文档库 最新最全的文档下载
当前位置:文档库 › 加速度传感器的选择

加速度传感器的选择

加速度传感器的选择
加速度传感器的选择

加速度传感器的选择

传感器的种类选择

压电式传感器的敏感芯体材料和结构形式

压电式加速度传感器的信号输出形式

传感器灵敏度,量程和频率范围的选择

传感器的整体封装设计与电缆

外界环境对测量传感器的影响

工程振动量值的物理参数常用位移、速度和加速度来表示。由于在通常的频率范围内振动位移幅值量很小,且位移、速度和加速度之间都可互相转换,所以在实际使用中振动量的大小一般用加速度的值来度量。常用单位为:米/秒2 (m/s2),或重力加速度(g)。

描述振动信号的另一重要参数是信号的频率。绝大多数的工程振动信号均可分解成一系列特定频率和幅值的正弦信号,因此,对某一振动信号的测量,实际上是对组成该振动信号的正弦频率分量的测量。对传感器主要性能指标的考核也是根据传感器在其规定的频率范围内测量幅值精度的高低来评定。

最常用的振动测量传感器按各自的工作原理可分为压电式、压阻式、电容式、电感式以及光电式。压电式加速度传感器因为具有测量频率范围宽、量程大、体积小、重量轻、对被测件的影响小以及安装使用方便,所以成为最常用的振动测量传感器。

?传感器的种类选择

·压电式- 原理和特点

压电式传感器是利用弹簧质量系统原理。敏感芯体质量受振动加速度作用后产生一个与加速度成正比的力,压电材料受此力作用后沿其表面形成与这一力成正比的电荷信号。压电式加速度传感器具有动态范围大、频率范围宽、坚固耐用、受外界干扰小以及压电材料受力自产生电荷信号不需要任何外界电源等特点,是被最为广泛使用的振动测量传感器。虽然压电式加速度传感器的结构简单,商业化使用历史也很长,但因其性能指标与材料特性、设计和加工工艺密切相关,因此在市场上销售的同类传感器性能的实际参数以及其稳定性和一致性差别非常大。与压阻和电容式相比,其最大的缺点是压电式加速度传感器不能测量零频率的信号。

·压阻式

应变压阻式加速度传感器的敏感芯体为半导体材料制成电阻测量电桥,其结构动态模型仍然是弹簧质量系统。现代微加工制造技术的发展使压阻形式敏感芯体的设计具有很大的灵活性以适合各种不同的测量要求。在灵敏度和量程方面,从低灵敏度高量程的冲击测量,到直流高灵敏度的低频测量都有压阻形式的加速度传感器。同时压阻式加速度传感器测量频率范围也可从直流信号到具有刚度高,测量频率范围到几十千赫兹的高频测量。超小型化的设计也是压阻式传感器的一个亮点。需要指出的是尽管压阻敏感芯体的设计和应用具有很大灵活性,但对某个特定设计的压阻式芯体而言其使用范围一般要小于压电型传感器。压阻式加速度传感器的另一缺点是受温度的影响较大,实用的传感器一般都需要进行温度补偿。在价格方面,大批量使用的压阻式传感器成本价具有很大的市场竞争力,但对特殊使用的敏感芯体制造成本将远高于压电型加速度传感器。

·电容式

电容型加速度传感器的结构形式一般也采用弹簧质量系统。当质量受加速度作用运动而改变质量块与固定电极之间的间隙进而使电容值变化。电容式加速度计与其它类型的加速度传感器相比具有灵敏度高、零频响应、环境适应性好等特点,尤其是受温度的影响比较小;但不足之处表现在信号的输入与输出为非线性,量程有限,受电缆的电容影响,以及电容传感器本身是高阻抗信号源,因此电容传感器的输出信号往往需通过后继电路给于改善。在实际应用中电容式加速度传感器较多地用于低频测量,其通用性不如压电式加速度传感器,且成本也比压电式加速度传感器高得多。

?压电式传感器的敏感芯体材料和结构形式

·压电材料

压电材料一般可以分为两大类,即压电晶体和压电陶瓷。在压电型加速度计的最常用的压电晶体为石英,其特点为工作温度范围宽,性能稳定,因此在实际应用中经常被用作标准传感器的压电材料。由于石英的压电系数比其他压电材料低得多,因此对通用型压电加速度计而言更为常用的压电材料为压电陶瓷。压电陶瓷中锆钛酸铅(PZT)是目前压电加速度计中最经常使用的压电材料。其特点为具有较高的压电系数和居里点,各项机电参数随温度时间等外界条件的变化相对较小。必须指出的是,就同一品种的压电陶瓷而言,虽然都有相同的基本特性,但由于制作工艺不同可以使两个相同材料的压电陶瓷的具体性能指标相差甚大。这种现象可以通过典型的国产传感器和进口传感器的比较得以反映,国内振动测试业几十年的经验对此深有体会。·传感器敏感芯体的结构形式

压电加速度传感器的敏感芯体一般由压电材料和附加质量块组成,当质量块受到加速度作用后便转换成一个与加速度成正比并加载到压电材料上的力,而压电材料受力后在其表面产生一个与加速度成正比的电荷信号。压电材料的特性决定了作用力可以是受正应力也可以是剪应力,压电材料产生的电荷大小随作用力的方向以及电荷引出表面的位置而变。根据压电材料不同的受力方法,常用传感器敏感芯体的结构一般有以下三种形式:

1)压缩形式– 压电材料受到压缩或拉伸力而产生电荷的结构形式。压缩式敏感芯体是加速度传感器中最为传统的结构形式。其特点是制造简单方便,能产生较高的自振谐振频率和较宽的频率测量范围。而最大的缺点是不能有效地排除各种干扰对测量信号的影响。

2)剪切形式– 通过对压电材料施加剪切力而产生电荷的结构形式。从理论上分析在剪切力作用下压电材料产生的电荷信号受外界干扰的影响甚小,因此剪切结构形式成为最为广泛使用的加速度传感器敏感芯体。然而在实际制造过程中,确保剪切敏感芯体的加速度计持有较高和稳定的频率测量范围却是传感器制造中工艺中最为困难的一个环节。北智BW-Sensor 采用进口记忆金属材料的紧固件从而保证传感器具有稳定可靠的谐振频率和频率测量范围。

3)弯曲变形梁形式- 压电材料受到弯曲变形而产生电荷的结构形式。弯曲变形梁结构可产生比较大的电荷输出信号,也较容易实现控制阻尼;但因为其测量频率范围低,更由于此结构不能排除因温度变化而极容易产生的信号漂移,所以此结构在压电型加速度计的设计中很少被采用。

?压电式加速度传感器的信号输出形式

·电荷输出型

传统的压电加速度计通过内部敏感芯体输出一个与加速度成正比的电荷信号。实际使用中传感器输出的高阻抗电荷信号必须通过二次仪表将其转换成低阻抗电压信号才能读取。由于高阻抗电荷信号非常容易受到干扰,所以传感器到二次仪表之间的信号传输必须使用低噪声屏蔽电缆。由于电子器件的使用温度范围有限,所以高温环境下的测量一般还是使用电荷输出型。北智BW-Sensor采用进口陶瓷的加速度计可在温度-40o C~250o C 范围内长期使用。

·低阻抗电压输出型(IEPE)

IEPE 型压电加速度计即通常所称的ICP 型压电加速度计。压电传感器换能器输出的电荷通过装在传感器内部的前置放大器转换成低阻抗的电压输出。IEPE 型传感器通常为二线输出形式,即采用恒电流电压源供电;直流供电和信号使用同一根线。通常直流电部分在恒电流电源的输出端通过高通滤波器滤去。IEPE 型传感器的最大优点是测量信号质量好、噪声小、抗外界干扰能力强和远距离测量,特别是新型的

数采系统很多已配备恒流电压源,因此,IEPE 传感器能与数采系统直接相连而不需要任何其它二次仪表。在振动测试中IEPE 传感器已逐渐取代传统的电荷输出型压电加速度计。

?传感器的灵敏度,量程和频率范围的选择

压电型式的加速度计是振动测试的最主要传感器。虽然压电型加速度计的测量范围宽,但因市场上此类加速度计品种繁多,所以给正确的选用带来一定的难度。作为选用振动传感器的一般原则:正确的选用应该基于对测量信号以下三方面的分析和估算。

a.被测振动量的大小

b.被测振动信号的频率范围

c.振动测试现场环境

以下将针对上述三个方面并参照传感器的相关技术指标对具体的选用作进一步地讨论·传感器的灵敏度与量程范围

传感器的灵敏度是传感器的最基本指标之一。灵敏度的大小直接影响到传感器对振动信号的测量。不难理解,传感器的灵敏度应根据被测振动量(加速度值)大小而定,但由于压电加速度传感器是测量振动的加速度值,而在相同的位移幅值条件下加速度值与信号的频率平方成正比,所以不同频段的加速度信号大小相差甚大。大型结构的低频振动其振动量的加速度值可能会相当小,例如当振动位移为 1mm, 频率为1 Hz 的信号其加速度值仅为0.04m/s2(0.004g);然而对高频振动当位移为0.1mm,频率为10 kHz的信号其加速度值可达4 x 10 5m/s2 (40000g)。因此尽管压电式加速度传感器具有较大的测量量程范围,但对用于测量高低两端频率的振动信号,选择加速度传感器灵敏度时应对信号有充分的估计。最常用的振动测量压电式加速度计灵敏度,电压输出型(IEPE 型)为50~100 mV/g,电荷输出型为10 ~ 50 pC/g。

加速度值传感器的测量量程范围是指传感器在一定的非线性误差范围内所能测量的最大测量值。通用型压电加速度传感器的非线性误差大多为1%。作为一般原则,灵敏度越高其测量范围越小,反之灵敏度越小则测量范围越大。

IEPE电压输出型压电加速度传感器的测量范围是由在线性误差范围内所允许的最大输出信号电压所决定,最大输出电压量值一般都为±5V。通过换算就可得到传感器的最大量程,即等于最大输出电压与灵敏度的比值。需要指出的是IEPE压电传感器的量程除受非线性误差大小影响外,还受到供电电压和传感

器偏置电压的制约。当供电电压与偏置电压的差值小于传感器技术指标给出的量程电压时,传感器的最大输出信号就会发生畸变。因此IEPE 型加速度传感器的偏置电压稳定与否不仅影响到低频测量也可能会使信号失真;这种现象在高低温测量时需要特别注意,当传感器的内置电路在非室温条件下不稳定时,传感器的偏置电压很可能不断缓慢地漂移而造成测量信号忽大忽小。

而电荷输出型测量范围则受传感器机械刚度的制约,在同样的条件下传感敏感芯体受机械弹性区间非线性制约的最大信号输出要比IEPE型传感器的量程大得多,其值大多需通过实验来确定。一般情况下当传感器灵敏度高,其敏感芯体的质量块也就较大,传感器的量程就相对较小。同时因质量块较大其谐振频率就偏低这样就较容易激发传感器敏感芯体的谐振信号,结果使谐振波叠加在被测信号上造成信号失真输出。因此在最大测量范围选择时,也要考虑被测信号频率组成以及传感器本身的自振谐振频率,避免传感器的谐振分量产生。同时在量程上应有足够的安全空间以保证信号不产生失真。

加速度传感器灵敏度的标定方法通常采用比较法检定,被校传感器在特定频率(通常为159 Hz 或80 Hz)振动的输出与标准传感器读得加速度值的比即为传感器灵敏度。而对冲击传感器的灵敏度则通过测量被校传感器对一系列不同冲击加速度值的输出响应,获得传感器在其测量范围内输入冲击加速度值和电输出之间的对应关系,再通过数值计算获得与各点之间差值最小的直线,而这直线的斜率即是传感器的冲击灵敏度。

冲击传感器的非线性误差可以有两种方法表示:全量程偏差或按分段量程的线性误差。前者是指传感器的全量程输出为基准的误差百分数,即无论测量值得大小其误差均为按全量程百分数计算而得的误差值。按分段量程的线性误差其计算方法与全量程偏差相同,但基准不用全量程而是以分段量程来计算误差值。例如量程为20000g 的传感器,如全量程偏差为1% ,其线性误差在全量程内为200g;但当传感器按分段量程5000g ,10000g ,20000g 来衡量其线性误差,其误差仍为1% 时,则传感器在不同的3个量程段内线性误差则分别为50g ,100g ,200g。

·传感器的测量频率范围

传感器的频率测量范围是指传感器在规定的频率响应幅值误差内(±5%, ±10%, ±3dB)传感器所能测量的频率范围。频率范围的高,低限分别称为高,低频截至频率。截至频率与误差直接相关,所允许的误差范围大则其频率范围也就宽。作为一般原则,传感器的高频响应取决于传感器的机械特性,而低频响应则由传感器和后继电路的综合电参数所决定。高频截止频率高的传感器必然是体积小,重量轻,反之用于低频测量的高灵敏度传感器相对来说则一定体积大和重量重。

1) 传感器的高频测量范围

传感器的高频测量指标通常由高频截止频率来确定,而一定截止频率与对应的幅值误差相联系;所以传感器选用时不能只看截至频率,必须了解对应的幅值误差值。传感器的频率幅值误差小不仅是测量精度提高,更重要的是体现了传感器制造过程中控制安装精度偏差地能力。另外由于测量对象的振动信号频率带较宽,或传感器的固有谐振频率不够高,因而被激发的谐振信号波可能会叠加在测量频带内的信号上,造成较大的测量误差。所以在选择传感器的高频测量范围时除高频截至频率外,还应考虑谐振频率对测量信号的影响;当然这种测量频段外的信号也可通过在测量系统中滤波器给予消除。

一般情况下传感器的高频截止频率与输出信号的形式(即电荷型或低阻电压型)无关;而与传感器的结构设计,制造以及安装形式和安装质量都密切相关。以下表格是对不同型式加速度传感器的高频响应作一个定性的归类,供用户在选用时对比和参考。

高频响应外形, 重量和灵敏度敏感芯体形式总体设计安装形式最好体积小, 重量轻, 低灵敏度压缩型单层壳通用型螺钉安装好通用型剪切型单层壳带绝缘座吸铁, 粘接差个大, 体重, 高灵敏度弯曲梁形式双层屏蔽壳手持

对加速度传感器的高频测量应用请参考应用-〉高频测量

2) 传感器的低频测量范围

与传感器高频指标相对应,传感器的低频测量指标通常由低频截止频率来确定,同样一定低频截止频率与对应的幅值误差相关。和高频特性不同,传感器的低频特性与传感器的任何机械参数无关,而仅取决于传感器的电特性参数。当然传感器作为测量系统的某一部分,测量信号的低频特性还将受到与传感器配用的后继仪器电参数的制约。根据输出信号的不同形式,以下将对电荷输出和低阻电压输出加速度传感器分别给与讨论。

尽管电荷型输出加速度传感器列出低频截止频率,但一般都给予指出测量信号的低频特性由后继电荷放大器确定。在实际应用中,当电荷型传感器的芯体绝缘阻抗远大于电荷放大器输入端的输入阻抗时,由传感器和电荷放大器组成的测量系统其低频截至频率应该由电荷放大器的低频特性所决定。但是如果传感器的芯体绝缘阻抗下降,此时传感器则可能影响整个测量系统的低频特性。因此保证芯体的绝缘阻抗对电荷输出型加速度传感器的低频测量非常重要。

对于IEPE 传感器配用的恒流电压源,其通常的低频截至频率为0.1 Hz (-5%)。因此一般情况下测量系统的低频特性是由传感器的低频截至频率所决定。通用型传感器的低频截止频率大多为0.5 Hz~1 Hz, 专门用于低频测量的传感器低频截至频率可扩展到0.1 Hz。由于传感器的低频校验比较困难,所以制造厂商一般只提供10 Hz以上的测试数据。但传感器的低频特性与一阶高通滤波器非常吻合,所以用户可以通过实测时间常数来检查传感器的实际低频响应。

对加速度传感器的低频测量应用请参考应用-〉低频测量

用IEPE 型压电型加速度传感器测量甚低频加速度信号还需要注意的问题有:

°当传感器和恒流电压源交流耦合的低频截至频率相当时,测量系统的低频特性是由传感器和恒流电压源的各自低频响应组合而成,此时测量系统的低频截止频率要高于传感器或恒流电压源各自的低频截止频率。理想的测量系统传感器应配用带直流平衡的恒流电压源,这样系统的低频响应将完全取决于传感器的低频截至频率。

°当传感器用于甚低频测量时,能否准确测量低频信号并不完全决定与系统的低频响应特性,系统的低频电噪声大小也将直接影响低频信号的测量。另外传感器的瞬态温度响应大小也将直接影响传感器的低频测量。

?传感器的整体封装设计与电缆

·传感器的封装形式

压电式传感器的工作原理是利用敏感芯体的压电效应,而压电材料产生的是高阻抗的电荷信号。传感器敏感芯体的绝缘阻抗与传感器的低频测量截止频率存在着相互对应的关系。为了保证传感器的低频响应,传感器壳体封装设计应使敏感芯体与外界隔绝,以防止压电陶瓷受到任何污染而导致其绝缘阻抗下降。敏感芯体绝缘阻抗下降对传感器性能造成的直接影响表现为低频响应变差,严重时还将造成传感器灵敏度改变。为保证传感器的密封特性,大多传感器的封装采用激光焊接。同时在当今密封材料品种多样,性能日益完善的情况下,针对不同的使用环境,采用合适的密封材料替代激光焊接也能达到传感器密封的要求。但必须指出不同的密封材料效果差异很大。北智公司采用国外知名品牌的密封材料并经过通过了多年的环境厉行试验验证。

在工业现场测试现场,为防止电磁场对传感器信号的影响,对用于工业现场的在线监测传感器往往要求传感器采用双重屏蔽壳封装形式。双层屏蔽结构的传感器输出接头一般采用双芯工业接头或联体电缆输出形式。由于双层屏蔽壳的结构特点和双芯输出电缆,传感器的高频特性一般将受到较大的制约,因此如果用户必须选用双层屏蔽型传感器进行高频振动信号测量,应谨慎考虑。

·传感器输出接头形式

M5 (M6) 接头是加速度传感器最为常用的输出接头形式。M5接头特点是尺寸较小,一般配用直径较细的电缆 (2mm 或 3mm ),比较适合振动实验的测试。另外M5 (M6) 的结构型式对信号屏蔽较好,所以对电荷输出型加速度传感器因其输出为较容易受干扰的高阻抗信号一般均采用M5 (M6) 接头。测量振动的加速度传感器接头一般避免使用Q9 (BNC), 原因是Q9 (BNC),接头组件没有螺纹联接,构件之间的机械耦合刚度较低;因此如果加速度传感器输出采用Q9(BNC),,其将会影响传感器的高频响应。

用于工业环境下的振动测量加速度传感器按可分为巡回检测和在线监测,前者一般采用单层壳屏蔽型式,因此传感器的接头较多使用M6 或TNC接头。而在线监测因经常采用双层屏蔽的结构型式,与其对应的电缆为双芯屏蔽电缆,所以双芯工业接头如M12, M16 以及C5015均被广泛使用。另外连体电缆具有较高的可靠性,因此在工业环境下使用的传感器无论是单层和双层屏蔽的结构都广泛采用连体电缆为输出接头的形式。

需要指出的是无论是那一种输出接头对水下测量都有其局限性,即使传感器本身密封性能达到要求,但电缆联接一般都需要做特殊处理后才能用于水下测量。

·电缆的选择

对输出为高阻抗信号的电荷型压电型传感器而言,为保证测量信号不受因电缆移动而造成噪声的影响,传感器的输出信号电缆一般都采用低噪声电缆。而输出为低阻抗电压信号的IEPE 传感器,低噪声电缆并不一定是必需的。高频,低频信号对电缆不同要求的典型的例子是多轴向测量传感器的电缆,多通道高阻抗信号的电缆必须是各自独立的低噪声屏蔽电缆,而多通道低阻抗的电压信号便可采用多芯绞线加屏蔽的电缆。

在通用型传感器的电缆配备中因考虑到电缆的重量和成本,Φ2 mm 直径的低噪声电缆为加速度传感器的标准配置。工业现场用的传感器一般以IEPE 型为主,电缆本身的强度也成为重要考虑因素,因此Φ3 mm 直径的低噪声电缆和Φ4.5 mm 直径的普通同轴屏蔽电缆成为最常使用的电缆。而对双层屏蔽壳设计的IEPE 型传感器的电缆配置均为双绞芯线外加屏蔽的电缆。

在加速度传感器输出信号电缆的选择中,除电缆结构外,其他最经常考虑的指标是电缆的应用温度以及在工业现场测试中电缆外层材料耐腐蚀的能力。最为普遍使用的电缆绝缘材料为PVC, 使用温度范围为-40o C 到+105o C 。对应用环境较恶劣的场合,最经常选用的电缆绝缘材料为聚四氟乙烯;其使用温度范围为-45o C 到+250o C,且耐腐蚀能力也优于其它大多数电缆绝缘材料。但用四氟材料做的电缆柔性较差,价格也远高于PVC 材料。

?外界环境对测量传感器的影响

·传感器横向灵敏度及横向振动对测量的影响

由于压电材料自身特性,敏感芯体的结构设计和制造精度偏差使传感器不可避免地对横向振动产生输出信号,其大小由横向输出和垂直方向输出的比值百分数来表示。

根据不同敏感芯体结构和材料特性的组合,压缩型结构在理论上便存在横向输出,需要通过装配调节的方式给予抵消,而在实际制造过程中很难实现真正的抵消,因此压缩型加速度传感器的横向灵敏度的离散度很大。与压缩型相比剪切型设计在理论上不存在横向输出,传感器的实际横向输出一般是由材料加工和装配精度所引起的误差。所以从这两种敏感芯体的实际对比结果来看,剪切型压电加速度传感器的横向灵敏度普遍优于压缩型式。而敏感芯体为弯曲梁结构形式的横向灵敏度一般说介于剪切型和压缩型之间。根据敏感芯体的结构特性,在其受横向振动时与垂直方向振动一样,也有相应的结构频率响应。所以横向振动也同样可能在某一频率点产生谐振,以至产生较大的横向振动偏差。

·温度对传感器输出的影响

温度改变而引起传感器输出变化是由压电材料(敏感芯体)特性所造成的。根据压电材料的分类,石英晶体受温度影响最小,而人工合成晶体的使用温度甚至高于石英;但在商业化的压电加速度传感器中最多使用的压电材料还是压电陶瓷。压电陶瓷敏感芯体的输出高温时随温度上升而增大,低温时随温度降低而减小;但传感器输出与温度间并不呈线性变化,一般说低温时的输出变化比高温时的要大。另因为各传感器的温度响应很难保持一致,所以实际使用中传感器的输出一般很少用温度系数进行修正。典型温度响应曲线或温度系数一般只作为对传感器温度特性的衡量。压电陶瓷对温度响应除材料本身特性之外,生产工艺也将直接影响压电材料对温度的响应,而同种材料对温度响应的离散度更是如此。同样是锆钛酸铅材料,不同的厂商由于采用不同的生产工艺,使得相同材料的压电陶瓷而其各自的使用温度范围,温度响应和温度响应的离散度相差甚大。综合对压电材料的基础研究和生产加工工艺,目前国内压电陶瓷的温度特

性与国外先进水准相比还有一定差距;为确保用户对传感器的特殊要求,北智采用进口压电陶瓷,使传感器的高温使用温度可在 +250o C 下长期使用,而且温度响应及其离散度都好于国产压电陶瓷。

不同的敏感芯体结构设计对温度的变化的响应会产生不同的结果。由于不同材料有不同的线膨胀系数,因此温度变化必然使压电材料和金属配件之间产生因线膨胀系数不同而造成的应力变化;这种由温度产生的应力使压缩式和弯曲梁型的敏感芯体产生输出信号,有时这种温度变化引起的输出会大于振动测量信号(特别在低频测量中)。需要特别指出温度变化有稳态和瞬态两种,传感器输出灵敏度随温度变化通常是指稳态高低温度状态对信号输出的影响。瞬态温度变化对传感器输出的影响主要表现在低频测量中,请参看应用〉低频测量

·传感器的基座应变灵敏度

传感器受被测物体在传感器安装处应变的影响,可能导致传感器输出的变化。传感器的基座应变灵敏度一般由传感器基座刚度,传感器与被测件的接触面积以及敏感芯体结构设计形式所决定。剪切结构形式的敏感芯体与传感器基座间的接触面积很小,因而剪切芯体受基座应变的作用也相对较小,且这种应变并不直接导致压电陶瓷的输出。所以剪切敏感芯体传感器的基座应变灵敏度指标通常比压缩式的要好,在无需改变传感器的基座刚度以及与被测件的接触面积情况下(改变这两点都将影响传感器的频率响应指标),剪切型传感器一般都能满足大部分结构测量的要求。

·声场和磁场对传感器的影响

声波和磁场对传感器的作用也都可能引起信号输出,这种输出的大小与传感器灵敏度的比值被称作为压电传感器的声灵敏度和磁灵敏度。

声灵敏度是表示传感器在强声场的作用下,加速度传感器的输出值。加速度信号输出主要是声波通过对传感器外壳体的作用,再由外壳体传输给内部的敏感芯体而导致的信号输出。最直接减小传感器声灵敏度的方法是增加传感器外壳的厚度,绝大多数传感器的这一指标都能满足通常的测量条件。

磁灵敏度是表示传感器在强交变磁场作用下,加速度传感器的输出值。传感器内部敏感芯体受磁力的作用而导致信号输出是传感器产生磁灵敏度的基本原因。因此在传感器设计中,金属零部件尽量采用无磁或弱磁的材料是降低传感器磁灵敏度最直接的措施。另外双层屏蔽壳结构形式也能较好地减小传感器的磁灵敏度,同时双层屏蔽壳形式还能有效地防止磁场对输出电信号的干扰。

加速度传感器传感器课程设计

一、 设计要求 1、功能与用途 加速度传感器在现代生产生活中被应用于许许多多的方面,如手提电脑的硬盘抗摔保护,另外一个用处就是目前用的数码相机和摄像机里,也有加速度传感器,用来检测拍摄时候的手部的振动,自动调节相机的聚焦。而这些产品中由于要求对温度的干扰有很大的免疫力,其中采用的都是压电式加速度传感器。压电加速度传感器还应用于汽车安全气囊、防抱死系统、牵引控制系统等安全性能方面,灵敏度是压电加速度传感器应用时候要考虑到的重要因素之一。 概括起来,加速度传感器可应用在控制,手柄振动和摇晃,仪器仪表,汽车制动启动检测,地震检测,报警系统,玩具,环境监视,工程测振、地质勘探、铁路、桥梁、大坝的振动测试与分析;鼠标,高层建筑结构动态特性和安全保卫振动侦察上。 2、指标要求 分别用压电式传感器、电阻应变式传感器、电容传感器实现加速度的测量将非电量转化为电量输出。 二、设计方案及其特点 依据压电效应、电阻应变效应以电容相关的物理参数及性质随外力而变化的特性,可制作成压电式加速度传感器、电阻应变式加速度传感器及电容式加速度传感器。三种加速度传感器的设计及特点分别叙述如下: 1、方案一 压电式加速度传感器 压电加速度测量系统结构框图如图1所示: 压电加速度传感器采用具有压电效应的压电材料作基本元件 ,是以压电材料受力后在其表面产生电荷的压电效应为转换原理的传感器。这些压电材料 ,当沿着一定 压电加速度 传感器 电荷放大器 信号处理电 路 A/D 转 换电路 图1 压电加速度测量系统结构框图

方向对其施力而使它变形时,内部就产生极化现象 ,同时在它的两个相对的表面上便产生符号相反的电荷;当外力去掉后 ,又重新恢复不带电的状态;当作用力的方向改变时 ,电荷的极性也随着改变。电信号经前置放大器放大 ,即可由一般测量仪器测试出电荷(电压)大小 ,从而得出物体的加速度 加速度计的使用上限频率取决于幅频曲线中的共振频率图2。 方案二 电阻应变式加速度传感器 应变式加速度传感器主要用于物体加速度的测量。其基本工作原理是:物体运动的加速度与作用在它上面的力成正比,与物体的质量成反比,即a=F/m 。 图3中1是等强度梁,自由端安装质量块2,另一端固定在壳体3上。等强度梁上粘贴四个电阻应变敏感元件4 。 测量时,将传感器壳体与被测对象刚性连接,当被测物体以加速度a 运动时,质量块受到一个与加速度方向相反的惯性力作用, 使悬臂梁变形,该变形被粘贴在悬臂梁上的应变片感受到并随之产生应变,从而使应变片的电阻发生变化。 电阻的变化引起应变片组成的桥路出现不平衡,从而输出电压, 即可得出加速度a 值的大 图2 压电式加速度计的幅频特性曲线 3 2 1 4 1—等强度梁;2—质量块;3—壳体; 4—电阻应变敏感元体 图3 应变式加速度传感器结构

手机里的传感器

关于手机传感器的认识 1、加速传感器(重力感应) 原理:现代加速传感器有单轴、两轴、三轴之分。手机上常见的是电容式芯片三轴加速传感器,主要由双芯片构成,即重力测量单元和控制电路单元。在每个方向上,封装部分内有一小块可移动的电极板和两块不可移动的电极板,当可移动电极板受到加速作用时,会产生惯性力,从而影响与左右两个不可移动电极板的间隔,使得电容值改变,促进电容电压值的变化,以此可以计算出加速度。 功能:加速度有两种,一个是静态的加速度,把加速度传感器倾斜一个角度,重力场会在感应场上产生一个分量,通过这个分量,可以测量出手机倾斜了多少角度,由此实现一些前后左右的控制;另外一种就是所谓的动态加速度,可以侦测速度、撞击等.手机通过加速传感器能够实时的获得手机的移动状态,其最初的用途是用来检测手机是竖放还是横放,从而决定是横屏显示还是竖屏显示。随着三轴加速器普及,手机能够识别横放竖放,正面横放、背面横放,正面竖放、背面竖放状态,从而可以实现摇晃手机操作,翻转静音功能等;加速传感器另一个重大用处就是利用手机摇晃来玩游戏,戏中得到充分表现,从而代替传统游戏手柄。 2、距离传感器 工作原理:距离感应器又叫位移传感器,距离感应器一般都在手机听筒的两侧或者是在手机听筒凹槽中,这样便于它的工作。通过发射特别短的光脉冲,并测量此光脉冲从发射到被物体反射回来的时间,通过测时间来计算与物体之间的距离。用各种元件检测对象物的物理变化量,通过将该变化量换算为距离,来测量从传感器到对象物的距离位移的机器。根据使用元件不同,分为光学式位移传感器、线性接近传感器、超声波位移传感器等。 应用:这个传感器在手机上的应用是当我们打电话时,手机屏幕会自动熄灭,当你脸离开,屏幕灯会自动开启,并且自动解锁。这个对于待机手机较短的智能手机来说是相当实用的。现在很多智能手机都装备的这个传感器。此外,距离感应还可应用到一些特殊的功能,例如Galaxy Note II中的”快速一览”功能。 3、气压传感器 原理:气压传感器的工作是通过一个对压强很敏感的薄膜元件工作,薄膜连接了一个柔性电阻,当大气压变化时候,就会导致电阻阻值产生变化。气压传感器的作用主要用于检测大气压、当前高度以及辅助GPS定位。

压电式加速度传感器

HEFEI UNIVERSITY OF TECHNOLOGY 《传感器原理及应用》课程 考核论文 题目压电式加速度传感器班级机设七班 学号 20111488 姓名孙国强 成绩 机械与汽车工程学院机械电子工程系 二零一四年五月

压电式加速度传感器 摘要:现代工业和自动化生产过程中,非电物理量的测量和控制技术会涉及大量的动 态测试问题。所谓动态测试是指量的瞬时值以及它随时间而变化的值的确定,即被测量为变量的连续测量过程。振动与冲击测量的核心是传感器,常用压电加速度传感器来获取冲击和振动信号。压电式传感器是基于某些介质材料的压电效应,当材料受力作用而变形时,其表面会有电荷产生,从而实现非电量测量。其中,压电式加速度传感器是以压电材料为转换元件,将加速度输入转化成与之成正比的电荷或电压输出的装置,具有结构简单、重量轻、体积小、耐高温、固有频率高、输出线性好、测量的动态范围大、安装简单的特点。 一、传感器物理效应及工作原理 压电效应:某些材料在受力时所产生的电极化现象。正压电效应:某些电介质在受到某一方向的机械力而变形时,在一定表面上产生电荷,若外力变向,电荷极性随之而变;当撤除外力后,又重新回到不带电状态。逆压电效应:当在电介质的极化方向施加电场,电场力使其在一定方向上产生机械变形或机械应力;当撤除外加电场时,变形或应力随之消失,又称电致伸缩效应。 压电材料:石英晶体是目前广泛应用成本较低的人造石英晶体,有很大的机械强度和稳定的机械性能,温度稳定性好,但灵敏度低,介电常数小,因此逐渐被其他压电材料所代替,至今石英仍是最重要的也是用量最大的振荡器、谐振器和窄带滤波器等元件的压电材料。除此之外,压电陶瓷有较高的压电系数和介电常数,灵敏度高,但机械强度不如石英晶体好。 压电式加速度传感器又称为压电加速度计,它是典型的有源传感器,利用某些物质如石英晶体、人造压电陶瓷的压电效应,在加速度计受振时,质量块加在压电元件上的力也随之变化。压电敏感元件是力敏元件,在外力作用下,压电敏感元件的表面上产生电荷,从而实现非电量电测量的目的。 压电加速度传感器的原理框图如图1所示,原理如图2所示。

力平衡加速度传感器原理设计t

力平衡加速度传感器原理设计 摘要:本文介绍了一种力平衡加速度传感器的原理设计方法。差容式力平衡加速度传感器在传统的机械传感器的基础上,采用差动电容结构,利用反馈原理把被测的加速度转换为电容器的电容量变化,将加速度的变化转变为电压值。使传感器的灵敏度、非线性、测量范围等性能得到很大的提高,使其在地震、建筑、交通、航空等各领域得到广泛应用。 关键词:加速度差容式力平衡传感器 加速度传感器是用来将加速度这一物理信号转变成便于测量的电信号的测试仪器。它是工业、国防等许多领域中进行冲击、振动测量常用的测试仪器。 1、加速度传感器原理概述 加速度传感器是用来将加速度这一物理信号转变成便于测量的电信号的测试仪器。差容式力平衡加速度传感器则把被测的加速度转换为电容器的电容量变化。实现这种功能的方法有变间隙,变面积,变介电常量三种,差容式力平衡加速度传感器利用变间隙,且用差动式的结构,它优点是结构简单,动态响应好,能实现无接触式测量,灵敏度好,分辨率强,能测量0.01um甚至更微小的位移,但是由于本身的电容量一般很小,仅几pF至几百pF,其容抗可高达几MΩ至几百 MΩ,所以对绝缘电阻的要求较高,并且寄生电容(引线电容及仪器中各元器件与极板间电容等)不可忽视。近年来由于广泛应用集成电路,使电子线路紧靠传感器的极板,使寄生电容,非线性等缺点不断得到克服。 差容式力平衡加速度传感器的机械部分紧靠电路板,把加速度的变化转变为电容中间极的位移变化,后续电路通过对位移的检测,输出

一个对应的电压值,由此即可以求得加速度值。为保证传感器的正常工作.,加在电容两个极板的偏置电压必须由过零比较器的输出方波电压来提供。 2、变间隙电容的基本工作原理 如式2-1所示是以空气为介质,两个平行金属板组成的平行板电容器,当不考虑边缘电场影响时,它的电容量可用下式表示: 由式(2-1)可知,平板电容器的电容量是、A、的函数,如果将上极板固定,下极板与被测运动物体相连,当被测运动物体作上、下位移(即变化)或左右位移(即A变化)时,将引起电容量的变化,通过测量电路将这种电容变化转换为电压、电流、频率等电信号输出根据输出信号的大小,即可测定物体位移的大小,若把这种变化应用到电容式差容式力平衡传感器中,当有加速度信号时,就会引起电容变化 C,然后转换成电压信号输出,根据此电压信号即可计算出加速度的大小。 由式(2-2)可知,极板间电容C与极板间距离是成反比的双曲线关系。由于这种传感器特性的非线性,所以工作时,一般动极片不能在

加速度传感器的选择

加速度传感器选型 压电加速度传感器因其频响宽、动态范围大、可靠性高、使用方便,受到广泛应用。在一般通用振动测量时,用户主要关心的技术指标为:灵敏度、频率范围,内部结构、内置电路型与纯压电型的区别,现场环境与后续仪器配置等。 一、灵敏度的选择 制造商在产品介绍或说明书中一般都给出传感器的灵敏度和参考量程范围,目的是让用户在选择不同灵敏度的加速度传感器时能方便地选出合适的产品,最小加速度测量值也称最小分辨率,考虑到后级放大电路噪声问题,应尽量远离最小可用值,以确保最佳信噪比。最大测量极限要考虑加速度传感器自身的非线性影响和后续仪器的最大输出电压。 估算方法:最大被测加速度×传感器电荷(电压)灵敏度,其数值是否超过配套仪器的最大输入电荷(电压)值。建议如已知被测加速度范围可在传感器指标中的“参考量程范围”中选择(兼顾频响、重量),同时,在频响、质量允许的情况下,尽量选择高灵敏度的传感器,以提高后续仪器输入信号,提高信噪比。在兼顾频响、质量的同时,可参照以下范围选择传感器灵敏度:以电荷输出型压电加速度传感器为例: 1、土木工程和超大型机械结构的振动在0.1g-10g (1g=9.81m/s2)左右,可选电荷灵敏度在300pC/ms-2~ 30pC/ms-2的压电加速度传感器,属于电荷输出型压电加速度传感器 2、特殊的土木结构(如桩基)和机械设备的振动在100ms-2~1000ms-2,可选择20pC/ms-2~2pC/ms-2的加速度传感器。 3、冲击,碰撞测量量程一般10000ms-2~1000000ms-2,可选则传感器灵敏度是0.2pC/ms-2~ 0.002pC/ms-2的加速度传感器。 二、频率选择 制造商给出的加速度传感器的频响曲线是用螺钉刚性连接安装的。 一般将曲线分成二段:谐振频率和使用频率。使用频率是按灵敏度偏差给出的,有±10%、±5%、±3dB。谐振频率一般是避开不用的,但也有特例,如轴承故障检测。选择加速度传感器的频率范围应高于被测试件的振动频率。有倍频分析要求的加速度传感器频率响应应更高。土木工程一般是低频振动,加速度传感器频率响应范围可选择0.2Hz~1kHz,机械设备一般是中频段,可根据设备转速、设备刚度等因素综合估算振动频率,选择0.5Hz~ 5kHz 的加速度传感器。如发电机转速在3000rms 时,除以60s 此时它的主频率为50Hz。碰撞、冲击测量高频居多。 加速度传感器的安装方式不同也会改变使用频响(对振动值影响不大)。 安装面要平整、光洁,安装选择应根据方便、安全的原则。我们给出同一只AD500S 加速度传感器不同安装方式的使用频率:螺钉刚性连接(±10%误差)10kHz;环氧胶或“502”粘接安装6kHz;磁力吸座安装 2kHz;双面胶安装1kHz。由此可见,安装方式的不同对测试频率的响应影响很大,应注意选择。加速度传感器的质量、灵敏度与使用频率成反比,灵敏度高,质量大,使用频率低,这也是选择的技巧。 三、内部结构 内部结构是指敏感材料晶体片感受振动的方式及安装形式。有压缩和剪切两大类,常见的有中心压缩、平面剪切、三角剪切、环型剪切。 中心压缩型频响高于剪切型,剪切型对环境适应性好于中心压缩型。如配用积分型电荷放大器测量速度、位移时,最好选用剪切型产品,这样所获得的信号波动小,稳定性好。 四、内置电路 内置的概念是将放大电路置于加速度传感器内,成为具有电压输出功能的传感元件。它可分双电源(四线)和单电源(二线、带偏置,又称ICP) 两种,下面所指内装电路专指ICP

加速度传感器在汽车领域的应用

Endevco (恩德福克)加速度传感器在汽车领域的应用 近30年来,Endevco 的压阻式加速度传感器已成为汽车障碍物及模拟假人安全性测试的行业标准。Endevco 的压电式,集成压电式和可变电容式加速度传感器能够用于汽车发动机,排气系统,部件和停车系统的动态测试是基于它尺寸微小,耐高温及结构牢固的特点。Endevco 压力传感器主要是用于防刹车锁死系统(ABS ),传动装置,燃料油系统以及安全气囊充气器等汽车检测系统的测试。这些压力传感器运用了先进的硅微技术元件并能产生高宽频响和高信号输出,从而使其成为那些过去由于尺寸原因而无法实现应用的理想选择。 Endevco 加速度传感器是有国家公路交通安全管理局(NHTSA )和其他政府机构认定的用于制定原厂规格的首要产品。同时继续提供技术指导,Endevco 的碰撞传感器已经达到或超过了SAE 规格的J211和J2579的要求。 Model 7264系列是一组重量只有1g 的压阻式加速度传感器。用于颤振试验,模型检验,生物动态测试及其他相关领域,要求低质量加载且宽频率响应。还可以用于轻量级物件的冲击测试,符合模拟假人测试SAEJ211规格。高精度的型号及各种线缆和连接器可供选择 Model 7264B 相对Model 7264有所改进。它利用了一个先进的带有完整机 械限动气的微型元件。这个单片传感器相对原来的设计提供了更加良好的坚固性,稳定性和可靠性。Model 7264B 阻尼极小,因此在有效频率范围内不会产生相位移。Model 7264B 符合SAEJ211冲击试验性能规格和SAEJ2570假人测试装置传感器规格。高精度的型号及各种线缆和连接器可供选择。 Model 7264C 相对Model 7264有所改进。并可直接替换Model 7264,因为测 震质量的中心位置是相同的。它利用了一个先进的带有完整机械限动器的微型元件。Model 7264C 同样符合SAEJ211冲击试验性能和SAEJ2570假人测试装置传感器规格。高精度的型号及各种线缆和连接器可供选择。 Model 7264D 相对这个类型的其他型号的传感器做了很大的改进。它大于 40000HZ 的高谐振频率可以使其在不受杂散影响的情况下对许多频率作出响应。可直接替换Model 7264和Model 7264C ,因为测震质量的中心位置是相同的。Model 7264D 同样符合SAEJ211冲击试验性能和SAEJ2570假人测试装置传感器规格。Model 7264D 可提供优良的线性,标准低横向灵敏度和低零测量输出(ZMO )误差。有各种线缆和连接器供选择。 Model 7231C-750是一款专为汽车碰撞试验研究的坚固,无阻尼,中等g 值的压阻式加速度传感器。已经成为假人响应研究的FMVSS208标准,可用来测量假人头部、胸部 、臀部及身体其他部位的加速度进而研究车辆安全性能及约束设计。高精度的型号及各种线缆和连接器可供选择。 Model 7265A 系列是一组低质量的压阻式加速度传感器,它是专为那些要求 G&P Technology 冠标科技有限公司 Endevco

重力传感器

重力传感器 一、简介: 敏感元件制成的储能弹簧来驱动电触点,完成从重力变化到电信号的转换。目 前绝大多数中高端智能手机和平板电脑 内置了重力传感器,如苹果的系列产品 iphone和iPad, Android系列的手机等。 重力传感器在手机横竖的时候屏幕会自 动转,在玩游戏可以代替上下左右,比如 说玩赛车游戏,可以不通过按键,将手机 平放,左右摇摆就可以代替模拟机游戏的 方向左右移动了。 二、工作原理: “对于不存在对称中心的异极晶体加在晶体上的外力除了使晶体发生形变以外,还将改变晶体的极化状态,在晶体内部建立电场,这种由于机械力作用使介质发生极化的现象称为正压电效应”。 (2)重力传感器就是利用了其内部的由于加速度造成的晶体变形这个特性。由于这个变形会产生电压,只要计 算出产生电压和所施加的加速度之间 的关系,就可以将加速度转化成电压输 应,光效应,但是其最基本的原理都是 由于加速度产生某个介质产生变形,通 过测量其变形量并用相关电路转化成 电压输出。

三、应用: (1)、通过重力传感器测量由于重力引起的加速 度,可以计算出设备相对于水平面的倾斜角度。通过 分析动态加速度,你可以分析出设备移动的方式。但 是刚开始的时候,你会发现光测量倾角和加速度好像 不是很有用。但是现在工程师们已经想出了很多方法 获得更多的有用的信息。 (2)、加速度传感器可以帮助仿生学机器人了解它现在身处的环境。是在爬山,还是在走下坡,是否摔倒。或者对于飞行类的机器人来说,对于控制姿态也是至关重要的。一个好的程序员能够使用加速度传感器来回答所有上述问题。 (3)、重力传感器可以用来分析发动机的振动。 (4)、重力传感器在进入消费电子市场之前,实际上已被广泛应用于汽车电子领域,主要集中在车身操控、安全系统和导航,典型的应用如汽车安全气囊(Airbag)、ABS防抱死刹车系统、电子稳定程序(ESP)、电控悬挂系统等。 四、手机应用: 重力感应器是由苹果公司率先开发的 用在了iphone和ipod-nano4上面。说的 简单点就是,你本来把手机拿在手里是竖 着的,你将它转90度,横过来,它的页面 就跟随你的重心自动反应过来,也就是说 页面也转了90度,极具人性化。

应变片式加速度传感器设计

应变片式加速度传感器设计

应变片式加速度传感器 姓名: 学号: 院(系):电气工程学院 专业名称:电气工程及其自动化班级:电气2(专升本)

2015年5月20日 说明书摘要 通过应变片感应加速度的变化,并把应变片接到直流电桥中,通过电阻的变化引起直流电桥电压的变化,再将电桥输出的电压通过逻辑电路放大输出,然后将输出的电压信号送到控制中心,从而达到对加速度进行实时监控的目的。其结构由(1)惯性质量块(2)应变量 (3) 硅油阻尼液 (4)应变片 (5)温度补偿电阻 (6)绝缘套管 (7)接线柱 (8)电缆 (9)压线柱 (10)壳体 (11)限位块组成。应变片式加速度传感器通过敏感栅将低频运动物体的加速度转化为应变片的应变,引起电桥桥臂电阻的变化,经过温度补偿、放大后输出加速度信号。其特点为应变片式加速度传感器具有体积小、低功耗、结构简单、抗干扰能力强、运行稳定、经济性好。 1

权利要求书 1、通过应变片感应加速度的变化,并把应变片接到直流电桥中,通过电阻的变化引起直流电桥电压的变化,再将电桥输出的电压通过逻辑电路放大输出,然后将输出的电压信号送到控制中心,从而达到对加速度进行实时监控的目的。其结构由(1)惯性质量块(2)应变量 (3 )硅油阻尼液 (4)应变片 (5)温度补偿电阻 (6)绝缘套管 (7)接线柱 (8)电缆 (9)压线柱 (10)壳体 (11)限位块组成。电桥采用直流12V电源供电,采用稳压的直流电源供电,运放器采用双电源供电,电源电压为±12V。 2、加速度传感器的敏感轴检测输入加速度,并将其作用转换为电阻应变片阻值的变化,通过变送电路,将这种变化转换为对应的电压输出,从而达到测量加速度的目的。传感器的主要量程:±20g;输出:0~5V;零位输出:2.5V,用应变片测量的应变是通过测量敏感栅的电阻相对变化来得到。应变片灵敏度系数很小(K≈2),而机械应变一般在10με~3000με之间(有时也可达到6000με),电阻相对变化是很小的,需要采用差动电桥。当悬臂梁发生形变时,应变片的电阻值发生改变,全桥式布片应变引起应变片电阻的变化,从而达到测量振动加速度的目的。当悬臂梁受到加速度作用时,其自由端必将发生位移,通过计算得到加速度—电压的转换关系。

加速度传感器原理与应用简介

加速度传感器原理与应用简介 1、什么是加速度传感器 加速度传感器是一种能够测量加速力的电子设备。加速力就是当物体在加速过程中作用在物体上的力,就好比地球引力,也就是重力。加速力可以是个常量,比如g,也可以是变量。 加速度计有两种:一种是角加速度计,是由陀螺仪(角速度传感器)的改进的。另一种就是线加速度计。 2、加速度传感器一般用在哪里 通过测量由于重力引起的加速度,你可以计算出设备相对于水平面的倾斜角度。通过分析动态加速度,你可以分析出设备移动的方式。但是刚开始的时候,你会发现光测量倾角和加速度好像不是很有用。但是,现在工程师们已经想出了很多方法获得更多的有用的信息。 加速度传感器可以帮助你的机器人了解它现在身处的环境。是在爬山?还是在走下坡,摔倒了没有?或者对于飞行类的机器人来说,对于控制姿态也是至关重要的。更要确保的是,你的机器人没有带着炸弹自己前往人群密集处。一个好的程序员能够使用加速度传感器来回答所有上述问题。加速度传感器甚至可以用来分析发动机的振动。 目前最新IBM Thinkpad手提电脑里就内置了加速度传感器,能够动态的监测出笔记本在使用中的振动,并根据这些振动数据,系统会智能的选择关闭硬盘还是让其继续运行,这样可以最大程度的保护由于振动,比如颠簸的工作环境,或者不小心摔了电脑做造成的硬盘损害,最大程度的保护里面的数据。另外一个用处就是目前用的数码相机和摄像机里,也有加速度传感器,用来检测拍摄时候的手部的振动,并根据这些振动,自动调节相机的聚焦。 概括起来,加速度传感器可应用在控制,手柄振动和摇晃,仪器仪表,汽车制动启动检测,地震检测,报警系统,玩具,结构物、环境监视,工程测振、地质勘探、铁路、桥梁、大坝的振动测试与分析;鼠标,高层建筑结构动态特性和安全保卫振动侦察上。 3、加速度传感器是如何工作的 线加速度计的原理是惯性原理,也就是力的平衡,A(加速度)=F(惯性力)/M(质量)我们只需要测量F就可以了。怎么测量F?用电磁力去平衡这个力就可以了。就可以得到F 对应于电流的关系。只需要用实验去标定这个比例系数就行了。当然中间的信号传输、放大、滤波就是电路的事了。 现代科技要求加速度传感器廉价、性能优越、易于大批量生产。在诸如军工、空间系统、科学测量等领域,需要使用体积小、重量轻、性能稳定的加速度传感器。以传统加工方法制造的加速度传感器难以全面满足这些要求。于是应用新兴的微机械加工技术制作的微加速度传感器应运而生。这种传感器体积小、重量轻、功耗小、启动快、成本低、可靠性高、易于实现数字化和智能化。而且,由于微机械结构制作精确、重复性好、易于集成化、适于大批量生产,它的性能价格比很高。可以预见在不久的将来,它将在加速度传感器市场中占主导地位。 微加速度传感器有压阻式、压电式、电容式等形式。 ·压电式 压电式传感器是利用弹簧质量系统原理。敏感芯体质量受振动加速度作用后产生一个与加速度成正比的力,压电材料受此力作用后沿其表面形成与这一力成正比的电荷信号。压电式加速度传感器具有动态范围大、频率范围宽、坚固耐用、受外界干扰小以及压电材料受力自产生电荷信号不需要任何外界电源等特点,是被最为广泛使用的振动测量传感器。虽然压

MEMS加速度传感器的原理与构造

微系统设计与应用 加速度传感器的原理与构造 班级:2012机自实验班 指导教师:xxx 小组成员:xxx xx大学机械工程学院 二OO五年十一月

摘要 随着硅微机械加工技术(MEMS)的迅猛发展,各种基于MEMS技术的器件也应运而生,目前已经得到广泛应用的就有压力传感器、加速度传感器、光开关等等,它们有着体积小、质量轻、成本低、功耗低、可靠性高等特点,而且因为其加工工艺一定程度上与传统的集成电路工艺兼容,易于实现数字化、智能化以及批量生产,因而从问世起就引起了广泛关注,并且在汽车、医药、导航和控制、生化分析、工业检测等方面得到了较为迅速的应用。其中加速度传感器就是广泛应用的例子之一。加速度传感器的原理随其应用而不同,有压阻式,电容式,压电式,谐振式等。本文着手于不同加速度传感器的原理、制作工艺及应用展开,能够使之更加全面了解加速度传感器。 关键词:加速度传感器,压阻式,电容式,原理,构造

目录 1 压阻式加速度传感器 (2) 1.1 压阻式加速度传感器的组成 (2) 1.2 压阻式加速度传感器的原理 (2) 1.2.1 敏感原理 (3) 1.2.2 压阻系数 (4) 1.2.3 悬臂梁分析 (5) 1.3 MEMS压阻式加速度传感器制造工艺 (6) 1.3.1结构部分 (6) 1.3.2 硅帽部分 (8) 1.3.3键合、划片 (9) 2电容式加速度传感器 (9) 2.1电容式加速度传感器原理 (9) 2.1.1 电容器加速度传感器力学模型 (9) 2.1.2电容式加速度传感器数学模型 (11) 2.2电容式加速度传感器的构造 (12) 2.2.1机械结构布局的选择与设计 (12) 2.3.2材料的选择 (14) 2.3.3工艺的选择 (15) 2.3.4具体构造及加工工艺 (16) 3 其他加速度传感器 (18) 3.1 光波导加速度计 (18) 3.2微谐振式加速度计 (18) 3.3热对流加速度计 (19) 3.4压电式加速度计 (19) 4 加速度传感器的应用 (20) 4.1原理 (20) 4.2 功能 (20) 参考文献 (22)

手机中常用传感器的介绍

手机中常用传感器的介绍 它们的设计者是如何想到这样的设计的呢?我们又该如何从中学习?也许我在下面介绍的会是一种可能的思路。 摇一摇和Bump等优秀的设计都是离不开一种叫做传感器的装置的,它们是实现这些功能所依赖的基础,因此我觉得开发者们有必要从人机交互设计的根源处进行思考,或许深入根源就能得到不一样的启示。 传感器(transducer/sensor)是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。它是实现自动检测和自动控制的首要环节。国标GB7665-87对传感器的定义是:“能感受规定的被测量件并按照一定的规律(数学函数法则)转换成可用信号的器件或装置,通常由敏感元件和转换元件组成”。我们的手机中,早就装备了各种各样的微型传感器,因此有必要充分利用这些传感器给我们带来的价值!以下将简要介绍几类常见的传感器。 重力传感器 工作原理:重力传感器是根据压电效应的原理来工作的。所谓的压电效应就是“对于不存在对称中心的异极晶体加在晶体上的外力除了使晶体发生形变以外,还将改变晶体的极化状态,在晶体内部建立电场,这种由于机械力作用使介质发生极化的现象称为正压电效应”。 重力传感器就是利用了其内部的由于加速度造成的晶体变形这个特性。由于这个变形会产生电压,只要计算出产生电压和所施加的加速度之间的关系,就可以将加速度转化成电压输出。 简单来说是测量内部一片重物(重物和压电片做成一体)重力正交两个方向的分力大小,来判定水平方向。通过对力敏感的传感器,感受手机在变换姿势时,重心的变化,使手机光标变化位置从而实现选择等功能。 应用案例:手机横竖屏幕切换、翻转静音、平衡球、各种射击、赛车游戏等。 重力传感器可谓是我们最熟悉的传感器了,一些非智能机上也有安装,基于重力传感器创造的各种应用与游戏也非常的多,可以说重力传感器已经被充分开发了,但是我们仍然能看见各种基于重力传感器的创意层出不穷,因此只要肯动脑子、有创意,它还是非常值得开发者关注的。 加速度传感器

加速度传感器

加速度传感器 一、简介 加速度传感器是一种能够测量加速度的传感器。通常由质量块、阻尼器、弹性元件、敏感元件和适调电路等部分组成。传感器在加速过程中,通过对质量块所受惯性力的测量,利用牛顿第二定律获得加速度值。根据传感器敏感元件的不同,常见的加速度传感器包括电容式、电感式、应变式、压阻式、压电式等。 二、分类 压电式 压电式加速度传感器又称压电加速度计。它也属于惯性式传感器。压电式加速度传感器的原理是利用压电陶瓷或石英晶体的压电效应,在加速度计受振时,质量块加在压电元件上的力也随之变化。当被测振动频率远低于加速度计的固有频率时,则力的变化与被测加速度成正比。 压阻式 基于世界领先的MEMS硅微加工技术,压阻式加速度传感器具有体积小、低功耗等特点,易于集成在各种模拟和数字电路中,广泛应用于汽车碰撞实验、测试仪器、设备振动监测等领域。 电容式 电容式加速度传感器是基于电容原理的极距变化型的电容传感器。电容式加速度传感器/电容式加速度计是对比较通用的加速度传感器。在某些领域无可替代,如安全气囊,手机移动设备等。电容式加速度传感器/电容式加速度计采用了微机电系统(MEMS)工艺,在大量生产时变得经济,从而保证了较低的成本。 伺服式 伺服式加速度传感器是一种闭环测试系统,具有动态性能好、动态范围大和线性度好等特点。其工作原理,传感器的振动系统由"m-k”系统组成,与一般加速度计相同,但质量m上还接着一个电磁线圈,当基座上有加速度输入时,质量块偏离平衡位置,该位移大小

由位移传感器检测出来,经伺服放大器放大后转换为电流输出,该电流流过电磁线圈,在永久磁铁的磁场中产生电磁恢复力,力图使质量块保持在仪表壳体中原来的平衡位置上,所以伺服加速度传感器在闭环状态下工作。由于有反馈作用,增强了抗干扰的能力,提高测量精度,扩大了测量范围,伺服加速度测量技术广泛地应用于惯性导航和惯性制导系统中,在高精度的振动测量和标定中也有应用。 三、应用 1、汽车安全 加速度传感器主要用于汽车安全气囊、防抱死系统、牵引控制系统等安全性能方面。 在安全应用中,加速度计的快速反应非常重要。安全气囊应在什么时候弹出要迅速确定,所以加速度计必须在瞬间做出反应。通过采用可迅速达到稳定状态而不是振动不止的传感器设计可以缩短器件的反应时间。其中,压阻式加速度传感器由于在汽车工业中的广泛应用而发展最快。 2、游戏控制 加速度传感器可以检测上下左右的倾角的变化,因此通过前后倾斜手持设备来实现对游戏中物体的前后左右的方向控制,就变得很简单。 3、图像自动翻转 用加速度传感器检测手持设备的旋转动作及方向,实现所要显示图像的转正。 4、电子指南针倾斜校正 磁传感器是通过测量磁通量的大小来确定方向的。当磁传感器发生倾斜时,通过磁传感器的地磁通量将发生变化,从而使方向指向产生误差。因此,如果不带倾斜校正的电子指南针,需要用户水平放置。而利用加速度传感器可以测量倾角的这一原理,可以对电子指南针的倾斜进行补偿。 5、GPS导航系统死角的补偿 GPS系统是通过接收三颗呈120度分布的卫星信号来最终确定物体的方位的。在一些特殊的场合和地貌,如遂道、高楼林立、丛林地带,GPS信号会变弱甚至完全失去,这也就是所谓的死角。而通过加装加速度传感器及以前我们所通用的惯性导航,便可以进行系统

常用加速度传感器有哪几种分类

1、常用加速度传感器有哪几种分类各有什么特点 答:加速度传感器按工作原理可分为压电式、压阻式和电容式。 压电式传感器是通过利用某些特殊的敏感芯体受振动加速度作用后会产生与之成正比的电荷信号的特性,来实现振动加速度的测量的,这种传感器一般都具有测量频率范围宽、量程大、体积小、重量轻、结构简单坚固、受外界干扰小以及产生电荷信号不需要任何外界电源等优点,它最大的缺点是不能测量零频率信号。 压阻式传感器的敏感芯体为半导体材料制成电阻测量电桥来实现测量加速度信号,这种传感器的频率测量范围和量程也很大,体积小重量轻,但是缺点也很明显,就是受温度影响较大,一般都需要进行温度补偿。 电容式传感器中一般有个可运动质量块与一个固定电极组成一个电容,当受加速度作用时,质量块与固定电极之间的间隙会发生变化,从而使电容值发生变化。它的优点很突出,灵敏度高、零频响应、受环境(尤其是温度)影响小等,缺点也同样突出,主要是输入输出非线形对应、量程很有限以及本身是高阻抗信号源,需后继电路给予改善。 相比之下,压电式传感器应用更为广泛一些,压阻式也有一定程度的应用,而电容式主要专用于低频测量。 2、压电式传感器又分哪几种 答:压电式传感器有多种分类方式。 按敏感芯体材料分为压电晶体(一般为石英)和压电陶瓷两类。压电陶瓷比压电晶体的压电系数要高,而且各项机电系数随温度时间等外界条件的变化相对较小,因此一般更常用的是压电陶瓷。 按敏感芯体结构形式分为压缩式、剪切式和弯曲变形梁式。压缩式结构最简单,价格便宜,但是不能有效排除各种干扰;剪切式受干扰影响最小,目前最为常用,但是制造工艺要求较高,所以价格偏高;弯曲变形梁式比较少见,其结构能够产生较大的电荷输出信号,但是测量频率范围较低,受温度影响易产生漂移,因此不推荐使用。 按信号输出的方式分为电荷输出式和低阻抗电压输出式(ICP)。电荷输出式直接输出高阻抗电荷信号,必须通过二次仪表转换成低阻抗电压读取,而高阻抗电荷信号较容易受干扰,所以对测试环境、连接线缆等的要求较高; 而ICP型传感器内部安装了前置放大器,直接转换成电压信号输出,所以相对有信号质量好、噪声小、抗干扰能力强、能实现远距离测量等优点,目前正逐步取代电荷输出式传感器。 3、选择压电式加速度传感器时有哪些基本原则 答:选择一般应用场合的压电式加速度传感器时,要从三个方面全面考虑: ①振动量值的大小②信号频率范围③测试现场环境。 作为一般的原则,灵敏度高的传感器量程范围小,反之灵敏度低的量程范围大,而且一般情况下,灵敏度越高,敏感芯体的质量块越大,其谐振频率也越低,如果谐振波叠加在被测信号上,会造成失真输出,因此选择时除

基于加速度传感器和单片机的毕业设计

目录 摘要 ..................................................................................................... III Abstract ................................................................................................ IV 第1章绪论 . (1) 1.1 课题背景 (1) 1.2 课题目的与意义 (2) 1.3 课题研究现状 (3) 1.4 本文主要容及结构安排 (5) 第2章硬件设计 (6) 2.1 硬件器件的选择 (6) 2.1.1 SPCE061A单片机 (6) 2.1.2 MMA7260QT三轴加速度传感器 (10) 2.2 系统电路的连接 (11) 2.3单片机控制单元的硬件设计 (13) 2.3.1 输入/输出控制单元设计 (13) 2.3.2 模拟数字转换设计 (16) 2.3.3 DAC方式音频输出设计 (23) 2.4 传感器控制单元设计 (24) 2.5 本章小结 (26) 第3章软件设计 (27) 3.1 软件系统的开发设计 (27) 3.2 音频设计 (29) 3.2.1 音频处理方案 (29) 3.2.2 语音自动播放函数设计 (30) 3.2.3 语音文件压缩设计 (33) 3.3 I/O接口及A/D转换设计 (34) 3.3.1 I/O接口设计 (34) 3.3.2 A/D转换设计 (34) 3.4 主程序设计 (36)

3.5 本章小结 (40) 结论 (41) 参考文献 (43) 致 (45) 附录一: (46) 附录二: (64)

加速度传感器测量信号失真的原因及处理方法

如果加速度传感器大测量信号失真我们从两个大的方面分析:信号输出变小和偏置电压不稳定。其实想偏置电压不稳定这种情况,我们可以直接能判断的是输出信号与高频谐次波叠加,遇到这种情况一般是由加速度传感器的谐振频率造成,我们可以选择谐振频率较高的传感器。 而信号输出变小这种情况我们需要从四个方面去考虑:首先是由于供电电压降低而造成测量量程范围减小,这种表示需要更换电池或更正供电电压。其次是因环境温度与室温不同而导致的偏置电压超出规定的范围,当然这种我们需要采用偏置电压稳定的传感器。再者还有由加速度传感器的非线性造成,我们就需要采用量程大的传感器。最后一种情况就是在长距离信号输送时,恒流电压源的恒电流不够大,这种情况我们需要根据信号频率幅值选择正确的电压源恒电流。以上就是加速度传感器大测量信号失真的几种大的故障分析以及解决办法。 而加速度传感器小测量信号失真,我们需要从三个方面去考虑:信号忽大忽小不稳定,外界环境噪声对测量信号的影响以及测量系统噪声对测量信号的影响。关于信号忽大忽小不稳定一般是由瞬态温度变化以至偏置电压忽大忽小而造成输出信号不稳定,当然这种情况我们还是采用偏置电压稳定的传感器来解决。 接下来我们分析的是测量系统噪声对测量信号的影响:这种我们按照四种情况分析,一是加速度传感器自身的电噪声,我们需要检定传感器噪声,选择信噪比合适的传感器。二是电缆引起的电噪声,往往发生在与电荷输出型传感器配用的低噪声电缆,我们是换用好的低噪声屏蔽电缆。三是传感器供电电源噪声,这种我们肯定是要选用低噪声供电电源或采用电池供电。四是数采系统的量程设置,当然我们需要选择合适的量程才行。 最后我们分析的是外界环境噪声对测量信号的影响:这个又分为接地回路造成的噪声,避免多点接地,传感器采用对地绝缘。电磁波的影响,采用双层屏蔽壳的传感器。强声场的影响,采用双层屏蔽壳的传感器将有助于降低强声场对加速度传感器的影响。瞬态环境温度变化,对用于超低频测量的高灵敏度传感器必须采用隔热护套。和被测点的基座应变影响,我们需要选用基座应变小的剪切型加速度传感器,尽量减小传感器与被测物体间的接触面积。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解图尔克、奥托尼克斯、科瑞、山武、倍加福、邦纳、亚德客、施克等各类传感器的选型,报价,采购,参数,图片,批发信息,请关注艾驰商城https://www.wendangku.net/doc/718857140.html,/

利用加速度传感器测量物体的倾斜角度

利用加速度传感器测量物体的倾斜角度 1 说明测量物体的倾斜角度是加速器传感器的一种常见的应用。虽然其基本原理十分简单,但是在具体实现中仍然会遇到很多困难,比如倾斜角度的精度问题,数学计算过于复杂等等。本文将对精度问题进行详细讨论,并给出一种简化的计算方法。 2 基本原理由于加速度传感器在静止放置时受到重力作用,因此会有1g 的重力加速度。利用这个性质,通过测量重力加速度在加速度传感器的X 轴和Y 轴上的分量,可以计算出其在垂直平面上的倾斜角度。这样,根据以上原理一个2 轴加速度传感器可以测量在X-Y 平面上的倾斜角度。需要注意的是,2 轴加速度传感器只能测量X 轴和Y 轴上的重力分量,因而只能测量因而只能测量X-Y平面上的倾斜角度。可是由于物体在空间倾斜的时候,很难保证倾斜完全在X-Y 平面上,这样只使用2 轴加速度传感器进行测量会存在局限性,因此,我们考虑使用 3 轴加速度传感器。如下图所示,3 轴加速度传感器可以测量X 轴、Y 轴和Z 轴的重力分量,计算空间倾斜角度的公式可以推广为 。这个公式就是本文中用来测量物体倾斜角度的基本原理。

需要说明的是,这里利用的是物体在静止时受到重力的性质,如果物体同时也有运动加速度的话,那么这个公式将不再准确。所以必须为公式增加一个限制条件,即3 硬件实现目前,在消费类产品中使用的加速度传感器分为数字输出(例如ADXL345)和模拟输出(例如ADXL335)两种。数字输出的加速度传感器可以直接通过I2C 或SPI 总线与MCU 进行连接;模拟输出的加速度传感器则需要使用ADC 进行采样。现在,普遍使用的MCU 中基本都有内置的ADC 通道,所以无论是数字输出还是模拟输出的加速度传感器都可以非常容易地和MCU 进行连接,进而实现测量功能。

加速度传感器选用

工程振动量值的物理参数常用位移、速度和加速度来表示。由于在通常的频率范围内振动位移幅值量很小,且位移、速度和加速度之间都可互相转换,所以在实际使用中振动量的大小一般用加速度的值来度量。常用单位为:米/秒2 (m/s2),或重力加速度(g)。 描述振动信号的另一重要参数是信号的频率。绝大多数的工程振动信号均可分解成一系列特定频率和幅值的正弦信号,因此,对某一振动信号的测量,实际上是对组成该振动信号的正弦频率分量的测量。对传感器主要性能指标的考核也是根据传感器在其规定的频率范围内测量幅值精度的高低来评定。 最常用的振动测量传感器按各自的工作原理可分为压电式、压阻式、电容式、电感式以及光电式。压电式加速度传感器因为具有测量频率范围宽、量程大、体积小、重量轻、对被测件的影响小以及安装使用方便,所以成为最常用的振动测量传感器。 传感器的种类选择 ·压电式- 原理和特点 压电式传感器是利用弹簧质量系统原理。敏感芯体质量受振动加速度作用后产生一个与加速度成正比的力,压电材料受此力作用后沿其表面形成与这一力成正比的电荷信号。压电式加速度传感器具有动态范围大、频率范围宽、坚固耐用、受外界干扰小以及压电材料受力自产生电荷信号不需要任何外界电源等特点,是被最为广泛使用的振动测量传感器。虽然压电式加速度传感器的结构简单,商业化使用历史也很长,但因其性能指标与材料特性、设计和加工工艺密切相关,因此在市场上销售的同类传感器性能的实际参数以及其稳定性和一致性差别非常

大。与压阻和电容式相比,其最大的缺点是压电式加速度传感器不能测量零频率的信号。 ·压阻式 应变压阻式加速度传感器的敏感芯体为半导体材料制成电阻测量电桥,其结构动态模型仍然是弹簧质量系统。现代微加工制造技术的发展使压阻形式敏感芯体的设计具有很大的灵活性以适合各种不同的测量要求。在灵敏度和量程方面,从低灵敏度高量程的冲击测量,到直流高灵敏度的低频测量都有压阻形式的加速度传感器。同时压阻式加速度传感器测量频率范围也可从直流信号到具有刚度高,测量频率范围到几十千赫兹的高频测量。超小型化的设计也是压阻式传感器的一个亮点。需要指出的是尽管压阻敏感芯体的设计和应用具有很大灵活性,但对某个特定设计的压阻式芯体而言其使用范围一般要小于压电型传感器。压阻式加速度传感器的另一缺点是受温度的影响较大,实用的传感器一般都需要进行温度补偿。在价格方面,大批量使用的压阻式传感器成本价具有很大的市场竞争力,但对特殊使用的敏感芯体制造成本将远高于压电型加速度传感器。 ·电容式 电容型加速度传感器的结构形式一般也采用弹簧质量系统。当质量受加速度作用运动而改变质量块与固定电极之间的间隙进而使电容值变化。电容式加速度计与其它类型的加速度传感器相比具有灵敏度高、零频响应、环境适应性好等特点,尤其是受温度的影响比较小;但不足之处表现在信号的输入与输出为非线性,量程有限,受电缆的电容影响,以及电容传感器本身是高阻抗信号源,因此电容传感器的输出信号往往需通过后继电路给于改善。在实际应用中电容式加速度传感器较多地用于低频测量,其通用性不如压电式加速度传感器,且成本也比压电式加速度传感器高得多。

相关文档