文档库 最新最全的文档下载
当前位置:文档库 › 【金版优课】2019届物理一轮教学案:专题十五考点二 近代物理初步 Word版含解析

【金版优课】2019届物理一轮教学案:专题十五考点二 近代物理初步 Word版含解析

【金版优课】2019届物理一轮教学案:专题十五考点二 近代物理初步 Word版含解析
【金版优课】2019届物理一轮教学案:专题十五考点二 近代物理初步 Word版含解析

考点二 近代物理初步

基础点

知识点1 光电效应、波粒二象性 1.光电效应 (1)定义

照射到金属表面的光,能使金属中的电子从表面逸出的现象。 (2)光电子

光电效应中发射出来的电子。 (3)光电效应规律

①每种金属都有一个极限频率,入射光的频率必须大于这个极限频率才能产生光电效应。低于这个频率的光不能产生光电效应。

②光电子的最大初动能与入射光的强度无关,只随入射光频率的增大而增大。 ③光电效应的发生几乎瞬时的,一般不超过10-9

s 。

④当入射光的频率大于极限频率时,饱和光电流的强度与入射光的强度成正比。 2.爱因斯坦光电效应方程

(1)光子说:在空间传播的光是不连续的,而是一份一份的,每一份叫作一个光的能量子,简称光子,光子的能量ε=h ν。其中h =6.63×10

-34

J·s。(称为普朗克常量)

(2)逸出功W 0:使电子脱离某种金属所做功的最小值。

(3)最大初动能:发生光电效应时,金属表面上的电子吸收光子后克服原子核的引力逸出时所具有的动能的最大值。

(4)遏止电压与截止频率

①遏止电压:使光电流减小到零的反向电压U c 。

②截止频率:能使某种金属发生光电效应的最小频率叫作该种金属的截止频率(又叫极限频率)。不同的金属对应着不同的极限频率。

(5)爱因斯坦光电效应方程 ①表达式:E k =h ν-W 0。

②物理意义:金属表面的电子吸收一个光子获得的能量是h ν,这些能量的一部分用来克服金属的逸出功W 0,剩下的表现为逸出后光电子的最大初动能E k =12

m e v 2

c 。

3.光的波粒二象性与物质波 (1)光的波粒二象性

①光的干涉、衍射、偏振现象证明光具有波动性。 ②光电效应说明光具有粒子性。

③光既具有波动性,又具有粒子性,称为光的波粒二象性。 (2)物质波 ①概率波

光的干涉现象是大量光子的运动遵守波动规律的表现,亮条纹是光子到达概率大的地方,暗条纹是光子到达概率小的地方,因此光波又叫概率波。

②物质波

任何一个运动着的物体,小到微观粒子大到宏观物体都有一种波与它对应,其波长λ=h

p ,p 为运动物体的

动量,h 为普朗克常量。

知识点 2 氢原子光谱、能级 1.氢原子光谱

(1)光谱:用光栅或棱镜可以把各种颜色的光按波长展开,获得光的波长(频率)和强度分布的记录,即光谱。 (2)光谱分类

(3)氢原子光谱的实验规律:巴耳末系是氢光谱在可见光区的谱线,其波长公式1λ=R ? ????122-1n 2(n =3,4,5,…R

是里德伯常量,R =1.10×107

m -1

)。

(4)光谱分析:利用每种原子都有自己的特征谱线可以用来鉴别物质和确定物质的组成成分,且灵敏度很高。在发现和鉴别化学元素上有着重大的意义。

2.玻尔理论及能级结构 (1)玻尔理论

①定态:原子只能处于一系列不连续的能量状态中,在这些能量状态中原子是稳定的,电子虽然绕核运动,但并不向外辐射能量。

②跃迁:电子从能量较高的定态轨道跃迁到能量较低的定态轨道时,会放出能量为h ν的光子,这个光子的能量由前后两个能级的能量差决定,即h ν=E m -E n 。(h 是普朗克常量,h =6.63×10-34

J·s)

③轨道:原子的不同能量状态跟电子在不同的圆周轨道绕核运动相对应。原子的定态是不连续的,因此电

子的可能轨道也是不连续的。

(2)几个概念

①能级:在玻尔理论中,原子的能量是量子化的,这些量子化的能量值,叫作能级。 ②基态:原子能量最低的状态。

③激发态:在原子能量状态中除基态之外的其他的状态。 ④量子数:原子的状态是不连续的,用于表示原子状态的正整数。

(3)氢原子的能级公式:E n =1

n 2E 1(n =1,2,3,…),其中E 1为基态能量,其数值为E 1=-13.6_eV 。

(4)氢原子的半径公式:r n =n 2

r 1(n =1,2,3,…),其中r 1为基态半径,又称玻尔半径,其数值为r 1=0.53×10

-10

m 。

(5)氢原子的能级图 能级图如图所示。

知识点3 原子结构、原子核

1.原子核的组成

(1)电子的发现:英国物理学家汤姆孙在研究阴极射线时发现了电子,提出了原子的“枣糕模型”。

(2)原子的核式结构

①1909~1911年,英籍物理学家卢瑟福进行了α粒子散射实验,提出了核式结构模型。

②α粒子散射实验的结果:绝大多数α粒子穿过金箔后,基本上仍沿原来的方向前进,但有少数α粒子

发生了大角度偏转,偏转的角度甚至大于90°,也就是说它们几乎被“撞了出来”,如图所示。

③原子的核式结构模型:原子中带正电部分的体积很小,但几乎占有全部质量,电子在正电体的外面运动。

(3)原子核的组成

①原子核由质子和中子组成,质子和中子统称为核子。质子带正电,中子不带电。

②基本关系。

a.核电荷数=质子数(Z)=元素的原子序数=核外电子数。

b.质量数(A)=核子数=质子数+中子数。

c.X元素的原子核的符号为A Z X,其中A表示质量数,Z表示核电荷数。

2.天然放射现象

(1)天然放射现象

元素自发地放出射线的现象,首先由贝克勒尔发现。天然放射现象的发现,说明原子核具有复杂的结构。

(2)放射性和放射性元素

物质发射某种看不见的射线的性质叫放射性。具有放射性的元素叫放射性元素。

(3)三种射线的比较

①放射性同位素:有天然放射性同位素和人工放射性同位素两类,放射性同位素的化学性质相同。

②应用:消除静电、工业探伤、作示踪原子等。

③防护:防止放射性对人体组织的伤害。

(5)原子核的衰变

①衰变:原子核放出α粒子或β粒子,变成另一种原子核的变化称为原子核的衰变。

②分类

α衰变:A Z X→A-4Z-2Y+42He

β衰变:A Z X→A Z+1Y+0-1e

③半衰期:放射性元素的原子核有半数发生衰变所需的时间。半衰期由原子核内部的因素决定,跟原子所处的物理、化学状态无关。

3.核力、结合能、质量亏损

(1)核力

①定义

原子核内部,核子间所特有的相互作用力。

②特点

a.核力是强相互作用的一种表现;

b.核力是短程力,作用范围在1.5×10-15 m之内;

c.每个核子只跟它的相邻核子间才有核力作用。

(2)结合能

核子结合为原子核时释放的能量或原子核分解为核子时吸收的能量,叫做原子核的结合能,亦称核能。

(3)比结合能

①定义

原子核的结合能与核子数之比,称做比结合能,也叫平均结合能。

②特点

不同原子核的比结合能不同,原子核的比结合能越大,表示原子核中核子结合得越牢固,原子核越稳定。

(4)质能方程、质量亏损

爱因斯坦质能方程E=mc2,原子核的质量必然比组成它的核子的质量和要小Δm,这就是质量亏损。由质量亏损可求出释放的核能ΔE=Δmc2。

4.核反应

(1)重核裂变

①定义:质量数较大的原子核受到高能粒子的轰击而分裂成几个质量数较小的原子核的过程。

②特点。

a.裂变过程中能够放出巨大的能量;

b.裂变的同时能够放出2~3(或更多)个中子;

c.裂变的产物不是唯一的。对于铀核裂变有二分裂、三分裂和四分裂形式,但三分裂和四分裂概率比较小。

③典型的裂变反应方程

235

92U+1

0n→

89

36Kr+

144

56Ba+3

1

0n。

④链式反应:由重核裂变产生的中子使裂变反应一代接一代继续下去的过程。

⑤临界体积和临界质量:裂变物质能够发生链式反应的最小体积及其相应的质量。

⑥裂变的应用:原子弹、核反应堆。

⑦反应堆构造:核燃料、减速剂、镉棒、防护层。

(2)轻核聚变

①定义:两轻核结合成质量较大的核的反应过程。轻核聚变反应必须在高温下进行,因此又叫热核反应。

②特点。

a.聚变过程放出大量的能量,平均每个核子放出的能量,比裂变反应中每个核子放出的能量大3至4倍。b.聚变反应比裂变反应更剧烈。

c.对环境污染较少。

d.自然界中聚变反应原料丰富。

③典型的聚变反应方程:

2

1H+3

1H→

4

2He+

1

0n+17.60 MeV

(3)人工转变

①卢瑟福发现质子:14 7N+42He→17 8O+11H。

②查德威克发现中子:94Be+42He→12 6C+10n。

重难点

一、光电效应及其规律的认识

1.对光电效应规律的解释

(1)光子与光电子:光子指光在空间传播时的每一份能量,光子不带电;光电子是金属表面受到光照射时发射出来的电子,其本质是电子。光子是光电效应的因,光电子是果。

(2)光电子的动能与光电子的最大初动能:光照射到金属表面时,电子吸收光子的全部能量,可能向各个方向运动,需克服原子核和其他原子的阻碍而损失一部分能量,剩余部分为光电子的初动能;只有金属表面的电子直接向外飞出时,只需克服原子核的引力做功的情况,才具有最大初动能。光电子的初动能小于等于光电子的最大初动能。

(3)光电流和饱和光电流:金属板飞出的光电子到达阳极,回路中便产生光电流,随着所加正向电压的增大,光电流趋于一个饱和值,这个饱和值是饱和光电流,在一定的光照条件下,饱和光电流与所加电压大小无关。

(4)入射光强度与光子能量:入射光强度指单位时间内照射到金属表面单位面积上的总能量。

(5)光的强度与饱和光电流:饱和光电流与入射光强度成正比的规律是对频率相同的光照射金属产生光电效应而言的,对于不同频率的光,由于每个光子的能量不同,饱和光电流与入射光强度之间没有简单的正比关系。

3.光电效应的图象分析

(1)能否发生光电效应,不取决于光的强度而取决于光的频率。

(2)光电效应中的“光”不是特指可见光,也包括不可见光。

(3)逸出功的大小由金属本身决定,与入射光无关。

(4)光电子不是光子,而是电子。

二、氢原子能级图及原子跃迁

1.能级图中相关量意义的说明

2.对原子跃迁条件hν=E m-E n的说明

(1)原子跃迁条件hν=E m-E n只适用于光子和原子作用而使原子在各定态之间跃迁的情况。

(2)当光子能量大于或等于13.6 eV时,也可以被处于基态的氢原子吸收,使氢原子电离;当处于基态的氢原子吸收的光子能量大于13.6 eV时,氢原子电离后,电子具有一定的初动能。

(3)原子还可吸收外来实物粒子(例如自由电子)的能量而被激发。由于实物粒子的动能可全部或部分被原子吸收,所以只要入射粒子的能量大于或等于两能级的能量差值(E=E m-E n),均可使原子发生能级跃迁。

3.跃迁中两个易混问题

(1)一群原子和一个原子

氢原子核外只有一个电子,这个电子在某个时刻只能处在某一个可能的轨道上,在某段时间内,由某一轨道跃迁到另一个轨道时,可能的情况只有一种,但是如果容器中盛有大量的氢原子,这些原子的核外电子跃迁时就会有各种情况出现了。

一群氢原子处于量子数为n的激发态时,可能辐射出的光谱线条数为N=-

2

=C2n。

(2)直接跃迁与间接跃迁

原子从一种能量状态跃迁到另一种能量状态时,有时可能是直接跃迁,有时可能是间接跃迁。两种情况下辐射(或吸收)光子的能量是不同的。直接跃迁时辐射(或吸收)光子的能量等于间接跃迁时辐射(或吸收)的所有光子的能量和。

4.与能级有关的能量问题

(1)原子从低能级向高能级跃迁的能量情况

吸收一定能量的光子,当一个光子的能量满足h ν=E 末-E 初时,才能被某一个原子吸收,使原子从低能级E 初向高能级E 末跃迁,而当光子能量h ν大于或小于E 末-E 初时都不能被原子吸收。

(2)原子从高能级向低能级跃迁的能量情况

以光子的形式向外辐射能量,所辐射的光子能量恰等于发生跃迁时的两能级间的能量差。 (3)电离时的能量

当光子能量大于或等于原子所处的能级绝对值时,可以被氢原子吸收,使氢原子电离,多余的能量作为电子的初动能。

(4)氢原子跃迁时电子动能、电势能与原子能量的变化规律 ①电子动能变化规律

a .从公式上判断电子绕氢原子核运动时静电力提供向心力,即k e 2

r =m v 2

r ,所以E kn =ke

2

2r n ,随r 增大而减小。

b .从库仑力做功上判断,当轨道半径增大时,库仑引力做负功,故电子动能减小。反之,当轨道半径减小时,库仑引力做正功,故电子的动能增大。

②原子的电势能的变化规律

a .通过库仑力做功判断,当轨道半径增大时,库仑引力做负功,原子的电势能增大。反之,当轨道半径减小时,库仑引力做正功,原子的电势能减小。

b .利用原子能量公式E n =E kn +E pn 判断,当轨道半径增大时,原子能量增大,电子动能减小,故原子的电势能增大。反之,当轨道半径减小时,原子能量减小,电子动能增大,故原子的电势能减小。

③原子能量变化规律:E n =E kn +E pn =E 1

n

2,随n 增大而增大,随n 的减小而减小,其中E 1=-13.6 eV 。

特别提醒

(1)原子的跃迁条件h ν=E m -E n 只适用于光子和原子作用而使原子在各定态之间跃迁的情况。对于光子和原子作用而使原子电离的情况,只要入射光子的能量E >13.6 eV ,原子就能吸收。对于实物粒子与原子作用而使原子激发的情况,实物粒子的能量大于或等于能级差即可。

(2)利用每种原子都有自己的特征谱线可以用来鉴别物质和确定物质的组成,且灵敏度很高。在发现和鉴别化学元素上有着重大的意义。

三、原子核及其衰变、核反应 1.衰变规律及实质 (1)α衰变和β衰变的比较

(2)γ而处于激发态,在向低能级跃迁时能量以γ光子的形式辐射出来。原子核放出一个γ光子不会改变它的质量数和电荷数,不能单独发生γ衰变。

特别提醒

(1)原子核放出α粒子或β粒子,并不表明原子核内有α粒子或β粒子(很明显,β粒子是电子流,而原子核内不可能有电子存在)。

(2)原子核衰变时遵循质量数守恒而不是质量守恒。原子核衰变前后的总质量一般会发生变化(质量亏损)而

释放出核能。但是,原子核衰变遵循质量数守恒。

2.确定衰变次数的方法

(1)设放射性元素A Z X经过n次α衰变和m次β衰变后,变成稳定的新元素A′Z′Y,则表示该核反应的方程为

A

Z X→A′

Z′Y+n

4

2He+m

-1e。

根据电荷数守恒和质量数守恒可列方程

A=A′+4n,Z=Z′+2n-m。

(2)确定衰变次数,因为β衰变对质量数无影响,先由质量数的改变确定α衰变的次数,然后再根据衰变规律确定β衰变的次数。

3.对半衰期的理解

(1)根据半衰期的概念,可总结出公式

N余=N原(1

2

)t/τ,m余=m原(

1

2

)t/τ

式中N原、m原表示衰变前的放射性元素的原子数和质量,N余、m余表示衰变后尚未发生衰变的放射性元素的原子数和质量,t表示衰变时间,τ表示半衰期。

(2)影响因素:放射性元素衰变的快慢是由原子核内部因素决定的,跟原子所处的物理状态(如温度、压强)或化学状态(如单质、化合物)无关。

4.四种核反应的快速区分

(1)衰变反应:反应方程左边只有一个原子核,右边有两个且其中包含一个氦核或电子。

(2)人工核反应:核反应方程左边有一个原子核和α粒子、中子、质子、氘核等粒子中的一个,右边有一个新核,还可能放出一个粒子。

(3)重核的裂变:左边为重核与中子,右边为两个以上的核并放出若干个粒子。

(4)轻核的聚变:左边为轻核,右边为质量较大的核。例如氘核和氚核聚变成氦核的反应。

5.四种核反应类型的区分与典例

续表

特别提醒

(1)核反应过程一般都是不可逆的,所以核反应方程只能用单向箭头“→”连接并表示反应方向,不能用等号连接。

(2)核反应的生成物一定要以实验为基础,不能凭空只依据两个守恒规律杜撰出生成物来写核反应方程。 (3)核反应遵循质量数守恒而不是质量守恒,核反应过程中反应前后的总质量一般会发生变化。 (4)核反应遵循电荷数守恒。 四、核能

1.质能方程的理解

(1)一定的能量和一定的质量相联系,物体的总能量和它的质量成正比,即E =mc 2

方程的含义是:物体具有的能量与它的质量之间存在简单的正比关系,物体的能量增大,质量也增大;物体的能量减少,质量也减少。

(2)核子在结合成原子核时出现质量亏损Δm ,其能量也要相应减少,即ΔE =Δmc 2。 (3)原子核分解成核子时要吸收一定的能量,相应的质量增加Δm ,吸收的能量为ΔE =Δmc 2

(4)物体的质量包括静止质量和运动质量,质量亏损指的是静止质量的减少,减少的静止质量转化为和辐射能量有关的运动质量。质量只是物体具有能量多少及能量转变多少的一种量度。

2.核能释放的两种途径的理解

中等大小的原子核的比结合能最大,这些核最稳定。 (1)使较重的核分裂成中等大小的核。

(2)较小的核结合成中等大小的核,核子的比结合能都会增加,都可以释放能量。 3.核反应过程中的综合问题 (1)两个守恒定律的应用

若两原子核发生核反应生成两种或两种以上的新生原子核过程中满足动量守恒的条件,则 m 1v 1+m 2v 2=m 3v 3+m 4v 4+…

若核反应过程中释放的核能全部转化为新生原子核的动能,由动能守恒得 12m 1v 21+12m 2v 22+ΔE =12m 3v 23+12

m 4v 2

4+… (2)原子核衰变过程中,α粒子、β粒子和新生原子核在磁场中的轨迹。 ①α衰变中,α粒子和新生原子核在磁场中的轨迹外切,如图(甲)所示。

②β衰变中,β粒子和新生原子核在磁场中的轨迹内切,如图(乙)所示。

4.计算核能的两种方法

(1)根据爱因斯坦质能方程,用核反应过程中质量亏损的千克数乘以真空中光速的平方,即ΔE=Δmc2;

(2)根据1原子质量单位(u)相当于931.5 MeV的能量,得ΔE=质量亏损的原子质量单位数×931.5 MeV。

特别提醒

由ΔE=Δmc2计算,关键是确定质量亏损,即核反应前后的质量差;同时应注意Δm的单位,若Δm用kg 作单位,c=3×108 m/s,核能ΔE=Δmc2的单位为J。若Δm以原子质量单位u为单位,则核能利用公式ΔE =Δm×931.5 MeV来计算,其结果是以兆电子伏(MeV)为单位。

1.思维辨析

(1)大量光子产生的效果往往显示出波动性,个别光子产生的效果往往显示出粒子性。( )

(2)光既有波动性又有粒子性,是互相矛盾的,是不能统一的。( )

(3)光的频率越高,波动性越显著。( )

(4)运动的微观粒子与光子一样,当它们通过一个小孔时,都没有特定的运动轨道。( )

(5)实物的运动有特定的轨道,所以实物不具有波粒二象性。( )

(6)按照玻尔理论,核外电子均匀分布在各个不连续的轨道上。( )

(7)人们认识原子具有复杂结构是从英国物理学家汤姆孙研究阴极射线发现电子开始的。( )

(8)人们认识原子核具有复杂结构是从卢瑟福发现质子开始的。( )

(9)如果某放射性元素的原子核有100个,经过一个半衰期后还剩50个。( )

(10)质能方程表明在一定条件下,质量可以转化为能量。( )

答案(1)√(2)×(3)×(4)√(5)×(6)×(7)√(8)×(9)×(10)×

2.(多选)用如图所示的光电管研究光电效应的实验中,用某种频率的单色光a照射光电管阴极K,电流计G的指针发生偏转。而用另一频率的单色光b照射光电管阴极K时,电流计G的指针不发生偏转,那么( )

A.a光的频率一定大于b光的频率

B.只增加a光的强度可使通过电流计G的电流增大

C.增加b光的强度可能使电流计G的指针发生偏转

D.用a光照射光电管阴极K时通过电流计G的电流是由d到c

答案AB

解析由于用单色光a照射光电管阴极K,电流计G的指针发生偏转,说明发生了光电效应,而用另一频率的单色光b照射光电管阴极K时,电流计G的指针不发生偏转,说明b光不能发生光电效应,即a光的频率一定大于b光的频率;增加a光的强度可使单位时间内逸出光电子的数量增加,则通过电流计G的电流增大;因为b光不能发生光电效应,所以即使增加b光的强度也不可能使电流计G的指针发生偏转;用a光照射光电管阴极K时通过电流计G的电子的方向是由d到c,所以电流方向是由c到d。选项A、B正确。

3.玻尔氢原子模型成功解释了氢原子光谱的实验规律,氢原子能级图如图所示。当氢原子从n=4的能级跃迁到n=2的能级时,辐射出频率为________ Hz的光子,用该频率的光照射逸出功为2.25 eV的钾表面,产生的光电子的最大初动能为________ eV。(电子电荷量e=1.60×10-19C,普朗克常量h=6.63×10-34J·s)

答案 6.2×10140.30

解析氢原子从n=4的能级跃迁到n=2的能级时,释放出光子的能量为E=-0.85 eV-(-3.40 eV)=2.55 eV,由hν=E解得光子的频率ν=6.2×1014 Hz。

用此光照射逸出功为2.25 eV的钾时,由光电效应方程知,产生光电子的最大初动能为E k=hν-W=(2.55

-2.25)eV =0.30 eV 。

[考法综述] 本考点内容在高考中占有很重要的地位、考查频率很高。由于知识较琐碎,试题难度比

较低,所以在复习中应以掌握基础知识为主,本考点内容可归纳如下:

7个概念——光电效应、能级、基态、激发态、半衰期、结合能、比结合能 1个方程——光电效应方程 3种射线——α、β、γ射线 1个模型——玻尔原子模型

2个公式——m =m 0? ????12t τ

ΔE =Δmc 2

4类核反应——衰变、人工转变、裂变、聚变

7位科学家——玻尔、卢瑟福、查德威克、居里夫人、爱因斯坦、德布罗意

典例 1 小明用金属铷为阴极的光电管观测光电效应现象,实验装置示意如图甲所示。已知普朗克常量h =6.63×10

-34

J·s。

(1)图甲中电极A 为光电管的________(填“阴极”或“阳极”);

(2)实验中测得铷的遏止电压U c 与入射光频率ν之间的关系如图乙所示,则铷的截止频率νc =________ Hz ,逸出功W 0=________ J ;

(3)如果实验中入射光的频率ν=7.00×1014

Hz ,则产生的光电子的最大初动能E k =________ J 。 [答案] (1)阳极

(2)(5.12~5.18)×1014

'(3.39~3.43)×10-19

(3)(1.21~1.25)×10

-19

[解析] (1)由光电管的结构知,A 为阳极。

(2)U c -ν图象中横轴的截距表示截止频率,νc =5.14×1014

Hz ,逸出功W 0=h νc =6.63×10-34

×5.14×1014

J

=3.41×10

-19

J 。

(3)由爱因斯坦的光电效应方程E k =h ν-W 0=6.63×10

-34

×7.00×1014 J -3.41×10

-19

J =1.23×10-19

J 。

【解题法】 应用光电效应方程时的注意事项

(1)每种金属都有一个截止频率,光频率大于这个截止频率才能发生光电效应。

(2)截止频率是发生光电效应的最小频率,对应着光的极限波长和金属的逸出功,即h ν0=h c

λ0=W 0。

(3)应用光电效应方程E k =h ν-W 0时,注意能量单位电子伏和焦耳的换算(1 eV =1.6×10

-19

J)。

(4)作为能量守恒的一种表达式可以定性理解方程h ν=W 0+12mv 2

的意义:即入射光子的能量一部分转换在

金属的逸出功上,剩余部分转化为光电子的动能。对某种金属来说W 0为定值,因而光子频率ν决定了能否发生

光电效应及光电子的初动能大小。每个光子的一份能量h ν与一个光电子的动能12

mv 2

对应。

典例2 (多选)用极微弱的可见光做双缝干涉实验,随着时间的增加,在屏上先后出现如图(a)、(b)、(c)所示的图象,则下列说法正确的是(

)

A .图象(a)表明光具有粒子性

B .图象(c)表明光具有波动性

C .用紫外光观察不到类似的图象

D .实验表明光是一种概率波 [答案] ABD

[解析] 图象(a)曝光时间短,通过光子数很少,呈现粒子性,图象(c)曝光时间长,通过了大量光子,呈现波动性,A 、B 正确;同时实验也表明光波是一种概率波,D 正确;紫外光本质和可见光本质相同,也可以发生上述现象,C 错误。

【解题法】 波粒二象性的深入理解

(1)虽然平时看到宏观物体运动时,看不出其波动性,但也有一个波长与之对应。例如飞行子弹的波长约为10

-34

m 。

(2)波粒二象性是微观粒子的特殊规律,一切微观粒子都存在波动性;宏观物体也存在波动性,只是波长太小,难以观测。

(3)德布罗意波也是概率波,衍射图样中的亮圆是电子落点概率大的地方,但概率的大小受波动规律的支配。 (4)光既具有粒子性,又具有波动性,对光的波粒二象性的理解:

典例3 (多选)氢原子能级如图所示,当氢原子从n =3跃迁到n =2的能级时,辐射光的波长为656 nm 。以下判断正确的是( )

A .氢原子从n =2跃迁到n =1的能级时,辐射光的波长大于656 nm

B .用波长为325 nm 的光照射,可使氢原子从n =1跃迁到n =2的能级

C .一群处于n =3能级上的氢原子向低能级跃迁时最多产生3种谱线

D .用波长为633 nm 的光照射,不能使氢原子从n =2跃迁到n =3的能级 [答案] CD

[解析] 由能级跃迁公式h ν=hc

λ

=E m -E n 可知,能级差越大的跃迁,对应吸收或辐射的波长越短,A 错误;由能级图知,E 3-E 2=1.89 eV =h

c λ1,E 2-E 1=10.2 eV =h c λ2。联立可得λ2=1.8910.2

λ1=121.56 nm ,B 错误;一群处于n =3能级上的氢原子跃迁产生的谱线数N =-

2

=3种,C 正确;氢原子从n =2跃迁到n =3需吸

收的光的波长仍为656 nm ,D 正确。

【解题法】 能级跃迁的规律

(1)自发跃迁:高能级→低能级,释放能量,发出光子。 光子的频率ν=ΔE h =E 高-E 低

h

(2)受激跃迁:低能级→高能级,吸收能量。

①光照(吸收光子):光子的能量必须恰等于能级差h ν=ΔE 。

②碰撞、加热等:只要入射粒子能量大于或等于能级差即可,E 外≥ΔE 。 ③大于电离能的光子被吸收,将原子电离。

(3)一群氢原子处于量子数为n 的激发态时,可能辐射出的光谱线条数N =C 2

n =-

2

典例4 钚的放射性同位素239 94Pu 静止时衰变为铀核激发态235 92U*、α粒子,而铀核激发态235 92U*立即衰变为铀核235

92U ,并放出能量为0.097 MeV 的γ光子。已知:239 94Pu 、235 92U 和α粒子的质量分别为m Pu =239.0521 u 、m U =235.0439 u 和m α=4.0026 u ,1 u =931.5 MeV/c2。

(1)写出衰变方程;

(2)已知衰变放出的光子的动量可忽略,求α粒子的动能。 [答案] (1)239 94Pu→235 92U +α+γ (2)5.034 MeV [解析] (1)衰变方程为239 94Pu→235 92U*+α① 235 92U*→235 92U +γ②

或合起来有 239 94Pu→235 92U +α+γ③ (2)上述衰变过程的质量亏损为

Δm=m Pu-m U-mα④

放出的能量为ΔE=Δm·c2⑤

ΔE是铀核235 92U的动能E U、α粒子的动能Eα和γ光子的能量Eγ之和,ΔE=E U+Eα+Eγ⑥于是E U+Eα=(m Pu-m U-mα)c2-Eγ⑦

设衰变后的铀核和α粒子的速度分别为v U和vα,则由动量守恒有m U v U=mαvα⑧

又由动能的定义知

E U=1

2

m U v2U,Eα=

1

2

mαv2α⑨

由⑧⑨式得E U

Eα=

m U

由⑦⑩式得Eα=m U

m U+mα

[(m Pu-m U-mα)c2-Eγ]

代入题给数据得Eα=5.034 MeV。

【解题法】计算核能的几种方法

(1)根据ΔE=Δmc2计算,计算时Δm的单位是“kg”,c的单位是“m/s”,ΔE的单位是“J”。

(2)根据ΔE=Δm×931.5 MeV计算。因1原子质量单位(u)相当于931.5 MeV的能量,所以计算时Δm的单位是“u”,ΔE的单位是“MeV”。

(3)根据平均结合能来计算核能

原子核的结合能=平均结合能×核子数。

(4)有时可结合动量守恒和能量守恒进行分析计算,此时应注意动量、动能关系式p2=2mE k的应用。

总之,关于结合能(核能)的计算,应根据题目的具体情况合理选择核能的求解方法,且计算时要注意各量的单位。

1.(多选)实物粒子和光都具有波粒二象性。下列事实中突出体现波动性的是( )

A.电子束通过双缝实验装置后可以形成干涉图样

B.β射线在云室中穿过会留下清晰的径迹

C.人们利用慢中子衍射来研究晶体的结构

D.人们利用电子显微镜观测物质的微观结构

E.光电效应实验中,光电子的最大初动能与入射光的频率有关,与入射光的强度无关

答案ACD

解析衍射和干涉是波特有的现象,选项A、C正确;光电效应体现了光的粒子性,选项E错误;射线在云室中穿过,留下的径迹是粒子的轨迹,选项B错误;电子显微镜利用了电子的波动性来观测物质的微观结构,选项D正确。

2.下列核反应方程中,属于α衰变的是( )

A.14 7N+42He→17 8O+11H

B.238 92U→234 90Th+42He

C.21H+31H→42He+10n

D.23490Th→234 91Pa+0-1e

答案 B

解析A项是人工核转变,A项错误;B项是α衰变,B项正确;C项是轻核聚变,C项错误;D项是β衰变,D项错误。

3.下列有关原子结构和原子核的认识,其中正确的是( )

A.γ射线是高速运动的电子流

B.氢原子辐射光子后,其绕核运动的电子动能增大

C.太阳辐射能量的主要是太阳中发生的重核裂变

D.210 83Bi的半衰期是5天,100克210 83Bi经过10天后还剩下50克

答案 B

解析γ射线是光子流,所以A项错误;氢原子辐射光子以后,半径减小,电子动能增加,所以B项正确;太阳辐射能量的主要是热核反应,所以C项错误;210 83Bi的半衰期是5天,经过10天,100克210 83Bi还余25克,所以D项错误。

4.物理学重视逻辑,崇尚理性,其理论总是建立在对事实观察的基础上。下列说法正确的是( )

A.天然放射现象说明原子核内部是有结构的

B.电子的发现使人们认识到原子具有核式结构

C.α粒子散射实验的重要发现是电荷是量子化的

D.密立根油滴实验表明核外电子的轨道是不连续的

答案 A

解析天然放射现象说明原子核是可分的,即核内部是有结构的,A项正确;电子的发现使人们认识到原子是可分的,B项错误;α粒子散射实验的重要发现是原子具有核式结构,C项错误;密立根油滴实验精确地测出了电子的电荷量,原子光谱的分立性表明原子核外电子轨道是不连续的,D项错误。

5.图中曲线a、b、c、d为气泡室中某放射物发生衰变放出的部分粒子的径迹,气泡室中磁感应强度方向垂直于纸面向里。以下判断可能正确的是( )

A.a、b为β粒子的径迹B.a、b为γ粒子的径迹

C.c、d为α粒子的径迹D.c、d为β粒子的径迹

答案 D

解析γ粒子不带电,不会发生偏转,故B错;由左手定则可判定,a、b粒子带正电,c、d粒子带负电,又知α粒子带正电,β粒子带负电,故A、C均错,D正确。

6.(多选)科学家使用核反应获取氚,再利用氘和氚的核反应获得能量。核反应方程分别为:X+Y→42He+31H +4.9 MeV和21H+31H→42He+X+17.6 MeV。下列表述正确的有( )

A.X是中子

B.Y的质子数是3,中子数是6

C.两个核反应都没有质量亏损

D.氘和氚的核反应是核聚变反应

答案AD

解析设A Z X、A′Z′Y,由质量数守恒和电荷数守恒有:A+A′=4+3,2+3=A+4,Z+Z′=2+1,1+1=2+Z,可得A=1,A′=6,Z=0,Z′=3,故X是中子,Y是63Li,A正确;由63Li知Y的质子数、中子数都是3,故B 错误;两个核反应中都释放了能量,故都有质量亏损,C错误;氘和氚的核反应中质量较小的核合成了质量较大的核,故D正确。

7.(多选)14C发生放射性衰变成为14N,半衰期约5700年。已知植物存活期间,其体内14C与12C的比例不变;生命活动结束后,14C的比例持续减少。现通过测量得知,某古木样品中14C的比例正好是现代植物所制样品的二

分之一。下列说法正确的是( )

A.该古木的年代距今约5700年

B.12C、13C、14C具有相同的中子数

C.14C衰变为14N的过程中放出β射线

D.增加样品测量环境的压强将加速14C的衰变

答案AC

解析古木样品中14C的比例正好是现代样品的二分之一,说明该古木恰好经历了一个半衰期的时间,故A 正确;12C、13C、14C具有相同的质子数、不同的中子数,故B错;14C的衰变方程为:14 6C→14 7N+0-1e,可见C正确;放射性元素的半衰期与外界因素无关,故D错。

8.(多选)关于天然放射性,下列说法正确的是( )

A.所有元素都可能发生衰变

B.放射性元素的半衰期与外界的温度无关

C.放射性元素与别的元素形成化合物时仍具有放射性

D.α、β和γ三种射线中,γ射线的穿透能力最强

E.一个原子核在一次衰变中可同时放出α、β和γ三种射线

答案BCD

解析只有放射性元素才能发生衰变,A项错误;半衰期由原子核的内部自身的因素决定,与原子核所处的化学状态和外部条件无关,B、C两项正确;γ射线的穿透力最强,D项正确;原子核衰变时,不能同时放出α、β射线,E项错误。

9.(多选)在人类对微观世界进行探索的过程中,科学实验起到了非常重要的作用。下列说法符合历史事实的是( )

A.密立根通过油滴实验测出基本电荷的数值

B.贝克勒尔通过对天然放射现象的研究,发现了原子中存在原子核

C.居里夫妇从沥青铀矿中分离出了钋(Po)和镭(Ra)两种新元素

D.卢瑟福通过α粒子散射实验证实了在原子核内部存在质子

E.汤姆孙通过阴极射线在电场和磁场中偏转的实验,发现了阴极射线是由带负电的粒子组成的,并测出了该粒子的比荷

答案ACE

解析密立根通过油滴实验测出了基本电荷的数值为1.6

×10-19 C,选项A正确;贝克勒尔通过对天然放射性研究说明原子核具有复杂结构,选项B错误;居里夫妇从沥青铀矿中分离出了钋(Po)和镭(Ra)两种新元素,选项C正确;卢瑟福通过α粒子散射实验,得出了原子的核式结构理论,选项D错误;汤姆孙通过对阴极射线在电场及在磁场中偏转的实验,发现了阴极射线是由带负电的粒子组成,并测定了粒子的比荷,选项E正确。

10.在某次光电效应实验中,得到的遏止电压U c与入射光的频率ν的关系如图所示。若该直线的斜率和截距分别为k和b,电子电荷量的绝对值为e,则普朗克常量可表示为________,所用材料的逸出功可表示为________。

答案 ek -eb

解析 由光电效应方程,光电子的最大初动能12mv 2=h ν-W 。根据动能定理,eU c =12mv 2,联立解得:U c =h

e ν

-W e 。对照题给遏止电压U c 与入射光的频率ν的关系图象,可知:图象斜率k =h

e ,解得普朗克常量h =ek 。图象在纵轴上的截距b =-W

e

,解得所用材料的逸出功W =-eb 。

11.(1)核电站利用原子核链式反应放出的巨大能量进行发电,235

92U 是核电站常用的核燃料。235

92U 受一个中子轰击后裂变成144

56Ba 和89

36Kr 两部分,并产生________个中子。要使链式反应发生,裂变物质的体积要________(选填“大于”或“小于”)它的临界体积。

(2)取质子的质量m p =1.67269×10

-27

kg ,中子的质量m n =1.6749×10

-27

kg ,α粒子的质量m α=6.6467×10

-27

kg ,光速c =3.0×108

m/s 。请计算α粒子的结合能。(计算结果保留两位有效数字) 答案 (1)3 大于 (2)4.3×10

-12

J

解析 (1)由235

92U +1

0n→144

56Ba +89

36Kr +31

0n 可知,会产生3个中子,要使裂变持续进行(链式反应),物质的体积需大于它的临界体积。

(2)组成α粒子的核子与α粒子的质量差为 Δm =(2m p +2m n )-m α 结合能ΔE =Δmc 2

代入数据得ΔE =4.3×10

-12

J 。

物理建模 子弹打木块模型

1.模型概述

子弹打木块问题是高中物理的重点知识,是动量与能量相结合的重要模型之一,因此是高考考查的重点和热点之一。子弹打木块问题中子弹与木块相互作用过程中力对子弹和木块的位移不同,导致系统机械能减少,减少的机械能转化为内能。

2.模型分析

(1)“子弹击中木块模型”,不管子弹是否击穿木块,由子弹和木块组成的系统,在子弹的运动方向动量守恒,即

mv 0=(m +M)v(未击穿时) mv 0=mv 1+Mv 2(击穿时)。

(2)“子弹击中木块模型”中各力做功情况

如图所示,质量为m 的子弹以水平速度v 0射入静止在光滑水平面上的质量为M 的木块中,射入木块的深度为d 而未穿出,木块与子弹的共同速度为v ,木块滑行s 木过程中,子弹与木块相互作用力为F 。则:

F 对子弹做的负功W F =-Fs 子 F 对木块做的正功W′=Fs 木 3.求解思路

子弹打木块过程中,系统所受的合外力为零,因此系统动量守恒。若计算相互作用前后的速度,可利用动量守恒定律列出相关方程解答;若涉及子弹与木块相互作用的时间,一般运用动量定理列方程解答;若涉及子弹打入木块的深度,一般分别对子弹和木块运用动能定理列方程解答;对作用后木块的运动,一般运用动能定

理列出相关方程解答。

【典例】 一质量为M 的木块放在光滑的水平面上,一质量为m 的子弹以初速度v 0水平飞来打进木块并留在其中,设子弹与木块之间的相互作用力为f 。则

(1)子弹、木块相对静止时的速度是多少? (2)子弹在木块内运动的时间为多长?

(3)子弹、木块发生的位移以及子弹打进木块的深度分别是多少? (4)系统损失的机械能、系统增加的内能分别是多少? (5)要使子弹不射出木块,木块至少多长?

[解析] (1)设子弹、木块相对静止时的速度为v ,由动量守恒定律得mv 0=(M +m)v 解得v =m

M +m

v 0

(2)设子弹在木块内运动的时间为t ,由动量定理得 对木块:ft =Mv -0 解得t =

Mmv 0+

(3)设子弹、木块发生的位移分别为s

1、s 2,如图所示,由动能定理得 对子弹:-fs 1=12mv 2-12

mv 2

解得s 1=

+20+

2

对木块:fs 2=12Mv 2

解得s 2=

Mm 2v 2

2

子弹打进木块的深度等于相对位移,即s 相=s 1-s 2=Mmv 2

(4)系统损失的机械能为 E 损=12mv 20-12(M +m)v 2

Mmv 2

0+

系统增加的内能为

Q =f·s 相=

Mmv 2

系统增加的内能等于系统损失的机械能。 (5)假设子弹恰好不射出木块,此时有

【实验报告】近代物理实验教程的实验报告

近代物理实验教程的实验报告 时间过得真快啊!我以为自己还有很多时间,只是当一个睁眼闭眼的瞬间,一个学期都快结束了,现在我们为一学期的大学物理实验就要画上一个圆满的句号了,本学期从第二周开设了近代物理实验课程,在三个多月的实验中我明白了近代物理实验是一门综合性和技术性很强的课程,回顾这一学期的学习,感觉十分的充实,通过亲自动手,使我进一步了解了物理实验的基本过程和基本方法,为我今后的学习和工作奠定了良好的实验基础。我们所做的实验基本上都是在物理学发展过程中起到决定性作用的著名实验,以及体现科学实验中不可缺少的现代实验技术的实验。它们是我受到了著名物理学家的物理思想和探索精神的熏陶,激发了我的探索和创新精神。同时近代物理实验也是一门包括物理、应用物理、材料科学、光电子科学与技术等系的重要专业技术基础物理实验课程也是我们物理系的专业必修课程。 我们本来每个人要做共八个实验,后来由于时间关系做了七个实验,我做的七个实验分别是:光纤通讯,光学多道与氢氘,法拉第效应,液晶物性,非线性电路与混沌,高温超导,塞满效应,下面我对每个实验及心得体会做些简单介绍: 一、光纤通讯:本实验主要是通过对光纤的一些特性的探究(包括对光纤耦合效率的测量,光纤数值孔径的测量以及对塑料光纤光纤损耗的测量与计算),了解光纤光学的基础知识。探究相位调制型温度传感器的干涉条纹随温度的变化的移动情况,模拟语电话光通信, 了解光纤语音通信的基本原理和系统构成。老师讲的也很清楚,本试验在操作上并不是很困难,很易于实现,易于成功。

二、光学多道与氢氘:本实验利用光学多道分析仪,从巴尔末公式出发研究氢氘光谱,了解其谱线特点,并学习光学多道仪的使用方法及基本的光谱学技术通过此次实验得出了氢原子和氘原子在巴尔末系下的光谱波长,并利用测得的波长值计算出了氢氘的里德伯常量,得到了氢氘光谱的各光谱项及巴耳末系跃迁能级图,计算得出了质子和电子的质量之比。个人觉得这个实验有点太智能化,建议锻炼操作的部分能有所加强。对于一些仪器的原理在实验中没有体现。如果有所体现会比较容易使学生深入理解。数据处理有些麻烦。不过这也正是好好提高自己的分析数据、处理数据能力的好时候、更是理论联系实际的桥梁。 三、法拉第效应:本实验中,我们首先对磁场进行了均匀性测定,进一步测量了磁场和励磁电流之间的关系,利用磁场和励磁电流之间的线性关系,用电流表征磁场的大小;再利用磁光调制器和示波器,采用倍频法找出ZF6、MR3-2样品在不同强度的旋光角θ和磁场强度B的关系,并计算费尔德常数;最后利用MR3样品和石英晶体区分自然旋光和磁致旋光,验证磁致旋光的非互易性。 四p液晶物性:本实验主要是通过对液晶盒的扭曲角,电光响应曲线和响应时间的测量,以及对液晶光栅的观察分析,了解液晶在外电场的作用下的变化,以及引起的液晶盒光学性质的变化,并掌握对液晶电光效应测量的方法。本实验中我们研究了液晶的基本物理性质 和电光效应等。发现液晶的双折射现象会对旋光角的大小产生的影响,在实验中通过测量液晶盒两面锚泊方向的差值,得到液晶盒扭曲角的大小为125度;测量了液晶的响应时间。观察液晶光栅的衍射现象,在“常黑模式”和“常白模式”下分别测量了液晶升压和降压过程的电光响应曲线,求得了阈值电压、饱

物理教学中的德育教育

物理教学中的德育教育 物理教学中的德育教育 道德教育是学校的首要工作。教育和教育人是每位教师不可推卸 的责任。教师不仅要向学生传授知识,还要自觉地进行政治思想教育,为祖国培养合格的建设者。《义务教育物理新课程标准》明确指出'注 重不同学科之间的渗透,让学生关心科学技术的新进展和新思路,逐 步建立科学的世界观'。教学是学校的中心任务。我们如何在通常的物 理教学中教育学生的思想道德?经过几年的不断研究和探索,总结了 以下实践: 首先,道德教育是在通常的备课中进行的 中学生处于“心理断奶期”,处于半天真,半成熟期,处于相对 危险的人生年龄,因此,在这个阶段,教师和家长都非常需要关心和 指导。教导道德更为迫切和必要。要在物理教学中有道德教育的计划 和目的,必须把道德教育纳入自己的准备,并为每个班级准备道德教 育的内容,方法和方法。以有针对性的方式做到这一点。 第二,学习目标和学习兴趣教育 根据好学生的特点,胜利和初中生的良好表现,激发学生的学习 兴趣,建立正确的学习目标,服务社会是物理道德教育的重点。初中

物理教科书包含丰富的思想和教育资料。教师应充分探索和组织物理 教科书中的思想教育资料。 三是培养道德素质和心理素质 作为一个坚定的学生,他可以顽固地克服一切困难并自信地对待 一切。学生的道德素质和心理素质对今天的学习和明天的工作有很大 的影响。教师应掌握初中生的心理特点和知识结构特点,充分利用物 理教科书中的阅读材料,向学生介绍物理学家的故事。 四是爱国主义教育的渗透。 通过挖掘物理教科书中的历史资料,我们将告诉学生在历史物理 领域对世界科学发展所做出的巨大贡献,并展示了物理学的发展成就。 通过这种方式,通过在客观地介绍这些物理成就,可以增强学生 的民族自豪感,激发学生对祖国的热爱。 5.进行特别讲座,并使用历史资料鼓励学生。 为了弥补课堂教学的不足,举办了一些专题讲座,系统地介绍了 物理学家对祖国和人民的学术贡献,以及他们的学术态度和奉献真理,造福人民的奉献精神。例如,通过讲座,可以以故事的形式介绍《两 弹元星--邓稼先的故事》,美国华人,诺贝尔物理学奖得主杨振宁的 故事,介绍中学生在物理奥林匹克中的杰出成就,以及思考中学生。 教育,以提高学生的民族自信心。 6.运用物理学教育学生辩证唯物主义。

近代物理实验研究性教学改革的探索

近代物理实验研究性教学改革的探索 作者:钟鹏王殿生周丽霞 来源:《科技创新导报》2011年第24期 摘要:针对验证性为主实验教学对高年级学生研究能力和创新能力培养不足的情况,以近代物理实验教学改革为例,探讨如何调动实验教师和学生的积极性,充分利用现有的实验资源,变验证性为主的教学模式为综合创新为主的研究性实验教学模式,从而实现实验教学多元化。 关键词:近代物理实验研究性教学多元化 中图分类号:G6 文献标识码:A 文章编号:1674-098X(2011)08(c)-0164-01 1 引言 研究性教学是以培养学生的研究意识、研究能力和创新能力为目标,通过教学过程,使学生不仅掌握系统的学科知识,还能综合运用知识去发现、分析和解决问题,学会研究与探索,培养研究能力、实践能力和创新能力的一种教学模式[1]。实验教学是研究性教学重要的载体之一,是培养创造性人才的基础[2]。中国石油大学(华东)通过近代物理实验教学改革,充分利用现有的人力和设备资源,在保证基本实验的基础上,采用了以学生为中心,鼓励学生创新的“研究性教学”新模式,实现了“基础、综合、创新”三个层次的实验教学,进一步培养了本科学生的创新精神和实践能力,实现了人才培养的多元化,取得了良好的教学效果。 2 近代物理实验的传统教学模式分析 “近代物理实验”是物理学院高年级学生的一门重要基础课,所涉及的物理知识面广,综合性和技术性强。中国石油大学(华东)近代物理实验室承担物理专业12个班级的实验教学任务,可开出涉及声学,光学,电学,微波,原子物理学,核物理学等多个学科近代物理实验34个。 在传统的教学模式下,近代物理实验多为再现式或验证性实验,实验前由教师讲解要点,实验中学生严格按照实验讲义进行操作。考核方式为学生完成一篇学习总结或综述。这种教学模式,对于训练学生正确掌握近代物理实验的基本技能和方法,巩固学生对所学理论知识的理解,具有一定意义。但这种模式也存在很多弊端。首先,实验内容抑制了学生学习主动性,限制了学生创新思维和发散思维,不利于培养和提高高年级学生分析问题解决问题的能力和科研水平。其次,再现式的模式使得教学过程对教师而言是一个重复劳动的枯燥过程,缺乏不断学习和改进实验 的动力。再次,实验中的仪器一般只使用一项功能,效率偏低。由于近代物理实验的深度,很多仪器测量精密,功能先进,例如,电子自旋共振实验中使用的频率计有三个测量档位,测量范围0~200MHz,而实验中仅使用其中一个档位,只需测量26~27MHz的狭窄范围,如此造成了设备其他功能的闲置。因此,要在保证专业基础实验教学效果的前提下,加强实验教学的综合性和创新性,充分调动学生和教师的积极性,发挥实验设备的潜力,进行实验教学的研究性改革。

高一物理运动的描述专题练习(解析版)

一、第一章 运动的描述易错题培优(难) 1.如图所示,物体沿曲线轨迹的箭头方向运动,AB 、ABC 、ABCD 、ABCDE 四段曲线轨迹运动所用的时间分别是:1s 、2s 、3s 、4s ,下列说法正确的是( ) A .物体在A B 段的平均速度为1m/s B .物体在AB C 5m/s C .AB 段的平均速度比ABC 段的平均速度更能反映物体处于A 点时的瞬时速度 D .物体在B 点的速度等于AC 段的平均速度 【答案】ABC 【解析】 【分析】 【详解】 A .由图可知物体在A B 段的位移为1m ,则物体在AB 段的平均速度 1m/s 1m/s 1 x v t = == 选项A 正确; B .物体在AB C 段的位移大小为 2212m 5m x =+= 所以物体在ABC 段的平均速度 5x v t = = 选项B 正确; C .根据公式x v t =可知,当物体位移无限小、时间无限短时,物体的平均速度可以代替某点的瞬时速度,位移越小平均速度越能代表某点的瞬时速度,则AB 段的平均速度比ABC 段的平均速度更能反映物体处于A 点时的瞬时速度,选项C 正确; D .根据题给条件,无法得知物体的B 点的运动速度,可能很大,也可能很小,所以不能得出物体在B 点的速度等于AC 段的平均速度,选项D 错误。 故选ABC 。 2.甲、乙两辆赛车从同一地点沿同一平直公路行驶。它们的速度图象如图所示,下列说法

正确的是( ) A.60 s时,甲车在乙车的前方 B.20 s时,甲、乙两车相距最远 C.甲、乙加速时,甲车的加速度大于乙车的加速度 D.40 s时,甲、乙两车速度相等且相距900m 【答案】AD 【解析】 【详解】 A、图线与时间轴包围的面积表示对应时间内的位移大小,由图象可知60s时,甲的位移大于乙的位移,所以甲车在乙车前方,故A正确; B、40s之前甲的速度大于乙的速度,40s后甲的速度小于乙的速度,所以40s时,甲乙相距最远,在20s时,两车相距不是最远,故B错误; C、速度?时间图象斜率表示加速度,根据图象可知,甲加速时的加速度小于乙加速时的加速度,故C错误; D、根据图象可知,40s时,甲乙两车速度相等都为40m/s,甲的位移 ,乙的位移,所以甲乙相距,故D正确; 故选AD。 【点睛】 速度-时间图象切线的斜率表示该点对应时刻的加速度大小,图线与时间轴包围的面积表示对应时间内的位移大小,根据两车的速度关系知道速度相等时相距最远,由位移求相距的距离。 3.一物体做加速度不变的直线运动,某时刻速度的大小为4 m/s, 1 s后速度的大小变为5 m/s,则在这1 s内该物体( ) A.速度变化的大小可能为3m/s B.速度变化的大小可能为9m/s C.加速度的大小可能为3m/s2D.加速度的大小可能为1m/s2 【答案】BD 【解析】 【分析】 【详解】 取v1的方向为正方向,则v1=4m/s,若v2 =5m/s,速度的变化为v2-v1=1m/s,即速度变化大

初中物理课堂教学实效性策略研究结题报告

《初中物理课堂教学实效性策略研究》 结题报告 裴家堡初级中学刘明 摘要:我们课题组结合我校的实际情况,为了深入推进新课程改革,在课堂教学中落实初中物理课程标准的基本教学理念,以促进学生素质的全面提高和我校物理教师团队的不断进步。从2012年11月立项伊始,历经一年多的实践研究,通过严密的课题论证,理论学习,大胆实践,不断反思,我们认为研究基本达到了预期的效果,初步实现了研究目的。科研目标基本达到,育人目标也初见成效。 一、课题研究的背景,选题的意义及价值 课改以来全国上下掀起了一轮课程改革的热潮。但是在实践过程中,由于受到教师的观念、施教水平以及教育教学资源等因素的影响,课堂中出现了“穿新鞋、走老路”的现象,课堂教学仍然基本上是一种教师讲课、学生听课的传统授课方式,学生缺少学习的自主性、探究性和合作性。课堂教学中不能促进学生进行有效的学习,促进学生全面发展的三维目标得不到落实。 国内外既有的相关研究:有效教学的理念源于20世纪上半叶西方的教学科学化运动。学生有效参与课堂教学是有效教学的重要表现。赫斯特认为教学的目的是发展和扩大概念图式和心理技能,从而引起行为变化。 国内近期对于学生有效学习方面的研究逐渐增多,如张承凯在《赤子》期刊上发表了《学生有效参与历史课堂学习活动的教学策略

研究》、何基生在《现代中小学教育》期刊上发表了《有效促进学生主动参与课堂教学的策略》等等,各位教育专家和一线教师在不断探索教育的实效性,促进学生的全面发展。但都处于起步阶段。人们对学生参与学习的方式、态度、兴趣等问题的认识还不是十分明确,对导致低效、无效的课堂教学行为的研究尚未形成系统的认识,研究的深度和广度不够,尤其是对学生学习方式的研究以及外部因素对学生学习的作用涉及较少,期待研究解决。 课题创新要点:本课题研究将立足于本校教学实践,以现代教学理论为指导,系统借鉴、整理、选择教学经验,对成功有效的教学经验进行分析与整合,并形成策略体系,力求使有效教学理论校本化、个性化。把提高课堂教学学生参与度的策略研究定位于学生在课堂教学过程中的行为、情感和认知参与三方面,着重探讨提高学生课堂参与度,注重氛围营造、问题解决、知识应用、课堂交流、培养学生的态度、情感与自信心,促进学生深层次参与教学活动。 本课题旨在探讨初中物理课堂有效教学的基本形态和实施,寻找切实有效的课堂教学策略,以期形成实施新课程标准的有效路径和方法。推动学校教育的可持续发展,促进学生自主、健康、全面、和谐的发展. 具体表现在: 1、探求有效教学策略,促进教与学方式的变革,实现学生生动、活泼、主动学习与发展,使课堂教学向学生的生活世界回归。

高一物理圆周运动专题练习(word版

一、第六章 圆周运动易错题培优(难) 1.两个质量分别为2m 和m 的小木块a 和b (可视为质点)放在水平圆盘上,a 与转轴OO ’的距离为L ,b 与转轴的距离为2L ,a 、b 之间用强度足够大的轻绳相连,木块与圆盘的最大静摩擦力为木块所受重力的k 倍,重力加速度大小为g .若圆盘从静止开始绕转轴缓慢地加速转动,开始时轻绳刚好伸直但无张力,用ω表示圆盘转动的角速度,下列说法正确的是( ) A .a 、b 所受的摩擦力始终相等 B .b 比a 先达到最大静摩擦力 C .当2kg L ω=a 刚要开始滑动 D .当23kg L ω=b 所受摩擦力的大小为kmg 【答案】BD 【解析】 【分析】 【详解】 AB .木块随圆盘一起转动,静摩擦力提供向心力,由牛顿第二定律可知,木块受到的静摩擦力f =mω2r ,则当圆盘从静止开始绕转轴缓慢地加速转动时,木块b 的最大静摩擦力先达到最大值;在木块b 的摩擦力没有达到最大值前,静摩擦力提供向心力,由牛顿第二定律可知,f=mω2r ,a 和b 的质量分别是2m 和m ,而a 与转轴OO ′为L ,b 与转轴OO ′为2L ,所以结果a 和b 受到的摩擦力是相等的;当b 受到的静摩擦力达到最大后,b 受到的摩擦力与绳子的拉力合力提供向心力,即 kmg +F =mω2?2L ① 而a 受力为 f′-F =2mω2L ② 联立①②得 f′=4mω2L -kmg 综合得出,a 、b 受到的摩擦力不是始终相等,故A 错误,B 正确; C .当a 刚要滑动时,有 2kmg+kmg =2mω2L +mω2?2L 解得 34kg L ω=

《近代物理实验》教学大纲

《近代物理实验》教学大纲 一、课程名称与编号 课程名称:近代物理实验编号:023315 二、学时与学分 本课程学时:84 本课程学分:5学分 三、授课对象 物理学专业学生,第六、七个学期做 四、先修课程 力学、热学、电磁学、光学、原子物理学、高等数学 五、课程的性质和目的 科学实验是理论的源泉,是自然科学的根本,也是工程技术的基础。物理学是一门实验科学,所有物理定律的形成和发展都是建立在客观自然现象的观察和研究的基础上的,并以实验结果为检验理论正确与否的唯一标准,重要的物理实验常常是新兴科学技术的生长点。 《近代物理实验》是继《普通物理实验》和《无线电电子实验》后的一门重要实验基础课程,本课程所涉及的物理基础知识面较广,并具有较强的综合性和技术性。 本课程的主要目的是:通过近代物理实验,丰富和活跃学生的物理思想,培养学生敏锐的观察能力,分析、归纳和综合能力,掌握新技术的能力,创新意识和综合素质。引导学生了解物理实验在物理概念的产生、形成和发展中的作用,学习近代物理中的一些常用方法、技术、仪器等知识,使他们具备良好的实验素养,严谨的科学作风,求实的科学精神,并具备一定的独立工作能力和科学研究能力。 六、主要内容、基本要求及学时分配 讲授部分 1、绪论(2学时) 理解近代物理实验课的特点,了解课程的内容、任务和学习方法。了解一些实验的史料,加深对近代物理实验的了解。 2、实验的误差分析与数据处理(4学时) 在普通物理验实训练的基础上,继续巩固和加强有关实验误差和数据处理的训练。如泊松分布、曲线的拟合等,可通过讲授或落实到一些实验题目中进行。 3、理解近代物理实验仪器的工作原理、使用常识(2学时) 掌握实验中的注意事项,包括人身安全及防护、通用仪器的正常使用。理解使用特殊仪

近代物理实验_思考题答案

一、 夫兰克—赫兹实验 1解释曲线I p -V G2形成的原因 答;充汞的夫兰克-赫兹管,其阴极K 被灯丝H 加热,发射电子。电子在K 和栅极G 之间被加速电压KG U 加速而获得能量,并与汞原子碰撞,栅极与板极A 之间加反向拒斥电压GA U ,只有穿过栅极后仍有较大动能的电子,才能克服拒斥电场作用,到达板极形成板流A I 。 2实验中,取不同的减速电压V p 时,曲线I p -V G2应有何变化?为什么? 答;减速电压增大时,在相同的条件下到达极板的电子所需的动能就越大,一些在较小的拒斥电压下能到达极板的电子在拒斥电压升高后就不能到达极板了。总的来说到达极板的电子数减小,因此极板电流减小。 3实验中,取不同的灯丝电压V f 时,曲线I p -V G2应有何变化?为什么? 答;灯丝电压变大导致灯丝实际功率变大,灯丝的温度升高,从而在其他参数不变得情况下,单位时间到达极板的电子数增加,从而极板电流增大。灯丝电压不能过高或过低。因为灯丝电压的高低,确定了阴极的工作温度,按照热电子发射的规律,影响阴极热电子的发射能力。灯丝电位低,阴极的发射电子的能力减小,使得在碰撞区与汞原子相碰撞的电子减少,从而使板极A 所检测到的电流减小,给检测带来困难,从而致使A GK I U -曲线的分辨率下降;灯丝电压高,按照上面的分析,灯丝电压的提高能提高电流的分辨率。但灯丝电压高, 致使阴极的热电子发射能力增加,同时电子的初速增大,引起逃逸电子增多,相邻峰、谷值的差值却减小了。 二、 塞曼效应 1、什么叫塞曼效应,磁场为何可使谱线分裂? 答;若光源放在足够强的磁场中时,原来的一条光谱线分裂成几条光谱线,分裂的谱线成分是偏振的,分裂的条数随能级的类别而不同。后人称此现象为塞曼效应。原子中电子的轨道磁矩和自旋磁矩合成为原子的总磁矩。总磁矩在磁场中受到力矩的作用而绕磁场方向旋进从而可以使谱线分离 2、叙述各光学器件在实验中各起什么作用? 答;略 3、如何判断F-P 标准具已调好? 答;实验时当眼睛上下左右移动时候,圆环无吞吐现象时说明F-P 标准具的两反射面平行了。 4、实验中如何观察和鉴别塞曼分裂谱线中的π成分和σ成分?如何观察和分辨σ成分中的左旋和右旋偏振光? 答;沿着磁场方向观测时,M ?=+1为右旋圆偏振光,M ?=-1时为左旋偏振光。在实验中,+σ成分经四分之一玻片后,当偏振片透振方向在一、三象限时才可观察到,因此为相位差为π2的线偏振光,所以+σ成分为右旋偏振光。同理可得-σ成分为左旋偏振光。 三、核磁共振 1、 什么叫核磁共振?

初中物理实验教学专题讲座

初中物理实验教学专题讲座 初中物理实验教学:将从以下四个方面阐述?物理实验教学在新课程中的地位和作用?物理实验教学的分类?物理学实验教学各要素的综合化?物理实验教学设计优化研究 一、物理实验教学在新课程中的地位和作用实验教学是学校开展科学教育和理科教学过程中的一个分重要的实践教学环节,是培养学生创新精神和动手操作实践能力的重要途径,也是学生学习理科的主要方法之一和学校总体办学条件的重要内容之一。 也是由学科特点所决定物理学是一门实验科学。在物理学中,每个概念的建立、每个定律的发现,都有其坚实的实验基础。实验在物理学的发展中有着巨大的意义和推动作用。实验赋予了物理学科思想和内容,实验促进了物理学的发展,同时物理实验自身也是不断发展的。 实验教学1 、实验教学是变结论式教学为过程式教学的重要途径。 2 、实验教学是变单纯的理论灌输为探究式教学的重要方式。 3 、实验教学是变外力强迫式教学为内在诱导思维式教学的重要手段。 4 、加强实验教学既是理科教育的必然要求,更是搞好理科教育的根本保证。

5 、实验教学是变学科本位为学生本位的重要体现。 心理学研究表明,学生对学习内容的巩固程度,与学习的方式关系很大。一般来说,学生通过听教师讲授,能够记住10 %20 %;学生如能看到实物或现象,能够记住30 %;如果学生既能听教师讲,又能看到实物或现象,能记住50 %;如果学生看到实物或现象,自己又描述过,便能记往70 %;如果学生既动手做过,又描述过,则能记住90 %。 没有实验的物理理论是空洞的,没有理论的实验是盲目的。正是实验家使理论家保持老老实实的态度。 帕格尔斯,物理学家实验可以推翻理论,而理论永远无法推翻实验。 丁肇中,物理学家 (一)、新课程总目标知识与技能1 、保持对自然界的好奇,发展对科学的探索兴趣,在了解和认识自然的过程中有满足感及兴奋感2 、学习一定的物理基础知识,养成良好的思维习惯,在解决问题或作决定时能尝试运用科学原理和科学研究方法过程与方法1 、经历观察物理现象的过程,能简单描述所观察物理现象的主要特征。有初步的观察能力2 、能在观察物理现象或物理学习过程中发现一些问题。有初步的提出问题的能力3 、通过参与科学探究活动,学习拟订简单的科学探究计划和实验方案,能利用不同渠道收集信息。有初步的信息收集能力4 、通过参与科学探究活动,初步认识科学研究方法的重要性,学习信息

近代物理实验教学改革的实践

摘要针对近代物理实验理论性比较强的特点,结合作者指导近代物理物理实验的心得和体会,对近代物理实验的教学内容、教学方法进行一些教学改革的探索和实践。在对本校物理类专业学生的几年教学实践中,取得了较好的教学效果,为提高本校近代物理实验的教学质量提供了新的思路和方法。 关键词近代物理实验教学改革教学方法Exploration and Practice of Teaching Reform of Mode-rn Physics Experiment//Li Jianfeng Abstract According to the strongly theoretical characteristics of modern physics experiments course and combining with the experience in teaching modern physics experiments,the writer explores the teaching content and teaching methods of modern physics experiment course in this article.The good teaching effects have been obtained by teaching practice for students in the department of physics in the past several years,which pro-vided new ideas and methods to improve the teaching quality of modern physics experiment course in our university. Key words modern physics experiment;teaching reform; teaching methods Author's address School of Physics,Nantong University, 226007,Nantong,Jiangsu,China 近代物理实验课程是物理类专业本科生的重要基础课,对理解近代物理理论极其重要,也是后续专业知识教学顺利开展的重要保障[1-5]。为了更好地提高本校近代物理实验教学水平,理学院近年来花费巨资从同济大学、复旦大学等名校大力购买和引进大量实验设备,在新校区组建了近代物理实验室,配备专门的任课老师,除了硬件的高投入以外,还进一步对近代物理实验课程的教学现状进行了改进。 1教学内容和模式的改革 以南通大学理学院为例,近代物理实验共开设15个实验,其中有些涉及物理学的前沿和当代科技中的新技术、新仪器、新方法,可以满足培养21世纪复合型人才的需要。近代物理实验内容十分丰富,体系庞大,15个实验各有各的特点,这样对教学内容的选择和各章节教学顺序的安排就显得尤为重要。 鉴于原子核理论在近代物理中的特殊地位,我们的操作实验中三分之一为核物理实验。核物理实验技术是在研究核衰变、核反应过程中发展起来的新技术。它在原子能工业的工艺流程分析,环境保护、医疗、农业、天体物理、材料科学、粒子物理、考古等学科领域和生产实践中有着广泛的应用。正因为如此,在近代物理实验教学中,把核物理实验列为教学内容之一,并在附录增加了核物理的基本常识与辐射防护。通过这些实验,了解核技术的原理,核衰变的规律,探测核衰变的方法以及对核辐射防护等基础知识。 同时,针对学生对放射源的恐惧心理,任课老师首先进行安全教育,并介绍辐射剂量的常识。一般来说,即使受相同剂量的照射,导致的生物效应的严重程度及发生几率大小会因射线种类不同、照射条件差异而不同。按照上述照射量和吸收剂量的概念并不能确切反映出各种射线对人机体的危害程度。同时规定,使用放射源须经教师同意,不用手触摸放射源表面。 2011年,日本大地震引发福岛核电站核泄露,同学们恐惧心又出现了。上课前,我们通过与医学胸透比较,告诉学生超低剂量对人体无害,比如人们普通胸透一次,约0.1~2雷姆。而日常生活中本底辐射,由宇宙射线,人体内放射性物质,空气里的放射性物质,以及大地辐射对每个人所造成的本底辐射剂量,总共为0.13雷姆/年。本底剂量世世代代作用于人体,并未造成什么危害,说明对于微小剂量,人体能够通过自身新陈代谢对机体损伤给以修复,而对人体不致造成什么危害。这样既增加了学生的知识,又让学生消除顾虑。告诉学生,国际防护委员会规定,人体接受到某一数量的剂量当量,不会产生为现代医学所能发现的任何危害。比如全身照射、眼睛、骨髓的最大允许剂量为5雷姆/年,手、足的最大允许剂量为75雷姆/年。这样通过5个核物理的趣味实验,学生既科普了核物理的常识,又理解了原子核物理的一些基本实验设想和理论框架。 在理学院,不同物理专业的学生开设的近代物理实验也不尽相同。物理师范需做15个实验,光信息和应用物理需选做9个实验。这样避免了教学课程中一刀切的教学模式。而在实际培养过程中,近代物理实验作为一门基础课,很大程度上是为了后面的学习打下良好的基础。 依据高等学校物理学与天文学教学指导委员会实验教学指导组1999年通过的“高等理科物理学专业近代物理实验教学基本要求”,南通大学几年前自编了一本近代物理实 (南通大学理学院江苏·南通226007) 中图分类号:G642文献标识码:A文章编号:1672-7894(2011)01-0117-02 117

高一物理上册期末精选专题练习(解析版)

高一物理上册期末精选专题练习(解析版) 一、第一章 运动的描述易错题培优(难) 1.甲、乙两辆赛车从同一地点沿同一平直公路行驶。它们的速度图象如图所示,下列说法正确的是( ) A .60 s 时,甲车在乙车的前方 B .20 s 时,甲、乙两车相距最远 C .甲、乙加速时,甲车的加速度大于乙车的加速度 D .40 s 时,甲、乙两车速度相等且相距900m 【答案】AD 【解析】 【详解】 A 、图线与时间轴包围的面积表示对应时间内的位移大小,由图象可知60s 时,甲的位移大于乙的位移,所以甲车在乙车前方,故A 正确; B 、40s 之前甲的速度大于乙的速度,40s 后甲的速度小于乙的速度,所以40s 时,甲乙相距最远,在20s 时,两车相距不是最远,故B 错误; C 、速度?时间图象斜率表示加速度,根据图象可知,甲加速时的加速度小于乙加速时的加速度,故C 错误; D 、根据图象可知,40s 时,甲乙两车速度相等都为40m /s ,甲的位移 ,乙的位移 ,所以甲 乙相距,故D 正确; 故选AD 。 【点睛】 速度-时间图象切线的斜率表示该点对应时刻的加速度大小,图线与时间轴包围的面积表示对应时间内的位移大小,根据两车的速度关系知道速度相等时相距最远,由位移求相距的距离。 2.历史上有些科学家曾把在相等位移内速度变化相等的单向直线运动称为“匀变速直线运动”(现称为“另类匀变速直线运动”),“另类加速度”的定义式为0 s v v A s -= ,其中0v 和s v 分别表示某段位移s 内的初速度和末速度>0A 表示物体做加速运动,0A <表示体做减速运动,而现在物理学中加速度的定义式为0 t v v a t -= ,下列说法正确的是

西南大学物理专业近代物理实验课程

西南大学物理专业近代物理实验课程

————————————————————————————————作者:————————————————————————————————日期:

物理专业近代物理实验课程 教学大纲 物理科学与技术学院 二〇〇六年十月 《近代物理实验》教学大纲 课程名称(中文)近代物理实验 课程性质独立设课课程属性专业基础 实验指导书名称《近代物理实验》 学时学分:总学时90总学分 4 实验学时90 实验学 分4 应开实验学期 3 年级五~六学期 先修课程《原子物理学》,《原子核物理学》,《固体物理》,《量子力学》,《激光技术》等

一.课程简介及基本要求 近代物理实验是继“普通物理实验”和“无线电电子学实验”之后的一门 重要的专业实验基础课程。近代物理学实验也是介于普通物理学实验与现代科学技术研究实验之间、具有承上启下作用的重要环节。近代物理学实验涉及物理学中各项基础课程和专业课程知识,实验课程内容有一些是20世纪著名的、开拓物理学新的发展方向和方法的实验,使学生了解前人的物理思想和探索过程;有些是与近代科学技术常用实验方法有关的新实验,使学生了解有关新的实验技术和方法;还有一些实验反映物理学院系科研的部分成果。通过学习和掌握这些内容,对进一步掌握物理学概念、运用现代科学技术的实验方法有十分重要意义。近代物理学实验课程着眼于培养学生将来从事科学研究和各项实际科学活动所必备的物理实验技能。 二.课程实验目的要求 《近代物理实验》是一门面向理工科物理与材料科学类专业开设的专业技术基础实验课程。学生通过本课程学习,掌握一些比较先进的和比较综合性的实验方法和技能。加强理论与实验相结合,锻炼学生综合运用各种技术的能力,培养科学工作作风;进一步加深对有关物理学概念和规律的理解,扩大知识面,培养学生独立进行科学实验的能力;丰富和活跃学生的物理思想,锻炼学生对物理现象的洞察力和分析力,正确认识物理实验在物理学创立和发展中的地位和作用;正确认识物理概念、物理规律的产生、完善和发展过程与物理实验密切关系;了解和掌握近代物理学中常用的实验方法、实验技术、实验仪器和相关科学知识;进一步培养学生正确和良好的实验操作习惯和严谨的科学素质。使学生具有利用近代物理学实验方法和技术,观测物理现象和研究探索未知世界物理规律的创造性能力。 三.适用专业 物理学、材料物理等物理类本科生。 四.主要仪器设备: X-射线晶体分析仪、真空镀膜设备、组合式多功能光栅光谱仪、光谱分析仪、扫描隧道显微镜、相对论效应实验仪、正电子湮没寿命谱仪、磁共振实验装置、激光拉曼光谱仪等 五.实验方式与基本要求 1.本课程以实验室为课堂,以完成教学实验项目为主,教学内容按照分支学科设置专题实验项目,由专题实验项目指导教师负责实验课程教学。 2.该课程要求学生在进入实验室进行实验之前,必须对于所做实验进行预

近代物理实验总结

近代物理实验总结 通过这个学期的大学物理实验,我体会颇深。首先,我通过做实验了解了许多实验的基本原理和实验方法,学会了基本物理量的测量和不确定度的分析方法、基本实验仪器的使用等;其次,我已经学会了独立作实验的能力,大大提高了我的动手能力和思维能力以及基本操作与基本技能的训练,并且我也深深感受到做实验要具备科学的态度、认真态度和创造性的思维。下面就我所做的实验我作了一些总结。 一.核磁共振实验 核磁共振实验中为什么要求磁场大均匀度高的磁场?扫场线圈能否只放一个?对两个线圈的放置有什么要求?测量共振频率时交变磁场的幅度越小越好? 1, 核磁共振实验中为什么要求磁场大均匀度高的磁场? 要求磁场大是为了获得较大的核磁能级分裂。这样,根据波尔茨 曼,低能和高能的占据数(population)的“差值增大,信号增强。 均匀度高是为了提高resolution. 2. 扫场线圈能否只放一个?对两个线圈的放置有什么要求? 扫场线圈可以只放一个。若放两个,这两个线圈的放置要相互垂直, 且均垂直于外加磁场。 3. 测量共振频率时交变磁场的幅度越小越好? 不对。但是太大也不好(会有信号溢出)应该有合适的FID信号 二.密立根有实验 对油滴进行测量时,油滴有时会变模糊,为什么?如何避免测量过程丢失油滴?若油滴平很调节不好,对实验结果有何影响?为什么每测量一次tg都要对油滴进行一次平衡调节?为什么必须使油滴做匀速运动或静止?试验中如 何保证油滴在测量范围内做匀速运动? 1、油滴模糊原因有:目镜清洁不够导致局部模糊或者是油滴的平衡没 有调节好导致速度过快 为防止测量过程中丢失油滴,油滴的速度不要太大,尽可能比较小 一些,这样虽然比较费时间,但不会出现油滴模糊或者丢失现象 2、根据实验原理可知,如果油滴平衡没有调节好,则数据必然是错误 的,结果也是错误的。因为油滴的带电量计算公式要的是平衡时的 数据 因为油滴很微小,所以不同的油滴其大小和质量都有一些差异,导 致其粘滞力和重力都会变化,因此需要重新调节平衡才可以确保实 验是在平衡条件下进行的。

物理高一上册 期末精选专题练习(解析版)

物理高一上册期末精选专题练习(解析版) 一、第一章运动的描述易错题培优(难) 1.如图,直线a和曲线b分别是在平直公路上行驶的汽车a和b的位置一时间(x一t)图线,由图可知 A.在时刻t1,a车追上b车 B.在时刻t2,a、b两车运动方向相反 C.在t1到t2这段时间内,b车的速率先减少后增加 D.在t1到t2这段时间内,b车的速率一直比a车大 【答案】BC 【解析】 【分析】 【详解】 由x—t图象可知,在0-t1时间内,b追a,t1时刻相遇,所以A错误;在时刻t2,b的斜率为负,则b的速度与x方向相反,所以B正确;b图象在最高点的斜率为零,所以速度为零,故b的速度先减小为零,再反向增大,所以C正确,D错误. 2.若某物体做直线运动的v—t图象如图所示,则下列说法中正确的是() A.t=3s时物体运动的速度方向发生改变 B.t=3s时物体运动的加速度方向发生改变 C.t=3s时物体离出发点最远 D.t=3s时物体的加速度为零 【答案】AC 【解析】 【分析】 解决本题要明确v—t图象的含义:在v—t图象中,速度的正负表示其运动方向,图象的斜率表示物体运动的加速度,图象与时间轴围成的面积为物体的位移,时间轴上方面积表示位移为正,下方表示为负.

【详解】 A .根据速度的正负表示速度的方向,可知t =3s 时物体运动的速度方向发生改变,故A 正确; B .在2~5s 内直线的斜率一定,说明物体的加速度恒定,则t =3s 时物体运动的加速度方向没有发生改变,故B 错误; C .物体在前3s 内沿正方向运动,3s 后沿负方向运动,则t =3s 时物体离出发点最远,故C 正确; D .根据斜率等于加速度,可知t =3s 时物体的加速度不为零,故D 错误。 故选AC 。 【点睛】 图象由于具有形象直观的特点,因此在物理中广泛应用,对于图象问题要明确两坐标轴的含义,图象斜率、截距、围成面积等含义。 3.一个物体做直线运动的位移—时间图象(即x t -图象)如图所示,下列说法正确的是 A .物体在1s 末运动方向改变 B .物体做匀速运动 C .物体运动的速度大小为5m/s D .2s 末物体回到出发点 【答案】BC 【解析】 【分析】 【详解】 AB .位移时间图象的斜率表示速度,根据图象可知物体一直向负方向匀速运动,故A 错误、B 正确; C .物体运动的速度大小为5m/s ,故C 正确; D .物体的出发点在5m x =的位置,2s 末在5m x =-的位置,故2s 末物体未回到出发点,故D 错误; 故选BC 。 4.一个质点做方向不变的直线运动,加速度的方向始终与速度方向相同,但加速度大小逐渐减小直至为零,在此过程中( ) A .速度逐渐减小,当加速度减小到零时,速度达到最小值 B .速度逐渐增大,当加速度减小到零时,速度达到最大值 C .位移逐渐增大,当加速度减小到零时,位移将不再增大

近代物理实验习题答案

《 近代物理实验》练习题参考答案一、填空 1、 核物理实验探测的主要对象是核衰变时所辐射的射线、射线和中子。因为这些粒子的尺度非常小,用最先进的电子显微镜也不能观察到,只能根据射线与物质相互作用产生的各种效应实现探测。 2、探测器的能量分辨率是指探测器对于能量很接近的辐射粒子加以区分的能力。用百分比表示的能量分辨率定义为: %峰位置的脉冲幅度宽度最大计数值一半处的全 1000V V R 。能量分辨率值越小,分辨能 力越强。 3、射线与物质相互作用时,其损失能量方式有两种,分别是电离和激发。其中激发的方式有三种,它们是光电效应、康普顿效应和电子对效应。 4、对于不同的原子,原子核的质量 不同而使得里德伯常量值发生变化。 5、汞的谱线的塞曼分裂是 反常塞曼效应。6、由于氢与氘的 能级有相同的规律性,故氢和氘的巴耳末公式的形式相同。 7、在塞曼效应实验中,观察纵向效应时放置 1/4波片的目的是将圆偏振光变为线偏振光 。8、射线探测器主要分“径迹型”和“信号型”两大类。径迹型探测器能给出粒子运动的轨迹,如核乳胶、固体径迹探测器、威尔逊云室、气

泡室、火花室等。这些探测器大多用于高能核物理实验。信号型探测器则当一个辐射粒子到达时给出一个信号。根据工作原理的不同又可以分成气体探测器、闪烁探测器和半导体探测器三种,这是我们在低能核物理实验中最常用的探测器。 9、测定氢、氘谱线波长时,是把氢、氘光谱与铁光谱拍摄到同一光谱底 片上,利用 线性插值法来进行测量。 10、在强磁场中,光谱的分裂是由于能级的分裂引起的。 11、原子光谱是线状光谱。 12、原子的不同能级的总角动量量子数J不同,分裂的子能级的数量也不同。 13、盖革-弥勒计数管按其所充猝灭气体的性质,可以分为①有机管和 ②卤素管两大类。坪特性是评价盖革-弥勒计数管的重要特性指标。包 括起始电压、坪长、坪斜等。一只好的计数管,其坪长不能过短,对于 ③有机管,其坪长不能低于150伏,对于④卤素管,其坪长不能低于50伏。坪斜应在⑤每伏___以下。计数管工作时工作点应选在坪区的⑥左 1/3-1/2__处。 14、由于光栅摄谱仪的色散接近线性,所以可以使用线性插值法测量光谱线波长。 15、必须把光源放在足够强磁场中,才能产生塞曼分裂。 二、简答题 1.如何区分盖革-弥勒计数管的正负极?

近代物理实验教程的实验报告

( 实验报告) 姓名:____________________ 单位:____________________ 日期:____________________ 编号:YB-BH-054001 近代物理实验教程的实验报告Experimental report of modern physics experiment course

工作报告| Work Report 实验报告近代物理实验教程的实验报告 时间过得真快啊!我以为自己还有很多时间,只是当一个睁眼闭眼的瞬间,一个学期都快结束了,现在我们为一学期的大学物理实验就要画上一个圆满的句号了,本学期从第二周开设了近代物理实验课程,在三个多月的实验中我明白了近代物理实验是一门综合性和技术性很强的课程,回顾这一学期的学习,感觉十分的充实,通过亲自动手,使我进一步了解了物理实验的基本过程和基本方法,为我今后的学习和工作奠定了良好的实验基础。我们所做的实验基本上都是在物理学发展过程中起到决定性作用的著名实验,以及体现科学实验中不可缺少的现代实验技术的实验。它们是我受到了著名物理学家的物理思想和探索精神的熏陶,激发了我的探索和创新精神。同时近代物理实验也是一门包括物理、应用物理、材料科学、光电子科学与技术等系的重要专业技术基础物理实验课程也是我们物理系的专业必修课程。 我们本来每个人要做共八个实验,后来由于时间关系做了七个实验,我做的七个实验分别是:光纤通讯,光学多道与氢氘,法拉第效应,液晶物性,非线性电路与混沌,高温超导,塞满效应,下面我对每个实验及心得体会做些简单介绍: 一、光纤通讯:本实验主要是通过对光纤的一些特性的探究(包括对光纤耦合效率的测量,光纤数值孔径的测量以及对塑料光纤光纤损耗的测量与计算), 第2页

南京大学近代物理实验2017版

南京大学近代物理实验2017版 篇一:南京大学-法拉第效应 法拉第效应 (南京大学物理学院江苏南京 210000) 摘要:平面偏振光穿过介质时,如果在介质中沿光的传播方向加上一个磁场,就会观察到光经过样品后光的振动面转过一个角度,也就是磁场使介质具有了旋光性,这种现象称为法拉第效应。本实验通过测量不同磁场下的法拉第转角,计算出介质的费尔德常数。 关键词:法拉第效应;法拉第转角;费尔德常数;旋光性 一、实验目的 1.了解法拉第效应的经典理论。 2.初步掌握进行磁光测量的方法。 二、实验原理 1.法拉第效应 实验表明,偏振面的磁致偏转可以这样定量描述:当磁场不是很强时,振动面旋转的角度θF与光波在介质中走过的路程l及介质中的磁感应强度在光的传播方向上的分量BH成正比,这个规律又叫法拉第_费尔得定律。 (1) 比例系数V由物质和工作波长决定,表征着物质的磁光特性,这个系数称为费尔得(Verdet)常数,它与光频和温度有关。几乎所有的

物质(包括气体液体固体)都有法拉第效应,但一般都很不显著。不同物质的振动面旋转的方向可能不同。一般规定:旋转方向与产生磁场的螺线管中电流方向一致的,叫正旋(V>0),反之叫负旋(V篇二:法拉第效应南京大学 法拉第效应 引言 1845年,英国科学家法拉第在探究电磁现象和光学现象之间的关系时发现:当一束平面偏振光穿过介质时,如果在介质中沿光的传播方向加上一个磁场,就会观察到光经过样品后光的振动面转过一个角度,也即磁场使介质居于了旋光性,这种现象后来就称为法拉第效应。 法拉第效应有许多方面的应用,它可以作为物质结构研究的手段,如根据结构不同的碳氢化合物其法拉第效应的表现不同来分析碳氢化合物导体物理的研究中,它可以用来测量载流子得得有效质量、迁移率和提供能带结构的信息;在激光技术中,利用法拉第效应的特性,制成了光波隔离、光频环形器、调制器等;在磁学测量方面,可以利用法拉第效应测量脉冲磁场。 实验原理 1.法拉第效应 实验表明,偏振面的磁致偏转可以这样定量描述:当磁场不是很强时,振动面旋转的角度θF与光波在介质中走过的路程l及磁感应强度在光的传播方向上的分量BH成正比,这个规律又叫法拉第—费

相关文档
相关文档 最新文档