文档库 最新最全的文档下载
当前位置:文档库 › 第三节 对数函数

第三节 对数函数

安康职业技术学院课时授课计划(教案首页)

安康职业技术学院教案续页

一、复习导入

1.对数的定义 b N a =l o g 其中 ),1()1,0(+∞∈ a 与 ,0(+∞∈N 2.指数式与对数式的互化

)10( log ≠>=?=a a b N N a a b 且

3.重要公式:

⑴负数与零没有对数; ⑵01log =a ,log =a a ⑶对数恒等式N a N a =log =n a a log n

4.指数运算法则 )

()(),()()

,(R n b a ab R n m a a R n m a a a n n n mn n m n m n m ∈?=∈=∈=?+

二、讲授

Ⅰ.积、商、幂的对数运算法则:

如果 a > 0,a ≠ 1,M > 0, N > 0 有:

)

()()

(3R)M(n nlog M log 2N log M log N M log 1N log M log (MN)log a n a a a a a a a ∈=-=+= 证明:①设a log M =p , a log N =q . 由对数的定义可以得:M =p a ,N =q a . ∴MN = p a q a =q p a + ∴a log MN =p +q , 即证得a log MN =a log M + a log N .

②设a log M =p ,a log N =q . 由对数的定义可以得M =p a ,N =q a .

∴q p q p a a a N M -== ∴q p N M a -=log 即证得N M N

M a a a log log log -=. ③设a log M =P 由对数定义可以得M =p a ,

∴n M =np a ∴a log n M =np , 即证得a log n

M =n a log M .

说明:上述证明是运用转化的思想,先通过假设,将对数式化成指数式,并利用幂的运算性质进行恒等变形;然后再根据对数定义将指数式化成对数式.

①简易语言表达:“积的对数 = 对数的和”……

②有时逆向运用公式:如110log 2log 5log 101010==+.

③真数的取值范围必须是),0(+∞:

)5(log )3(log )5)(3(log 222-+-=-- 是不成立的.

)10(log 2)10(log 102

10-=-是不成立的.

④对公式容易错误记忆,要特别注意: N M MN a a a log log )(log ?≠,N M N M a a a log log )(log ±≠±.

Ⅱ、.对数换底公式:

a

N N m m a log log log = ( a >0 ,a ≠ 1 ,m >0 ,m ≠ 1,N >0). 证明:设 a log N = x , 则 x a = N .

两边取以m 为底的对数:N a x N a m m m x m log log log log =?=

从而得:a N x m m log log = ∴ a

N N m m a log log log =. Ⅲ.两个常用的推论:

①1log log =?a b b a , 1log log log =??a c b c b a .

② b m

n b a n a m log log =(a ,b >0且均不为1). 证:①1lg lg lg lg log log =?=

?b a a b a b b a ; ②b m n a m b n a b b a m n n

a m

log lg lg lg lg log === 三、讲授范例: 例1. 用x a log ,y a log ,z a log 表示下列各式:

32log )2(;(1)log z y x z

xy a a . 解:(1)z

xy a

log =a log (xy )-a log z=a log x+a log y - a log z

(2)32log z

y x a =a log (2x 3log )z y a - = a log 2x +a log 3log z y a -=2a log x+z y a a log 3

1log 21-. 例2. 计算 (1)25log 5, (2)1log 4.0, (3))24(log 572?, (4)5100lg

解:(1)5log 25= 5log 2

5=2 (2)4.0log 1=0. (3)2log (74×25)= 2log 74+ 2log 52= 2log 722

?+ 2log 52 = 2×7+5=19. (4)lg 5100=5

2lg1052log1051

2==. 例3.计算:(此例题可讲练结合)

(1);50lg 2lg )5(lg 2?+ (2) ;25log 20lg 100+ (3) .18lg 7lg 3

7lg 214lg -+- 解:(1) 50lg 2lg )5(lg 2?+=)15(lg 2lg )5(lg 2+?+=2lg 5lg 2lg )5(lg 2+?+

=2lg )2lg 5(lg 5lg ++=2lg 5lg +=1;

(2) 25log 20lg 100+=5lg 20lg +=100lg =2;

(3)解法一:lg14-2lg 3

7+lg7-lg18=lg(2×7)-2(lg7-lg3)+lg7-lg(23×2) =lg2+lg7-2lg7+2lg3+lg7-2lg3-lg2=0.

解法二: lg14-2lg 37+lg7-lg18=lg14-lg 2)37(+lg7-lg18=lg 01lg 18)3

7(7142==?? 评述:此例题体现对数运算性质的综合运用,应注意掌握变形技巧,如(3)题各部分变形要化到最简形式,同时注意分子、分母的联系.(2)题要避免错用对数运算性质.

四、课堂练习

1. 已知 a =3log 2, b =7log 3, 用 a , b 表示56log 42.

解:因为2log 3 = a ,则

2log 13=a , 又∵3log 7 = b , ∴1

312log 7log 2log 37log 42log 56log 56 log 33333342+++=++?+==

b ab ab . 例2.设16log log 8log 4log 4843=??m ,求m 的值. 解:∵m m 3843log log 8log 4log =??, 216log 4= ∴2log 3=m ,即m =9.

五、作业练习:

1.教材P46第6、7题

2. 求值.25log 20lg 100+

3.已知3010.02lg =,4771.03lg =, 求45lg

指数函数、对数函数、幂函数的图像与性质

指数函数、对数函数、幂函数的图像与性质 (一)指数与指数函数 1.根式 (1)根式的概念 (2).两个重要公式 ①?? ??????<-≥==)0()0(||a a a a a a a n n ; ②a a n n =)((注意a 必须使n a 有意义)。 2.有理数指数幂 (1)幂的有关概念 ①正数的正分数指数幂:0,,1)m n a a m n N n *=>∈>、且; ②正数的负分数指数幂: 10,,1)m n m n a a m n N n a - *= = >∈>、且 ③0的正分数指数幂等于0,0的负分数指数幂没有意义. 注:分数指数幂与根式可以互化,通常利用分数指数幂进行根式的运算。 (2)有理数指数幂的性质 ①a r a s =a r+s (a>0,r 、s ∈Q ); ②(a r )s =a rs (a>0,r 、s ∈Q ); ③(ab)r =a r b s (a>0,b>0,r ∈Q );. 3.指数函数的图象与性质 n 为奇数 n 为偶数

注:如图所示,是指数函数(1)y=a x ,(2)y=b x,(3),y=c x (4),y=d x 的图象,如何确定底数a,b,c,d 与1之间的大小关系? 提示:在图中作直线x=1,与它们图象交点的纵坐标即为它们各自底数的值,即c 1>d 1>1>a 1>b 1,∴c>d>1>a>b 。即无论在轴的左侧还是右侧,底数按逆时针方向变大。 (二)对数与对数函数 1、对数的概念 (1)对数的定义 如果(01)x a N a a =>≠且,那么数x 叫做以a 为底,N 的对数,记作log N a x =,其中a 叫做对数的底数,N 叫做真数。 (2)几种常见对数 2、对数的性质与运算法则 (1)对数的性质(0,1a a >≠且):①1 log 0a =,②l o g 1a a =,③l o g N a a N =,④l o g N a a N =。

对数函数中的复合函数问题

对数函数中的复合函数问题 教学目的:通过一些例题的讲解,对对数函数的性质、图象及与二次函数的复合函数问题进行复习,使学生加深对函数的认识,能够对一些有难度的题进行分析解决。 教学难点:复合函数中定义域、值域以及单调性的求解。 教学过程:先复习对数函数以及性质。 下面我们来做几道例题。 我们在遇到的一些问题中往往对数函数不是单独出现的,它总是和其他函数同时出现,特别是二次函数。那么如何来解决这类比较复杂的问题呢? 把对数函数和二次函数结合起来,最常见的就是复合函数。下面就先来看这么一道题 例1的单调递增区间是( )。 A. B. C. D. 分析:由于以1/2为底的对数函数是一个单调减函数,所以要求该函数的单调递增区间,也就是要求该二次函数的单调递减区间。下面我们就把问题转化为解决二次函数的问题。对于该二次函数进行配方4 9)21(222-+=-+x x x ,我们可以很容易看出是一个开口向上的抛物线,则其在x 小于-1/2时为单调递减,x 大于-1/2时为单调递增。 那么该题是否到此为止了呢?其实在此对于上面的二次函数是有范围的,也就是说 即x<-2 或x>1综上所述,我们应该选择A 。 一般化:对于类似与上面这题的复合函数 的单调区间是怎样的.该二次函数图象为一开口向上的抛物线。 抛物线与x 轴有两个交点 抛物线与x 轴只有一个交点 抛物线与x 轴没有交点 利用几何画板作图探究并验证:(略)

例2若函数的值域为一切实数,求实数的取值范围。 按照通常的做法,要使函数有意义,必须有:对一切实数x都成立,即其实当时, 可以看出 可见值域并非为R,说明上述解答有误。 要使函数的值域为R,即要真数取遍所有正数,故二次函数的图象与x轴有交点,所以,得或。故实数a的取值范围为。 我们在考虑这类复合函数问题的时候,要仔细分析各函数的定义域和值域以及复合后的定义域和值域的变化。以上这两题中的二次函数是作为对数函数的一部分出现的,那么,对数函数作为二次函数的一部分出现时,又该怎样呢?下面来看这几道题: 例3若,且,求的最值。 分析:先整理,可得: 而。 这道题要注意对数的计算,通过配方求出最值。 例4若有两个小于1的正根,且,求实数的取值范围。 分析:先化简函数方程。, 由于形式有点复杂,可作代换, ()。

指数函数对数函数和幂函数知识点归纳

一、幂函数 1、幂的有关概念 正整数指数幂: ...() n n a a a a n N =∈ 零指数幂: 01(0) a a =≠ 负整数指数幂: 1 (0,) p p a a p N a -=≠∈ 分数指数幂:正分数指数幂的意义是: (0,,,1) m n m n a a a m n N n =>∈> 且 负分数指数幂的意义是: 1 (0,,,1) m n m n m n a a m n N n a a - ==>∈> 且 2、幂函数的定义 一般地,函数 a y x =叫做幂函数,其中x是自变量,a是常数(我们只讨论a是有理数的情况). 3、幂函数的图象 幂函数a y x = 当 11 ,,1,2,3 32 a= 时的图象见左图;当 1 2,1, 2 a=--- 时的图象见上图: 由图象可知,对于幂函数而言,它们都具有下列性质:

a y x =有下列性质: (1)0a >时: ①图象都通过点(0,0),(1,1); ②在第一象限内,函数值随x 的增大而增大,即在(0,)+∞上是增函数. (2)0a <时: ①图象都通过点(1,1); ②在第一象限内,函数值随x 的增大而减小,即在(0,)+∞上是减函数; ③在第一象限内,图象向上与y 轴无限地接近,向右与x 轴无限地接近. (3)任何幂函数的图象与坐标轴至多只有一个交点; (4)任何幂函数图象都不经过第四象限; (5)任何两个幂函数的图象最多有三个交点. 二、指数函数 ①定义:函数)1,0(≠>=a a a y x 且称指数函数, 1)函数的定义域为R ; 2)函数的值域为),0(+∞; 3)当10<a 时函数为增函数. 4)有两个特殊点:零点(0,1),不变点(1,)a . 5)抽象性质: ()()(),()()/()f x y f x f y f x y f x f y +=?-= 三、对数函数 如果b a N =(0a >,1a ≠),那么b 叫做以a 为底N 的对数,记作log a N b = log b a a N N b =?=(0a >,1a ≠,0N >). 1.对数的性质 ()log log log a a a MN M N =+. log log log a a a M M N N =-.

专题02 指数型与对数型复合函数的性质(分层训练)学生版

专题02 指数型与对数型复合函数的性质 A 组 基础巩固 1.下列结论正确的是( ) 1 =- B.lg(25)1+= C.1 3 83 272- ?? = ? ?? D.24log 3log 6= 2.若函数()log (3)1(0,a f x x a =-+>且1)a ≠图像恒过定点P ,则P 坐标是( ) A.)0,3( B.4,0() C.(3,1) D.(4,1) 3.已知函数3log 2,0, ()1,0,3x x x f x x ->?? =???≤? ??? ?则((2))f f -的值为( ) A.4- B.2- C.0 D. 2 4.设)(x f 是定义域为R 的偶函数,且在)0(∞+,单调递减,则 ( ) A .) 31 (log ) 3 () 3 (24334 f f f >>- - B .)3()3()3 1 (log 34 432-->>f f f C .) 3()3()31(log 43 34 2-->>f f f D .)3 1 (log ) 3 () 3 (23443f f f >>- - 5.已知14 e a - =,ln0.9b =,1 e 1 log c π =,则( ) A.a b c << B.c b a << C.a c b << D.b a c << 6.下列函数中,在区间()0,∞+上为增函数的是( ) A .()2log 5y x =+ B .13x y ??= ?? ? C .y = D .1y x x = - 7.已知2 3a = ,23 23b ??= ???,2 32323c ?? ??? ??= ??? ,则( ) A .a b c << B .c b a << C .c a b << D .a c b << 8.设31log 5a =,131log 5b =,153c -=,则a ,b ,c 的大小关系是( ) A .c a b >> B .b a c >> C .b c a >> D .c b a >>

幂函数、指数函数和对数函数_对数及其运算法则_教案

幂函数、指数函数和对数函数·对数及其运算法则·教案 如果a(a>0,a≠1)的b次幂等于N,就是ab=N,那么数b就叫做以a为底N的对数,记作 logaN=b, 其中a叫做底数,N叫做真数,式子logaN叫做对数式. 练习1 把下列指数式写成对数形式: 练习2 把下列对数形式写成指数形式: 练习3 求下列各式的值: 因为22=4,所以以2为底4的对数等于2. 因为53=125,所以以5为底125的对数等于3. 师:由定义,我们还应注意到对数式logaN=b中字母的取值范围是什么? 生:a>0且a≠1;b∈R;N∈R. 师:N∈R?(这是学生最易出错的地方,应一开始让学生牢牢记住真数大于零.) 生:由于在实数范围内,正数的任何次幂都是正数,因而ab=N中N总是正数. 师:要特别强调的是:零和负数没有对数. 师:定义中为什么规定a>0,a≠1? 生:因为若a<0,则N取某些值时,b可能不存在,如b=log(-2)8不存在;若a=0,则当N不为0时,b不存在,如log02不存在;当N为0时,b可以为任何正数,是不唯一的,即log00有无数个值;若a=1,N 不为1时,b不存在,如log13不存在,N为1时,b可以为任何数,是不唯一的,即log11有无数多个值.因此,我们规定:a>0,a≠1. 师:(板书)对数logaN(a>0且a≠1)在底数a=10时,叫做常用对数,简记lgN;底数a=e时,叫做自然对数,记作lnN,其中e是个无理数,即e≈2.718 28……. 练习4 计算下列对数: lg10000,lg0.01,2log24,3log327,10lg105,5log51125. 师:请同学说出结果,并发现规律,大胆猜想. 生:2log24=4.这是因为log24=2,而22=4. 生:3log327=27.这是因为log327=3,而33=27. 生:10lg105=105. 生:我猜想alogaN=N,所以5log51125=1125. alogaN=N(a>0,a≠1,N>0).(用红笔在字母取值范围下画上曲线) 证明:设指数等式ab=N,则相应的对数等式为logaN=b,所以ab=alogaN=N. 师:你是根据什么证明对数恒等式的? 生:根据对数定义. 师:(分析小结)证明的关键是设指数等式ab=N.因为要证明这个对数恒等式,而现在我们有关对数的知

指数函数对数函数幂函数练习题大全答案

一、选择题(每小题 4分,共 计40分) 1.下列各式中成立的一项是 () A .71 7 7)(m n m n =B . 3 3 39=C .4 343 3)(y x y x +=+D .31243)3(-=- 2.化简)3 1 ()3)((65 613 12 12 13 2b a b a b a ÷-的结果 () A .a 9- B .a - C .a 6 D .2 9a 3.设指数函数)1,0()(≠>=a a a x f x ,则下列等式中不正确... 的是 () A .f (x +y )=f(x )·f (y ) B .) () (y f x f y x f =-) ( C .)()] ([)(Q n x f nx f n ∈= D .)()]([· )]([)]([+∈=N n y f x f xy f n n n 4.函数2 1 ) 2()5(--+-=x x y () A .}2,5|{≠≠x x x B .}2|{>x x C .}5|{>x x D .}552|{><≤-=-0 ,0,12)(21x x x x f x ,满足1)(>x f 的x 的取值范围 () A .)1,1(- B .),1(+∞- C .}20|{-<>x x x 或 D .}11|{-<>x x x 或 9.已知2 )(x x e e x f --=,则下列正确的是 ()

指数函数、对数函数、幂函数教案

一、指数函数 1.形如(0,0)x y a a a =>≠的函数叫做指数函数,其中自变量是x ,函数定义域是R ,值域是(0,)+∞. 2.指数函数(0,0)x y a a a =>≠恒经过点(0,1). 3.当1a >时,函数x y a =单调性为在R 上时增函数; 当01a <<时,函数x y a =单调性是在R 上是减函数. 二、对数函数 1. 对数定义: 一般地,如果a (10≠>a a 且)的b 次幂等于N , 即N a b =,那么就称b 是以a 为底N 的对数,记作 b N a =log ,其中,a 叫做对数的底数,N 叫做真数。 着重理解对数式与指数式之间的相互转化关系,理解,b a N =与log a b N =所表示的是,,a b N 三个量之间的同一个关系。 2. 对数的性质: (1)零和负数没有对数;(2)log 10a =;(3)log 1a a = 这三条性质是后面学习对数函数的基础和准备,必须熟练掌握和真正理解。 3. 两种特殊的对数是:①常用对数:以10作底 10log N 简记为lg N ②自然对数:以e 作底(为无理数),e = 28…… , log e N 简记为ln N . 4.对数恒等式(1)log b a a b =;(2)log a N a N = 要明确,,a b N 在对数式与指数式中各自的含义,在指数式b a N =中,a 是底数,b 是指数,N 是幂;在对数式log a b N =中,a 是对数的底数,N 是真数,b 是以a 为底N 的对数,虽然,,a b N 在对数式与指数式中的名称不同,但对数式与指数式有密切的联系:求 对数log a N 就是求b a N =中的指数,也就是确定a 的多少次幂等于N 。 三、幂函数 1.幂函数的概念:一般地,我们把形如y x α =的函数称为幂函数,其中x 是自变量,α是

指数函数、对数函数、幂函数的图像和性质知识点总结

(一)指数与指数函数 1.根式 (1)根式的概念 (2).两个重要公式 ①?? ??????<-≥==)0()0(||a a a a a a a n n ; ②a a n n =)((注意a 必须使n a 有意义)。 2.有理数指数幂 (1)幂的有关概念 ①正数的正分数指数幂:0,,1)m n m n a a a m n N n *=>∈>、且; ②正数的负分数指数幂: 10,,1)m n m n m n a a m n N n a a - *= = >∈>、且 ③0的正分数指数幂等于0,0的负分数指数幂没有意义. 注:分数指数幂与根式可以互化,通常利用分数指数幂进行根式的运算。 (2)有理数指数幂的性质 ①a r as =a r+s (a>0,r 、s∈Q); ②(a r )s =a rs (a>0,r 、s ∈Q ); ③(ab)r =a r bs (a>0,b>0,r ∈Q );. 3.指数函数的图象与性质 y =a x a>1 0

图象 定义域R 值域(0,+∞) 性质(1)过定点(0,1) (2)当x>0时,y>1; x<0时,00时,0d1>1>a1>b1,∴c>d>1>a>b。即无论在轴的左侧还是右侧,底数按逆时针方向变大。 (二)对数与对数函数 1、对数的概念 (1)对数的定义 如果(01) x a N a a =>≠ 且,那么数x叫做以a为底,N的对数,记作log N a x=,其中a叫做对数的底数,N叫做真数。 (2 对数形式特点记法 一般对数 底数为a0,1 a a >≠ 且log N a 常用对数底数为10 lg N 自然对数底数为e ln N 2 (1)对数的性质(0,1 a a >≠ 且):①1 log0 a =,②log1 a a =,③log N a a N =,④log N a a N =。(2)对数的重要公式:

高一数学指数函数对数函数幂函数练习含答案

分数指数幂 1、用根式的形式表示下列各式)0(>a (1)5 1a = (2)32 a - = 2、用分数指数幂的形式表示下列各式: (1)3 4y x = (2))0(2>=m m m 3、求下列各式的值 (1)2 325= (2)32 254- ?? ??? = 4、解下列方程 (1)13 1 8 x - = (2)151243 =-x 分数指数幂(第 9份)答案 1 2、33 2 22 ,x y m 3、(1)125 (2) 8125 4、(1)512 (2)16 指数函数(第 10份) 1、下列函数是指数函数的是 ( 填序号) (1)x y 4= (2)4 x y = (3)x y )4(-= (4)2 4x y =。 2、函数)1,0(12≠>=-a a a y x 的图象必过定点 。 3、若指数函数x a y )12(+=在R 上是增函数,求实数a 的取值范围 。 4、如果指数函数x a x f )1()(-=是R 上的单调减函数,那么a 取值范围是 ( ) A 、2a C 、21<

5、下列关系中,正确的是 ( ) A 、51 31 )21()21(> B 、2.01.022> C 、2 .01.022--> D 、11 5311()()22 - - > 6、比较下列各组数大小: (1)0.5 3.1 2.3 3.1 (2)0.3 23-?? ? ?? 0.24 23-?? ? ?? (3) 2.52.3- 0.10.2- 7、函数x x f 10)(=在区间[1-,2]上的最大值为 ,最小值为 。 函数x x f 1.0)(=在区间[1-,2]上的最大值为 ,最小值为 。 8、求满足下列条件的实数x 的范围: (1)82>x (2)2.05=a a a y x 的图象经过点)2,1(-,求该函数的表达式并指出它的定义域、值域和单调区间。 11、函数x y ??? ??=31的图象与x y -?? ? ??=31的图象关于 对称。 12、已知函数)1,0(≠>=a a a y x 在[]2,1上的最大值比最小值多2,求a 的 值 。 13、已知函数)(x f =1 22+-x x a 是奇函数,求a 的值 。 14、已知)(x f y =是定义在R 上的奇函数,且当0

复合函数习题及答案

复合函数练习题 1、 已知函数)x (f 的定义域为]1,0[,求函数)x (f 2的定义域( )。 析:由已知,]1,1[]1,1[],1,0[2--∈∈。所以所求定义域为故x x 2、 已知函数)x 23(f -的定义域为]3,3[-,求)x (f 的定义域( ) 析:]5,1[)(],5,1[23],1,1[的定义域为从而的范围为那么的范围为由已知x f x x -- 3、 已知函数)2x (f y +=的定义域为)0,1(-,求|)1x 2(|f -的定义域( )。 析:)23,1()1,21(),2,1(12)12(),2,1()()2(?-∈∈--+x x x f x f x f 解得的定义域应满足则求的定义域为的定义域可知由 4、设()x x x f -+=22lg ,则?? ? ??+??? ??x f x f 22的定义域为( ) A. ()()4,00,4Y - B. ()()4,11,4Y -- C. ()()2,11,2Y -- D. ()()4,22,4Y -- 析:?? ???????--∈>-<<<-<<-<<<<->-+>-+B ),4,1()1,4(,1144,222222-.22,0)2)(2(022选综上或解得那么由题意应有得,即由已知,x x x x x x x x x x x 5.函数y =2 1log (x 2-3x +2)的单调递减区间是( ) A .(-∞,1) B .(2,+∞) C .(-∞,23) D .(2 3,+∞) 析:本题考查复合函数的单调性,根据同增异减。 B ),2(,2 32312 10). ,2()1,(,02322为增函数,所以选择上在的定义域内,在函数,其对称轴为区间。内函数为函数的增的减区间,只需要求内求为底,故为减函数。则由于外函数是以得定义域为应先求定义域,即对于对数型复合函数,+∞=+-=<<+∞?-∞>+-t y x x x t y x x 6.找出下列函数的单调区间. (1))1(232>=++-a a y x x ; 解析:此题为指数型复合函数,考查同增异减。

指数函数与对数函数关系的典型例题

经典例题透析 类型一、求函数的反函数 例1.已知f(x)=225x - (0≤x ≤4), 求f(x)的反函数. 思路点拨:这里要先求f(x)的范围(值域). 解:∵0≤x ≤4,∴0≤x 2≤16, 9≤25-x 2≤25,∴ 3≤y ≤5, ∵ y=225x -, y 2=25-x 2,∴ x 2=25-y 2 .∵ 0≤x ≤4,∴x=225y - (3≤y ≤5) 将x , y 互换,∴ f(x)的反函数f -1(x)=225x - (3≤x ≤5). 例2.已知f(x)=21(0)1(0) x x x x +≥??-0)的图象上,又在它的反函数图象上,求f(x)解析式. 思路点拨:由前面总结的性质我们知道,点(4,1)在反函数的图象上,则点(1,4)必在原函数的图象上.这样就有了两个用来确定a ,b 的点,也就有了两个求解a ,b 的方程. 解: ? ?+?=+?=)2......(14)1......(4122b a b a 解得.a=-51, b=521,∴ f(x)=-51x+521. 另:这个题告诉我们,函数的图象若与其反函数的图象相交,交点不一定都在直线y=x 上. 例5.已知f(x)= ax b x c ++的反函数为f -1(x)=253 x x +-,求a ,b ,c 的值. 思路点拨:注意二者互为反函数,也就是说已知函数f -1(x)=253 x x +-的反函数就是函数f(x). 解:求f -1(x)=253 x x +-的反函数,令f -1(x)=y 有yx-3y=2x+5. ∴(y-2)x=3y+5 ∴ x=352y y +-(y ≠2),f -1(x)的反函数为 y=352x x +-.即ax b x c ++=352x x +-,∴ a=3, b=5, c=-2.

指数函数、对数函数、幂函数练习题大全(答案)

一、选择题(每小题4分,共计40分) 1.下列各式中成立的一项是 ( ) A .71 7 7)(m n m n = B . 33 39= C .4 343 3 )(y x y x +=+ D .31243)3(-=- 2.化简)3 1 ()3)((65 61 3 12 12 13 2b a b a b a ÷-的结果 ( ) A .a 9- B .a - C .a 6 D .2 9a 3.设指数函数)1,0()(≠>=a a a x f x ,则下列等式中不正确... 的是 ( ) A .f (x +y )=f(x )·f (y ) B .) () (y f x f y x f =-) ( C .)()] ([)(Q n x f nx f n ∈= D .)()]([· )]([)]([+∈=N n y f x f xy f n n n 4.函数2 10 ) 2()5(--+-=x x y ( ) A .}2,5|{≠≠x x x B .}2|{>x x C .}5|{>x x D .}552|{><≤-=-0 ,0 ,12)(21x x x x f x ,满足1)(>x f 的x 的取值范围 ( ) A .)1,1(- B . ),1(+∞- C .}20|{-<>x x x 或 D .}11|{-<>x x x 或 9.已知2 )(x x e e x f --=,则下列正确的是 ( ) A .奇函数,在R 上为增函数 B .偶函数,在R 上为增函数 C .奇函数,在R 上为减函数 D .偶函数,在R 上为减函数

对数与对数函数知识点与题型归纳

●高考明方向 1.理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用. 2.理解对数函数的概念,理解对数函数的单调性,掌握对数函数图象通过的特殊点. 3.知道对数函数是一类重要的函数模型. 4.了解指数函数y=a x与对数函数y=log a x互为反函数(a>0,且a≠1). ★备考知考情 通过对近几年高考试题的统计分析可以看出,本节内容在高考中属于必考内容,且占有重要的分量,主要以选择题的形式命题,也有填空题和解答题.主要考查对数运算、换底公式等.及对数函数的图象和性质.对数函数与幂、指数函数结合考查,利用单调性比较大小、解不等式是高考的热点. 一、知识梳理《名师一号》P27

注意: 知识点一对数及对数的运算性质 1.对数的概念 一般地,对于指数式a b=N,我们把“以a为底N的对数b”记作log a N,即b=log a N(a>0,且a≠1).其中,数a叫做对数的底数,N叫做真数,读作“b等于以a为底N的对数”. 注意:(补充)关注定义---指对互化的依据 2.对数的性质与运算法则 (1)对数的运算法则 如果a>0且a≠1,M>0,N>0,那么 ①log a(MN)=log a M+log a N; ②log a M N=log a M-log a N; ③log a M n=nlog a M(n∈R); ④log a m M n=n m log a M. (2)对数的性质

①a logaN =N ;②log a a N =N (a>0,且a≠1). (3)对数的重要公式 ①换底公式:log b N =log a N log a b (a ,b 均大于零且不等于1); ②log a b =1 log b a ,推广log a b·log b c·log c d =log a d. 注意:(补充)特殊结论:log 10, log 1a a a == 知识点二 对数函数的图象与性质 1.对数函数的图象与性质(注意定义域!) 指数函数y =a x 与对数函数y =log a x 互为反函数, 它们的图象关于直线y =x 对称. (补充) 设y =f(x)存在反函数,并记作y =f -1(x), 1) 函数y =f(x)与其反函数y =f -1(x)的图象 关于直线y x =对称.

指数函数对数函数幂函数练习题附详细解答.doc

百度文库 - 让每个人平等地提升自我 【巩固练习】 1.下列函数与 y x 有相同图象的一个函数是( ) A . y x 2 B . y x 2 x C . y a log a x (a 0且 a 1) D . y log a a x 2.函数 y 3x 与 y 3 x 的图象关于下列那种图形对称( ) A . x 轴 B . y 轴 C .直线 y x D .原点中心对称 3.( 2015 年山东高考)若函数 f (x) 2x 1 是奇函数,则使 f ( x )> 3 成立的 x 的取值范围为( ) 2x a A .(- ∞,- 1) B .(- 1, 0) C .( 0,1) D .( 1,+∞) 4.( 2017 广西一模) 已知函数 f ( x) 2, 0 x 1 x (log 1 4x 1) f (log 3 x 1) 5 1, x 1 ,则不等式 log 2 4 的解集为( ) 1 B .[1,4] 1 D .[1,+∞) A . ( ,1) C . ( ,4] 3 lg x 3 3 5.为了得到函数 y 的图象,只需把函数 y lg x 的图象上所有的点( ) 10 A .向左平移 3 个单位长度,再向上平移 1 个单位长度; B .向右平移 3 个单位长度,再向上平移 1 个单位长度; C .向左平移 3 个单位长度,再向下平移 1 个单位长度; D .向右平移 3 个单位长度,再向下平移 1 个单位长度; 6.函数 y log 1 ( x 2 5x 6) 的定义域为( ); (x 2 ) A . 1 , 2 3, B . 1 ,1 1,2 3, 2 2 C . 3 , 2 3, D . 1, 3 3 , 2 3, 2 2 2 2 1 7.当 0

高中数学】含指、对数式的复合函数问题(解析版)

学习资料分享 [公司地址]

突破4 含指、对数式的复合函数问题【举一反三系列】 【考查角度1奇偶性问题】 方法导入一般利用奇偶性的定义进行判断. 步骤第1步:求定义域,并判断定义域是否关于原点对称;第2步:验证f(-x)与f(x)的关系; 第3步:得出结论. 反思若定义域不关于原点对称,则该函数是非奇非偶函数.【例1】(2018秋?和平区期中)设f(x )=判断函数f(x)的奇偶性. 【分析】利用奇偶性定义判断; 【答案】解:(1)根据题意,f(x)=, 则f(﹣x)====f(x),

则函数f(x)为偶函数; 【点睛】本题考查函数的奇偶性的判定,关键是在掌握函数的奇偶性的判断方法,属于基础题. 【练1.1】已知函数f(x)=log2(),(b≠0). (1)求f(x)的定义域; (2)判断函数f(x)的奇偶性; 【分析】(1)根据对数函数的真数大于0,构造不等式,对b值分类讨论,可得不同情况下函数的定义域; (2)根据奇函数的定义,可判断出函数f(x)为奇函数, 【答案】解:(1)当b<0时,由>0得:x∈(﹣∞,b)∪(﹣b,+∞),故此时函数的定义域为:(﹣∞,b)∪(﹣b,+∞), 当b>0时,由>0得:x∈(﹣∞,﹣b)∪(b,+∞),故此时函数的定义域为:(﹣∞,﹣b)∪(b,+∞), (2)由(1)得函数的定义域关于原点对称, 又由f(﹣x)=log2()=log2()=﹣log2()=﹣f(x), 故函数f(x)为奇函数, 【点睛】本题考查的知识点是对数函数的图象和性质,熟练掌握对数函数的图象和性质,是解答的关键. 【练1.2】(2019春?福田区校级月考)已知函数. (1)求函数f(x)的定义域; (2)判断函数f(x)的奇偶性,并证明你的结论;

高中数学幂函数、指数函数与对数函数(经典练习题)

高中数学精英讲解-----------------幂函数、指数函数、对数函数 【第一部分】知识复习 【第二部分】典例讲解 考点一:幂函数 例1、比较大小 例2、幂函数,(m∈N),且在(0,+∞)上是减函数,又,则m= A.0B.1C.2D.3 解析:函数在(0,+∞)上是减函数,则有,又,故为偶函数,故m为1.

例3、已知幂函数为偶函数,且在区间上是减函数.(1)求函数的解析式;(2)讨论的奇偶性. ∵幂函数在区间上是减函数,∴,解得,∵,∴.又是偶数,∴,∴. (2),. 当且时,是非奇非偶函数;当且时,是奇函数; 当且时,是偶函数;当且时,奇又是偶函数. 例4、下面六个幂函数的图象如图所示,试建立函数与图象之间的对应关系 (1)(A),(2)(F),(3)(E),(4)(C),(5)(D),(6)(B). 变式训练: 1、下列函数是幂函数的是() A.y=2x B.y=2x-1C.y=(x+1)2D.y=

2、下列说法正确的是() A.y=x4是幂函数,也是偶函数B.y=-x3是幂函数,也是减函数 C.是增函数,也是偶函数D.y=x0不是偶函数 3、下列函数中,定义域为R的是() A.y=B.y=C.y=D.y=x-1 4、函数的图象是() A.B.C.D. 5、下列函数中,不是偶函数的是() A.y=-3x2B.y=3x2C.D.y=x2+x-1 6、若f(x)在[-5,5]上是奇函数,且f(3)<f(1),则() A.f(-1)<f(-3)B.f(0)>f(1) C.f(-1)<f(1)D.f(-3)>f(-5) 7、若y=f(x) 是奇函数,则下列坐标表示的点一定在y=f(x)图象上的是()A.(a,-f(a))B.(-a,-f(a)) C.(-a,-f(-a))D.(a,f(-a )) 8、已知,则下列正确的是() A.奇函数,在R上为增函数B.偶函数,在R上为增函数

对数型复合函数的单调区间选择题(3)

1.已知函数()3 1x x f x e x e ??=- ?? ? ,若实数a 满足,()()()20.5log log 21f a f a f +≤,则实数a 的取值范围是( ) A .()1, 2,2??-∞+∞ ??? B .[)1,2,2??-∞+∞ ??? C .1,22????? ? D .1,22?? ??? 答案: C 解答: ()()f x f x -=故函数为偶函数,()()()()20.52log log 2log 21f a f a f a f +=≤, 即()()2log 1f a f ≤,故21log 1a -≤≤,解得1,22a ??∈???? . 2.如果定义在R 上的函数()f x 满足:对于任意12x x ≠,都有1122()() x f x x f x +1221()()x f x x f x >+,则称()f x 为“H 函数”.给出下列函数:①31y x x =-++;② 32(sin cos )y x x x =--;③1x y e =+;④()ln ||0 0x x f x x ≠?=?=?,其中“H 函数”的个 数是( ) A .4 B .3 C .2 D .1 答案: C 解答: ∵对于任意给定的不等实数12,x x ,不等式1122()()x f x x f x +1221()()x f x x f x >+恒成立,∴不等式等价为()()()12120x x f x f x -->????恒成立, 即函数f(x)是定义在R 上的增函数. ①31y x x =-++;'2 31y x =-+,则函数在定义域上不单调; ②32(sin cos )y x x x =--;y'=3-2(cosx+sinx)=3-sin(x+ 4 π )>0,函数单调递增,满足

指数函数、对数函数、幂函数的图像和性质知识点总结

(一)指数与指数函数 1.根式 (1)根式的概念 (2).两个重要公式 ①????????<-≥==)0()0(||a a a a a a a n n ; ②a a n n =)((注意a 必须使n a 有意义)。 2.有理数指数幂 (1)幂的有关概念 ①正数的正分数指数幂:0,,1)m n a a m n N n *=>∈>、且; ②正数的负分数指数幂: 10,,1)m n m n a a m n N n a - *= = >∈>、且 ③0的正分数指数幂等于0,0的负分数指数幂没有意义. 注:分数指数幂与根式可以互化,通常利用分数指数幂进行根式的运算。 (2)有理数指数幂的性质 ①a r a s =a r+s (a>0,r 、s ∈Q ); ②(a r )s =a rs (a>0,r 、s ∈Q ); ③(ab)r =a r b s (a>0,b>0,r ∈Q );. 3.指数函数的图象与性质 n 为奇数 n 为偶数

注:如图所示,是指数函数(1)y=a x ,(2)y=b x,(3),y=c x (4),y=d x 的图象,如何确定底数a,b,c,d 与1之间的大小关系? 提示:在图中作直线x=1,与它们图象交点的纵坐标即为它们各自底数的值,即c 1>d 1>1>a 1>b 1,∴c>d>1>a>b 。即无论在轴的左侧还是右侧,底数按逆时针方向变大。 (二)对数与对数函数 1、对数的概念 (1)对数的定义 如果(01)x a N a a =>≠且,那么数x 叫做以a 为底,N 的对数,记作log N a x =,其中a 叫做对数的底数,N 叫做真数。 (2)几种常见对数 2(1)对数的性质(0,1a a >≠且):①1log 0a =,②l o g 1a a =,③l o g N a a N =,④l o g N a a N =。 (2)对数的重要公式:

函数反函数对数及对数函数

函数 一、函数:1.函数的概念 (1)函数的定义: 设B A 、是两个非空的数集,如果按照某种对应法则f ,对于集合A 中的每一个数x ,在集合B 中都有唯一确定的数和它对应,那么这样的对应叫做从A 到B 的一个函数,通常记为A x x f y ∈=),( (2)函数的定义域、值域 在函数A x x f y ∈=),(中,x 叫做自变量,x 的取值范围A 叫做)(x f y =的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{} A x x f ∈)(称为函数)(x f y =的值域。 (2)函数的三要素:定义域、值域和对应法则 2.映射的概念 设B A 、是两个集合,如果按照某种对应法则f ,对于集合A 中的任意元素,在集合B 中都有唯一确定的元素与之对应,那么这样的单值对应叫做从A 到B 的映射,通常记为 B A f →: 重、难点突破 重点:掌握映射的概念、函数的概念,会求函数的定义域、值域 难点:求函数的值域和求抽象函数的定义域 重难点:1.关于抽象函数的定义域 求抽象函数的定义域,如果没有弄清所给函数之间的关系,求解容易出错误 问题1:已知函数)(x f y =的定义域为][b a ,,求)2(+=x f y 的定义域 问题2:已知)2(+=x f y 的定义域是][b a ,,求函数)(x f y =的定义 1. 求值域的几种常用方法 (1)配方法:对于(可化为)“二次函数型”的函数常用配方法,如求函数 4cos 2sin 2+--=x x y ,可变为2)1(cos 4cos 2sin 22+-=+--=x x x y 解决 (2)基本函数法:一些由基本函数复合而成的函数可以利用基本函数的值域来求,如函数 )32(log 22 1++-=x x y 就是利用函数u y 2 1log =和322++-=x x u 的值域来求。 (3)判别式法:通过对二次方程的实根的判别求值域。如求函数2 21 22 +-+= x x x y 的值域 由2 2122+-+=x x x y 得012)1(22 =-++-y x y yx ,若0=y ,则得21-=x ,所以0 =y 是函数值域中的一个值;若0≠y ,则由0)12(4)]1(2[2 ≥--+-=?y y y 得

2021版高中数学课时分层作业二十七指数型对数型函数模型的应用举例含解析新人教A版必修1

课时分层作业二十七指数型、对数型函数模型的应用举例 (20分钟40分) 一、选择题(每小题5分,共20分) 1.汽车的“燃油效率”是指汽车每消耗1升汽油行驶的路程,如图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况.下列叙述中正确的是 ( ) A.消耗1升汽油,乙车最多可行驶5 km B.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多 C.甲车以80 km/h的速度行驶1小时,消耗10升汽油 D.某城市机动车最高限速80 km/h.相同条件下,在该市用丙车比用乙车更省油 【解析】选D.对于A选项:由题图可知,当乙车速度大于40 km/h时,乙车每消耗1升汽油,行驶里程都超过5 km,则A错;对于B选项:由题意可知,以相同速度行驶相同路程,燃油效率越高,耗油越少,故三辆车中甲车耗油最少,则B错;对于C选项:甲车以80 km/h的速度行驶时,燃油效率为10 km/L,则行驶1小时,消耗了汽油80×1÷10=8(升),则C错;对于D选项:当行驶速度小于80 km/h时,在相同条件下,丙车的燃油效率高于乙车,则在该市用丙车比用乙车更省油,则D对. 2.我们定义函数y=[x]([x]表示不大于x的最大整数)为“下整函数”;定义y={x}({x}表示不小于x的最小整数)为“上整函数”;例如[4.3]=4,[5]=5;{4.3}=5,{5}=5.某停车场收费标准为每小时2元,即不超过1小时(包括1小时)收费2元,超过一小时,不超过2小时(包括2小时)收费4元,以此类推.若李刚停车时间为x小时,则李刚应付费为 ( ) (单位:元)

A.2[x+1] B.2([x]+1) C.2{x} D.{2x} 【解析】选C.如x=1时,应付费2元,此时2[x+1]=4,2([x]+1)=4,排除A,B;当x=0.5时,付费为2元,此时{2x}=1,排除D. 3.温度对反应速率的影响可以用阿累尼乌斯公式:lg=表示,其中k1,k2分别 为温度T1,T2时的某反应的速率常数,E为反应的活化能(单位:KJ/mol),R为摩尔气体常数,R=8.314 J/(mol·K)(假定活化能在温度变化范围不大时是常数).又已知同一反应在不同温度下反应速率常数与反应时间的关系如下:=,若现在温度为300K,鲜牛奶5小时后变酸,但是在275K的冰箱里可以保存50小时,则牛奶变酸反应的活化能为____KJ/mol(精确到0.01). ( ) A.63.19 B.7.60 C.-69.19 D.-7.60 【解析】选A.因为=,所以==10, 所以代入阿累尼乌斯公式得 lg=, 所以E=≈63.19 KJ/mol. 4.某高校为提升科研能力,计划逐年加大科研经费投入.若该高校2017年全年投入科研经费1 300万元,在此基础上,每年投入的科研经费比上一年增长12%,则该高校全年投入的科研经费开始超过2 000万元的年份是(参考数据:lg 1.12≈0.05,lg 1.3≈0.11,lg 2≈0.30) ( ) A.2020年 B.2021年 C.2022年 D.2023年 【解析】选B.若2018年是第一年,则第n年科研经费为1 300×1.12n,由

相关文档
相关文档 最新文档