文档库 最新最全的文档下载
当前位置:文档库 › 定直线问题

定直线问题

定直线问题
定直线问题

定直线问题

1.已知椭圆C :x 2a 2+y 2

b 2=1(a>b>0)的左、右焦点分别为F 1、F 2,过F 2作直线l 与椭圆C 交于点M 、N.

(1) 若椭圆C 的离心率为12

,右准线的方程为x =4,M 为椭圆C 上顶点,直线l 交右准线于点P ,求1PM +1PN

的值; (2) 当a 2+b 2=4时,设M 为椭圆C 上第一象限内的点,直线l 交y 轴于点Q ,F 1M ⊥F 1Q ,证明:点M 在定直线上.

(1) 解:设F 2(c ,0),则?????c a =12,a 2c =4,解得?????a =2,c =1, 所以椭圆C 的方程为x 24+y 23

=1. 则直线l 的方程为y =-3(x -1),令x =4,可得P(4,-33),联立?????y =-3(x -1),x 24+y 23

=1,得5x 24-2x =0, 所以M(0,3),N ? ????85,-335, 所以1PM +1PN =1(0-4)2+(3+33)

2+ 1

? ????85-42+? ??

??-335+332=18+524=13. (2) 证明:设M(x 0,y 0)(x 0>0,y 0>0),F 2(c ,0),则直线l 的方程为y =y 0x 0-c (x -c),令x =0,可得Q ? ??

??0,-cy 0x 0-c . 由F 1M ⊥F 1Q 可知,kF 1M ·kF 1Q =y 0x 0+c ·-cy 0

x 0-c c

=-1,整理得y 20=x 20-c 2,又c 2=a 2-b 2=2a 2

-4,

联立?????y 20=x 20-(2a 2-4),x 20a 2+y 204-a 2=1,解得?????x 0=a 22,y 0=2-a 22

, 所以点M 在定直线x +y =2上.

2、已知椭圆C 的离心率e=

,长轴的左右端点分别为A 1(﹣2,0),A 2(2,0).

(Ⅰ)求椭圆C 的方程;

(Ⅱ)设直线x=my+1与椭圆C 交于P ,Q 两点,直线A 1P 与A 2Q 交于点S ,试问:当m 变化时,点S 是否恒在一条定直线上?若是,请写出这条直线方程,并证明你的结论;若不是,请说明理由.

解:(I )设椭圆C 的方程为, ∵,∴,b 2

=1, ∴椭圆C 的方程为.

(II )取m=0,得P (1,

),Q (1,﹣), 直线A 1P 的方程是

, 直线A 1P 的方程是

,直线A 2Q 的方程是交点为.

若,由对称性可知, 若点S 在同一条直线上,由直线只能为l :x=4.

以下证明对于任意的m ,直线A 1P 与A 2Q 的交点S 均在直线l :x=4上,

事实上,由,

得(my+1)2+4y 2=4,即(m 2+4)y 2

+2my ﹣3=0,

记P (x 1,y 1),Q (x 2,y 2),

则, 记A 1P 与l 交于点S 0(4,y 0),

由,得,

设A2Q与l交于点S‘0(4,y′0),

由,得,

=

=

=,

∴y0=y′0,即S0与S‘0重合,

这说明,当m变化时,点S恒在定直线l:x=4上.

圆锥曲线的定值问题

第一章圆锥曲线中的定点定值问题 【序言】: 定点问题是常见的出题形式,化解这类问题的关键就是引进变的参数表示直线方程、数量积、比例关系等,根据等式的恒成立、数式变换等寻找不受参数影响的量。直线过定点问题通法,是设出直线方程,通过韦达定理和已知条件找出k和m的一次函数关系式,代入直线方程即可。技巧在于:设哪一条直线?如何转化题目条件?圆锥曲线是一种很有趣的载体,自身存在很多性质,这些性质往往成为出题老师的参考。如果能够熟识这些常见的结论,那么解题必然会事半功倍。与圆锥曲线有关的最值和范围问题,因其考查的知识容量大、分析能力要求高、区分度高而成为高考命题者青睐的一个热点。 【思维导图】: 【考纲解读和命题预测】: 浙江高考试题结构平稳,题量均匀.每份试卷解析几何基本上是1道小题和1道大题,平均分值19分,实际情况与理论权重基本吻合;涉及知识点广.虽然解析几何的题量不多,分值仅占总分的13%,但涉及到的知识点分布较广,覆盖面较大;注重与其他内容的交汇。圆锥曲线中的最值问题,范围问题都是考查学生综合能力的载体.2010年安徽卷理科19题,该题入题口宽,既可用传统的联立直线与曲线,从方程的角度解决,也可利用点在曲线上的本质,用整体

运算、对称运算的方法求解.再比如2011年上海卷理科23题,主要涉及到中学最常见的几个轨迹,通过定义点到线段的距离这一新概念设置了三个问题,特别是第三问,呈现给学生三个选择,学生可根据自已的实际情况选择答题,当然不同层次的问题,评分也不一样,体现让不同的学生在数学上得到不同的发展【知识清单】:

【题型讲解】: 第一节:“手电筒”模型 例题、已知椭圆C :13 42 2=+y x 若直线m kx y l +=:与椭圆C 相交于A ,B 两点(A ,B 不是左右顶点),且以AB 为直径的圆过椭圆C 的右顶点。求证:直线l 过定点,并求出该定点的坐标。 解:设1122(,),(,)A x y B x y ,由22 3412 y kx m x y =+??+=?得222 (34)84(3)0k x mkx m +++-=, 22226416(34)(3)0m k k m ?=-+->,22340k m +-> 2121222 84(3) ,3434mk m x x x x k k -+=-?=++ 222 2 121212122 3(4) ()()()34m k y y kx m kx m k x x mk x x m k -?=+?+=+++=+ 以AB 为直径的圆过椭圆的右顶点(2,0),D 且1AD BD k k ?=-, 1212122 y y x x ∴?=---,1212122()40y y x x x x +-++=, 222222 3(4)4(3)1640343434m k m mk k k k --+++=+++,

2019高考数学专题复习直线与方程(后附答案)

2019高考数学专题复习直线与方程(后附答案) 巩固练习: 1、在下列四个命题中,正确的共有( ) (1)坐标平面内的任何一条直线均有倾斜角和斜率 (2)直线的倾斜角的取值范围是[]π,0 (3)若一条直线的斜率为αtan ,则此直线的倾斜角为α (4)若一条直线的倾斜角为α,则此直线的斜率为αtan A .0个 B .1个 C .2个 D .3个 2、若两直线21,l l 的倾斜角分别为21,αα,则下列四个命题中正确的是( ) A .若21αα<,则两直线的斜率:21k k < B .若21αα=,则两直线的斜率:21k k = C .若两直线的斜率:21k k <,则21αα< D .若两直线的斜率:21k k =,则21αα= 3、过两点)1,1(-和)9,3(的直线在x 轴上的截距为( ) A .23- B .32- C .5 2 D .2 4、若直线0=++c by ax 在第一、二、三象限,则( ) A .0,0>>bc ab B .0,0<>bc ab C .0,0>

直线与圆中的最值问题专题

直线与圆中的最值问题 一、到圆心距离的最值问题: 精品文档,超值下载 二、到圆上一点距离的最值问题: 三、与圆上一点的坐标有关的最值问题: 四、与圆半径有关的最值问题: 2213480,2210,P x y PA PB x y x y A B C PACB ++=+--+=例:已知是直线上的动点,是圆的两条切线,是切点,是圆心,求四边形面积的最小值。 2221:250P x y Q l x y PQ +=+-=例:已知是圆上一点,是直线上一点,求的最小值。 ()()()()222231,0,1,0344A B x y P PA PB P --+-=+例:已知定点和圆上的动点,求使最值时点的坐标。 ()()2204134312x x y y x x y x y ≥??≥-+-??+≤?例:设,满足求的最小值。2222,(1)1,2134 2 31x y x y y x y x y x +-=++++练习1:求实数满足求下列各式的最值:()()()()()()222430 1.2.,C x y x y C x y C P x y PM M O PM PO ++-+==练习2:已知圆:若圆的切线在轴和轴上截距相等, 求切线的方程;从圆外一点向圆引切线, 为切点,为坐标原点,且,

强化训练 1 、如图24-1,已知圆x 2+y 2=1的一条切线与x 轴、y 轴分别交于点A 、B ,则线段AB 长度的最小值为________. ()()()()()()222210,,2,2. 1.222 2..C x y x y l x y A B O OA a OB b a b C l a b AB AOB +--+===>>--=?例5:已知与曲线:相切的直线交轴,轴于两点,为原点,求证曲线与直线相切的条件是 ;求线段中点的轨迹方程; 3求的面积的最小值。 ()()()0,0, 4,0,0,3,,ABC A B C P PA PB PC ?练习3:已知三个顶点坐标,点是它的内切圆上一点,求以为直径的三个圆面积之和 的最大值和最小值。 4(1)2(2)3:1 (1)(2):20y x l x y -=练习:设圆满足: 截轴所得弦长为;被轴分成两圆弧,其弧长比为。在满足条件的所有圆中,求圆心到 直线的距离最小的圆的方程。

圆锥曲线定值定点问题【最新】

圆锥曲线问题的解题规律可以概括为: “联立方程求交点,韦达定理求弦长,根的分布范围,曲线定义不能忘,引参、用参巧解题,分清关系思路畅、数形结合关系明,选好, 选准突破口,一点破译全局活。 定点、定直线、定值专题 (2012*荷泽一模〉已知直线1:y=x+AZ&. I.!a|O:x-+y-=5.椭圆E:牛+牛二i过圆O上任 意一点P作椭换1E的两条切线,若切线都存在斜率,求证两切线斜率之枳为宦值. 2. (2012?自贡三模):过点0)作不打y轴垂直的直线1交该椭于M、 5 4 N两点,A为椭圆的左顶点-试判断ZMAN的大小是否为怎值,并说明理由? 2 2 3.(2013?川山二模〉设A(XI,yi). B (x?, y2> 是椭PilA;+^=b(a>b:>0)上的两点, 己知向量二(:丄竺),二(二2竺).且W恳二0?若椭圆的离心率巴出.短轴长为2, ba ba 2 O为坐标原点: (I)求椭岡的方程: (11 )若直线AB过椭鬪的焦点F (0, C), Cc为半焦距),求直线AB的斜率k的值:(llf)试问:△AOB的iflf枳是否为怎值?如果是,请给予证明;如果不是.请说明理由. 4.已知椭鬪C的中心在原点,傑点在X轴上,长轴长是短轴长的近倍.且椭圆C经过点M(2, V2). (1)求椭鬪C的标准方程:

(2》过鬪0: 二3卜的任意一点作圆的一条切线椭鬪C 交于A 、B 两点.求证: 3 5.已知平面上的动点P(x, y)及两定点A ( -2, 0), B (2, 0).直线PA. PB 的斜率分 ki* k2 且k J ? k 2= - 求动点P 的轨迹C 的方程: 设直线h 戸kx+m 仃曲线C 交于不同的两点M. N ? ②若直线BM. BN 的斜率都存在并满足kBM.kBif-亍 证明直线I 过定点,并求出这个 富点. 2 2 - 6. (2011>新疆模拟)已知椭圆C ;青+丫5二1(a>b>0)的离心率为丄,以原点为圆心,椭 a D 2 圆的短半轴为半径的圆与直线x-y+V6=0相切. (I )求椭圆C 的方程; (II)设P(4, 0), A. B 是椭圆C 上关于X 轴对称的任意两个不同的点,连接PB 交椭圆 C 于另一点E,证明直线AE 与X 轴相交于窪点Q : 7.已知椭圆Q 的离心率为2,它的一个焦点和抛物线y2=-4x 的焦点重合. (1)求椭鬪Q 的方程; 2 + y ― 1 (a>b>0)上过点(xo ,yo>的切线方程为 X2 ygy 2 —+ ~72 a b ① 过直线1: x=4上点M 引椭圜Q 的两条切线,切点分别为A, B.求证:直线AB 恒过是 点C ; ② 是否存在实数入使得iAq+|BC|=x>jACHpC!>若存在,求出入的值:若不存在,说明理由? 2 c 过椭圆c :刍+y2=i 的右焦点F 作直线I 交椭圆C fA 、B 两点,交y 轴于M 点,若 5 亦二X 1万,旋二X 2丽,求证:入1+入2为定值. 别是 (1) (2) ①若OM 丄ON <0为坐标原点).证明点O 到直线I 的距离为定值,并求出这个定值 =1-

必修二《直线与方程》单元测试题(含详细答案)之欧阳学创编

第三章《直线与方程》单元检测 试题 时间120分钟,满分150分。 一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的) 1.已知点A(1,3),B(-1,33),则直线AB的倾斜角是() A.60°B.30° C.120°D.150° [答案]C 2.直线l过点P(-1,2),倾斜角为45°,则直线l的方程为() A.x-y+1=0 B.x-y-1=0 C.x-y-3=0 D.x-y+3=0 [答案]D 3.如果直线ax+2y+2=0与直线3x-y-2=0平行,则a的值为() A.-3 B.-6

C.3 2D.2 3 [答案]B 4.直线x a2- y b2=1在y轴上的截距为() A.|b| B.-b2 C.b2D.±b [答案]B 5.已知点A(3,2),B(-2,a),C(8,12)在同一条直线上,则a的值是() A.0 B.-4 C.-8 D.4 [答案]C 6.如果AB<0,BC<0,那么直线Ax+By+C=0不经过() A.第一象限 B.第二象限 C.第三象限 D.第四象限 [答案]D 7.已知点A(1,-2),B(m,2),且线段AB的垂直平分线的方程是x+2y-2=0,则实数m的值是() A.-2 B.-7 C.3 D.1 [答案]C 8.经过直线l1:x-3y+4=0和l2:2x+y=5=0的

交点,并且经过原点的直线方程是( ) A .19x -9y =0 B .9x +19y =0 C .3x +19y =0 D .19x -3y =0 [答案] C 9.已知直线(3k -1)x +(k +2)y -k =0,则当k 变化时,所有直线都通过定点( ) A .(0,0) B .(17,27) C .(27,17) D .(17,114) [答案] C 10.直线x -2y +1=0关于直线x =1对称的直线方程是( ) A .x +2y -1=0 B .2x +y -1=0 C .2x +y -3=0 D .x +2y -3=0 [答案] D 11.已知直线l 的倾斜角为135°,直线l 1经过点A (3,2),B (a ,-1),且l 1与l 垂直,直线l 2:2x +by +1=0与直线l 1平行,则a +b 等于( ) A .-4 B .-2 C .0 D .2 [答案] B 12.等腰直角三角形ABC 中,∠C =90°,若点A ,C 的坐标分别为(0,4),(3,3),则点B 的坐标可能是( )

1、与直线和圆有关的最值问题-理(解析版)

圆锥曲线专题突破一:与直线和圆有关的最值问题 题型一 有关定直线、定圆的最值问题 例1 已知x ,y 满足x +2y -5=0,则(x -1)2 +(y -1)2 的最小值为________. 破题切入点 直接用几何意义——距离的平方来解决,另外还可以将x +2y -5=0改写成x =5-2y ,利用二次函数法来解决. 解析 方法一 (x -1)2+(y -1)2 表示点P (x ,y )到点Q (1,1)的距离的平方. 由已知可知点P 在直线l :x +2y -5=0上,所以PQ 的最小值为点Q 到直线l 的距离, 即d =|1+2×1-5|1+22 =255,所以(x -1)2+(y -1)2的最小值为d 2 =45. 方法二 由x +2y -5=0,得x =5-2y ,代入(x -1)2 +(y -1)2 并整理可得 (5-2y -1)2+(y -1)2=4(y -2)2+(y -1)2=5y 2 -18y +17=5(y -95)2+45,所以可得最小值为45. 题型二 有关动点、动直线、动圆的最值问题 例2 直线l 过点P (1,4),分别交x 轴的正方向和y 轴的正方向于A 、B 两点.当OA +OB 最小时,O 为坐标原点,求l 的方程. 破题切入点 设出直线方程,将OA +OB 表示出来,利用基本不等式求最值. 解 依题意,l 的斜率存在,且斜率为负,设直线l 的斜率为k ,则y -4=k (x -1)(k <0). 令y =0,可得A (1-4 k ,0);令x =0,可得B (0,4-k ). OA +OB =(1-4k )+(4-k )=5-(k +4k )=5+(-k +4 -k )≥5+4=9. 所以,当且仅当-k =4 -k 且k <0,即k =-2时,OA +OB 取最小值.这时l 的方程为2x +y -6=0. 题型三 综合性问题 (1)圆中有关元素的最值问题 例3 由直线y =x +2上的点P 向圆C :(x -4)2 +(y +2)2 =1引切线PT (T 为切点),当PT 的长最小时,点P 的坐标是________. 破题切入点 将PT 的长表示出来,结合圆的几何性质进行转化. 解析 根据切线段长、圆的半径和圆心到点P 的距离的关系,可知PT =PC 2 -1,故PT 最小时,即PC 最小,此时PC 垂直于直线y =x +2,则直线PC 的方程为y +2=-(x -4),即y =-x +2,联立方程? ?? ?? y =x +2, y =-x +2,解得点P 的坐标 为(0,2). (2)与其他知识相结合的范围问题 例4 已知直线x +y -k =0(k >0)与圆x 2+y 2 =4交于不同的两点A ,B ,O 是坐标原点,且有|OA →+OB →|≥33 |AB →|,那么 k 的取值范围是________. 破题切入点 结合图形分类讨论.

圆锥曲线专题——定值问题解析版

圆锥曲线中的定值问题 1.平面内动点P(x ,y)与两定点A(-2, 0), B(2,0)连线的斜率之积等于1 4 -,若点P 的轨迹为曲线 E ,过点 6 (,0)5 Q -直线 l 交曲线E 于M ,N 两点. (Ⅰ)求曲线E 的方程,并证明:∠MAN 是一定值; (Ⅰ)若四边形AMBN 的面积为S ,求S 的最大值 【答案】(Ⅰ)2 21(2)4 x y x =≠±+(Ⅰ)16 试题解析:(Ⅰ)设动点P 坐标为(,)x y ,当2x ≠±时,由条件得: 22y y x x ?=-+1 -4,化简得221(2)4x y x =≠±+ 曲线E 的方程为,2 21(2)4 x y x =≠±+, 4分 (说明:不写2x ≠±的扣1分) 由题可设直线 的方程为 ,联立方程组可得 ,化简得: 设,则, (6分) 又 ,则 , 所以090MAN ∠=,所以的大小为定值 (8分) 2. 在直角坐标系xOy 中,曲线22y x mx =+-与x 轴交于A ,B 两点,点C 的坐标为(0,1).当m 变化时,解答下列问题: (1)能否出现AC ⅠBC 的情况?说明理由; MAN ∠

(2)证明过A ,B ,C 三点的圆在y 轴上截得的弦长为定值. 【解析】(1)令()1,0A x ,()2,0B x ,C(0,1), x , 为2 20x mx +-=的根1212 2x x m x x ?>??+=-??=-?, 假设AC BC ⊥成立,所以0AC BC ?=u u u r u u u r ,()1,1AC x =-u u u r ,()2,1BC x =-u u u r , 所以1110AC BC x x ?=+≠u u u r u u u r ,所以不能出现AC BC ⊥的情况. 3.已知椭圆()2222:10x y C a b a b +=>>的离心率为1 2 ,以原点为圆心,椭圆的短半轴长为半径的 120-+=相切. (1)求椭圆C 的方程; (2)设()4,0A -,过点()3,0R 作与x 轴不重合的直线l 交椭圆C 于,P Q 两点,连接,AP AQ 分别交直线16 3 x = 于,M N 两点,若直线,MR NR 的斜率分别为12,k k ,试问:12k k 是否为定值?若是,求出该定值,若不是,请说明理由. 【解析】(1 )由题意得22212 42 c a a b b c a b c ?=?=?? ?=∴=??=??=+??C 的方程为2211612x y + =. (2)设()()1122,,,P x y Q x y ,直线PQ 的方程为3x my =+, 由()2222341821016123x y m y my x my ?+ ?∴++-=??=+?

直线与圆练习题(带答案解析)

. . 直线方程、直线与圆练习 1.如果两条直线l 1:260ax y + +=与l 2:(1)30x a y +-+=平行,那么a 等 A .1 B .-1 C .2 D .23 【答案】B 【解析】 试题分析:两条直线平行需满足12211221A B A B A C A C =?? ≠?即1221 1221 1A B A B a AC A C =??=-?≠?,故选择B 考点:两条直线位置关系 2. 已知点A (1,1),B (3,3),则线段AB 的垂直平分线的方程是 A .4y x =-+ B .y x = C .4y x =+ D .y x =- 【答案】A 【解析】 试题分析:由题意可得:AB 中点C 坐标为()2,2,且 31 1 31AB k -= =-,所以线段AB 的垂 直平分线的斜率为-1,所以直线方程为: ()244 y x y x -=--?=-+,故选择A 考点:求直线方程 3.如图,定圆半径为a ,圆心为(,)b c ,则直线0ax by c ++=与直线10x y +-=的交点在 A .第一象限 B .第二象限 C .第三象限 D .第四象限 【答案】D 【解析】 试题分析:由图形可知0b a c >>>,由010ax by c x y ++=??+-=?得0 b c x b a a c y b a +?=>??-?--?=

(完整word版)“隐圆”最值问题习题

B M C D A E F D C B A B D C F A “隐圆”最值问题 重难点:分析题目条件发现题目中的隐藏圆,并利用一般的几何最值求解方法来解决问题 【例1】在平面直角坐标系中,直线y = - x + 6分别与x 轴、y 轴交于点A 、B 两点,点C 在y 轴的左边,且∠ACB = 90°,则点C 的横坐标x C 的取值范围是__________. 分析:在构造圆的前提下 考虑90°如何使用。直角对直径所以以AB 为直径画圆。使用垂径定理即可得到3-20c x ≤<3 【练】(2013-2014·六中周练·16)如图,已知Rt △ABC 中,∠ACB = 90°,AC = 3,BC = 4,点D 是AB 的中点,E 、F 分别是直线AC 、BC 上的动点,∠EDF = 90°,则EF 长度的最小值是__________. 分析:过D 点作DE 垂直AB 交AC 于点M 可证△FBD ∽△ECD 即可 求出最小值 【例2】如图,在Rt △ABC 中,∠ACB = 90°,D 是AC 的中点, M 是BD 的中点,将线段AD 绕A 点任意旋转(旋转过程中始 终保持点M 是BD 的中点),若AC = 4,BC = 3,那么在旋转 过程中,线段CM 长度的取值范围是_______________. 分析:将线段AD 绕A 点任意旋转隐藏着以A 为圆心AD 为半径的圆构造 出来。接下来考虑重点M 的用途即可。中点的用法可尝试下倍长和中位线。 此题使用中位线。答案是 3722 c x ≤≤ 【练】已知△ABC 和△ADE 都是等腰直角三角形,∠ACB =∠ADE = 90°,AC 2,AD = 1,F 是BE 的中点,若将△ADE 绕点A 旋转一周,则线段AF 4242 AC -+≤≤ 分析:同例题 【例3】如图,已知边长为2的等边△ABC ,两顶点A 、B 分别在平面直角

圆锥曲线的定点、定值和最值问题

圆锥曲线的定点、定值、范围和最值问题 会处理动曲线(含直线)过定点的问题;会证明与曲线上动点有关的定值问题;会按条件建 . 一、主要知识及主要方法: 1. 形式出现,特殊方法往往比较奏效。 2.对满足一定条件曲线上两点连结所得直线过定点或满足一定条件的曲线过定点问题,设该直线(曲线)上两点的坐标,利用坐标在直线(或曲线)上,建立点的坐标满足的方程(组),求出相应的直线(或曲线),然后再利用直线(或曲线)过定点的知识加以解决。 3.解析几何的最值和范围问题,一般先根据条件列出所求目标的函数关系式,然后根据函数关系式的特征选用参数法、配方法、判别式法、不等式法、单调性法、导数法以及三角函数最值法等求出它的最大值和最小值. 二、精选例题分析 【举例1】 (05广东改编)在平面直角坐标系xOy 中,抛物线2y x =上异于坐标原点O 的两不同 动点A 、B 满足AO BO ⊥. (Ⅰ)求AOB △得重心G 的轨迹方程; (Ⅱ)AOB △的面积是否存在最小值?若存在,请求出最小值; 若不存在,请说明理由. 【举例2】已知椭圆2 2142x y +=上的两个动点,P Q 及定点1,2M ? ?? ,F 为椭圆的左焦点,且PF ,MF ,QF 成等差数列.()1求证:线段PQ 的垂直平分线经过一个定点A ; ()2设点A 关于原点O 的对称点是B ,求PB 的最小值及相应的P 点坐标. 【举例3】(06全国Ⅱ改编)已知抛物线2 4x y =的焦点为F ,A 、B 是抛物线上的两动点,且 AF FB λ=u u u r u u u r (0λ>).过A 、B 两点分别作抛物线的切线(切线斜率分别为0.5x A ,0.5x B ),设其交点为 M 。 (Ⅰ)证明FM AB ?u u u u r u u u r 为定值;

2013直线与方程高考题

1 .(2013年高考天津卷(文))已知过点P (2,2) 的直线与圆225(1)x y +=-相切, 且与 直线10ax y -+=垂直, 则a = ( ) A .12- B .1 C .2 D .12 2 .(2013年高考陕西卷(文))已知点M (a ,b )在圆221:O x y +=外, 则直线ax + by = 1 与圆O 的位置关系是 ( ) A .相切 B .相交 C .相离 D .不确定 3 .(2013年高考广东卷(文))垂直于直线1y x =+且与圆221x y +=相切于第一象限 的直线方程是 ( ) A .0x y += B .10x y ++= C .10x y +-= D .0x y += 4 .(2013年高考江西卷(文))若圆C 经过坐标原点和点(4,0),且与直线y=1相切,则圆 C 的方程是_________. 5.(2013年高考浙江卷(文))直线y=2x+3被圆x 2+y 2-6x-8y=0所截得的弦长等于__________. 6.(2013年高考山东卷(文))过点(3,1)作圆22(2)(2)4x y -+-=的弦,其中最短的弦 长为__________ 三、解答题 7.(2013年高考四川卷(文)) 已知圆C 的方程为22(4)4x y +-=,点O 是坐标原点.直线:l y kx =与圆C 交于 ,M N 两点. (Ⅰ)求k 的取值范围;

1.C 2. B 3. A 4、22325(2)()24x y -++=, 5、【答案】, 6、【答案】 7、【答案】解:(Ⅰ)将x k y =代入22(4)4x y +-=得 则 0128)1(22=+-+x k x k ,(*)由012)1(4)8(22>?+--=?k k 得 32>k . 所以k 的取值范围是),3()3,(+∞--∞

直线与圆的最值问题讲课稿

直线与圆的最值问题

题型一:过圆内一定点的直线被圆截得的弦长的最值. 例1:.圆x 2+y 2-4x +6y -12=0过点(-1,0)的最大弦长为 m ,最小弦长为n ,则m -n 等 于 解析圆的方程x 2+y 2-4x +6y -12=0化为标准方程为(x -2)2+(y +3)2=25. 所以圆心为(2,-3),半径长为 5. 因为(-1-2)2+(0+3)2=18<25, 所以点(-1,0)在已知圆的内部, 则最大弦长即为圆的直径,即m =10. 当(-1,0)为弦的中点时,此时弦长最小 . 弦心距d =2+12+-3-02=32, 所以最小弦长为 2r 2-d 2=225-18=27,所以m -n =10-27. 变式训练 1:1y kx 与圆C 2214x y 相交于,A B 两点,则AB 的最小值是多 少?解:直线1y kx 过定点1,0M ,当MC AB 时,AB 取最小值,由 2222l d r ,可知,222d R l ,2MC d ,故2 2222d R l 变式训练 2:已知圆C :(x -1)2+(y -2)2=25,直线l :(2m +1)x +(m +1)y -7m -4= 0(m ∈R). (1)求证不论m 取什么实数,直线l 与圆恒交于两点; (2)求直线被圆C 截得的弦长最小时的 l 的方程. (1)证明因为l 的方程为(x +y -4)+m(2x +y -7)=0(m ∈R), 所以2x +y -7=0, x +y -4=0,解得x =3,y =1, 即l 恒过定点A(3,1).

因为圆心为C(1,2),|AC|=5<5(半径), 所以点A 在圆C 内, 从而直线l 与圆C 恒交于两点. (2)解由题意可知弦长最小时,l ⊥AC. 因为k AC =-12 ,所以l 的斜率为 2. 又l 过点A(3,1),所以l 的方程为2x -y -5=0. 方法总结:过圆内一定点的直线被圆截得的弦长的最大值为圆的直径,最小值为垂直于直 径的弦. 题型二:圆外一点与圆上任一点间距离的最值 直线与圆相离,圆上的点到直线的距离的最值 .例2:求点 A )(0,2到圆C 122y x 的距离的最大值和最小值?解:AC d 2,故距离的最大值为 3r d ,最小值为1r d 变式训练1:圆122y x 上的点到直线2x y 的距离的最大值?解:圆心到直线的距离为222 d , 则圆上的点到直线2x y 的最大值为12r d 则圆上的点到直线2x y 的最小值为1-2-r d 方法总结:圆外一点与圆上任一点间距离的最大值为r d ,最小值为r d 直线与圆相离,圆上的点到直线的距离的最大值为r d ,最小值为r d 题型三:切线问题 例3由直线y =x +2上的点P 向圆C :(x -4)2+(y +2)2=1引切线PT(T 为切点),当PT 最小的时候P 的坐标? 解析根据切线段长、圆的半径和圆心到点P 的距离的关系,可知PT =PC 2-1,故PT 最小时,即PC

直线与方程高考题

直线与圆专题复习 一 、直线方程的几种形式 : 1.一般式:ax+by+c=0, a ≠0 2.点斜式:y-y1=k(x-x1) 3.斜截距式:y=k x + b 4.两点式: 1 21 121x x x x y y y y --=-- 5.截距式: 1=+b y a x 6、点向式: 2 1 11v y y v x x -=- 7、点法式:0)()(11=-+-y y B x x A 二、圆的方程 1、 圆的规方程:()()2 2 2 r b y a x =-+- 2、 圆的一般方程:02 2=++++F Ey Dx y x 三、直线与直线关系、直线与圆的关系 1、 直线与直线平行的判断及其应用 2、直线与直线垂直的判断及其应用 3、直线与直线相交的判断及其应用 4、直线关于直线的对称直线的方程 5、圆与圆的位置关系及其判断及应用 6、直线与圆的位置关系及其应用 实战演练: 1.(高考)直线过点(-1,2)且与直线23x y -+4=0垂直,则的方程是 A . B. C. D. 2.(高考)已知直线12:(3)(4)10,:2(3)230,l k x k y l k x y -+-+=--+=与平行,则K 得值是( )(A ) 1或3 (B )1或5 (C )3或5 (D )1或2 3.若直线m 被两平行线12:10:30l x y l x y -+=-+=与所截得的线段的长为22,则m 的倾斜角可以是: ①15②30③45④60⑤75 其中正确答案的序号是.(写出所有正确答案的序号) 4.若直线 1x y a b +=通过点(cos sin )M αα, ,则( ) A .221a b +≤ B .22 1a b +≥ C .22111a b +≤ D .22111a b +≥ 5、等腰三角形两腰所在直线的方程分别为20x y +-=与740x y --=,原点在等腰三角形的底边上,则底边所在直线的斜率为( )

高中数学直线与圆的方程知识点总结

高中数学之直线与圆的方程 一、概念理解: 1、倾斜角:①找α:直线向上方向、x 轴正方向; ②平行:α=0°; ③范围:0°≤α<180° 。 2、斜率:①找k :k=tan α (α≠90°); ②垂直:斜率k 不存在; ③范围: 斜率 k ∈ R 。 3、斜率与坐标:1 21 22121tan x x y y x x y y k --=--= =α ①构造直角三角形(数形结合); ②斜率k 值于两点先后顺序无关; ③注意下标的位置对应。 4、直线与直线的位置关系:222111:,:b x k y l b x k y l +=+= ①相交:斜率21k k ≠(前提是斜率都存在) 特例----垂直时:<1> 0211=⊥k k x l 不存在,则轴,即; <2> 斜率都存在时:121-=?k k 。 ②平行:<1> 斜率都存在时:2121,b b k k ≠=; <2> 斜率都不存在时:两直线都与x 轴垂直。 ③重合: 斜率都存在时:2121,b b k k ==; 二、方程与公式: 1、直线的五个方程: ①点斜式:)(00x x k y y -=- 将已知点k y x 与斜率),(00直接带入即可; ②斜截式:b kx y += 将已知截距k b 与斜率),0(直接带入即可; ③两点式:),(21211 21 121y y x x x x x x y y y y ≠≠--=--其中, 将已知两点),(),,(2211y x y x 直接 带入即可; ④截距式: 1=+b y a x 将已知截距坐标),0(),0,( b a 直接带入即可; ⑤一般式:0=++C By Ax ,其中A 、B 不同时为0 用得比较多的是点斜式、斜截式与一般式。 2、求两条直线的交点坐标:直接将两直线方程联立,解方程组即可

人教版九年级数学精品专题14.圆中的最值问题

拔高专题圆中的最值问题 一、基本模型构建 常见模型 图(1) 图(2) 思考图(1)两点之间线段最短; 图(2)垂线段最短。 .在直线L上的同侧有两个点 A、B,在直线L上有到A、B 的距离之和最短的点存在,可 以通过轴对称来确定,即作出 其中一点关于直线L的对称 点,对称点与另一点的连线与 直线L的交点就是所要找的点.二、拔高精讲精练 探究点一:点与圆上的点的距离的最值问题 例1:如图,A点是⊙O上直径MN所分的半圆的一个三等分点,B点是弧AN的中点,P 点是MN上一动点,⊙O的半径为3,求AP+BP的最小值。 解:作点A关于MN的对称点A′,连接A′B,交MN于点P,连接OA′,AA′. ∵点A与A′关于MN对称,点A是半圆上的一个三等分点, ∴∠A′ON=∠AON=60°,PA=PA′,∵点B是弧AN的中点, ∴∠BON=30°,∴∠A′OB=∠A′ON+∠BON=90°,又∵OA=OA′=3, ∴A′B=32.∵两点之间线段最短,∴PA+PB=PA′+PB=A′B=32. 【教师总结】解决此题的关键是确定点P的位置.根据轴对称和两点之间线段最短的知识,把两条线段的和转化为一条线段,即可计算。 探究点二:直线与圆上点的距离的最值问题

例2:如图,在Rt△AOB中,OA=OB=32,⊙O的半径为1,点P是AB边上的动点,过点P作⊙O的一条切线PQ(点Q为切点),求切线PQ的最小值 解:连接OP、OQ.∵PQ是⊙O的切线,∴OQ⊥PQ;根据勾股定理知PQ2=OP2-OQ2,∴当PO⊥AB时,线段PQ最短,∵在Rt△AOB中,OA=OB=3 2, ∴AB=2OA=6,∴OP= ? OA OB AB =3,∴PQ=22 OP OQ =22. 【变式训练】如图,在平面直角坐标系中,以坐标原点O为圆心,2为半径画⊙O,P是⊙O是一动点且P在第一象限内,过P作⊙O切线与x轴相交于点A,与y轴相交于点B.求线段AB的最小值. 解:(1)线段AB长度的最小值为4, 理由如下: 连接OP, ∵AB切⊙O于P, ∴OP⊥AB, 取AB的中点C, ∴AB=2OC; 当OC=OP时,OC最短, 即AB最短, 此时AB=4.

高中数学必修二第三章直线与方程知识点总结

高一数学总复习学案 必修2第三章:直线与方程 一、知识点 倾斜角与斜率 1. 当直线l 与x 轴相交时,我们把x 轴正方向与直线l 向上方向之间所成的角叫做直线l 的倾斜角.当直线l 与x 轴平行或重合时, 我们规定它的倾斜角为0°. 则直线l 的倾斜角α的范围是0απ≤<. 2. 倾斜角不是90°的直线的斜率,等于直线的倾斜角的正切值,即tan k θ=. 如果知道直线上两 点1122(,),(,)P x y P x y ,则有斜率公式21 21 y y k x x -=-. 特别地是,当12x x =,12y y ≠时,直线与x 轴垂直, 斜率k 不存在;当12x x ≠,12y y =时,直线与y 轴垂直,斜率k =0. 注意:直线的倾斜角α=90°时,斜率不存在,即直线与y 轴平行或者重合. 当α=90°时,斜率k =0;当090α?<,随着α的增大,斜率k 也增大;当90180α?<

直线与圆中的最值问题

直线与圆中的最值问题 Prepared on 24 November 2020

二、弦长公式:直线与二次曲线相交所得的弦长 1直线具有斜率k ,直线与二次曲线的两个交点坐标分别为 1122(,),(,)A x y B x y ,则它的弦长 2221212121(1)()4AB x x x x x ??=+-=++-??k k 1211y y =+-2k 注:实质上是由两点间距离公式推导出来的,只是用了交点坐标设而不求的技巧而已(因为 1212()y y x x -=-k ,运用韦达定理来进行计算. 2当直线斜率不存在是,则12AB y y =-. 三、过两圆C 1: x 2 + y 2 +D 1x +E 1y +F 1 = 0和C 2: x 2 + y 2 +D 2x +E 2y +F 2 = 0的交点的圆系方程,一般设为 x 2+y 2 +D 1x +E 1y +F 1+λ(x 2 + y 2 +D 2x +E 2y +F 2) = 0 (λ为参数)此方程不包括圆C 2. 四、对称问题1和最小,化异侧(两边之和大于第三边,三点共线时取等号即最小值) 2差最大,化同侧(两边之差小于第三边,三点共线时取等号即最大值) 例题分析 1、如果实数y x ,满足等式22(2)3x y -+=, (1)求 y x 的最大值和最小值;(2)求y x -的最大值与最小值;(3)求22x y +的最大值与最小值. 直线与圆

2、已知两定点(3,5)A -,(2,15)B ,动点P 在直线3440x y -+=上,当 PA +PB 取最小值时,这个最小值为( ).A .513 B .362 C .155 D .5102+ 3、已知点)8,3(-A 、)2,2(B ,点P 是x 轴上的点,求当PB AP +最小时的点P 的坐标. 【解答】如图示: ,考虑代数式的几何意义: ⑴y x 即圆上的点与原点所在直线的斜率.当直线与圆相切时,斜率取得最大值和最小值,即y x 取得最大值与最小值; ⑵y x -即过圆上点,且斜率为1的直线在y 轴上截距; ⑶22x y +即圆上的点到原点距离的平方. 当点位于圆与x 轴的左交点时,点到原点的距离最小;当点位于圆与x 轴的右交点时,点到原点的距离最大. 解(1)设(,)P x y 为圆22(2)3x y -+=上一点.y x 的几何意义为直线OP 的斜率,设y k x =,则直线OP 的方程为y kx =.当直线OP 与圆相切时,斜率取最大值与最小值. ∵圆心到直线y kx =的距离222211d k k = =++2231k =+3k =OP 与圆相切.∴y x 的最大值为3,最小值为3-. (2)令y x b -=,即y x b =+,求y x -的最大值与最小值即过圆上点,且斜率为1的直线在y 轴上截距的最大值与最小值. 当直线与圆相切时,截距取得最大值与最小值.∵圆心到直线y x b =+的距离222 11d ==+ 32 =62b =时,直线OP 与圆相切.∴y x -62,最小值为62. (3)要22x y +的最大值与最小值,即求圆上的点到原点距离的平方的最大值与最小值. 当点位于圆与x 轴的左交点时,点到原点的距离最小;

相关文档
相关文档 最新文档