文档库 最新最全的文档下载
当前位置:文档库 › 钢包滑板间漏钢原因及防范措施

钢包滑板间漏钢原因及防范措施

钢包滑板间漏钢原因及防范措施
钢包滑板间漏钢原因及防范措施

NA IHUO CA I L I AO /耐火材料2005,39(3)225~226

讨论与交流

2005/3耐火材料/NA IHUO CA I L I AO

225

 钢包滑板间漏钢原因及防范措施

周卫胜 刘前芝 汪波

马鞍山钢铁股份有限公司第一钢轧总厂准备车间 马鞍山243000

滑板是钢包滑动水口的核心组成部分,是直接控制钢水浇注,决定滑动水口功能的部件。若滑板在浇钢过程中漏钢,轻则造成连铸断浇,重则造成烧坏连铸机的恶性事故。因此,探讨滑板间漏钢事故的原

因,制定防范措施,具有很重要的意义。

3

1 漏钢原因分析

1.1 滑动水口机械方面的原因

根据公式P =N ×

μ×ΔX (式中:P 表示滑动机构提供给滑板的面压,N 表示面压弹簧的个数,μ表示面压弹簧的弹簧系数,ΔX 表示工作时弹簧的压缩量)可知,当机构活动模框、固定模框变形或加载面压部分的磨损量超过规定值时,在规定的面压加载行程内,弹簧的压缩量减少,不能产生足够的滑板面压;而空气冷却的管路连接不好、空气压力不足、管路闭塞等造成冷却不足,使弹簧性能降低甚至失效,导致面压不足;钢水的静压力大于滑板面压时,滑板间出现缝隙,导致浇钢过程中滑板间漏钢。1.2 滑板操作安装方面的原因

(1)滑板机构安装面有杂物未清理干净,或安装

上水口时使用了太多的耐火泥浆,多余的泥浆被挤入滑板背面,出现滑板在加压时加压不均或产生面压被加足的假象,浇钢过程中滑板间出现缝隙;

(2)滑板面压未加足;

(3)对连用滑板没有认准扩孔、拉毛、夹钢等熔损

情况,导致滑板过度使用。1.3 滑板自身质量方面的原因

(1)滑板材质不能满足钢种的浇钢要求,滑板中

有害成分超标,导致滑板的热化学侵蚀加剧;

(2)滑板在使用过程中有裂纹产生,且异常扩大,钢水沿裂纹对滑板产生“V ”字型熔损,滑板外缘的铁箍发生偏移或断裂,导致滑板在使用过程中开裂。1.4 钢包浇钢操作方面的原因

(1)当水口不能自动开浇需要烧氧时,在滑板未

全开到位时即用氧气烧,会导致上滑板面被严重烧

损,甚至被烧通。

(2)当多流连铸机由正常的多流浇钢改为单流或少流浇钢时,使下滑板面与钢水的接触面比正常浇钢时增加(见图1),而滑板面与钢水的接触面越大,钢水对滑板的侵蚀越快。当滑板面出现侵蚀沟时,滑板间会产生较厚的夹钢层;同时,单流浇钢又导致滑板控流频繁,短时间内全行程滑动次数比正常浇钢时的大大增加,使滑板面的拉毛加剧,滑板面损坏加剧,从而导致钢水漏出

图1 浇钢时上下滑板的相对位置

1.5 钢水冶炼方面的问题

虽然选用了合适材质的滑板,但由于钢水在冶炼过程中控制不慎,使钢水中对滑板有强烈侵蚀作用的成分严重超标,滑板热化学侵蚀速度大大加快,导致滑板在短时间内漏钢。下面以一例浇注钙处理钢漏钢后的残余滑板(铝碳质)的分析来讨论滑板的热化学侵蚀。

观察此残余滑板的外观发现,上滑板背面干净无杂物,而残余下滑板表面有2条长约180mm 、宽约30mm 、深约10mm 的侵蚀沟,侵蚀沟表面颜色呈黄褐

色,并有明显的蜂窝状小孔洞。这2条侵蚀沟应是钢水流出的通道。由此可以推断,异常的热化学侵蚀导致滑板面遭到严重破坏。其热化学侵蚀过程如下。1.5.1 脱碳层的形成

滑板表面的碳在浇钢温度(1550~1600℃)下被

3周卫胜:男,1972年生,工程师。

收稿日期:2004-09-28

编辑:柴剑玲

氧化,形成脱碳层,导致滑板工作面的气孔率增加,强

度降低,其与钢液接触时,钢液中的Fe O、Mn O、[Ca]通过气孔向滑板内扩散、渗透。滑板中碳的氧化主要有3条途径:一是钢包水口修理烧氧时被氧化[1];二是浇钢时钢水中[O]对滑板的氧化[1];三是浇钢时由于高速钢流的射流作用,从上下滑板间缝隙吸入的空气对滑板的氧化。

1.5.2[Ca]对滑板的毁损

为了抑制A l

2

O3在中间包浸入式水口处粘附、结瘤而堵塞水口,在精炼末期需进行Ca处理操作,一般添加Ca合金,如Ca-Fe线、Ca-Si线,使其与钢中夹

杂的A l

2

O3发生反应生成低熔物,从而改变铝氧化物夹杂的形态,随着底吹氩气泡的上升而排出钢液。但加入的Ca合金过量时,即其添加量超过了与钢水中A l2O3反应所需的量,则过剩的[Ca]会加速滑板的侵

蚀。其侵蚀过程如下:滑板中的A l

2

O3首先被钢水中的[Ca]还原生成Ca O和A l,然后生成的Ca O再与滑

板中的A l

2

O3反应,形成A l2O3-Ca O系低熔点化合物而被钢液冲刷掉[2]。

通过对钢水中[Ca]含量与滑板侵蚀程度的跟踪,发现:当钢水中[Ca]含量(质量分数,下同) <0.003%时,主要生成高熔点的CaO?3A l2O3(熔点1850℃)和CaO?2A l2O3(熔点1750℃),对滑板的侵蚀作用较微弱;当钢水中[Ca]含量为0.003%~0.005%时,生成部分高熔点的Ca O?3A l2O3、Ca O?2A l2O3及部分低熔点的Ca O?A l2O3(熔点1600

℃)和12Ca O?7A l

2

O3(熔点1415℃),对滑板的侵蚀加重;当钢水中[Ca]含量>0.005%时,生成大量的12Ca O?7A l2O3低熔物及部分Ca O?A l2O3,对滑板的侵蚀非常严重,可能导致滑板在短时间内漏钢。

2 钢包滑板间漏钢事故的预防措施

(1)严格控制钢水的终点[Ca]含量。

由Ca O-A l

2

O3系相图[3]可知,当钢中Ca、A l质

量比>0.10时,A l

2

O3类夹杂基本上与Ca O反应变为12Ca O?7A l2O3或成分接近于12Ca O?7A l2O3的低熔物,从而易于从钢水中排出。因此,在实际生产中,控制钙线的喂入量主要是根据钢中Ca、A l质量比的要求来控制的,但以下几个原因可能导致[Ca]含量产生波动:a)喂钙线过程中钢包吹氩量过大;b)出钢量波动,没有及时调整喂线量;c)喂钙线后过早取样,钢水混合不匀,[Ca]含量不具代表性了;d)加钢芯铝进行脱氧时,吹氩过小,钢水混合不均匀或取样过早,造成样品不具代表性;e)钙线本身材质波动。因此,为防止[Ca]过量,喂钙线前一定要进行测温取样,根据出钢量、钢水温度、钢水中[A ls]的含量、钙线的收得率及钢种所要求的Ca、A l质量比来控制钙线喂入量(吨钢3~4m)、底吹氩量(50L?m in-1)和喂钙线温度(1590~1605℃),确保钢水的终点[Ca]含量在控制范围内。(注:括号内为A钢种的参考数据)。

(2)加强对滑动水口机构的维护。检查机构模框是否产生变形;弹簧加载给滑板的面压是否合适;及时更换易损部位;需润滑部位经常加油。

(3)根据所炼钢种要求判定滑板是否能够继续连用。观察滑板面有无深度拉毛、裂纹及异常熔损等;判断滑板的有效残行程是否满足再次使用的要求。

(4)严格按照操作要点进行滑板的安装。将模框、滑板工作面及背面的杂物清理干净;烧氧时使滑板处于全开状态。

(5)浇注时精心操作。浇钢过程中,尽量减少滑板的拉动次数,以降低磨损的可能性;对于多流浇钢的中间包,如果有1/2以上的铸流不能浇钢,连铸机应停浇;应满足正常控流时尽量缩小滑板的拉动距离,以保护滑板的有效残行程;在浇注末期防止水口下渣,以防止滑板不必要的侵蚀。

3 结语

钢包滑板间漏钢的原因是多方面的,滑动水口机械、滑板安装操作、滑板自身质量、钢包浇钢操作、钢水冶炼等方面控制不好都可能导致滑板间漏钢。针对不同的原因制定相应的防范措施,可以减少滑板漏钢的几率,提高滑板的良滑率。

参考文献

[1] 邱文冬,金从进,孙加林,等.铝锆炭滑板的热化学侵蚀机理.耐

火材料,1999,33(2):67-69,73

[2] 高海潮,朱伦才.钢包滑动水口滑板多炉连续使用技术.炼钢,

2002,18(1):57-59

[3] 王诚训,孙炜明,张义先,等.钢包用耐火材料.北京:冶金工业出

版社,2003:11

226

 NA IHUO CA I L I AO/耐火材料2005/3

武钢 钢包粘渣的原因及对策

钢包粘渣的原因及对策 米源,杨新泉,卢凯 (武汉钢铁(集团)公司第三炼钢厂湖北武汉 430083) 许丽 (武汉钢铁(集团)公司计控厂湖北武汉 430083) 摘要介绍了武钢250t钢包在使用中粘渣的情况。通过对粘渣物、钢包渣、工艺因素、保温剂和钢包残样等的分析,指出钢包粘渣是冶炼钢种、钢包热状态和包衬耐火材料共同作用的结果。提出了相应的对策。 关键词钢包,耐火材料,粘渣;钢种 The reason and measure for slag building-up of ladle MI Yuan, Yang xin-quan ,LU Kai (No.3 Steel-making Plant of WISCO,Wuhan 430083,China) Xu Li Calibration and Testing Laboratories of WISCO, Wuhan 430081,China Abstract:The circumstances for slag building-up of 250t ladle in WISCO have been introduced.The investigation on matters of slag building-up, ladle slag, technology factors, heat preservation reagent and ladle refractory remainders indicates that steel types, ladle heat-condition and ladle refractory are responsible for ladle slag building-up. The measures for slag-adhesion of 250t ladle in WISCO have been given。 Key words: ladle;refractories;slag building-up;ladle slag;steel types 近年来, 武钢250t钢包钢包普遍出现包壁包底粘渣现象。钢包粘渣后,会引起以下问题:(1)钢包包底粘渣后,钢包透气砖表面被渣粘附,造成热修清理透气砖困难,严重影响了钢包透气砖底吹效果,对生产造成威胁。(2)造成钢包容积减小,钢液面上升,并且精炼时钢渣会上浮至包口,使包口结渣、结冷钢,严重影响钢包铸余渣的翻净;(3)造成钢包重量增加,直接影响起吊行车的运行安全;(4) 由于粘渣物非常坚硬且与钢包衬结合牢固,去除十分困难,拆除时间长,造成钢包修理周期长,造成钢包周转紧张;为此, 因此,有必要对钢包粘渣的原因和机理进行研究,以便采取对策减轻粘渣;武钢通过钢包粘渣机理的分析,通过优化钢包热周转制度,加强钢包保温,提高耐火材料质量,较好的解决了钢包的粘渣问题,为生产的顺行打下坚实的基础。 1钢包粘渣的现状和机理分析 武钢250t钢包钢包壁工作层采用两种材质的砖铝镁碳砖和刚玉尖晶石质无碳预制块砖。钢包主要参数见表1。

板坯连铸机粘结漏钢的原因分析及预防 刘雷锋

板坯连铸机粘结漏钢的原因分析及预防刘雷锋 发表时间:2018-01-02T16:54:15.037Z 来源:《基层建设》2017年第28期作者:刘雷锋 [导读] 摘要:随着连铸技术的发展和广泛应用,连铸坯的质量和品质受到了人们的广泛关注,提高连铸坯的质量成为连铸生产中重点关注的问题之一。 宁波钢铁有限公司浙江宁波 315807 摘要:随着连铸技术的发展和广泛应用,连铸坯的质量和品质受到了人们的广泛关注,提高连铸坯的质量成为连铸生产中重点关注的问题之一。连铸过程开始广泛运用于有色金属行业,尤其是铜和铝。连铸技术迅速发展起来。本文对此进行了分析研究。 关键词:坯;连铸;连铸工艺 连铸漏钢是个常见现象。钢水在结晶器内形成坯壳,连铸坯出结晶器后,薄弱的坯壳抵抗不住钢水静压力,出现断裂而漏钢。对于薄板坯连铸来说更易发生漏钢事故。漏钢对连铸生产危害很大。即影响了连铸车间的产量,又影响了连铸坯的质量,更危及操作者的安全。因此,降低薄板坯连铸漏钢率是提高生产效率,提高产量,提高产品质量,降低成本的重要途径。现对某厂自2008~2013年薄板坯漏钢率进行统计。2008年漏钢率达0.56%;2009年漏钢率达0.19%;2010年漏钢率达0.19%;2011年漏钢率达0.19%;2012年漏钢率达0.15%;2013年漏钢率达0.07。 1 工艺流程 某厂第一钢轧厂工艺流程为:鱼雷罐供应铁水/混铁炉供应铁水→铁水预处理→转炉炼钢→氩站→精炼→薄板坯连铸 2 薄板坯漏钢类型 某厂薄板坯连铸漏钢主要有:粘结漏钢、裂纹漏钢、卷渣漏钢、开浇漏钢、鼓肚漏钢五个类型。 3 薄板坯漏钢特征、原因及预防措施 3.1 粘结漏钢 粘结漏钢是指钢水直接与结晶器铜板接触形成粘结点,粘结点处坯壳与结晶器壁之间发生粘结,此处在结晶器振动和拉坯的双重作用下被撕裂,并向下和两侧扩展,形成倒“V”形破裂线,钢水补充后又形成新的粘结点,这一过程反复进行,粘结点随坯壳运动不断下移,此处坯壳较薄,出结晶器后,坯壳不能承受上部钢水的静压力,便会发生漏钢事故。据统计,粘结漏钢发生率最高,高达50%以上。 (1)铸坯粘结漏钢后特征。粘结漏钢后铸坯特征。坯壳呈“V”字型或“倒三角”状,粘结点明显。 (2)粘结漏钢的原因: 1)保护渣性能不好。保护渣在结晶器铜板与凝固坯壳之间起润滑的效果。保护渣的性能好坏直接影响凝固坯壳的质量,保护渣的粘度是一个重要指标,它决定渣膜的薄厚,保护渣粘度高,不易流入坯壳与铜板之间形成润滑渣膜,使得钢水和结晶器铜板之间易发生粘结。2)钢水纯净度低。钢水中[O]含量高,使得钢水中A12O3含量升高,进而结晶器保护渣中A12O3含量高,保护渣性能发生变化,渣粘度增大、不易流入坯壳与铜板之间形成润滑渣膜,使得钢水和结晶器铜板之间易发生粘结。3)结晶器振动参数不合适。合适的振动形式和振动参数可以降低结晶器铜板与凝固坯壳之间的摩擦力和减小振痕深度,改善铸坯表面的质量。若结晶器振动参数不合适,负滑脱时间过长造成凝固坯壳上的振痕过深,使坯壳容易在应力的作用下断裂产生粘结。4)浸入式水口烘烤不符合标准。如果浸入式水口烘烤温度不够,连铸开浇时水口与结晶器内外弧间的保护渣产生搭桥现象,保护渣不易熔化,进而流入到坯壳和结晶器之间的保护渣减少,渣膜变薄,润滑效果变差,容易粘结漏钢。5)钢水温度过低。钢水温度过低,保护渣粘度大,润滑效果不好,易粘结漏钢。 3.2 卷渣漏钢 定義:由于结晶器液面波动会将渣卷入初生坯壳,这些渣子附着在坯壳表面,由于其导热性差,卷渣处的坯壳较薄,铸坯出结晶器后,渣子在钢水静压力作用下脱落产生漏钢。 在结晶器内的固态或半熔融的夹渣物随着浇注钢流的运动,被推向结晶器壁;或在更换中间包长水口时,中间包内钢液面下降后,中间包内钢渣易随钢流进入结晶器,最后被初生坯壳捕捉; (1)卷渣漏钢后特征。卷渣漏钢主要特征表现为:漏钢部位有“孔洞或结渣”,漏钢部位一般发生在结晶器出口位置。 (2)卷渣漏钢原因: 1)残留在钢中的大型夹杂物较多造成卷渣现象;2)较大的结晶器液面波动造成卷渣现象;3)捞渣不及时或捞不净造成的卷渣现象。 3.3开浇漏钢 开浇漏钢是指铸机开浇或者换中间包时,由于连接不好而造成的漏钢。 (1)开浇漏钢后铸坯特征。开浇漏钢铸坯特征为:漏钢一般发生在开浇起步期间,引锭头刚拉出结晶器就发生漏钢。(2)开浇漏钢原因:引锭头未扎好,包括石棉绳没扎紧;开浇起步过快,凝固时间不够开拉,坯头强度不够,将引锭头处拉裂漏钢。 4 薄板坯漏钢的预防措施 4.1 优化结晶器保护渣性能 通过优化保护渣碱度、熔点、熔速、粘度等指标,有效地减少了粘结、卷渣、裂纹漏钢等生产事故。 4.2 恒温恒拉速浇注 恒温恒拉速浇注是降低薄板坯漏钢率的主要因素。 4.3 优化连铸工艺参数 对不同钢种、不同断面的连铸相关参数(结晶器水流量、结晶器初始锥度、二冷水各段分配比例及比水量、扇形段压下终点位置等)进行优化调整,并固化使用。 4.4 连铸耐材优化与管理 (1)加强水口的烘烤操作。(2)优化中间包结构。中间包控流装置由“单挡渣坝”式改为“一挡墙+两挡坝”组合结构,将钢包下渣完全挡在冲击区内,产生的流场有利于钢液中夹杂物的充分上浮,有利于钢液成分、温度的均匀,提高了钢水质量,降低了漏钢事故。(3)加

连铸机漏钢的原因及防范措施

漏钢 连铸中遇到的主要操作故障之一是“漏钢”。当铸流坯壳破裂时,坯壳内静止的熔融钢水溢出,堵塞机器,需要付出昂贵的停机代价。为拉出漏钢坯壳,就要再延长漏钢引起的停机时间,因为它可能会堵塞导辊或足辊,需要用气割清理堵塞,拉出坯壳。当漏钢坯壳温度降低时,需要把它切成小块,用矫直机从机器中取出,而矫直机设计成能在稳定阶段逐步地矫直曲冷坯壳,上轧辊可提供足够的提升重力,弄出不太长的弯曲铸流。因此,漏钢对铸机的有效性有重大影响——影响生产率和生产成本。 漏钢的影响因素影响漏钢发生的因素有: 温度和拉速不一致——钢水过热度越高,坯壳厚度越薄。由于结晶器中钢水施加的静压力,导致坯壳发生膨胀。当坯壳强度不够时,容易发生漏钢。不一致和不均匀的温度对漏钢的产生有很大影响。当拉速增大时,较易发生漏钢,因为结晶器不够润滑,从弯月面到坯壳 /结晶器壁面,结晶器保护渣流动性较差,而且增大拉速会导致总放热量减少。漏钢常常是由于拉速太高造成的,当坯壳没有足够时间凝固到需要厚度时,或者金属太热,这意味着最终凝固正好发生在矫直辊下方,因矫直时施加应力,坯壳撕裂。对于钢中碳含量一定时,温度高且拉速快容易发生漏钢。在振动设置上所作的任何改变都会促使漏钢发生,因为通过提高振动频率来减少振痕的做法会增加结晶器速率,从而增加交界面处的摩擦力。 结晶器和坯壳之间润滑不良——如果使用质量较差的保护渣,弯月面下方的钢水容易夹渣,导致结晶器和坯壳粘结,拉坯中断,造成悬挂漏钢。

方坯连铸时,因润滑不良或不均,坯壳粘结到结晶器上,影响传热,造成粘结漏钢。 保护渣加入方式不正确——由于现场工人操作习惯,一次性加入过多,且主要集中在内弧,呈斜坡状,会造成液渣不均匀填充,影响结晶器与坯壳间的润滑与均匀传热。在正常浇注情况下,小渣条没必要捞出,且应禁止用捞渣棒试探结晶器内是否形成渣条,会破坏弯月面初始坯壳的均匀形成。 结晶器中无效水流——减少进入结晶器的水流会导致传热降低,致使形成薄坯壳,最终导致漏钢。进出口的水温、压力和流速的不同直接影响结晶器的冷却。结晶器冷却系统堵塞导致压力增加,流速减小,影响传热,易发生漏钢。因而进出口水温(高温)的巨大差异导致结晶器与坯壳粘结,容易发生拉断漏钢。 结晶器几何形状不当——为增加钢水一结晶器接触面,调节结晶器锥度,以适应钢的凝固收缩,从而增加结晶器的传热,增加坯壳厚度。对于高速方坯连铸机上带线性锥度的传统结晶器而言,弯月面处的热传递迅速使铸流凝固成一固体外壳,随着外壳的收缩,角部脱离结晶器,停止热传递。因此,在结晶器底部,除了角部有再熔化之外,坯壳继续生长。当坯壳离开结晶器时,坯壳温度变化较大,此时增加拉速可能导致漏钢。如果调节的锥度不合要求,结晶器和坯壳之间就会产生气隙,当空气对结晶器中热量传递的阻力达到最大时,它将严重妨碍所需厚度的坯壳形成,最终导致漏钢。磨损和变形造成的结晶器锥度损耗会导致角部纵裂显著增加,这是由于角部再加热的结果。就结晶器变形而言,产生原因是结晶器铜板

漏钢统计情况

漏钢统计情况 摘要:本文分析了某某钢二炼钢厂板坯连铸机漏钢事故产生产的原因及防止板坯连铸机漏钢的措施。采取 相应控制措施之后,目前某某钢二炼钢厂常规板坯连铸机频繁漏钢的势头得到了明显的控制。 关键词:板坯粘结漏钢保护渣水口浸入深度 The reason and countermeasure of slab caster breakout Yang Xiao qiang ( The second steelmaking plant, JISCO,735100) Abstract: In this presentation, the breakout reason of slab cater of the second steelmaking plant was analyzed, and corresponding precautions were adopted. Since then, the breakout event was under controlled obviously. keywords: slab caster sticking breakout mould powder immerge depth of mould nozzle 1 前言 某某钢第二炼钢厂常规板坯连铸机自2005年4月18日投产以来,铸机漏钢问题始终困绕着二炼钢厂的正常生产,对二炼钢厂的正常生产造成了重大的冲击,连铸机的漏钢问题成为制约二炼钢厂生产的瓶颈环节。频繁的漏钢事故使连铸机设备的劣化趋势明显加剧,铸机检修质量无法保证。为降低连铸机漏钢事故,二炼钢厂成立了攻关组,经过对漏钢事故的原因进行分析,采取了相应的措施,板坯连铸机结晶器漏钢事故得到了明显的控制。 2 某某钢第二炼钢厂常规板坯连铸机参数及漏钢相关情况简介 2.1某某钢第二炼钢厂常规板坯连铸机的主要工艺参数 表1 主要工艺参数 序号项目单位技术指标 铸机产量万吨/年 2 生产钢种四大类二十多个品种 3 连铸坯厚度mm 160,220 4 连铸坯宽度mm 850~1600 5 铸机半径m 9.5 6 连铸机型式立弯式(连续弯曲,连续矫直) 7 连铸机冶金长度m 31.9 8 铸机正常拉速m/min 1.0~1.4 9 结晶器长度mm 950 10 振动方式液压(正弦,非正弦) 11 二冷方式气水冷却(十四个控制回路) 2.2漏钢统计情况 从某某钢二炼钢厂常规板坯连铸机从2004年4月18日正式投产以来,共发生各种漏钢事故17次。其中粘结漏钢14次,占到所有漏钢的82%。其它三次漏钢为卷渣漏钢,裂纹漏钢,尾坯漏钢。板坯连铸机漏钢事故成为制约全厂正常生产的瓶颈环节。 3 某某钢二炼钢厂常规板坯连铸机漏钢原因分析 3.1粘结漏钢 结晶器粘结漏钢形成的过程如图1所示。

7-7连铸钢包下渣检测与控制系统的研究与应用

连铸钢包下渣检测与控制系统的研制与应用 唐安祥1,申屠理锋1,钟志敏2,顾文斌2 (1.宝山钢铁股份有限公司研究院自动化所,上海201900;2.宝山钢铁股份有限公司炼钢厂,上海201900) 摘要:本文介绍了我们自行开发研制的连铸钢包下渣检测与控制系统,叙述了整个系统的基本组成及下渣检测的原理,阐述了系统的关键技术和特点,同时介绍了系统的识别模型和软件系统,并对本系统在宝钢炼钢厂的使用效果作了论述。 关键词:连铸;下渣检测;钢包;控制系统 中图分类号:TP273文献标识码:A Development and Application of Ladle slag Detection & Control System in Continuous Casting Tang Anxiang1, Shen-tu Lifeng1, Zhong Zhiming2, Gu WenBin2 (1.Automation Research Dept , Baosteel Co. Ltd. Research Institute, Shanghai, China, 201900;2.Steel Making Plant , Baosteel Co. Ltd, Shanghai, China, 201900) Abstract:This article introduces Ladle slag Detection & Control System in Continuous Casting, describes the components of the system and the principle of slag detection, elucidates the key technologies and characteristics of the system, presents the r ecognition model and the software system, and discusses the application of the system in EAF continuous casting of steelmaking plant of Baosteel. Key words:Continuous Casting, Slag detection, Ladle, Control system 在连铸的生产过程中,当钢包浇注即将结束时,浮于钢水表面的钢渣因漩涡作用而混着钢水经长水口流进中间包。过量的钢渣不仅会降低钢水的纯净度,影响钢坯质量,甚至导致拉漏事故,而且会影响钢水流动及减少中间包连浇炉数,同时还会加速中间包耐火材料的腐蚀,缩短其使用寿命,影响连铸生产的进行。 为了提高中间包钢水的纯净度, 改善铸坯质量,减少钢包中残钢量,延长中间包耐材寿命,增加连浇炉数等,均有必要对连铸钢包浇注后期进行下渣自动检测与控制。目前,比较成熟的产品主要采用电磁线圈检测法。这种方法把传感器置于高温的钢水附近,需要频繁更换传感器,这样产品的使用和维护成本较高,同时这种方法需要对全部钢包或中间包等设备进行局部的改造,费用高昂。 1Email:tangax@https://www.wendangku.net/doc/717967490.html,

连铸生产漏钢事故的分析

连铸生产漏钢事故分析 摘要:通过对连铸漏钢时结晶器内坯壳的剖析和工艺分析,查明漏钢的分类、原因和解决办法和如何避免事故的发生,如何提前预报漏钢。 关键词:连铸漏钢保护渣预报漏钢 一、漏钢的危害 漏钢—影响铸机有效性 连铸中遇到的主要操作故障之一是“漏钢”。当铸流坯壳破裂时,坯壳内静止的熔融钢水溢出,堵塞机器,需要付出昂贵的停机代价。为拉出漏钢坯壳,就要再延长漏钢引起的停机时间。因为它可能会堵塞导辊或足辊,需要用气割清理堵塞,拉出坯壳。当漏钢坯壳温度降低时,需要把它切成小块,用矫直机从机器中取出,而矫直机设计成能在稳定阶段逐步地矫直曲冷坯壳,上轧辊可提供足够的提升重力,弄出不太长的弯曲铸流。因此,漏钢对铸机的有效性有重大影响——影响生产率和生产成本。 二、漏钢的分类 根据漏钢坯壳的外观,大致把漏钢分成以下几类: 悬挂或粘结引起漏钢--钢水粘结到结晶器上,因而称为粘结或悬挂。这可能是由结晶器和坯壳之间润滑不适或者结晶器调节不当引起的,而润滑不适可能是由质量较差的保护渣、结晶器中坯壳夹渣、结晶器钢水溢流、结晶器角缝、方坯连铸机润滑不良、不均等原因造成的。 1、裂纹引起漏钢--坯壳角部纵裂和宽面纵向裂纹都会造成漏钢发生。如果纵向裂纹引起漏钢,则保护渣流动不均,结晶器传热不均导致坯壳厚度不均,保护渣选择不当和结晶器冷却不均造成冷却时坯壳破裂。对角部纵裂引起漏钢来说,沿结晶器窄面凝固厚度不够的坯壳因收缩时受到拉伸应力而破裂,拉伸应力是由结晶器窄面锥度减小和窄面传热不均造成的。 2、夹渣漏钢--坯壳夹带保护渣或大粒夹杂物导致传热减少,形成薄坯壳而漏钢。方坯连铸时,二次氧化产物、低碳钢冶炼时高粘性渣中不当的脱氧产物, 1

板坯连铸机漏钢事故的原因分析及防止 精品

板坯连铸机漏钢事故的原因分析及防止 摘要:本文分析了某某钢二炼钢厂板坯连铸机漏钢事故产生产的原因及防止板坯连铸机漏钢的措施。采取 相应控制措施之后,目前某某钢二炼钢厂常规板坯连铸机频繁漏钢的势头得到了明显的控制。 关键词:板坯粘结漏钢保护渣水口浸入深度 1 前言 某某钢第二炼钢厂常规板坯连铸机自2005年4月18日投产以来,铸机漏钢问题始终困绕着二炼钢厂的正常生产,对二炼钢厂的正常生产造成了重大的冲击,连铸机的漏钢问题成为制约二炼钢厂生产的瓶颈环节。频繁的漏钢事故使连铸机设备的劣化趋势明显加剧,铸机检修质量无法保证。为降低连铸机漏钢事故,二炼钢厂成立了攻关组,经过对漏钢事故的原因进行分析,采取了相应的措施,板坯连铸机结晶器漏钢事故得到了明显的控制。 2 某某钢第二炼钢厂常规板坯连铸机参数及漏钢相关情况简介 2.1某某钢第二炼钢厂常规板坯连铸机的主要工艺参数 表1 主要工艺参数 铸机产量万吨/年 2 生产钢种四大类二十多个品种 3 连铸坯厚度mm 160,220 4 连铸坯宽度mm 850~1600 5 铸机半径m 9.5 6 连铸机型式立弯式(连续弯曲,连续矫直) 7 连铸机冶金长度m 31.9 8 铸机正常拉速m/min 1.0~1.4 9 结晶器长度mm 950 10 振动方式液压(正弦,非正弦) 11 二冷方式气水冷却(十四个控制回路) 2.2漏钢统计情况 从某某钢二炼钢厂常规板坯连铸机从2004年4月18日正式投产以来,共发生各种漏钢事故17次。其中粘结漏钢14次,占到所有漏钢的82%。其它三次漏钢为卷渣漏钢,裂纹漏钢,尾坯漏钢。板坯连铸机漏钢事故成为制约全厂正常生产的瓶颈环节。 3 某某钢二炼钢厂常规板坯连铸机漏钢原因分析 3.1粘结漏钢 结晶器粘结漏钢形成的过程如图1所示。

钢包工安全操作规程

仅供参考[整理] 安全管理文书 钢包工安全操作规程 日期:__________________ 单位:__________________ 第1 页共4 页

钢包工安全操作规程 1.上岗前,劳动保护用品穿戴齐全。进入车间注意各种车辆。班中不许打架、看书报。玩手机、脱岗、串岗、睡岗、干私活,要精力集中,安全操作。 2.岗前岗中随时确认四周安全,检查使用的各种吊具,检查钢包、渣盆耳轴磨损情况,吊渣盆要确认两侧耳轴吊链挂牢。渣盆要摆正、摆平。 3.吊运钢水包必须确认包两侧耳轴包钩已挂牢靠,方能起吊。向车上摆包要正、稳。禁止在氧气、煤气阀门及区域吸烟。 4.向包上挂链时,等天车停止下落后再挂,注意钢包上的粘渣,防止坠落砸伤,另一钢包工要做好监护,注意链子勒手、挤手。严禁从钢包下钻过。必须勤钩包沿,不能影响转炉出钢和加引流剂,钩下的包沿倒入专用盆,散落地下的必须及时清理干净。监管作业浇钢跨区域四周禁止有易燃易爆物品和无关人员进入。 5.指挥天车用对讲机,讲话要清楚,倒钢包内渣水时要躲避安全位置。上钢、下包、摆包必须及时;给转炉上黑包、凉包或新包,必须通知转炉和调度。 6.钩钢包沿粘渣时禁止在钢包车上。小心东侧煤气烤包器,禁止到烤包区域休息。在岗时刻提高安全防范警惕。为保证钢包的正常运转和正常生产,必须备有装好水口和滑板的被用包。天车吊运钢包时,钢包工必须处在安全区域或位置。 7.加引流沙时站位安全,所加引流剂不能潮湿。出钢时禁止呆在炉口前,防止喷 溅烫伤。开钢车前,先安全确认,安全无误后再开。加沙小心把包 第 2 页共 4 页

沿废钢渣碰到包水口内。 第 3 页共 4 页

连铸漏钢事故分为哪几类

连铸漏钢事故分为哪几类?其产生的主要原因有哪些? 所谓漏钢是指连铸初期或浇注过程中,铸坯坯壳凝固情况不好或因其他外力作用引起坯壳断裂或破漏使内部钢水流出的现象。漏钢是连铸生产中恶性事故之一,严重的漏钢事故不仅影响连铸机的正常生产,降低作业率,而且还会破坏铸机设备,造成设备损坏。漏钢事故因发生的时间不同及发生在铸机上的位置不同分为多种形式,其产生的原因也各不相同,主要分为以下几点: ⑴开浇漏钢:开浇起步不好而造成漏钢。 ⑵悬挂漏钢:结晶器角缝大,角垫板凹陷或铜板划伤,致使在结晶器中拉坯阻力增大,极易发生起步悬挂漏钢。 ⑶裂纹漏钢:在结晶器坯壳产生严重纵裂、角裂或脱方,出结晶器后造成漏钢。 ⑷夹渣漏钢:由于结晶器渣块或异物裹入凝固壳局部区域,使坯壳厚度太薄而造成漏钢。 ⑸切断漏钢:当拉速过快,二次冷却水太弱,使液相穴过长,铸坯切割后,中心液体流出。 ⑹粘结漏钢:铸坯粘结在结晶器壁而拉断造成的漏钢。 某厂生产500万吨板坯的统计表明,各类漏钢所占比例:开浇9.1%,夹渣2.3%,粘结54.5%,裂纹22.7%,鼓肚4.6%,水口凝钢2.3%,其他4.5%。 开浇时发生漏钢的原因有哪些?如何防止? 开浇时发生漏钢的原因主要有以下几点: ⑴结晶器内冷料放的不好,引锭头没有塞实。 ⑵起步早,起步拉速快,或拉速增长太快。 为防止开浇漏钢,开浇前应做好充分的准备和检查,重点应注意以下几点: ⑴检查引锭头密实和冷料堆放情况; ⑵检查水口与结晶器对中情况; ⑶检查结晶器铜板有无冷钢,锥度是否合适; ⑷检查二冷喷嘴是否畅通完好; ⑸了解钢水的流动性、钢水温度状态,中间包和水口是烘烤状态,保护渣的质量。 ⑹要根据铸坯断面决定注流大小和钢水在结晶器停留时间。 ⑺起步拉速一般保持为0.5m/min,增速要慢(0.15 m/min),防止结晶器液面波动过大。 浇注过程中发生漏钢的原因有哪些?如何防止? 浇注过程中发生漏钢的根本原因在于铸坯出结晶器后局部凝固壳过薄,承受不住钢水静压力而破裂导致漏钢。因而,为防止浇注过程中的漏钢事故发生,需找出凝固壳局部过薄的影响因素,其主要有以下几方面: ⑴设备因素:结晶器严重破损而失去锥度,铸坯脱方严重;结晶器与二次冷却段对弧不准;铸流与结晶器不对中等。此外,结晶器铜管变形、内壁划伤严重,液膜润滑中断等,也会造成坯壳悬挂而撕裂。 ⑵工艺操作因素:如拉速过快,注温过高,水口不对中、注流偏斜,结晶器液面波动太大,注流下渣,出结晶器冷却强度不足等。 ⑶异物或冷钢咬入凝固壳:如液面波动太大时,结晶器中未熔渣块卷入凝固壳,中间包水口内堵塞物随钢流落到结晶器液相穴,被凝固前沿捕捉而导致漏钢。 综上所述,为防止浇注过程中漏钢,在设备维护方面,应定期检查结晶器的使用情况,保证结晶器的倒锥度,结晶器应与二冷导向段保持对中,避免铸坯在拉钢过程中受到机械力的作用而发生坯壳变形破裂等引起拉漏。 在结晶器润滑方面,应保证结晶器润滑均匀,避免因润滑不好造成结晶器与坯壳的粘附漏钢和悬挂拉漏。 在工艺操作方面,应注意操作稳定,减少拉速的变动次数和变动量,保持结晶器内液面稳定,避免出现过大或过频繁的波动。同时应控制中间包内液面不能太低,避免大量的非金属夹杂物或钢渣卷入结

连铸机的辊子装配的检测与维修

连铸机的辊子装配的检测与维修 一、连铸机的介绍 1.连铸机的功能 把高温钢水连续不断地浇铸成具有一定断面形状和一定尺寸规格铸坯的生产工艺过程叫做连续铸钢。 完成这一过程所需的设备叫连铸成套设备。浇钢设备、连铸机本体设备、切割区域设备、引锭杆收集及输送设备的机电液一体化构成了连续铸钢核心部位设备,习惯上称为连铸机。 连铸机是一种用模具进行连续浇注钢水的大型生产线。生产出的钢坯经轧制,成为成品销售。提高连铸自动化水平,对保证铸坯质量、提高连铸机的劳动生产率、增加连铸机的金属收得率起着至关重要的作用。 2.连铸机的组成(如图a) (1)钢包回转台:钢包回转台是现代连铸中应用最普遍的运载和承托钢包进行浇注 的设备,通常设置于钢水接收跨与浇注跨柱列之间。所设计的钢包旋转半径,使得浇钢时钢包水口处于中间包上面的规定位置。用钢水接收跨一侧的吊车将钢包放在回转台上,通过回转台回转,使钢包停在中间包上方供给其钢水。浇注完的空包则通过回转台回转,再运回钢水接收跨。钢包回转台是连铸机的关键设备之起着连接上下两道工序的重要作用。 (2)中间包:中间包是短流程炼钢中用到的一个耐火材料容器,首先接受从钢包浇下来的钢水,然后再由中间包水口分配到各个结晶器中去,并且有着分流作用。对于多流连铸机,由多水口中间包对钢液进行分流。 连浇作用。在多炉连浇时,中间包存储的钢液在换盛钢桶时起到衔接的作用。减压作用。盛钢桶内液面高度有5~6m,冲击力很大,在浇铸过程中变化幅度也很大。中间包液面高度比盛钢桶低,变化幅度也小得多,因此可用来稳定钢液浇铸过程,减小钢流对结晶器凝固坯壳的冲刷。 保护作用。通过中间包液面的覆盖剂,长水口以及其他保护装置,减少中间包中的钢液受外界的污染。 清除杂质作用。中间包作为钢液凝固之前所经过的最后一个耐火材料容器,对钢的质量有着重要的影响,应该尽可能使钢中非金属夹杂物的颗粒在处于液体状态时排除掉。 (3)结晶器:结晶器承接从中间包注入的钢水并使之按规定断面形状凝固成坚固 坯壳的连续铸钢设备。它是连铸机最关键的部件,其结构、材质和性能参数对铸坯质量和铸机生产能力起着决定性作用。开浇时引锭杆头部即是结晶器的活动内底,钢水注入结晶器逐渐冷凝成一定厚度坯壳并被连续拉出,此时,结晶器内壁承受着高温钢水的静压力及与坯壳相对运动的摩擦力等产生的机械应力和热应力的综合作用,其工作条件极为恶劣。 (4)扇形段:通过夹辊和侧导辊对带有液心的坯壳起支撑和导向作用,使其沿着预 定的轨道前进,并限制它发生鼓肚变形;扇形段是连铸过程中主要设备之一,扇形段制造水平的高低,将直接影响到被轧制板坯厚度的均匀性,对其质量起着十分重要的作用。

小方坯连铸漏钢原因分析及预防措施

小方坯连铸漏钢原因分析及预防措施 发表日期:2007年10月31日【编辑录入:meimei】 摘要:从钢种、结晶器状况、过热度、拉速、振动、保护渣性能、工艺操作等方面分析了安钢二炼钢2号方坯连铸机产生漏钢的原因,并采取相应措施,取得了较好的效果。 关键词:小方坯;漏钢分析;改进措施 安阳钢铁股份有限公司第二炼钢厂(以下简称安钢二炼钢)2号方坯连铸机采用浸入式水口加保护渣保护浇注工艺。2004年铸机平均溢漏钢率为0.68%,上半年平均为0.9%,最高月份为1.2%,溢漏事故多,已严重影响了连铸生产。为促进连铸生产顺行,同时也为铸机高效化生产打下基础,于2005年元月开始对2号方坯连铸机溢漏钢进行攻关,并取得了显著效果。 1工艺现状 安钢二炼钢2号连铸机始建于1989年,铸机类型为国产SFR-6型四机四流小方坯连铸机,铸坯断面为120 mm×120mm,采用定径水口、浸人式水口、保护渣和事故摆槽等浇注方式。目前,主要浇注钢种为Q235B、HRB335、HRB400、Q345B等钢种,连铸机主要技术参数为: 流间距1 100 mm;正常拉速2.8~3.5 m/min;铜管长度850 mm;铜管壁厚12.5 mm;铜管材质为脱氧磷铜;水缝宽度3.5 mm;结晶器倒锥度(0.56%~0.76%)/m;结晶器水量95~100m3/h;结晶器水压0.6~0.7 MPa;振动结构形式为半板簧振动。 2漏钢事故概况 2004年2号机溢漏钢569次,统计结果见图1,角裂漏钢占69%,为主要漏钢类型,下渣漏钢和拉断漏钢分别占14.9%和6.7%。因此,控制角裂漏钢可以大幅度降低溢漏钢率。角裂漏钢铸坯的形貌如图2所示,角裂漏钢主要发生在出结晶器坯壳距角部10~25 mm处,漏钢长度100~200 mm,沿漏钢部位的上下有纵裂缺陷。

浅析漏钢的原因及预防

浅析漏钢的类型及预防 连铸二车间技术组-郭幼永 一、前言:板坯漏钢的形式多种多样但重点主要集中在粘结漏钢和开浇起步后的漏钢。本文简要介绍常见漏钢的类型、漏钢的起因及相应的预防措施。为各班组在实际浇钢过程中提供参考便于降低漏钢事故的发生。 二、漏钢的类型 1、粘结漏钢 粘结漏钢是连铸生产过程中的主要漏钢形式,据统计诸多漏钢中粘结漏钢占50%以上。所谓粘结的引起是由于结晶器液位波动,弯月面的凝固壳与铜板之间没有液渣,严重时发生粘结。当拉坯时磨擦阻力增大,粘结处被拉断,并向下和两边扩大,形成V型破裂线,到达出结晶器口就发生漏钢。 粘结漏钢的发生有以下情况:内弧宽面漏钢发生率比外弧宽面高(大约3:1);宽面中部附近(约在水口左右300mm)更易发生粘结漏钢;大断面板坯容易发生宽面中部漏钢;而小断面则发生在靠近窄面的区域;铝镇静钢比铝硅镇静钢发生漏钢几率高;保护渣耗量在0.25kg/t钢以下,漏钢几率增加。 2、发生粘结漏钢的原因: 1)、形成的渣圈堵塞了液渣进入铜管内壁与坯壳间的通道; 2)、结晶器保护渣Al2O3含量高、粘度大、液面结壳等,使渣子流动性差,不易流入坯壳与铜板之间形成润滑渣膜。 3)、异常情况下的高拉速。如液面波动时的高拉速,钢水温度较低时的高拉速。4)、结晶器液面波动过大,如浸入式水口堵塞,水口偏流严重,更换钢包时水口凝结等会引起液面波动。 3、防止粘结性漏钢预防措施 在浇注过程中防止粘结漏钢的对策有: (1)监视保护渣的使用状况,确保保护渣有良好性能。如测量结晶器液渣层厚度经常保持在8~15mm,保护渣消耗量不小于0.4kg/t钢,及时捞出渣中的结块等。

板坯粘结漏钢原因与预防措施

板坯粘结漏钢原因与预防措施 Doi :10.3969/j .issn .l 006-110X .2018.z l .005 板坯粘结漏钢原因与预防措施 孟阳 (天津钢铁集团有限公司炼钢厂,天津300301) [摘要]天津钢铁集团有限公司3号板坯连铸机短时间内多次发生的漏钢事故,作者通过排除法分析出漏钢 事故类型为粘结性漏钢。重点分析了发生粘结漏钢的原因,并对其他类型的漏钢机理进行简要介绍。针对3号板坯连 铸机的工艺操作和设备精度调整等方面制定了详细的改进措施,实施后,天钢3号板坯连铸机发生漏钢的几率大大降 低,降低了其对生产顺行的影响。 [关键词]漏钢;粘结;工艺;改进;板坯;连铸 Causes and Preventive Measures of Steel B1eed-out by Slab Bonding MENG Yang (Steel-making Plant , Tianjin Iron and Steel Group Co ., Ltd . Tianjin 300301, Ch 74$比"8+ In Tianjin Iron and Steel Group Co . Ltd . the bleed-out accident occurred many times in a short period of t ime on the No .3 slab continuous caster , and the author analyzed that the type of bleed-out accident by the method of exclusion was adhesive bleed -out . The cau were analyzed , and the mechanism of other types of bleed-out was brie process operation of No . 3 slab continuous casting machine and the adjustment of equ the detailed improvement measures were made . After the implementation , the probability of steel bleed-out in the No . 3 slab caster was greatly reduced , and the influence on production was reduced .Ke5 bleed -out , bonding , technology , improvement , slab , continuous casting o 引言 随着天钢板坯的连铸技术操作水平逐年提高, 漏钢率已经控制的很低。但是在2015年7月底至8 月初的5天时间内,天钢3#板坯连铸机出现两次漏 钢,经过仔细分析和逐一排除法,分析出这两次漏 钢均属于粘结漏钢。漏钢发生于板坯连铸生产环 节,造成设备损坏、产量降低、生产不稳定等严重后 果。本文分析了漏钢的原因,并提出解决漏钢问题 的方法,以预防漏钢事故的发生。 1连铸机基本情况 1.1 天钢炼钢厂3(板坯连铸机主要技术参数 (1) 机型:一机一流直结晶器弧形板坯连铸机, R =8.4m ; (2) 铸坯断面尺寸:180/200/250mm x 1050" 收稿日期:2018-06-02 作者简介:孟阳(1991一)男,天津人,主要从事板坯连铸工艺技 1600mm ; (3) 铸坯定尺:一切 6~9.9m ,二切 2"3.3m ;(4) 拉速范围:0.4~1.6m/min ;(5) 引锭杆插入方式:下装式;(6) 结晶器铜板长度:900mm ; (7) 振动装置:四偏心高频率小振幅振动系统;(8) 中间包容量:35~38t 。2 漏钢种类及原因 漏钢的种类大致可分为3种,开浇漏钢、尾坯 封顶漏钢和浇铸过程中漏钢。 2.1 开F 漏钢 指开浇过程中,不当的操作致使引锭头刚被拉 出结晶器,随机出现漏钢事故。2.2封顶漏钢 当浇注结束时,对尾坯进行尾坯封顶操作,封 顶前熔化的保护渣未捞干净,如二冷强度过大,出 结晶器的板坯收缩过大,使板坯鼓肚且又受到支撑 术管理工作。 tmmsmmmmm 你〈钢铁冶炼〉你 -15 -

钢包自动开浇原理及影响因素分析

钢包自动开浇原理及影响因素 一、钢包自开的基本原理 引流沙在钢包水口内呈二层结构。靠近钢水一层为烧结层,下面一层为原始层即未变化的原有引流沙,打开滑板后,未发生变化的引流沙在重力作用下自然落下,烧结层则在钢水静压力作用下破碎,钢水则冲出水口达到自然开浇的目的。 引流沙烧结层的厚度及其烧结状态对钢包自然开浇具有决定性影响。而烧结层的厚度及状态与引流沙的化学成分和颗粒配比有重要关系。 碱性氧化物含量过高或过低,影响烧结,钢包自开率显然困难。当引流沙中小粒度沙粒比例较大时,引流沙易于烧结成块状,即烧结层增厚,因此,减少或排除引流沙中的细沙有利于改善烧结性,提高自开率。 引流沙本身的物化性能对自然开浇显然是决定性因素;理想的引流沙因具有良好的烧结性和流动性;而烧结层的厚度直接关系到钢包自开的效果;钢水在钢包内的镇静时间越短,自开率越高。在安装滑板,清洗水口,灌沙过程中,操作必须规范化;向钢包内投入脱氧剂,脱S渣等时应避开水口处。 二、大包的影响 1、保证透气砖畅通,使其出完钢后吹氩时对大包内钢水温度均匀,防止大包底部钢水温度低造成割眼。 2、对于大包的座砖孔径符合流动力学要求,要将座砖孔上方(与罐底打结料结合部)做成喇叭形状,并每炉清理干净,钢水流动顺畅。 3、钢包吹氩砖断层时要及时下线,以免和钢包水口座砖同时断层造成吹氩时串气,致使引流沙吹走或风冷凝块造成割眼。 三、热修操作的影响 铸完钢后水口内通常会留有残钢及残渣,烧氧时一定要将上水口以及座砖孔内的残钢以及残渣清理干净,更换滑板时,上下滑板要同心(不同心误差小于2毫米)。滑板安装完毕后,滑板与水口之间残余的耐火泥要清理干净,包括更换上水口时,一定要将残余的耐火泥和在高温作用下上水口渗出的沥青清除掉,以确保在滑板打开时,钢水经上水口、上滑板、下滑板和下水口自动流出。 四、钢包渣盖对自开率的影响

钢包下渣数值模拟研究

钢包下渣过程的数值模拟研究 蒋大伟1,胡永才1,陈义胜2,庞赟佶2,3 (1.东北特钢集团,辽宁大连116105;2.内蒙古科技大学,内蒙古包头014010; 3.大连理工大学,辽宁大连116024) 摘要: 根据流体力学中的VOF 法及ε?k 湍流模型的基本理论,实现了对110t 钢包内不同渣层厚度浇注过程的模拟计算。重点描述了钢水浇注过程中钢包内的流动及流场的分布状况,得出了不同渣层厚度时的浇注过程所需的下渣高度及最佳渣厚。 关键词:VOF 法;钢包下渣;渣层厚度;最佳渣厚 中图分类号:TF769.2文献标识码:A Ladle Slag Process Numerical Simulation Research JIANG Dawei 1,HU Yongcai 1,CHEN Yisheng 2,PANG Yunji 2,, 3(1.DongBei Special Steel Group ,Dalian 116105,China ;2. 2.Inner Inner Mongolia U niversity of S cience and T echnology ,Baotou 014010,China ; 3.3.Dalian Dalian University of Technology ,Dalian 116024,China )Abstract:According to the VOF method and ε?k turbulence model of the basic theory in the fluid mechanics ,realize different slag layer thickness of the 110t ladle casting process simulation.The article mainly describes flow field distribution condition of the steel in the process of pouring ,it is concluded that the different slag layer thickness of casting process the slag height and best slag thickness. Key words:VOF method;Laddle slag;Slag layer thickness,Best slag thickness 钢液由钢包流入连铸中间包或模铸中注管内,钢液液面降低至一定高度时,钢液与钢渣就会混出,流股的巨大冲击作用会大大降低钢水的纯净度,势必对钢锭或铸坯的质量产生影响。目前很多企业都采用了浇注过程的下渣检测技术,使钢锭或铸坯内部质量有了很大改善,但下渣检测准确程度有待提高。这里运用流体力学中VOF 法及ε?k 模型描述了大型材分公司110t 钢包内不同渣层厚度对钢液流动形态的影响。 1模型建立 1.1基本假设 钢包顶部钢液为自由表面;不考虑钢液温降对钢包内流动的影响;钢包壁面为固体壁面;空气、钢渣和钢水均为不可压缩流体。由于钢包锥度较小,忽略钢包壁面对包内流动形态的影响[1] 。1.2数学模型连续性方程()0=??i i x u ρ;传输方程() i i j eff i j i eff i i i j i g x u x x u x x p x u u ρμμρ????????????+????????????+???=??;

常见圆坯连铸漏钢原因及预防措施

常见圆坯连铸漏钢原因及预防措施 杨文明胡茂会贾宁波易良刚 攀钢集团成都钢矾有限公司 摘要:本文通过漏钢形貌的分析和漏钢坯壳的解剖,结合生产现场实际情况,分析漏钢原因,提出解决措施。 0 前言 连铸生产过程中所发生的事故,受损害最大的是漏钢,漏钢会造成设备的损坏,连铸停机,生产被迫中断,直接影响连铸机的产量,降低经济效益。因此,在组织生产中应千方百计来避免连铸漏钢事故的发生。 1 生产工艺 攀成钢公司电炉炼钢厂为搬迁改造工程,引进德国西门子70t高阻抗超高功率电弧炉+LF+VD+三流圆坯连铸机的生产工艺。三流圆坯连铸机为弧型连铸机,弧形半径R=12m,流间距L=1700mm,结晶器铜管长度700mm,单锥度(0.9-1.4%)结晶器,采用长水口(吹Ar)保护+浸入式水口(保护渣)浇注,中间包通过塞棒控制注流,二冷气雾冷却。主要生产规格为Ф220mm,Ф280mm、Ф350mm 和Ф388mm、Ф430mm的圆坯,相应规格目标拉速分别为1.25、0.90、0.55、0.45、0.36m/min。最常见的漏钢规格是:Ф220mm和Ф350mm规格,2010年1-6月,所有规格的钢种的综合漏钢率0.61%,Ф350 mm规格浇铸低碳钢180炉,发生漏钢13次,漏钢率为2.41%。 2 常见漏钢形貌 从漏钢形貌上可将圆坯的漏钢分为3种:1、裂纹漏钢2、粘结漏钢3、夹渣漏钢,我公司最常见的漏钢是裂纹漏钢,约占总漏钢的80%以上。 2.1夹渣漏钢 夹渣漏钢的漏钢口呈圆形,直径10mm左右。夹渣一般发生在皮下3-5mm,

夹渣的直径3-5mm,也呈圆形。 2.2粘结漏钢 粘结漏钢的漏钢口呈椭圆形或V形或锯齿形,漏口偏大,一般发生在浇铸前期,特别是第一炉钢。 2.3裂纹漏钢 裂纹漏钢漏口纵向破裂,长度500-1000mm,漏口最宽处可达50mm。从漏钢口往上延伸可以看见有裂纹,且多数伴随凹陷产生。 3 漏钢成因 3.1夹渣漏钢 出结晶器时,夹渣处铸坯钢质坯壳较薄,且强度低,经受不住钢水的静压产生漏钢。由于钢水对漏钢口的冲刷,漏钢口尺寸变大。 夹渣分为夹结晶器保护渣和夹中间包覆盖剂渣(或大包渣)。一般卷入结晶器渣的可能性大,主要是结晶器液位波动大,还有一些操作工喜欢经常挑渣圈。这样容易将烧结层的保护渣带入初期凝固的坯壳。在一些低倍样经酸洗后偶有发现卷渣的,从低倍图上可发现铸坯边沿有直径5mm的圆形夹渣(见图1),经过电镜扫描(见图2)成分为表1: 图1:圆坯夹渣低倍图图2夹渣电镜扫描图 表1:夹渣处电镜扫描化学元素及含量(%) 谱图O Na Al Si Ca Ti Mn Fe 谱图1 36.87 3.07 3.86 20.49 24.77 7.19 3.75 谱图2 45.69 4.31 14.75 24.11 11.15 谱图3 49.62 2.96 3.95 16.52 17.48 1.19 5.3 2.99

相关文档
相关文档 最新文档