。蔬菜中硝酸盐和亚硝酸盐含量的高低已成为衡量蔬菜安全与否的一项重要指标,因此快速准确地测定蔬菜中硝酸盐和亚硝酸盐的含量极为重要[5]。 -)是氮循环的中间产物,不稳定,广泛存在于水体、土壤和各类食品中。根亚硝酸盐(NO 2 据水环境条件,可被氧化成硝酸盐,也可被还原为氨。亚硝酸盐可使人体正常的血红蛋白(低铁血红蛋白)氧化成为高铁血红蛋白,发生高铁血红蛋白症,失去血红蛋白在人体内输送氧的能力,导致出现组织缺氧症状。另外,在人的肠胃中,亚硝酸盐还可与仲胺类物质反应,生成具有致癌性的亚硝胺类物质。因此,亚硝酸盐成为水质、食品等的重要监测项目之一[6]。 用分光光度法测定蔬菜中亚硝酸盐含量时,为了消除蛋白质对测定结果的干扰,往往通过沉淀的方法来去除蛋白质[7]。在GB《中华人民共和国国家标准—食品中亚硝酸盐与硝酸盐的测定(GB/T5009.33—1996)中的格里斯试剂比色法》中,“样品处理”的主要目的就是通过沉淀来去除蛋白质,获测定所需的澄清滤液[8]。样品处理时所加的氢氧化钠溶液,亚铁氰化钾,乙酸锌溶液和水浴加热的作用是使蛋白质变性而易沉淀[9]。本文根据测定亚硝酸盐的标准方法于540 nm处测定生成的偶氮化合物的吸光度,从而建立了一种简单、快速、灵敏度较高的测定痕量亚硝酸盐的方法。 1.1实验部分 1.1.1实验原理 弱碱性条件下,用饱和四硼酸钠、亚铁氰化钾、乙酸锌沉淀除去蛋白质,氢氧化铝悬浮液脱色,减压抽滤;在酸性条件下,亚硝酸盐与对氨基苯磺酸酰胺起重氮化作用,再与萘乙二胺盐酸盐和对氨基苯磺酸反应,生成紫红色偶氮染料,于波长540nm 处测量蔬菜中亚硝酸盐的含量。 1.1.2仪器与试剂 1.1. 2.1 实验仪器:搅汁机;恒温水浴锅;722型分光光度计;电子天平;冰箱供试蔬菜为:大白菜,黄萝卜,黄瓜,拜城恰玛古,伊宁恰玛古,柯坪恰玛古。 1.1. 2.2实验试剂 主要试剂有10.6%亚铁氰化钾溶液;22%乙酸锌溶液;饱和四硼酸钠溶液;磺胺;萘乙二胺盐酸盐;盐酸;镉粒;氨缓冲溶液;活性碳;硝酸钾;亚硝酸钠标准使用液; 1.1. 3试剂的配制:

蔬菜中硝酸盐和亚硝酸盐的分析

蔬菜中硝酸盐和亚硝酸盐的分析 贾 丽 (北京市理化分析测试中心,北京100089) 摘要:介绍了近几年来比色法、电极法、紫外法、离子色谱法等对蔬菜中硝酸盐和亚硝酸盐的分析进展,并对今后的发展作了展望。 关键词:比色法;电极法;紫外法;离子色谱法;硝酸盐;亚硝酸盐 蔬菜是一种与人民生活密切相关而又易富集硝酸盐的作物,研究表明,蔬菜是人体硝酸盐的主要来源,人体摄入的硝酸盐有70%—80%来自蔬菜[1]。在正常情况下,蔬菜从土壤中吸收的硝酸盐在体内可经硝酸还原酶的作用,转化为氨和氨基酸等营养物质。而当条件不适宜时特别是在大量施氮肥的条件下,蔬菜摄取的硝酸盐量过多,在其内不能被充分同化,致使硝酸盐在蔬菜内大量累积。 近年来,蔬菜的安全性问题日益受到各方面关注,特别是蔬菜栽培方式的改变,使得蔬菜硝酸盐含量激增,而人体主要是通过从蔬菜等食品中摄取过量硝酸盐的,严重危害到人体的健康。因此,蔬菜中硝酸盐含量的控制应得到加强,我国已对无公害蔬菜中的亚硝酸盐和硝酸盐含量提出明确的限量标准,亚硝酸盐≤4.0mg/kg;硝酸盐≤600mg/kg(瓜果类),≤1200mg/kg(根茎类),≤3000mg/kg(叶菜类)[2],从而相应的检测方法也应进一步得到完善,分析蔬菜中硝酸盐和亚硝酸盐的方法报道的有很多,包括比色法、电极法、紫外法、离子色谱法等。 1 比色法 比色法是一种普遍使用的方法,应用时间较长。王钫等[3]采用了国标方法GB/T 15401 –1994(水果、蔬菜及其制品亚硝酸盐和硝酸盐含量的测定)测定蔬菜样品中硝酸盐和亚硝酸盐的含量,将新鲜蔬菜样品用蒸馏水洗净,晾去表面水分。用四分法取可食部分,用干净不锈钢剪刀剪成碎块,用捣碎机制成匀浆,准确称取20.0g样品置于200 mL烧杯中。于538nm 处,测定其吸光度值,外标法定量。他们用此法分析了大量的蔬菜样品,对杭州市场的蔬菜硝酸盐含量进行了分析和质量评价,得到了较好的应用。崔令强等[4]按GB5009.33-1996 格里斯试剂比色法进行,亚硝酸盐在新鲜蔬菜中含量较低(0.00-0.60 mg/kg,部分蔬菜中未检出亚硝酸盐,仅荠菜、香菜、大葱中亚硝酸盐的含量稍高,分别为 1.00mg/kg,0.80mg/kg,0.80mg/kg。蔬菜中亚硝酸盐的含量,一般不超过国家制定的限量标准,新鲜蔬菜中含量更低。汪李平等[5]对武汉市冬季市场供应的主营蔬菜种类的硝酸盐和亚硝酸盐进行监测,硝酸盐测定采取磺基水杨酸比色法,亚硝酸盐测定采用α- 萘胺法。通过监测发现,蔬菜硝酸盐污染十分严重,并对影响蔬菜硝酸盐累积的原因进行了探讨,提出了限制硝酸盐污染的措施。 2 紫外法 庞荣丽等[6]采用紫外法测定了郑州市57个蔬菜和水果样品中硝酸盐含量,参比硝酸盐含量分级评价标准,分析了目前郑州市主要蔬菜和水果食用的安全状况,提出了降低果蔬中硝酸盐含量的有效措施。具体方法是将新鲜蔬菜和水果表面用去离子水洗净、晾干,用四分法取可食部分,称取100-200g,用高速组织捣碎机打成匀浆。依试样中硝酸盐含量的大小,准确称取匀浆2-20g,放入200mL 烧杯中,加入5mL 饱和硼砂溶液和100mL 热水;置沸水浴中,加热15min,并不断摇动。取出后冷至室温,再加入10mL 亚铁氰化钾溶液、10mL 乙酸锌溶液和2g活性炭,每次加入后均充分摇匀,然后定量转入200mL 容量瓶中,用水定容,用折成槽纹的滤纸过滤,得无色清亮提取液。吸取10mL提取液于50mL容量瓶中,

相关文档
相关文档 最新文档