文档库 最新最全的文档下载
当前位置:文档库 › 空间平面法向量求法-精选.pdf

空间平面法向量求法-精选.pdf

空间平面法向量求法-精选.pdf
空间平面法向量求法-精选.pdf

探索空间平面法向量的求法与方向的判定

“ 量无论无论是 和具有规具有规律性。 时有时会显得特别探索空间平面法向量的求法与方向的判定 问题,都离不开平面的 成角 ” ” 距离 “ 问题,还是 杨玉春 (铜仁市第二中学,贵州铜仁 554300) 向量具有一套完整的运算体系,可以把几何图形的性质 转化为向量运算,变抽象的逻辑推理为具体的向量运算,实 现了“数”与“形”的结合。因此用量知识解决某些立体几 何问题,有时会显得特别简洁和具有规律性。但用向量无论 是解决“成角”问题,还是“距离”问题,都离不开平面的 法向量,可以说平面的法向量是用向量来解决立几问题的瓶 颈,平面法向量的正确求出是关键。而用向量来求二面角的 大小时,往往还需判断法向量的方向,是指向二面角内还是 指向二面角外。本文介绍空间平面法向量的求法与方向的判 定。 一、平面法向量的求法 1、几何法:如图(1),若λ⊥α,在λ上任取两点A、B, 则或即为平面α的一个法向量。 2、待定系数法(两种设法):

(1)设n=(1,λ,μ)或n=(λ,1,μ)或n=(λ, μ,1)是平面α的一个法向量。a ,b 是平面α内任一两个不共线向量,由 n ·a=0 n ·b=0求出λ,μ即可。 (2)或设n=(x ,y ,z )是平面a=0 ·b=0 得出关于x 、y 、z 的三元一次方程组的一个解即为平面α的一个法向量。 3、利用空间平面方程:Ax+By+Cz+D=0(其中:A 、B 、C 不同时为零),则n=(A ,B ,C )为平面的一个法向量。 4利用向量的向量积:如图(1),设a=(111,,x y z ),b=(223,,x y z ) 则a ×b= =( ,| |,|) =(122121121221,,y z y z x z x z x y x y ---) 取n=(a ×b )(λ∈R 且λ≠0)是平面α的法向量。 二、空间平面法向量方向的判定 1、由几何法求出的法向量,此时方向看图即可。 2、由向量的向量积求出的法向量,用“右手定则”可确定a ×b 的方向,取n=λ(a ×b),当>0时,则n 方向与向

平面向量经典例题讲解

平面向量经典例题讲解 讲课时间:___________姓名:___________课时:___________讲课教师:___________ 一、选择题(题型注释) 1. 空间四边形OABC 中,OA a =u u u r r ,OB b =u u u r r , OC c =u u u r r ,点M 在OA 上,且MA OM 2=,N 为BC 的 中点,则MN u u u u r =( ) A C 【答案】B 【解析】 试 题 分 析 : 因 为 N 为 BC 的中点,则 , ,选 B 考点:向量加法、减法、数乘的几何意义; 2.已知平面向量a ,b 满足||1= a ,||2= b ,且()+⊥a b a ,则a 与b 的夹角是( ) (A (B (C (D 【答案】D 【解析】 试题分析:2()()00a b a a b a a a b +⊥∴+?=∴+?=r r r r r r r r r Q ,||1=a ,||2=b ,设夹角为θ,则 考点:本题考查向量数量积的运算 点评:两向量垂直的充要条件是点乘积得0,用向量运算得到cos θ的值,求出角 3.若OA u u r 、 OB u u u r 、OC uuu r 三个单位向量两两之间夹角为60u u r 【答案】D 【解析】 试题分析 :ΘOA u u r 、OB u u u r 、OC uuu r 三个单位向量两两之间夹角为 60° 6= r 考点:向量的数量积. 4.在平行四边形ABCD 中,AC 与BD 交于点O E ,是线段OD 的中点,AE 的延长线与CD 交于点F , 若AC a =u u u r r ,BD b =u u u r r ,则AF =u u u r ( ) A.1142a b +r r B.1233a b +r r C.1124a b +r r D.2133 a b +r r 【答案】D 【解析】 试题分析:由题意可知,AEB ?与FED ?相似,且相似比为3:1,所以由向量加减法 的平行四边形法则可知,,AB AD a AD AB b +=-=u u u r u u u r r u u u r u u u r r ,解得,故D 正确。 考点:平面向量的加减法 5.在边长为1的等边ABC ?中,,D E 分别在边BC 与AC 上,且BD DC =u u u r u u u r ,2 AE EC =u u u r u u u r 则AD BE ?=u u u r u u u r ( ) A .【答案】A 【解析】 试题分析:由已知,D E 分别在边BC 与AC 上,且BD DC =u u u r u u u r , 2AE EC =u u u r u u u r 则D 是BC 的中轴点,E 为AC 的三等分点,以D 为坐标原点,DA 所在直线为y 轴,BC 边所在直线为x 轴,建立平面直角坐标系, ,设),(y x E ,由EC AE =2可得:

平面向量及空间向量高考数学专题训练

平面向量及空间向量高考数学专题训练(四) 一、选择题(本大题共12小题,每小题分6,共72分) 1.设-=1(a cos α,3), (=b sin )3,α,且a ∥b , 则锐角α为( ) A. 6π B. 4π C. 3 π D. 125π 2.已知点)0,2(-A 、)0,3(B ,动点2),(x y x P =?满足,则点P 的轨迹是( ) A. 圆 B. 椭圆 C. 双曲线 D. 抛物线 3.已知向量值是相互垂直,则与且k b a b a k b a -+-==2),2,0,1(),0,1,1(( ) A. 1 B. 51 C. 53 D. 5 7 4.已知b a ,是非零向量且满足的夹角是与则b a b a b a b a ,)2(,)2(⊥-⊥-( ) A. 6π B. 3 π C. 32π D. 65π 5.将函数y=sinx 的图像上各点按向量=a (2,3 π )平移,再将所得图像上各点的横坐标 变为原来的2倍,则所得图像的解析式可以写成( ) A.y=sin(2x+ 3π)+2 B.y=sin(2x -3 π )-2 C.y=(321π+x )-2 D.y=sin(321π-x )+2 6.若A,B 两点的坐标是A(3φcos ,3φsin ,1),B(2,cos θ2,sin θ1),||的取值范围是( ) A. [0,5] B. [1,5] C. (1,5) D. [1,25] 7.从点A(2,-1,7)沿向量)12,9,8(-=a 方向取线段长|AB|=34,则点B 的坐标为( ) A.(-9,-7,7) B. (-9,-7,7) 或(9,7,-7) C. (18,17,-17) D. (18,17,-17)或(-18,-17,17) 8.平面直角坐标系中,O 为坐标原点, 已知两点A(3, 1), B(-1, 3),若点C 满足 =OB OA βα+, 其中α、β∈R 且α+β=1, 则点C 的轨迹方程为 ( ) A.01123=-+y x B.5)2()1(2 2 =-+-y x C. 02=-y x D. 052=-+y x 9.已知空间四边形ABCD 的每条边和对角线的长都等于m ,点E ,F 分别是BC ,AD 的中点,则?的值为 ( ) A.2 m B. 212m C. 4 1 2m D. 432m 10.O 为空间中一定点,动点P 在A,B,C 三点确定的平面内且满足)()(-?-=0,

高考数学专题复习第二轮第18讲 平面向量与解析几何

第18讲 平面向量与解析几何 在高中数学新课程教材中,学生学习平面向量在前,学习解析几何在后,而且教材中二者知识整合的不多,很多学生在学习中就“平面向量”解平面向量题,不会应用平面向量去解决解析几何问题。用向量法解决解析几何问题思路清晰,过程简洁,有意想不到的神奇效果。著名教育家布鲁纳说过:学习的最好刺激是对所学材料的兴趣,简单的重复将会引起学生大脑疲劳,学习兴趣衰退。这充分揭示方法求变的重要性,如果我们能重视向量的教学,必然能引导学生拓展思路,减轻负担。 一、知识整合 平面向量是高中数学的新增内容,也是新高考的一个亮点。 向量知识、向量观点在数学、物理等学科的很多分支有着广泛的应用,它具有代数形式和几何形式的“双重身份”,能融数形与一体,能与中学数学教学内容的的许多主干知识综合,形成知识交汇点。而在高中数学体系中,解析几何占有着很重要的地位,有些问题用常规方法去解决往往运算比较繁杂,不妨运用向量作形与数的转化,则会大大简化过程。 二、例题解析 例1、(2000年全国高考题)椭圆 14 9 2 2 =+ y x 的焦点为F ,1F 2,点P 为其上的动点,当∠F 1P F 2为钝角时,点P 横坐标的取值范围是___。 解:F 1(-5,0)F 2(5,0),设P (3cos θ,2sin θ) 21PF F ∠ 为钝角 ∴ 123cos ,2sin )3cos ,2sin )PF PF θθθθ?=- -?- ( =9cos 2θ-5+4sin 2θ=5 cos 2θ-1<0 解得:5 5cos 5 5< <- θ ∴点P 横坐标的取值范围是(5 5 3,553- ) 点评:解决与角有关的一类问题,总可以从数量积入手。本题中把条件中的角为钝角转化为 向量的数量积为负值,通过坐标运算列出不等式,简洁明了。 例2、已知定点A(-1,0)和B(1,0),P 是圆(x-3)2+(y-4)2 =4上的一动点,求22 PA PB +的最 大值和最小值。 分析:因为O 为AB 的中点,所以2,P A P B P O += 故可利用向量把问题转化为求向量O P 的最值。 解:设已知圆的圆心为C ,由已知可得:{1,0},{1,0}O A O B =-=

平面向量典型例题67629

平面向量经典例题: 1. 已知向量a =(1,2),b =(2,0),若向量λa +b 与向量c =(1,-2)共线,则实数λ等于( ) A .-2 B .-13 C .-1 D .-23 [答案] C [解析] λa +b =(λ,2λ)+(2,0)=(2+λ,2λ),∵λa +b 与c 共线,∴-2(2+λ)-2λ=0,∴λ=-1. 2. (文)已知向量a =(3,1),b =(0,1),c =(k , 3),若a +2b 与c 垂直,则k =( ) A .-1 B .- 3 C .-3 D .1 [答案] C [解析] a +2b =( 3,1)+(0,2)=( 3,3), ∵a +2b 与c 垂直,∴(a +2b )·c = 3k +3 3=0,∴k =-3. (理)已知a =(1,2),b =(3,-1),且a +b 与a -λb 互相垂直,则实数λ的值为( ) A .- 611 B .-116 C.611 D.11 6 [答案] C [解析] a +b =(4,1),a -λb =(1-3λ,2+λ), ∵a +b 与a -λb 垂直, ∴(a +b )·(a -λb )=4(1-3λ)+1×(2+λ)=6-11λ=0,∴λ=611 . 3. 设非零向量a 、b 、c 满足|a |=|b |=|c |,a +b =c ,则向量a 、b 间的夹角为( ) A .150° B .120° C .60° D .30° [答案] B [解析] 如图,在?ABCD 中, ∵|a |=|b |=|c |,c =a +b ,∴△ABD 为正三角形,∴∠BAD =60°,

平面向量与空间向量知识点对比

平面向量与空间向量知识点对比 内容 平面向量 空间向量 定义 既有大小,又有方向 既有大小,又有方向 表示方法 (1)用有向线段AB 表示; (2)用c b a ,,或a,b,c 表示 模 向量的长度,用|AB |或|a |表示 零向量 长度为0的向量,记为a 单位向量 模为1的向量叫做单位向量 相等向量 长度相等,方向相同的向量叫做相等向量 相反向量 长度相等,方向相反的向量叫做相反向量;例如:AB 的相反向量是AB -或者BA 夹角范围 0≤θ≤π 0≤θ≤π 数乘 平面向量a 与一个实数的乘积是一个向量,记作λ a. 空间向量a 与一个实数的乘积是一个向量,记作λ a. 共线向量定理 向量()0≠a a 与b 共线,当且仅当有唯一一个实数λ,使a b λ= 向量() 0≠a a 与b 共线,当且仅当有唯一一个实数λ,使a b λ= 向量共线 (共面) 向量( ) 0≠a a 与b 共线,当且仅当有唯一一个实数λ,使a b λ= 向量p 与a 与b 共面的充要条件是存在有序实数对(x,y ),使 b y a x p += 点共线(共面) OB OA OC μ+=若,且1=+μλ,则A 、B 、C 、三点共线 OC z y x ++=OB OA OP 若,且1=++z y x ,则P 、A 、B 、C 、四 点共面 数量积 θcos b a b a ?=? θcos b a b a ?=?

运算律满足交换律、分配律,不满足三个向量连乘的结合律 向量的运算 线性运算坐标运算线性运算坐标运算 加法 三角形法则:首尾相连首尾连;例 如:AC BC AB= + 平行四边形法则:同起点,对角线 () 2 1 2 1 ,y y x x b a+ + = + 三角形法则:首尾相连首尾 连;例如:AC BC AB= + () 2 1 2 1 2 1 , ,z z y y x x b a+ + + = + 减法 三角形法则:同起点,连终点,指 向被减向量;例如:CB AC AB= + () 2 1 2 1 ,y y x x b a- - = - 三角形法则:同起点,连终点, 指向被减向量;例如: CB AC AB= + () 2 1 2 1 2 1 , ,z z y y x x b a- - - = - 数乘 倍的向量 的 ),长度为 或者相反( ) 方向相同( 表示与 x a x x a a x < > () 1 1 ,y x aλ λ λ= 倍的向量 的 ),长度为 或者相反( ) 方向相同( 表示与 x a x x a a x < > () 1 1 ,y x aλ λ λ= 数量积 模 夹角 平行 1221 //0 a b a b x y x y λ ?=?-= 2 1 2 1 2 1 , , //z z y y x x b a b aλ λ λ λ= = = ? = ? cos a b a bθ ?=cos a b a bθ ?= 1212 a b x x y y ?=+ 121212 a b x x y y z z ?=++ 1122 (,)(,), a x y b x y == 若,则有 111222 (,,)(,,) a x y z b x y z == 若,,则有 a a a =?22 11 a x y =+a a a =?222 111 a x y z =++ cos a b a b θ ? =1212 2222 1122 cos x x y y x y x y θ + = ++ cos a b a b θ ? =121212 222222 111222 cos x x y y z z x y z x y z θ ++ = ++++ (0) a b b λ =≠111222 222 x y z x y z x y z ==≠ () (0) a b b λ =≠ 11 22 22 x y x y x y =≠ ()

平面向量易错题解析

平面向量易错题解析 1.你熟悉平面向量的运算(和、差、实数与向量的积、数量积)、运算性质和运算的几何意义吗? 2.你通常是如何处理有关向量的模(长度)的问题?(利用2 2 ||→→ =a a ;22||y x a +=) 3.你知道解决向量问题有哪两种途径? (①向量运算;②向量的坐标运算) 4.你弄清“02121=+?⊥→ → y y x x b a ”与“0//1221=-?→ → y x y x b a ”了吗? [问题]:两个向量的数量积与两个实数的乘积有什么区别? (1) 在实数中:若0≠a ,且ab=0,则b=0,但在向量的数量积中,若→→≠0a ,且0=?→ →b a ,不能推 出→ →=0b . (2) 已知实数)(,,,o b c b a ≠,且bc ab =,则a=c,但在向量的数量积中没有→ →→→→→=??=?c a c b b a . (3) 在实数中有)()(c b a c b a ??=??,但是在向量的数量积中)()(→ → → → → → ??≠??c b a c b a ,这是因为 左边是与→ c 共线的向量,而右边是与→ a 共线的向量. 5.正弦定理、余弦定理及三角形面积公式你掌握了吗?三角形内的求值、化简和证明恒等式有什么特点? 1.向量有关概念: (1)向量的概念:既有大小又有方向的量,注意向量和数量的区别。向量常用有向线段来表示,注意不能说向量就是有向线段,为什么?(向量可以平移)。如已知A (1,2),B (4,2),则把向量AB 按向量a =(-1,3)平移后得到的向量是_____(答:(3,0)) (2)零向量:长度为0的向量叫零向量,记作:,注意零向量的方向是任意的; (3)单位向量:长度为一个单位长度的向量叫做单位向量(与AB 共线的单位向量是|| AB AB ±); (4)相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性; (5)平行向量(也叫共线向量):方向相同或相反的非零向量、叫做平行向量,记作:∥,规定零向量和任何向量平行。提醒:①相等向量一定是共线向量,但共线向量不一定相等;②两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线, 但两条直线平行不包含两条直 线重合;③平行向量无传递性!(因为有0);④三点A B C 、、共线? AB AC 、 共线; (6)相反向量:长度相等方向相反的向量叫做相反向量。的相反向量是-。 如下列命题:(1)若a b =,则a b =。(2)两个向量相等的充要条件是它们的起点相同,终点相同。(3)若AB DC =,则ABCD 是平行四边形。(4)若ABCD 是平行四边形,则AB DC =。(5)若,a b b c ==,则a c =。(6)若//,//a b b c ,则//a c 。其中正确的是_______(答:(4)(5)) 2.向量的表示方法:(1)几何表示法:用带箭头的有向线段表示,如,注意起点在前,终点在后;(2)符号表示法:用一个小写的英文字母来表示,如,,等;(3)坐标表示法:在平面内建立直角坐标系,以与x 轴、y 轴方向相同的两个单位向量,j 为基底,则平面内的任一向量可表示为 (),a xi y j x y =+=,称(),x y 为向量的坐标,=(),x y 叫做向量的坐标表示。如果向量的起点在 原点,那么向量的坐标与向量的终点坐标相同。 3.平面向量的基本定理:如果e 1和e 2是同一平面内的两个不共线向量,那么对该平面内的任一向量a ,有且只有一对实数1λ、2λ,使a =1λe 1+2λe 2。

法向量的求法及其空间几何题的解答

状元堂一对一个性化辅导教案 教师张敏科目数学时间2013 年6 月4日 学生董洲年级高二学校德阳西校区授课内容空间法向量求法及其应用立体几何知识点与例题讲解 难度星级★★★★ 教学内容 上堂课知识回顾(教师安排): 1.平面向量的基本性质及计算方法 2.空间向量的基本性质及计算方法 本堂课教学重点: 1.掌握空间法向量的求法及其应用 2.掌握用空间向量求线线角,线面角,面面角及点面距 3.熟练灵活运用空间向量解决问题 得分:

平面法向量的求法及其应用 一、 平面的法向量 1、定义:如果α⊥→ a ,那么向量→ a 叫做平面α的法向量。平面α的法向量共有两大类(从方向上分),无数条。 2、平面法向量的求法 方法一(内积法):在给定的空间直角坐标系中,设平面α的法向量(,,1)n x y =[或(,1,)n x z =,或(1,,)n y z =],在平面α内任找两个不共线的向量,a b 。由n α⊥,得0n a ?=且0n b ?=,由此得到关于,x y 的方程组,解此方程组即可得到n 。 二、 平面法向量的应用 1、 求空间角 (1)、求线面角:如图2-1,设→ n 是平面α的法向量,AB 是平面α的一条斜线,α∈A ,则AB 与平面α所成的角为: 图2-1-1:.| |||arccos 2,2 →→→ →→ →??->= <-= AB n AB n AB n π π θ 图2-1-2:2| |||arccos 2,π π θ-??=->=<→ →→ → → → AB n AB n AB n (2)、求面面角:设向量→ m ,→ n 分别是平面α、β的法向量,则二面角βα--l 的平面角为: θ β α → m 图2-2 → n θ → m α 图2-3 → n β | ,cos |sin ><=→ →AB n θA B α 图2-1-2 θ C → n 图2-1-1 α θ B → n A C

数学选修空间向量及其运算教案

第三章空间向量与立体几何 §3.1空间向量及其运算 3.1.1 空间向量及其加减运算 师:这节课我们学习空间向量及其加减运算,请看学习目标。 学习目标:⒈理解空间向量的概念,掌握其表示方法; ⒉会用图形说明空间向量加法、减法、数乘向量及它们的运算律; ⒊能用空间向量的运算意义及运算律解决简单的立体几何中的问题. 师:在必修四第二章《平面向量》中,我们学习了平面向量的一些知识,现在我们一起来复习。(不要翻书) (在黑板或背投上呈现或边说边写) 1、在平面中,我们把具有__________________的量叫做平面向量; 2、平面向量的表示方法:

①几何表示法:_________________________ ②字母表示法:_________________________ (注意:向量手写体一定要带箭头) 3、平面向量的模表示_________________,记作____________ 4、一些特殊的平面向量: ①零向量:__________________________,记作___(零向量的方向具有任意性) ②单位向量:______________________________ (强调:都只限制了大小,不确定方向) ③相等向量:____________________________ ④相反向量:____________________________ 5、平面向量的加法: 6、平面向量的减法: 7、平面向量的数乘:实数λ与向量a的积是一个向量,记作λa,其长度和 方向规定如下: (1)|λa|=|λ||a| (2)当λ>0时,λa与a同向; 当λ<0时,λa与a反向; 当λ=0时,λa=0. 8、向量加法和数乘向量满足以下运算律 加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c) 数乘分配律:λ(a+b)=λa+λb 数乘结合律:λ(aμ)=a) (λμ [师]:刚才我们复习了平面向量,那空间向量会是怎样,与平面向量有怎样的区别和联系呢?请同学们阅读书P84-P86.(5分钟) [师]:对比平面向量,我们得到空间向量的相关概念。(在刚复习的黑板或幻灯片上,只需将平面改成空间) [师]:空间向量与平面向量有什么联系? [生]:向量在空间中是可以平移的.空间任意两个向量都可以用同一平面内的两条有向线段表示.因此我们说空间任意两个向量是共面的.所以凡涉及 空间两个向量的问题,平面向量中有关结论仍适用于它们。

高中数学--空间向量之法向量求法及应用方法

高中数学空间向量之--平面法向量的求法及其应用 平面的法向量 仁定义:如果a _ :,那么向量a 叫做平面二的法向量。平面.:> 的法向量共有两大类(从方向上分) ,无 数条。 2、平面法向量的求法 斗 ■ 4 方法一(内积法):在给定的空间直角坐标系中, 设平面「的法向量n =(x,y,1)[或n =(x,1,z),或n =(1yZ ], 在平面:内任找两个不共线的向量 a,b 。由n _ :?,得n a = 0且n b = 0,由此得到关于 x, y 的方程组,解此 i 方程组即可得到n 。 方法二:任何一个 x, y, z 的一次次方程的图形是平面;反之,任何一个平面的方程是 Ax By Cz ^0 (代B,C 不同时为0),称为平面的一般方程。其法向量 n -(A, B,C);若平面与3个坐 标轴的交点为R(a,0,0), P 2(0,b,0), P 3(0,0, c),如图所示,则平面方程为?上 ]--1,称此方程为平面的截距 a b c 式方程,把它化为一般式即可求出它的法向量。 方法三(外积法):设 ,.为空间中两个不平行的非零向量,其外积 a b 为一长度等于|a||b|sinr , ( 9为 ..,.两者交角,且Ou :::二),而与..,.皆垂直的向量。通常我们采取「右手定则」,也就是右手四指由 .. 例 1、 已知,al(2,1,0),b'(-1,2,1), T T —f —f 试求(1): a^b ; (2): b 汉a. T T T T Key: (1) a b =(1,-2,5);⑵ b a =(-1,2,5) 例2、如图1-1,在棱长为2的正方体 ABCD -A 1B 1C 1D 1中, 7 T T T 的方向转为 匸的方向时,大拇指所指的方向规定为a b 的方向 ^( x i ,y i ,z i ),^(x 2, r 「 T T 丫2二2),则:a b = Z 2 X 1乙 X 2 Z 2 X 1 X 2 y 1 y 2 (注:1、二阶行列式 =ad —cb ; d 2、适合右手定 则。 x, y, z 的一次方程。

平面向量基本定理及经典例题

平面向量基本定理 一.教学目标: 了解平面向量基本定理,理解平面向量的坐标概念,会用坐标形式进行向量的加法、数乘的运算,掌握向量坐标形式的平行的条件; 教学重点: 用向量的坐标表示向量加法、减法、数乘运算和平行. 二.课前预习 1.已知=(x,2),=(1,x),若//,则x 的值为 ( ) A 、2 B 、 2- C 、 2± D 、 2 2.下列各组向量,共线的是 ( ) ()A (2,3),(4,6)a b =-=r r ()B (2,3),(3,2)a b ==r r ()C (1,2),(7,14)a b =-=r r ()D (3,2),(6,4)a b =-=-r r 3.已知点)4,3(),1,3(),4,2(----C B A ,且?=?=2,3,则=MN ____ 4.已知点(1,5)A -和向量=(2,3),若=3,则点B 的坐标为 三.知识归纳 1. 平面向量基本定理:如果12,e e u r u u r 是同一平面内的两个___________向量,那么对于这一平面内的任意向量a r ,有且只有一对实数12,λλ,使1122a e e λλ=+r u r u u r 成立。其中12,e e u r u u r 叫做这一平面的一组____________,即对基底的要求是向量___________________; 2.坐标表示法:在直角坐标系内,分别取与x 轴,y 轴方向相同的两个单位向量i ?,j ? 作基底, 则对任一向量a ?,有且只有一对实数x ,y ,使j y i x a ???+=、就把_________叫做向量a ? 的坐标,记作____________。 3.向量的坐标计算:O (0,0)为坐标原点,点A 的坐标为(x ,y ),则向量的坐标为=___________,点1P 、2P 的坐标分别为(1x ,1y ),2P (2x ,2y ),则向量21P P 的坐标为

向量法求空间点到平面的距离教案

学习必备 欢迎下载 向量法求空间点到面距离(教案) 新课导入: 我们在路上行走时遇到障碍物一般会想到将障碍物挪开,那还有别的方法吗? 对!绕过去。在生活中我们都知道转弯,那么在学习上我们不妨也让思维转个弯,绕过难点 用另一种方法解决。 我们知道要想求空间一点到一个面的距离,就必须要先找到这个距离,而找这个距离恰恰是 一个比较难解决的问题,我们今天就让思维转个弯,用向量法解决这个难题。 一、复习引入: 1、 空间中如何求点到面距离? 方法1、直接做或找距离; 方法2、;等体积 方法3、空间向量。 2、向量数量积公式 a · b =a b cos θ(θ为a 与b 的夹角) 二、向量法求点到平面的距离 教材分析 重点: 点面距离的距离公式应用及解决问题的步骤 难点: 找到所需的点坐标跟面的法向量 教学目的 1. 能借助平面的法向量求点到面、线到面、面到面、异面直线间的距离。 2. 能将求线面距离、面面距离问题转化为求点到面的距离问题。 3. 加强坐标运算能力的培养,提高坐标运算的速度和准确性。

学习必备欢迎下载

学习必备 欢迎下载 若AB 是平面α的任一条斜线段,则在BOA Rt ? ABO COS ∠? ? 如果令平面的法向量为n ,考虑到法向量的方向,可以得到点B 到平面的距离为 BO 因此要求一个点到平面的距离,可以分为以下三步:(1)找出从该点出发的平面的任一 条斜线段对应的向量(2)求出该平面的一个法向量(3)求出法向量与斜线段对应的向量的 数量积的绝对值再除以法向量的模 思考、已知不共线的三点坐标,如何求经过这三点的平面的一个法向量? 例1、在空间直角坐标系中,已知(3,0,0),(0,4,0)A B ,(0,0,2)C ,试求平面ABC 的一个法向量. 解:设平面ABC 的一个法向量为(,,)n x y z = 则n AB n AC ⊥⊥,.∵(3,4,0)AB =-,(3,0,2)AC =- ∴(,,)(3,4,0)0(,,)(3,0,2)0x y z x y z ?-=???-=?即340320x y x z -+=??-+=? ∴3432y x z x ?=????=?? 取4x =,则(4,3,6)n = ∴(4,3,6)n =是平面ABC 的一个法向量. 例2、如图,已知正方形ABCD 的边长为4,E 、F 分别是AB 、AD 的中点,GC ⊥平面ABCD ,且GC =2,求点B 到平面EFG 的距离. 解:如图,建立空间直角坐标系C -xyz . 由题设C(0,0,0),A(4,4,0),B(0,4,0), D(4,0,0),E(2,4,0), F(4,2,0),G(0,0,2). (2,2,0),(2,4,2),B (2,0,0)EF EG E =-=--=设平面EFG 的一个法向量 为(,,)n x y z = 2202420 11(,,1)33 n EF n EG x y x y n ⊥⊥-=?∴?--+=?∴=,

高中数学知识点总结之平面向量与空间解析几何(经典必看)

56. 你对向量的有关概念清楚吗? (1)向量——既有大小又有方向的量。 ()向量的模——有向线段的长度,2||a → ()单位向量,3100|||| a a a a →→ → → == ()零向量,4000→ → =|| ()相等的向量长度相等方向相同5???? =→→ a b 在此规定下向量可以在平面(或空间)平行移动而不改变。 (6)并线向量(平行向量)——方向相同或相反的向量。 规定零向量与任意向量平行。 b a b b a → → → → → → ≠?=∥存在唯一实数,使()0λλ (7)向量的加、减法如图: OA OB OC →+→=→ OA OB BA →-→=→ (8)平面向量基本定理(向量的分解定理) e e a → → → 12,是平面内的两个不共线向量,为该平面任一向量,则存在唯一

实数对、,使得,、叫做表示这一平面内所有向量λλλλ12112212a e e e e →→→→→ =+ 的一组基底。 (9)向量的坐标表示 i j x y →→ ,是一对互相垂直的单位向量,则有且只有一对实数,,使得 ()a x i y j x y a a x y → →→→→ =+=,称,为向量的坐标,记作:,,即为向量的坐标() 表示。 ()()设,,,a x y b x y → → ==1122 ()()()则,,,a b x y y y x y x y → →±=±=±±11121122 ()()λλλλa x y x y →==1111,, ()()若,,,A x y B x y 1122 ()则,AB x x y y → =--2121 ()()||AB x x y y A B →= -+-212212,、两点间距离公式 57. 平面向量的数量积 ()··叫做向量与的数量积(或内积)。1a b a b a b →→→→→→ =||||cos θ []θθπ为向量与的夹角,,a b → → ∈0

高中数学--空间向量之法向量求法及应用方法

高中数学空间向量之--平面法向量的求法及其应用 一、 平面的法向量 1、定义:如果α⊥→ a ,那么向量→ a 叫做平面α的法向量。平面α的法向量共有两大类(从方向上分),无数条。 2、平面法向量的求法 方法一(内积法):在给定的空间直角坐标系中,设平面α的法向量(,,1)n x y =[或(,1,)n x z =,或( 1,,)n y z =],在平面α内任找两个不共线的向量,a b 。由n α⊥,得0n a ?=且0n b ?=,由此得到关于,x y 的方程组,解此方程组即可得到n 。 方法二:任何一个z y x ,,的一次次方程的图形是平面;反之,任何一个平面的方程是z y x ,,的一次方程。 0=+++D Cz By Ax )0,,(不同时为C B A ,称为平面的一般方程。其法向量),,(C B A n =→ ;若平面与3个坐 标轴的交点为),0,0(),0,,0(),0,0,(321c P b P a P ,如图所示,则平面方程为:1=++c z b y a x ,称此方程为平面的截距式方程,把它化为一般式即可求出它的法向量。 方法三(外积法): 设 , 为空间中两个不平行的非零向量,其外积→ → ?b a 为一长度等于θsin ||||→ → b a ,(θ 为 ,两者交角,且πθ<<0),而与 , 皆垂直的向量。通常我们采取「右手定则」,也就是右手四指由 的方向转为 的方向时,大拇指所指的方向规定为→→?b a 的方向,→ →→→?-=?a b b a 。 :),,,(),,,(222111则设z y x b z y x a ==→ → ??=?→ → 21y y b a ,2 1z z 21x x - ,21z z 21x x ???? 21y y (注:1、二阶行列式:c a M = cb ad d b -=;2、适合右手定则。 ) 例1、 已知,)1,2,1(),0,1,2(-==→ → b a , 试求(1):;→ → ?b a (2):.→ →?a b Key: (1) )5,2,1(-=?→ → b a ;)5,2,1()2(-=?→ → a b 例2、如图1-1,在棱长为2的正方体1111ABCD A B C D -中, 求平面AEF 的一个法向量n 。 )2,2,1(:=?=→ →→AE AF n key 法向量

(完整版)平面向量典型例题.docx

平面向量经典例题: 1. 已知向量 a =(1,2), b = (2,0),若向量 λa +b 与向量 c = (1,- 2)共线,则实数 λ等于 () 1 A .- 2 B .- 3 2 C .- 1 D .- 3 [ 答案 ] C [ 解析 ] λa +b =( λ,2λ)+ (2,0)=(2+ λ,2λ),∵ λa + b 与 c 共线,∴- 2(2+ λ)- 2λ= 0,∴ λ=- 1. 2. (文)已知向量 a = ( 3,1) ,b = (0,1), c =(k , 3) ,若 a +2b 与 c 垂直,则 k =( ) A .- 1 B .- 3 C .- 3 D .1 [ 答案 ] C [ 解析 ] a +2b =( 3,1)+ (0,2)= ( 3, 3), ∵a +2b 与 c 垂直,∴ (a +2b) ·c = 3k + 3 3= 0,∴ k =- 3. (理 )已知 a = (1,2),b =(3 ,- 1),且 a +b 与 a - λb 互相垂直,则实数 λ的值为 ( ) 6 11 A .- 11 B .- 6 6 11 C.11 D. 6 [ 答案 ] C [ 解析 ] a +b = (4,1), a -λb =(1 -3λ,2+ λ), ∵a +b 与 a - λb 垂直, ∴ ( a + b) ·(a -λb)= 4(1- 3λ)+ 1×(2+ λ)= 6-11λ= 0,∴ λ= 6 . 11 3.设非零向量 a 、 b 、 c 满足 |a|= |b|= |c|,a + b = c ,则向量 a 、 b 间的夹角为 () A . 150° B . 120° C . 60° D .30° [ 答案 ] B [ 解析 ] 如图,在 ?ABCD 中, ∵ |a|= |b|= |c|,c = a +b ,∴△ ABD 为正三角形,∴∠ BAD =60°,∴〈 a , b 〉= 120°,故选 B. (理 )向量 a , b 满足 |a|=1, |a - b|= 3 ,a 与 b 的夹角为 60°,则 |b|=() 2 1 1 A. 2 B. 3 1 1 C.4 D.5 [ 答案 ] A [ 解析 ] ∵ |a - b|= 3 ,∴ |a|2 + |b|2- 2a ·b = 3 ,∵ |a|=1,〈 a , b 〉= 60°, 2 4 设|b|= x ,则 1+x 2-x = 3 1 4 ,∵ x>0,∴ x = . 2

空间平面法向量求法

空间平面法向量求法 一、法向量定义 定义:如果,那么向量叫做平面的法向量。平面的法向量共有两大类(从方向上分),无数条。 二、平面法向量的求法 1、内积法 在给定的空间直角坐标系中,设平面的法向量=(x,y,1)[或=(x,1,z)或=(1,y,z)], 在平面内任找两个不共线的向量,。由,得·=0且·=0,由此得到关于x,y的 方程组,解此方程组即可得到。 2、 任何一个x,y,z的一次方程的图形是平面;反之,任何一个平面的方程是x,y,z的一次方程。 Ax+By+Cz+D=0(A,B,C不同时为0),称为平面的一般方程。其法向量=(A,B,C);若平面与3 个坐标轴的交点为P(a,0,0),P(0,b,0),P(0,0,c),则平面方程为:,称此方程为平面的截距式方程,把它化为一般式即可求出它的法向量。 3、外积法 设,为空间中两个不平行的非零向量,其外积×为一长度等于||||sinθ,(θ为两 者交角,且0<θ<π,而与,, 皆垂直的向量。通常我们采取“右手定则”,也就是右手四指 由的方向转为的方向时,大拇指所指的方向规定为×的方向,×=-×。 设=(x1,y1,z1),=(x2,y2,z2),则×= (注:1、二阶行列式:;2、适合右手定则。) Code public double[] GetTriangleFunction(ESRI.ArcGIS.Geometry.IPoint point1, ESRI.ArcGIS.Geometry.IPoint point2, ESRI.ArcGIS.Geometry.IPoint point3) { try { double a = 0, b = 0,c=0; //方程参数

高中数学典型例题解析汇报平面向量与空间向量

实用文档 文案大全高中数学典型例题第八章平面向量与空间向量 §8.1平面向量及其运算 一、、疑难知识导析 1.向量的概念的理解,尤其是特殊向量“零向量” 向量是既有大小,又有方向的量.向量的模是正数或0,是可以进行大小比较的,由于方向不能比较大小,所以向量是不能比大小的.两个向量的模相等,方向相同,我们称这两个向量相等,两个零向量是相等的,零向量与任何向量平行,与任何向量都是共线向量; 2.在运用三角形法则和平行四边形法则求向量的加减法时要注意起点和终点; 3.对于坐标形式给出的两个向量,在运用平行与垂直的充要条件时,一定要区分好两个公式,切不可混淆。因此,建议在记忆时对比记忆; 4.定比分点公式中则要记清哪个点是分点;还有就是此公式中横坐标和纵坐标是分开计算的; 5.平移公式中首先要知道这个公式是点的平移公式,故在使用的过程中须将起始点的坐标给出,同时注意顺序。 二知识导学 1.模(长度):向量AB的大小,记作|AB|。长度为0的向量称为零向量,长度等于1个单位长度的向量,叫做单位向量。 2.平行向量:方向相同或相反的非零向量叫做平行向量,又叫做共线向量。 3.相等向量:长度相等且方向相同的向量。 4.相反向量:我们把与向量a?长度相等,方向相反的向量叫做a?的相反向量。记作-a?。 5.向量的加法:求两个向量和的运算。 已知a?,b?。在平面内任取一点,作AB=a?,BC=b,则向量AC 叫做a与b?的和。记作a?+b?。 6. 向量的减法:求两个向量差的运算。 已知a?,b?。在平面内任取一点O,作OA=a?,OB=b?,则向量BA 叫做a?与b?的差。记作a?-b?。 7.实数与向量的积: (1)定义:实数λ与向量a?的积是一个向量,记作λa?,并规定: ①λa?的长度|λa?|=|λ|·|a?|; ②当λ>0时,λa?的方向与a?的方向相同; 当λ<0时,λa?的方向与a?的方向相反; 当λ=0时,λa?=0? (2)实数与向量的积的运算律:设λ、μ为实数,则 ①λ(μa?)=(λμ) a?

【精品】高三数学专题——平面向量与空间向量

平面向量与空间向量 平面向量及其运算 一、知识导学1.模(长度):向量AB 的大小,记作|AB |.长度为0的向量称为零向量,长度等于1个单位长度的向量,叫做单位向量。 2。平行向量:方向相同或相反的非零向量叫做平行向量,又叫做共线向量。 3.相等向量:长度相等且方向相同的向量。 4.相反向量:我们把与向量a 长度相等,方向相反的向量叫做a 的相反向量。记作—a 。 5。向量的加法:求两个向量和的运算. 已知a ,b 。在平面内任取一点,作AB =a ,=,则向量叫做与b 的和.记作a +b 。 6.向量的减法:求两个向量差的运算。 已知a ,b 。在平面内任取一点O,作=a ,=b ,则向量叫做a 与b 的差。记作a -b 。 7.实数与向量的积: (1)定义:实数λ与向量a 的积是一个向量,记作λa ,并规定:

①λa 的长度|λa |=|λ|·|a |; ②当λ>0时,λa 的方向与a 的方向相同; 当λ<0时,λa 的方向与a 的方向相反; 当λ=0时,λa =0 (2)实数与向量的积的运算律:设λ、μ为实数,则 ①λ(μa )=(λμ)a ②(λ+μ)a =λa +μa ③λ(a +)=λa +λ 8.向量共线的充分条件:向量b 与非零向量a 共线的充要条件是有且只有一个实数

λ,使得b =λa 。 另外,设a =(x 1,y 1),b =(x 2,y 2),则a //b ?x 1y 2-x 2y 1=0 9。平面向量基本定理:如果1e 、2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1、λ2使 a =λ11e +λ22e ,其中不共线向量1e 、2e 叫做表示这一平面内所有向量的一组基底。 10.定比分点 设P 1,P 2是直线l 上的两点,点P 是不同于P 1,P 2的任意一点则存在一个实数λ,使21P P =λ21P P ,λ叫做分有向线段所成的比.若点P 1、P 、P 2的坐标分别为(x 1,y 1) ,(x ,y), (x2,y2),则有 特别当λ=1,即当点P 是线段P 1P 2的中点时,有?? ?? ? +=+=222 1 21y y y x x x 11.平面向量的数量积 (1)定义:已知两个非零向量a 和b ,它们的夹角为θ,则数量|a ||b |cosθ叫做a 与b 的数量积(或内积),记作a ·b ,即a ·b =|a ||b |cosθ 规定:零向量与任一向量的数量积是0。 (2)几何意义:数量积a ·b 等于a 的长度|a |与b 在a 的方向上的投影|b |cosθ 的乘积。 (3)性质:设a ,b 都是非零向量,e 是与b 方向相同的单位向量,θ是a 与e 的夹角,则e ·a =a ·e =|a |cosθ ,a ⊥b ?a ·b =0 当a 与b 同向时,a ·b =|a ||b | 当a 与b 反向时,a ·b =-|a ||b | 特别地,a ·a =|a |2或|a |=a a ?cosθ=b a b a ??|a · b |≤|a ||b | (4)运算律:a ·b =b ·a (交换律)(λa )·b =λ(b ·a )=a ·(λb ) (a +b )·c =a ·c +b ·c

相关文档
相关文档 最新文档