文档库 最新最全的文档下载
当前位置:文档库 › 第3章 轴向拉压杆件的强度与变形计算

第3章 轴向拉压杆件的强度与变形计算

第3章 轴向拉压杆件的强度与变形计算
第3章 轴向拉压杆件的强度与变形计算

'

 &

$'
X X X X X ) ) &   

)
X $

) *
) ! )  ,   * *!  '

X
) ) &
*
)


 ) $ ! ) )
!
* * ))
)
) !
 )  ) * *

!
)

!
' 
'
)

)

)
X

X
,)
X
)
&)

&)
$' ,
) *
)
&)
*


& 
X X ) X X ) )) )  ) ) ) ' ) )   $

X
&

& &

'!& 
 *
) ))    &   )) * ! )

!
# $" %
$
" ' &
 ))

)
&

! &
' ))
 # $" & % )) # $'" 
%
&&

)&

)(
(
&( )
)

# )
$  # $
' )

, )
*
* 

$
'
+,

# $
*
# $

! )
" # *# !% ! $
' $

) (
(
-

杆件的强度计算公式资料讲解

杆件的强度、刚度和稳定性计算 1.构件的承载能力,指的是什么? 答:构件满足强度、刚度和稳定性要求的能力称为构件的承载能力。 (1)足够的强度。即要求构件应具有足够的抵抗破坏的能力,在荷载作用下不致于发生破坏。 (2)足够的刚度。即要求构件应具有足够的抵抗变形的能力,在荷载作用下不致于发生过大的变形而影响使用。 (3)足够的稳定性。即要求构件应具有保持原有平衡状态的能力,在荷载作用下不致于突然丧失稳定。 2.什么是应力、正应力、切应力?应力的单位如何表示? 答:内力在一点处的集度称为应力。 垂直于截面的应力分量称为正应力或法向应力,用σ表示;相切于截面的应力分量称切应力或切向应力,用τ表示。 应力的单位为Pa。 1 Pa=1 N/m2 工程实际中应力数值较大,常用MPa或GPa作单位 1 MPa=106Pa 1 GPa=109Pa 3.应力和内力的关系是什么? 答:内力在一点处的集度称为应力。 4.应变和变形有什么不同? 答:单位长度上的变形称为应变。单位纵向长度上的变形称纵向线应变,简称线应变,以ε表示。单位横向长度上的变形称横向线应变,以ε/表示横向应变。 5.什么是线应变?什么是横向应变?什么是泊松比? 答:(1)线应变 单位长度上的变形称纵向线应变,简称线应变,以ε表示。对于轴力为常量的等截面直杆,其纵向变形在杆内分布均匀,故线应变为 l l? = ε (4-2) 拉伸时ε为正,压缩时ε为负。线应变是无量纲(无单位)的量。 (2)横向应变 拉(压)杆产生纵向变形时,横向也产生变形。设杆件变形前的横向尺寸为a,变形后为a1,则横向变形为 a a a- = ? 1 横向应变ε/为

轴向拉压变形

1
上海工程技术大学基础教学学院工程力学部
1
第三章 轴向拉压变形
§3—1 轴向拉压杆的变形 §3—2 桁架的节点位移 §3—3 拉压与剪切应变能 §3—4 简单拉压超静定
拉压变形小结
2
一、概念
§3—1 轴向拉压杆的变形
1、轴向变形:轴向尺寸的伸长或缩短。
2、横向变形:横向尺寸的缩小或扩大。
3
三、叠加原理
①当各段的轴力为常量时——
? ? L ? ? L1 ? ? L 2 ? ? L 3 ? ? ? ?
F Ni L i EA i
几个载荷同时作用所产生的变形,等于各载荷单独作
用时产生的变形的总和 — 叠加原理
②当轴力为x的函数时 N=N(x)——
? ? L ? d? L1 ? d? L2 ? d? L3 ? ? ? ?
FN ( x)dx L EA
(3)、使用条件:轴向拉压杆,弹性范围内工作。
应力与应变的关系:(虎克定律的另一种表达方式)
?L ? FN L EA
?
FN ? E ?L ?
A
L
? ? E?
5
小结: 变形——构件在外力作用下或温度影响下所引起的形状尺 寸的变化。 弹性变形——外力撤除后,能消失的变形。 塑性变形——外力撤除后,不能消失的变形。 位移——构件内的点或截面,在变形前后位置的改变量。 线应变——微小线段单位长度的变形。
6

2
A a
B a
C
F
x
F
2F 3F
例:已知杆件的 E、A、F、a 。
求:△LAC、δ B(B 截面位移) ε AB (AB 段的线应变)。 解:1、画FN 图: 2、计算:
FN
? (1).?L ?
FN L EA
?
?LAC
?
?LAB
?
?LB
C
?
? Fa EA
?
?3Fa EA
?
? 4Fa EA
(2).? B ? ?LBC
( 3 ).? AB ?
? ? 3Fa
EA
? L AB ?
?
L AB
Fa a
EA
? ?F EA
7
§3—2 桁架节点位移
三角桁架节点位移的几何求法。
怎样画小变形放大图?分析:1、研究节点 C 的受力,确定
各杆的内力 FNi;
A
L1
B 2、求各杆的变形量△Li;
L2
F1
F2
C
3、变形图严格画法,图中弧线; (1) 以A为圆心,AC1为半径画弧线;
C
?L1 (2) 以B为圆心,BC2为半径画弧线;
F ?L2 F
C1
交点C’就是C点实际位移。 4、变形图近似画法:
C2
C ''
以切线代替图中弧线。
C'
C '' 就是C点近似位移。
8
写出图 2 中 B 点位移与两杆变形间的关系
L1
B
A
?l
?
2
?l 1 B1
L2
F
分析: 一、受力分析: 二、画B点的变形图:
1)画沿原杆伸长或缩短线; 2)作伸长或缩短线端点垂线;
C 图2
拉 S1 压 S2
vB ? BB2
B2 B
F
B’交点就是节点B的位移点。
3) B点水平位移:uB ? BB1 ? ?L1
B'
B点垂直位移:
vB
?
? L1ctg ?
?
?L2 sin ?
?B ?
u
2 B
?
vB2
9
例:杆1为钢管,A1= 100 mm2,E1 = 200 GPa,L1= 1 m ;杆2为硬
铝管,A2= 250 mm2,E2 = 70 GPa,P = 10 kN。试求:节点A
点的垂直位移。N1
解:1)求各杆内力
B C
N2 l1
A P
A2 45 A
?l2
?l1
N1 ? 2P ? 14.14kN , N 2 ? ?P ? ?10kN
2)求各杆的伸长?li
?l1
?
N1l1 ? 0.707, E1 A1
?l2
?
N 2l2 E2 A2
?
?0.404mm
3)画A点的位移图
AA5 ? AA4 ? A4 A5
P
A1
AA4 ? ?l1 / cos 45 A4 A5 ? ?l2ctg 45
45 A4
AA5
??
?l1 cos 45
?
?l2ctg 45
?
0.9999
?
0.404
? AA5 ? 1.404 mm
A3
A5
10
例 :设横梁 ABCD 为刚梁,斜杆A=440mm2,E = 70kN,P1= 5kN,
P1 A A1
P2=10kN,L=1m;试求:A
P2 60
lC
lB
? AY
? C1
D
点的垂直位移。? ? 30 (不计横梁变形)
解:1)、CD杆内力:研究对象 AB
? mB ? 0 : P12l ? (P2 ? NC sin 30)l ? 0
? N C ? 40 ( kN )
2) CD杆的变形:
P1
P2
A
C
YB
B
XB
?L ? NClCD ? NCl ? 1.5 (mm) EA EA cos ?
3)杆A.C点的变形图:CC 2 ? ?l
A
C
NC B
? CY
? CC1 ?
CC 2 cos ?
?
?l sin ?
C2
?ABA1 ? ? AY ? AA1 ? CC 1 ? 2? CY
?CY C1
? AY ? 2? CY ? 2?l ? 6 (mm) sin ?
11
§3—3 拉压应变能
一、应变能概念
1、外力功:W
固体受外力作用而变形,在变形过程中外力所做的功。
W ? 1 P ? ?l 2
2、应变能:V? 固体在外力作用下,
P ?l
因变形而储存的能量。
V?
?
1 2
N
? ?l
?
1 2
N
?
Nl EA
?
N 2l 2EA
3、能量守恒:W ? V?
4、应变能密度:单位体积内储存的能量。 v? ? V? /V
l P
Pi
o
?li ?l
d (?l )
12

ch3轴向拉压变形(3rd)

第三章 轴向拉压变形 3-2 一外径D=60mm 、内径d =20mm 的空心圆截面杆,杆长l = 400mm ,两端承受轴 向拉力F = 200kN 作用。若弹性模量E = 80GPa ,泊松比μ=0.30。试计算该杆外径的改变量?D 及体积改变量?V 。 解:1. 计算?D 由于 EA F D D εEA F εμμε- =-=='= Δ , 故有 0.0179mm m 1079.1 m 020.00600(π1080060 .01020030.04)(π4Δ52 29322-=?-=-???????-=--=-='=-).d D E FD EA FD D εD μμ 2.计算?V 变形后该杆的体积为 )21()1)(1(])()[(4 π )(222εεV εεAl d εd D εD l l A l V '++≈'++='+-'++=''='ε 故有 3 373 93 mm 400m 1000.4 )3.021(m 1080400.010200)21()2(Δ=?=?-???=-='+=-'=-μE Fl εεV V V V 3-4 图示螺栓,拧紧时产生l ?=0.10mm 的轴向变形。已知:d 1 = 8.0mm ,d 2 = 6.8mm , d 3 = 7.0mm ;l 1=6.0mm ,l 2=29mm ,l 3=8mm ;E = 210GPa ,[σ]=500MPa 。试求预紧力F ,并校核螺栓的强度。 题3-4图 解:1.求预紧力F 各段轴力数值上均等于F ,因此, )(π4)(Δ23 3222 211332211d l d l d l E F A l A l A l E F l ++=++= 由此得

《材料力学》第2章_轴向拉(压)变形_习题解

第二章 轴向拉(压)变形 [习题2-1] 试求图示各杆1-1和2-2横截面上的轴力,并作轴力图。 (a ) 解:(1)求指定截面上的轴力 F N =-11 F F F N -=+-=-222 (2)作轴力图 轴力图如图所示。 (b ) 解:(1)求指定截面上的轴力 F N 211=- 02222=+-=-F F N (2)作轴力图 F F F F N =+-=-2233 轴力图如图所示。 (c ) 解:(1)求指定截面上的轴力 F N 211=- F F F N =+-=-222 (2)作轴力图 F F F F N 32233=+-=- 轴力图如图所示。 (d ) 解:(1)求指定截面上的轴力 F N =-11 F F a a F F F qa F N 22222-=+?--=+--=- (2)作轴力图 中间段的轴力方程为: x a F F x N ?- =)( ]0,(a x ∈ 轴力图如图所示。

[习题2-2] 试求图示等直杆横截面1-1、2-2和平3-3上的轴力,并作轴力图。若横截面面积 2400mm A =,试求各横截面上的应力。 解:(1)求指定截面上的轴力 kN N 2011-=- )(10201022kN N -=-=- )(1020102033kN N =-+=- (2)作轴力图 轴力图如图所示。 (3)计算各截面上的应力 MPa mm N A N 50400102023111 1-=?-==--σ MPa mm N A N 2540010102 3222 2-=?-==--σ MPa mm N A N 2540010102 3333 3=?==--σ [习题2-3] 试求图示阶梯状直杆横截面1-1、2-2和平3-3上的轴力,并作轴力图。若横截面面积 21200mm A =,22300mm A =,23400mm A =,并求各横截面上的应力。 解:(1)求指定截面上的轴力 kN N 2011-=- )(10201022kN N -=-=- )(1020102033kN N =-+=- (2)作轴力图 轴力图如图所示。 (3)计算各截面上的应力 M P a mm N A N 10020010202311111-=?-==--σ MPa mm N A N 3.3330010102 32222 2-=?-==--σ MPa mm N A N 2540010102 3333 3=?==--σ

(完整版)轴向拉压习题答案2

第2章 轴向拉伸和压缩 主要知识点:(1)轴向拉伸(压缩)时杆的内力和应力; (2)轴向拉伸(压缩)时杆的变形; (3)材料在轴向拉伸和压缩时的力学性能; (4)轴向拉压杆的强度计算; (5)简单拉压超静定问题。 轴向拉伸(压缩)时杆的变形 4. 一钢制阶梯杆如图所示。已知沿轴线方向外力F 1=50kN ,F 2=20kN ,各段杆长l 1=100mm ,l 2=l 3=80mm ,横截面面积A 1=A 2=400mm 2,A 3=250mm 2,钢的弹性模量E=200GP a ,试求各段杆的纵向变形、杆的总变形量及各段杆的线应变。 解:(1)首先作出轴力图如图4-11所示, 由图知kN F N 301-=,kN F F N N 2032==。 (2)计算各段杆的纵向变形 m m EA l F l N 56 93311111075.310 40010200101001030---?-=??????-==? m m EA l F l N 5 6 9332222100.210 4001020010801020---?=??????==? (3)杆的总变形量m l l l l 5 3211045.1-?=?+?+?=?。 (4)计算各段杆的线应变 45 1111075.310.01075.3--?-=?-=?=l l ε 45 222105.208.0100.2--?=?=?=l l ε 45 333100.408 .0102.3--?=?=?=l l ε 材料在轴向拉伸和压缩时的力学性能 5. 试述低碳钢拉伸试验中的四个阶段,其应力—应变图上四个特征点的物理意义是什么? 答:低碳钢拉伸试验中的四个阶段为弹性阶段、屈服阶段、强化阶段和颈缩阶段。在弹性阶段,当应力小于比例极限σp 时,材料服从虎克定律;当应力小于弹性极限σe 时,材料的变形仍是弹性变形。屈服阶段的最低点对应的应力称为屈服极限,以σs 表示。强化阶段最高点所对应的应力称为材料的强度极限,以σb 表示,它是材料所能承受的最大应力。 m m EA l F l N 5 69333333102.3102501020010801020---?=??????==?

《材料力学》第2章-轴向拉(压)变形-习题解

第二章 轴向拉(压)变形 [习题2-1] 试求图示各杆1-1和2-2横截面上的轴力,并作轴力图。 (a ) 解:(1)求指定截面上的轴力 F N =-11 F F F N -=+-=-222 (2)作轴力图 轴力图如图所示。 (b ) 解:(1)求指定截面上的轴力 F N 211=- 02222=+-=-F F N (2)作轴力图 F F F F N =+-=-2233 轴力图如图所示。 (c ) 解:(1)求指定截面上的轴力 F N 211=- F F F N =+-=-222 (2)作轴力图 F F F F N 32233=+-=- 轴力图如图所示。 (d ) 解:(1)求指定截面上的轴力 F N =-11 F F a a F F F qa F N 22222-=+?--=+--=- (2)作轴力图 中间段的轴力方程为: x a F F x N ?- =)( ]0,(a x ∈ 轴力图如图所示。

[习题2-2] 试求图示等直杆横截面1-1、2-2和平3-3上的轴力,并作轴力图。若横截面面积 2400mm A =,试求各横截面上的应力。 解:(1)求指定截面上的轴力 kN N 2011-=- )(10201022kN N -=-=- )(1020102033kN N =-+=- (2)作轴力图 轴力图如图所示。 (3)计算各截面上的应力 MPa mm N A N 5040010202 3111 1-=?-==--σ MPa mm N A N 2540010102 3222 2-=?-==--σ MPa mm N A N 2540010102 3333 3=?==--σ [习题2-3] 试求图示阶梯状直杆横截面1-1、2-2和平3-3上的轴力,并作轴力图。若横截面面积 21200mm A =,22300mm A =,23400mm A =,并求各横截面上的应力。 解:(1)求指定截面上的轴力 kN N 2011-=- )(10201022kN N -=-=- )(1020102033kN N =-+=- (2)作轴力图 轴力图如图所示。 (3)计算各截面上的应力 MPa mm N A N 10020010202 31111 1-=?-==--σ MPa mm N A N 3.3330010102 32222 2-=?-==--σ MPa mm N A N 2540010102 3333 3=?==--σ

ch3 轴向拉压变形(3rd)要点

1 第三章 轴向拉压变形 3-2 一外径D=60mm 、内径d =20mm 的空心圆截面杆,杆长l = 400mm ,两端承受轴 向拉力F = 200kN 作用。若弹性模量E = 80GPa ,泊松比μ=0.30。试计算该杆外径的改变量?D 及体积改变量?V 。 解:1. 计算?D 由于 EA F D D εEA F εμμε- =-=='= Δ , 故有 0.0179mm m 1079.1 m 020.00600(π1080060 .01020030.04)(π4Δ52 29322-=?-=-???????-=--=-='=-).d D E FD EA FD D εD μμ 2.计算?V 变形后该杆的体积为 )21()1)(1(])()[(4 π )(222εεV εεAl d εd D εD l l A l V '++≈'++='+-'++=''='ε 故有 3 373 93 mm 400m 1000.4 )3.021(m 1080400.010200)21()2(Δ=?=?-???=-='+=-'=-μE Fl εεV V V V 3-4 图示螺栓,拧紧时产生l ?=0.10mm 的轴向变形。已知:d 1 = 8.0mm ,d 2 = 6.8mm , d 3 = 7.0mm ;l 1=6.0mm ,l 2=29mm ,l 3=8mm ;E = 210GPa ,[σ]=500MPa 。试求预紧力F ,并校核螺栓的强度。 题3-4图 解:1.求预紧力F 各段轴力数值上均等于F ,因此, )(π4)(Δ23 3222211 332211d l d l d l E F A l A l A l E F l ++=++= 由此得

第3章轴向拉压变形

第三章轴向拉压变形 研究目的:1、分析拉压杆的拉压刚度; 2、求解简单静不定问题。

§3-1 拉(压)杆的变形·胡克定律 一、拉(压)杆的纵向变形、胡克定律 绝对变形l l l -1=?l l ?= ε相对变形 F F d l l 1d 1 正应变以伸长时为正,缩短时为负。 EA Fl l = ?EA l F N =EA l F l N =?拉(压)杆的胡克定律 EA —杆的拉伸(压缩)刚度。 E σ =

杆纵向的总伸长量 ??==?l x l x x l 0 d d εδF N (x ) F N (x )+d F N (x ) l B A q x B q ql d x F N (x ) d δx

二、横向变形与泊松比 d d ?= 'ε绝对值d d d -1=?横向线应变 F F d l l 1 d 1 试验表明:单轴应力状态下,当应力不超过材料ε εν-='n -----泊松比,是一常数,由试验确定。 的比例极限时,一点处的纵向线应变ε与横向线应变ε'的绝对值之比为一常数:

三、多力杆的变形与叠加原理 BC AB l l l ?+?=?F 1 C B A F 2 l 1 l 22 221121)(EA l F EA l F F + +=

2 2 11111)(EA l F EA l F F l +=?F 1 C B A F 2l 1 l 2F 1 C B A l 1 l 2 C B A F 2 l 1 l 21 1 22)(EA l F F l = ?) ()(11F l F l l ?+?=?2 221121)(EA l F EA l F F + +=

第三节 轴向拉、压杆的强度计算——公开课

第三节 轴向拉(压)杆的强度计算 教学目的: 1、学习材料在轴向作用力下拉伸、压缩状态下的正应力; 2、理解不同材料的工作应力、极限应力和许用应力值的概念。 3懂得应用轴向拉(压)杆的强度条件进行简单的计算 教学重点难点: 1、理解材料在拉伸、压缩状态下的正应力的计算,理解许用应力的含义,理解轴向拉(压)杆的强度条件内涵。 2、运用轴向拉(压)杆的强度条件计算一般工程力学问题(三种情况下的计算) 学情分析:建筑专业学生由于之前物理和数学知识的不足,再加上学生的学习兴趣不高,对本门学科较为理论性的学习接受能力差,因此教学中多采取实例和实物模型辅助教学的方法,提高本节课的教学成效。 教学教具:粗、细的木杆和钢杆;细绳、细铁丝、粗的铁丝。 教学过程: 新课引入:上节课我们学习了轴向拉、压杆横截面积上的正应力A F N =σ,大家知道不同材料其能承受的最大应力值不一样也反应材料的强度的不同,比如这根细绳和铁丝,那么怎样在工程中选用合适的材料做的杆件或者要对已确定材料的杆件进行校核其强度,才不致于出现安全事故呢? 举例说明,展示实物,麻绳、细钢丝、粗钢丝。起重机起吊重物你会选择选择什么样绳子呢?是麻绳还是钢丝?是用细的钢丝还是粗一点的钢丝呢?为什吗呢? 引导回答:同种截面的不同材质的绳子,其能承受的最大拉力是不一样的,即最大的应力值也是不同的,因此能起吊的重量也是不同的,应怎样选择呢?这就是我们今天这节的主要内容。 新课教学: 一、应力的基本概念: 工作应力:杆件在荷载作用下产生的实际应力值,它随杆件荷载的改变的而改变,但随荷载的增加,工作应力跟着增加,但应力的增加是用限度的,当应力超过一定限度,材料就会发生破坏。发生破坏的应力限度就称极限应力,也叫危险应力,用不同材料的 值是不同的,比如麻绳和钢丝; 许用应力:为了能使杆件在安全范围内工作,不仅不能使工作应力达到极限值,还要留用一定安全储备,我们把极限应力值处于大于1的N 作限度为工作应力的最高值,用][σ表示,][σ=N 而N>1的系数 二、轴向拉(压)杆的强度条件和强度计算

《杆件的四种基本变形及组合变形、 直杆轴向拉、压横截面上的内力》教学设计

《杆件的四种基本变形及组合变形、 直杆轴向拉、压横截面上的内力》教学设计 剪切变形的受力特点是作用在构件上的横向外 力大小相等、方向相反、作用线平行且距离很近。 剪切变形的变形特点是介于两横向力之间的各 截面沿外力作用方向发生相对错动。 剪切面是指两横向力之间的横截面,破坏常在 剪切面上发生。 扭转变形的受力特点:在垂直于杆轴线的平面 内,作用有大小相等、转向相反的一对力偶。 扭转变形的变形特点:各横截面绕杆轴线发生

2.剪切 【工程实例】如图a所示为一个铆钉连接的简图。钢板在拉力F的作用下使铆钉的左上侧和右下侧受力(图b),这时,铆钉的上、下两部分将发生水平方向的相互错动(图c)。当拉力很大时,铆钉将沿水平截面被剪断,这种破坏形式称为剪切破坏。 3. 扭转 用改锥拧螺钉时,在改锥柄上手指的作用力构成了一个力偶,螺钉的阻力在改锥的刀口上构成了一个方向相反的力偶,这两个力偶都作用在垂直于杆轴的平面内,就使改锥产生了扭转变形,如图a所示。 例如汽车的转向轴(图b)。当驾驶员转动方向盘时,相当于在转向轴A端施加了一个力偶,与此同时,转向轴的B端受到了来自转向器的阻抗力偶。于是在轴AB的两端受到了一对大小相等、转向相反的力偶作用,使转向轴发生了扭转变形。 扭转角的概念,如图

3.2直杆轴向拉、压横截面上的内力内力的概念 轴力的计算 )轴力 为了显示并计算杆件的内力,通常采用截面法。假设用一个截面m-m (图a )将杆件“切”成左右两部分,取左边部分为研究对象(图b ),要保持这部分与原来杆件一样处于平衡状态,就必须在被切开处加上,这个内力F N 就是右部分对左部分的作用力。在轴向拉(压)杆中横截面中的内力称为由于直杆整体是平衡的,左部分也是平衡的,对这部分建立平衡方程: =0 0=-N F F 若取右部分为研究对象,则可得 0='-N F F 可以看出,取任一部分为研究对象,都可以得到相同的结果,其实F N 与F ′N 是一对作用力与反作用力,其数值必然相等。

拉压杆的强度计算

拉压杆的强大计算 1、极限应力、许用应力和安全系数 通过对材料力学性能的分析可知,任何工程材料能承受的应力都是有限的,一般把使材料丧失正常工作能力时的应力称为极限应力。对于脆性材料,当正应力达到抗拉强度b σ或强度bc σ时,会引起断裂破坏;对于塑性材料,当正应力达到材料的屈服点s σ(或屈服强度2.0σ)时,将产生显著的塑性变形。构件工作时发生断裂是不允许的;发生屈服或出现显著的塑性变形也是不允许的。所以,从强度方面考虑,断裂时构件是失效的一种形式;同样,发生屈服或出现显著的塑性变形也是构件失效的一种形式。这些失效现象都是强度不足造成的,因此,塑性材料的屈服点s σ(或屈服强度2.0σ)与脆性材料的抗拉强度b σ(或抗拉强度bc σ)都是材料的极限应力。 由于工程构件的受载难以精确估计,以及构件材质的均匀程度、计算方法的近似性等诸多因素,为确保构件安全,应使其有适当的强度储备,特别对于因失效将带来严重后果的构件,更应具备较大的强度储备。因此,工程中一般把极限应力除以大于1的系数n 作为工作应力的最大允许值,称为许用应力,用[]σ表示,即 塑性材料 []s s n σσ= 脆性材料 []b b n σσ= 式中,b s n n 、是与屈服点或抗拉强度对应的安全系数。 安全系数的选取是一个比较复杂的工程问题,如果安全系数取得过小,许用应力就会偏大,设计出的构件截面尺寸将偏小,虽能节省材料,但安全可靠性会降低;如果安全系数取得过大,许用应力就会偏小,设计出的构件截面积尺寸将偏大,虽构件能偏于安全,但需要多用材料而造成浪费。因此,安全系数的选取是否恰当当关系到构件的安全性和经济性。工程上一般在静载作用下,塑性材料的安全系数取5.2~5.1=s n 之间;脆性材料的安全系数取5.3~0.2=b n 之间。工程中对不同的构件选取安全系数,可查阅有关的设计手册。 2、;拉压杆的强度条件 为了保证拉压杆安全可靠地工作看,必须使杆内的最大工作应力不超过材料的拉压许用应力,即 []σσ≤=A F N max 式中,F N 和A 分别为危险截面的轴力和横截面面积。该式称为拉压杆的强度条件。 根据强度条件,可以解决下列三类强度计算问题: ⑴校核强度 若已知杆件的尺寸、所受的载荷及材料的许用应力,可用式(2-9)验算杆件

拉压杆件连接部分强度计算.

§3—7 拉(压)杆连接部分的强度计算 实际工程中的部件、构件之间,往往用连接件相互连接。例如螺栓连接中的螺栓(图3-21a )钢结构中广泛应用的铆钉连接中的铆钉(3-21b )。连接件对整个结构的牢固和安全起着重要作用,对其强度分析应予以足够重视。 图3-21a 连接件受力与变形的主要特点,用图3-22所示螺栓受力示意图来说明(图中用合力P 代替了侧面上的分布力):杆件受到一对大小相等、方向相反、作用线相距很近并且垂直杆轴的力作用,两力间的横截面将沿力的方向发生相对错动。这种变形就是剪切变形。两力之间的截面称剪切面,当力P 足够大时,杆件将沿剪切面剪断。 图3-22 连接件在受剪切的同时,两构件接触面上,因为互相压紧会产生局部受压,称挤压。如图3-23a 所示的螺栓连接中,作用在钢板上的拉力P ,通过钢板与螺栓的接触面传递给螺栓,接触面上就产生挤压。两构件的接触面称挤压面,以j A 表示;作用于接触面的压力称挤压力,以j P 表示;挤压面上的压应力称挤压应力,以j 表示。当挤压力过大时,孔壁边缘将受压变形,螺杆局部压扁,使圆孔变成椭圆,连接松动(图3-23b ),这就是挤压破坏。 图3-23a t t 图3-23b

挤压面 t d 图3-23c 下面就来研究连接件的强度计算。 一、剪切的实用计算 剪切实用计算的基本点是:假定剪切面的切应力是均匀分布的。切应力的计算式为 A Q =τ (3-13) 式中:Q —剪切面上的剪力; A —剪切面的面积。 由此得出剪切强度条件为: []ττ≤= A Q (3-14) 许用切应力[]τ由剪切实验测定。 实践表明,这种计算方法是可靠的,可以满足工程需要。 二、挤压的实用计算 挤压的实用计算是假定挤压应力j σ在挤压面j A 上均匀分布。所以挤压应力为 j j j A P = σ (3-15) 式中j A 为挤压面的计算面积。当接触面为平面时,接触面的面积就是计算挤压面积;当接触面为半圆柱面时,取圆柱体的直径平面作为计算挤压面面积(图3-23c )。这样计算所得的挤压应力和实际最大挤压应力值十分接近。由此可建立挤压强度条件: [] j j j j A P σσ≤= (3-16) 式中 []j σ为材料的许用挤压应力,由实验测得。 例3-9 用四个铆钉搭接两块钢板,如图3-24a 所示。已知拉力kN P 110=,铆钉直径mm d 16=,钢板宽度mm b 90=,厚mm t 10=。钢板与铆钉材料相同,[]MPa 140=τ, []MPa j 320=σ,[]MPa 160=σ。试校核此连接件的强度。

相关文档
相关文档 最新文档