文档库 最新最全的文档下载
当前位置:文档库 › 第二章氨基酸与蛋白质的一级结构

第二章氨基酸与蛋白质的一级结构

第二章氨基酸与蛋白质的一级结构
第二章氨基酸与蛋白质的一级结构

?

Chapter 1 Protein

???? ?

ж ?? ? ? ?θ? ?? ?????? ? ??? χ 〃?? θ ж ?? ??θ ? ? ? ??? ?χ ?????? ??ж??????

??? ? ????? ?? ??45%

≤55% ??50%~80% ???

19% ??14%~52% ??19%

??? 14%~50% ?学?1%

? ?

50% ?

7%

??? ?? у ???

??? ж〃?? ???? ??

δ ε?? ?

δ ε?? ? ???? δ ε?? ? δ ε? ?

δ ε ? ? ? δ ε∈??

??

?

??? ж? ≤ ?θ? ????? θ? ≤ ?????????? ?ж? ?θ?? ??????? ????? ? ?????? ? ???φ ? α ? α ? α ? α ? ?

1. ?????

??φ ? θ? ? θ ??? χ ??φ ≤ ????≤ε? ???? у???

ж?θ? ≤? θ θ ???? ?? ?

??? ????? ≤???? ? ? ?θ ? ????? ≤??? ? ???? ≤???? ???? ≤? ?? θ ?θ ?? ??? ?? ≤? ?????? ? ? ??? ??? ι ? ≤?

й?≠?

???66?

й?≠? а?? ?? ???? ? ?? ?л??? ? ? ? ? ???? 傼? ??й?≠?? 啐??? ?? ? 傼?????? 啐? ?? ? ????? 啐???? ????? ??? ?????????

?а?? ????

?

Section 1 Amino acid

??? ???? ?? ?C ?H ?N ?S ?? ?N ?? ?? っ ???

ж?? ??? 〃?

а?? ???

? ???? ? ? ??amino acid ????? ≤?? ? ?20?н ?? ??

??? ??? ? ?L-D -? ?? ??

? ??

L-D -? ??? ?

COOH ?

H 2N —C —H

?

R

D -? ???

D D

D -

? ??

?5 ??

? ?? ?

?5 ?

? 5 ? ?

? ?? ? ?

?? ?

??? ??? ?Pro,P ?

? ?俏 ? ?

? ?у ???? ?

? ???? ?

? ? ?? ? ?

?? ?

??? ?His,H ?

???

?Pro,P

?

Amino Acid Properties

Amino Acid Properties

Greek Lettering System for R Groups

H 3N CH COO H 3N CH COO D

D

E E J

J G CH 2CH 2CH 2CH NH 3CH

2CH 2C

O

???? ? ж?у ??? ?θ? 〦?у ????? ????? ?? ?? ? ? ???? ?? ???? ? ???? ? ????1 ? ???? ?????????у ????? ??? с

? ?? ? ?

N H

HO

COOH

4-? ???

H

2NCH 2CHCH 2CH 2CHCOOH

OH

NH 2

5-

? ???

NH

CH 3

NHCH 2

CHCH

2

CH

2CHCOOH 6-N-

? ???HO I

CH 2

CHCOOH

3,5-

?????

п ? ?? ?

φ? ????? ??*O\? ? ? θ п?グ?р ?〃у ? θ ???

? θ??〃у ? 〦?' / ?

?я??? φ

?? ? θ π〃? θ 〦?? ? θ? ? ? ??

H 2N C H COOH

C CH 3

OH

H

H C COOH

C CH 3

H

H C

NH

2

COOH

C

CH 3

H

HO

H 2

N C H COOH

C CH

3

H

HO

L-???

(L-threonine)

D-???(D-threonine)

L- -

???

(L-allo-threonine)

D-

-

???

(D-allo-threonine)

?

? ????? ??*O\? θ? ? θ ?? θ? ? ?? ?θ ??〦 θ??ж? ??θ ??〦 θ??η? ??? θ?

???? ?20?? ??

???? ??? ?

? ? ?

280nm ?????

?

?? ????

? ??

? ???? ? ???

δжε?? ??? ?? ?

H2N C H

COOH

R

H3N C

H

COO

R

-

+

? ? ???? ? ? ?ж? ? θ?? ?ж

? ? θ? ? ?? ?θ ж?? ????

H2N C H

COO

R

H3N C H

COO

R

-

+

-

+H+

As an acid?proton donor??

As a base?proton acceptor??

H3N C H

COOH

H3N C H

COO

R

-

+

+H+

+

S+ ? ?

H3N C H

COOH

R

H3N C H

COO

R

-

+

+

+H+

+OH

-

+H+

+OH

-

H2N C

COO

R

↙? ? ? ??

?????δisoelectric point

εθ?pI???

僂? ??? θ? ????? ? θ??

???ъ ????↙??? θ? ??? ?

???S+ S, θ? ????? ? ?

S+ S, θ? ????↙? ?

H3N C H

COOH

R

H3N C H

COO

R

-

+

+

H2N C H

COO

R

-

H2N C H

COOH

R

? ??

Henderson-Hasselbalch ぁ

pH=pKa + lg

>? @>? @

?ハ????

][]

[lg

1 r Gly Gly pH pK ]

[][

lg

2r Gly Gly pH

pK

? ? ?φ?*O\?

K 1=[Gly f ] [H +][Gly +]

K 2=

[Gly -] [H +][Gly f ]

S, θ[Gly +] = [Gly -][Gly f ] [H +]

=

[Gly f ] K 2

[H +]2=K

1K 2

pH=?pK 1+pK 2

?/2

pI=

?pK 1+pK

2?/2pI =?2.34+9.60?/2=5.97

Gly H 3N

CH 2COOH

H 3N

CH 2COO

-+

+

H 2N

CH 2

COO

Gly

+

Gly

+-

Gly

-

H +K 1

H

+K 2

? ? ?θ?$VS? φ

? ??pI ???? ??? ? ? ? ? pK ? ? ?? ?а?

? ? ?θ?Lys ? φ

? ??pI ???? ??? ? ? ? ? pK ????(His)

????S.D ??????㏎S+ ?ミ?祭?????????

?

?

? ?φ

?? Kd=

C A

C

B

C

A

φж〃?? A?δ? ?ε???

C

B

φж〃??

B

?δ ?ε???

?φ??? ? ?? δ DD? ?ε ?〃?

у???? ? ?? ?у ?? ????θ

?? ?δ?? ?ε

?

?

5I

?

?

?κ? ? ?

?φ ?? ? θ?? ? ?? ? ?θ ?? ? ??р?? ф????? ??? θ?? 〃? ? ? у θф??? ?? ぁ у θ ???ぁ?θ 〃? ?у ?? ? θ??? ?????

?〃 ???ф 〃? ?? θ ??? θф θ?

?

???????????

? ? ? ?

??? ?? ? ??? о? ??≤? ?? ? ??? ??а?? ? ?D -? о а?? ? ?D -

? ? ? ?л??≤? ? ?(peptide)

?

?й?

?

R

CH H 3N

C

+O

1

+

R

CH N

COO

2

H

H

-

OH H 2O

???

?? п?

?

???+?〦 ?δoligopeptide ε

?δPolypeptide ε

? ???????? ??〦???

H 2N CH

C

R 1

O HN CH

C

R 2O HN CH

C

R 3O HN CH

Rn

1ㄥ

? ?? ? ??

&ㄥ

??? φN

ㄥ?C ㄥ?? ????? ??

φ? ? ?? θ?N ㄥ?C ㄥ

я????????

(or Ala?Gly?Leu)

CH C

O

HN CH 2C

O

HN CH

COOH

H 3C

NH 2

CH 2C H 3C

CH 3

H ?? ? ????????????? ????? ? ???? ?? ?

?? ? ㄟ?? ㄟ?N ㄟ??

? ?

??

? ?

?????句???

? ?? ? 50??к?ф ? オ?? ???????

? ?? ? 50??л?ф ? オ?? ?? ??

????? ?

κ? ??ф???

?ф? ?ж? ??? ?θ ????? ???? ㄥ? ? ㄥ? ?5 ? ????1ㄥ??? &ㄥ??? ??????? ??? θ ? ?????? ? ???&ㄥ &22+?S.? ?? ???S. θS. ??1ㄥ 1+ ?S.? ?? ???S. θS. ??5 ?S. у ?

????? ?φ

??? а ?? ? ??学?????? ??

?????? ? ??????????

学????

1.?????glutathione,GSH ??

а???J -??? ???????й?

??

????????司?句?????Glu-Cys-Gly |

S

| S

|

Glu-Cys-Gly

-2H ???? ?? ? ? ? ?GSH ?о? ?

GSSG ??? ?2h Glu-Cys-Gly |

SH ?? ??о?? ??? ??? ? ?? о? ? ? ????? ? о?

?? ? ?

??? ? ??? -SH ? ? ? ?

? ????? ?っ ???? ?????

?? ??

??????? ??

?学? ??? ? ?

?学??????лш? ? ????? ???

9??? ??9??? ?к??????39

??? ????? ???3???

?????о?? ? ?? ? ? ?????

E - ??31??? ??17

????

2. ?学?? ????

N H C CH 2NH

C

O

CH

NH

C

O CH 3CH CH OH

CH 2OH

CH HN C NH CH C

NH

CH 2C

C

O

CH N H HO

CH 2NH

NH CH

CH

CH 3CH 2CH C

O

O

O O

CH 2CH 2

S O OH

呵?ぜ?? ?

?? ?

+H 3N-Tyr-Gly-Gly-Phe -Met-COO -+H 3

N-Tyr-Gly-Gly-Phe

-Leu-COO - Met-? ? Leu-? ?

Cys Tyr ILe Gln Asn Cys

Pro Leu Gly

NH

2

S

S

∵ ??

Cys Tyr Gln Asn Cys Pro S S

Phe Arg Gly

NH

2

?

?? ?

??? ? ????? ? ??

????? ? ??

???????? ?

??? ? ? ? ? S+?

? ?.

?? VDOW LQ?

?? ??? ????? ? ??

??????? 儈? ? VDOW SUHFLSLWDWLRQ??

?????? ?? ???? ??

?? VDOW LQ?

?? ??? ????? ? ????????? 儈? ? VDOW SUHFLSLWDWLRQ??

?????? ?? ???? ??

??? ? ?????? ??????? ? ????pH ??????? ?

? ????? ?? н? ????? ?

?? ?

価 ????? ?? ?? ???

?????価 ????? ?? ?? ??????? ?? ?н ? ????

?? ?н ?????? ? ??

?о≤?? ? ? ? ? ? ??????щ??? ???????? ?? ? ?? ?≤ ??? ≤??? ???????? ???

? ?? ?

? ?? ?

?chromatography) а? ?? ?? ? ? ?? ? ?? ????? ?о? ????? н ??? ? ? ??

? ? ??

???????????

??????????

?

?????????

????????

?

? ? ?

?? ? ?? ????????electrophoresis)?

??? ??? ???? ?↓??? ? ? ?? ?н ???? ???н ?ф ? ?? ??

SDS 监??孄?????????????

??监??????

κ?????

?????????

? ? ?

??? ?н ????? ? ?н ?? ? ??

??? ? ? ? ???? ?????? ?о ??? S ↓??

蛋白质与氨基酸的关系

一、蛋白质与氨基酸的关系 一般认为,动物蛋白质的营养实质上是氨基酸的营养。只有当组成蛋白质的各种氨基酸同时存在且按需求比例供给时,动物才能有效地合成蛋白质。饲粮中缺乏任何一种氨基酸,即使其他必需氨基酸含量充足, 体蛋白质合成也不能正常进行。同样,体蛋白合成潜力越大的动物(如高瘦肉型猪),对氨基酸的需求量就越高。 畜禽饲粮中必需氨基酸的需要量取决于饲粮中的粗蛋白水平。例如, 仔猪饲粮中蛋白质含量由10%增至22%时, 饲粮赖氨酸的需要量则从0.6 % 增至1.2 % 。另一方面,饲粮粗蛋白质需要量取决于氨基酸的平衡状况。一般而言,依次平衡第一至第四限制性氨基酸后,饲粮的粗蛋白质需要量可降低2-4个百分点。 二、氨基酸间的相互关系 组成蛋白质的各种氨基酸在机体代谢过程中, 亦存在协同、转化、替代和拮抗等关系。 蛋氨酸可转化为胱氨酸,也可能转化为半胱氨酸, 但其逆反应均不能进行。因此, 蛋氨酸能满足总含硫氨基酸的需要, 但是蛋氨酸本身的需要量只能由蛋氨酸满足。半胱氨酸和胱氨酸间则可以互变。苯丙氨酸能满足酪氨酸的需要, 因为它能转化为酪氨酸, 但酪氨酸不能转化为苯丙氨酸。由于上述关系,在考虑必需氨基酸的需要时, 可将蛋氨酸与胱氨酸、苯丙氨酸与酪氨酸合并计算。 氨基酸间的拮抗作用发生在结构相似的氨基酸间, 因为它们在吸收过程中共用同一转移系统, 存在相互竞争。最典型的具有拮抗作用的氨基酸是赖氨酸和精氨酸。饲粮中赖氨酸过量会增加精氨酸的需要量。当雏鸡饲粮中赖氨酸过量时, 添加精氨酸可缓解由于赖氨酸过量所引起的失衡现象。亮氨酸与异亮氨酸因化学结构相似, 也有拮抗作用。亮氨酸过多可降低异亮氨酸的吸收率, 使尿中异亮氨酸排出量增加。此外, 精氨酸和甘氨酸可消除由于其他氨基酸过量所造成的有害作用, 这种作用可能与它们参加尿酸的形成有关。 一、蛋白质与氨基酸的关系 一般认为,动物蛋白质的营养实质上是氨基酸的营养。只有当组成蛋白质的各种氨基酸同时存在且按需求比例供给时,动物才能有效地合成蛋白质。饲粮中缺乏任何一种氨基酸,即使其他必需氨基酸含量充足, 体蛋白质合成也不能正常进行。同样,体蛋白合成潜力越大的动物(如高瘦肉型猪),对氨基酸的需求量就越高。 畜禽饲粮中必需氨基酸的需要量取决于饲粮中的粗蛋白水平。例如, 仔猪饲粮中蛋白质含量由10%增至22%时, 饲粮赖氨酸的需要量则从0.6 % 增至1.2 % 。另一方面,饲粮粗蛋白质需要量取决于氨基酸的平衡状况。一般而言,依次平衡第一至第四限制性氨基酸后,饲粮的粗蛋白质需要量可降低2-4个百分点。 二、氨基酸间的相互关系 组成蛋白质的各种氨基酸在机体代谢过程中, 亦存在协同、转化、替代和拮抗等关系。 蛋氨酸可转化为胱氨酸,也可能转化为半胱氨酸, 但其逆反应均不能进行。因此, 蛋氨酸能满足总含硫氨基酸的需要, 但是蛋氨酸本身的需要量只能由蛋氨酸满足。半胱氨酸和胱氨酸间则可以互变。苯丙氨酸能满足酪氨酸的需要, 因为它能转化为酪氨酸, 但酪氨酸不能转化为苯丙氨酸。由于上述关系,在考虑必需氨基酸的需要时, 可将蛋氨酸与胱氨酸、苯丙氨酸与酪氨酸合并计算。 氨基酸间的拮抗作用发生在结构相似的氨基酸间, 因为它们在吸收过程中共用同一转移系统, 存在相互竞争。最典型的具有拮抗作用的氨基酸是赖氨酸和精氨酸。饲粮中赖氨酸过量会增加精氨酸的需要量。当雏鸡饲粮中赖氨酸过量时, 添加精氨酸可缓解由于赖氨酸过量所引起的失衡现象。亮氨酸与异亮氨酸因化学结构相似, 也有拮抗作用。亮氨酸过多可降

蛋白质的二级结构

蛋白质的结构具有多种结构层次,包括一级结构和空间结构,空间结构又称为构象。空间结构包括二级结构、三级结构和四级结构。在二级与三级之间还存在超二级结构和结蛋白质的二级结构 构型:指一个不对称的化合物中不对称中心上的几个原子或基团的空间排布方式。如单糖的α-、β-构型,氨基酸的D-、L-构型。当从一种构型转换成另一种构型的时候,会牵涉及共价键的形成或破坏。 构象:指一个分子结构中的一切原子绕共价单键旋转时产生的不同空间排列方式。一种构象变成另一种构象不涉及共价键的形成或破坏。 蛋白质的二级结构 蛋白质的二级(Secondary)结构是指多肽链的主链本身在空间的排列、或规则的几何走向、旋转及折叠。它只涉及肽链主链的构象及链内或链间形成的氢键。氢键是稳定二级结构的主要作用力。 主要有α-螺旋、β-折叠、β-转角、自由回转。 二面角的概念 蛋白质中非键合原子之间的最小接触距离(A) 1.3 蛋白质的结构 (1)肽链空间构象的基本结构单位为肽平面或肽单位。 肽平面是指肽链中从一个Cα原子到另一个Cα原子之间的结构,共包含6个原子(Cα、C、O、N、H、 Cα),它们在空间共处于同一个平面。 (2)肽键上的原子呈反式构型 C=O与N-H p204 (3)肽键C-N键长0.132nm,比一般的C-N单键(0.147nm)短,比C=N双键(0.128nm)要长,具有部分双键的性质,不能旋转。 (二)蛋白质的构象 蛋白质多肽链空间折叠的限制因素:Pauling和Corey在利用X-射线衍射技术研究多肽链结构时发现: 1.肽键具有部分双键性质: 2.肽键不能自由旋转 3.组成肽键的四个原子和与之相连的两个α碳原子(Cα)都处于同一个平面内,此刚性结构的平 面叫肽平面(peptide plane)或酰胺平面(amide plane)。 4.二面角所决定的构象能否存在,主要取决于两个相邻肽单位中,非键合原子之间的接近有无阻碍。 1.α-螺旋及结构特点p207 螺旋的结构通常用“S N”来表示,S表示螺旋每旋转一圈所含的残基数,N表示形成氢键的C=O与H-N原子之间在主链上包含的原子数。又称为3.613螺旋,Φ= -57。,Ψ= -47。结构要点: 1.多肽链中的各个肽平面围绕同一轴旋转,形成螺旋结构,螺旋一周,沿轴上升的距离即螺距为0.54nm,含 3.6个氨基酸残基;两个氨基酸之间的距离为0.15nm; 2.肽链内形成氢键,氢键的取向几乎与轴平行,每个氨基酸残基的C=O氧与其后第四个氨基酸残基的N-H氢 形成氢键。 3.蛋白质中的α-螺旋几乎都是右手螺旋。 无规卷曲或自由回转(nonregular coil) p212 了解 指无一定规律的松散盘曲的肽链结构。 酶的功能部位常包含此构象,灵活易变。 纤维状蛋白 (了解) 纤维状蛋白质(fibrous protein)广泛地分布于脊椎和无脊椎动物体内,它是动物体的基本支架和外表保护成分,占脊椎动物体内蛋白质总量的一半或一半以上。 这类蛋白质外形呈纤维状或细棒状,分子轴比(长轴/短轴)大于10(小于10的为球状蛋白质)。分子是有规则的线型结构,这与其多肽链的有规则二级结构有关,而有规则的线型二级结构是它们的氨基酸顺序的规则性反映。 纤维状蛋白质的类型(了解) 纤维状蛋白质可分为不溶性(硬蛋白)和可溶性两类,前者有角蛋白、胶原蛋白和弹性蛋白等; 后者有肌球蛋白和纤维蛋白原等,但不包括微管(microtubule)和肌动蛋白细丝(actin filament),它们是球状蛋白质的长向聚集体(aggregate)。 角蛋白 Keratin(了解) 角蛋白广泛存在于动物的皮肤及皮肤的衍生物,如毛发、甲、角、鳞和羽等,属于结构蛋白。角蛋白中主要的是α-角蛋白。 α-角蛋白主要由α-螺旋构象的多肽链组成。一般是由三条右手α-螺旋肽链形成一个原纤维(向左缠绕),原纤维的肽链之间有二硫键交联以维持其稳定性 例如毛的纤维是由多个原纤维平行排列,并由氢键和二硫键作为交联键将它们聚集成不溶性的蛋白质。 α-角蛋白的伸缩性能很好,当α-角蛋白被过度拉伸时,则氢键被破坏而不能复原。此时α-角蛋白转变成β-折叠结构,称为β-角蛋白。 毛发的结构(了解)

最经典总结-组成蛋白质的氨基酸的结构及种类

考点一组成蛋白质的氨基酸及其种类(5年6考) 组成蛋白质的氨基酸的结构及种类 观察下列几种氨基酸的结构 (1)写出图中结构的名称 a.氨基; b.羧基。 (2)通过比较图中三种氨基酸,写出氨基酸的结构通式 (3)氨基酸的不同取决于R基的不同,图中三种氨基酸的R基依次为 (4)氨基酸的种类:约20种 ■助学巧记 巧记“8种必需氨基酸” 甲(甲硫氨酸)来(赖氨酸)写(缬氨酸)一(异亮氨酸)本(苯丙氨酸)亮(亮氨酸)色(色氨酸)书(苏氨酸) 注:评价蛋白质食品营养价值主要依据其必需氨基酸的种类和含量。

组成蛋白质的氨基酸的种类与结构 1.(海南卷)关于生物体内组成蛋白质的氨基酸的叙述,错误的是() A.分子量最大的氨基酸是甘氨酸 B.有些氨基酸不能在人体细胞中合成 C.氨基酸分子之间通过脱水缩合形成肽键 D.不同氨基酸之间的差异是由R基引起的 解析甘氨酸应是分子量最小的氨基酸,它的R基是最简单的氢。 答案 A 2.下图为氨基酸分子的结构通式,下列叙述正确的是() A.结构④在生物体内约有20种 B.氨基酸脱水缩合产生水,水中的氢来自于②和③ C.结构④中含有的氨基或羧基全部都参与脱水缩合 D.生物体内n个氨基酸形成一条多肽链需要n种密码子 解析①为氨基,③为羧基,④为侧链基团(R基)。构成人体氨基酸的种类约有20种,A正确;脱水缩合形成水,水中氢来自①③,B错误;R基中的氨基或羧基不参与脱水缩合,C错误;生物体内n个氨基酸形成一条多肽链需要n个密码子而不是需要n种密码子,D错误。 答案 A 解答本类题目的关键是熟记氨基酸的结构通式,如下图所示

找出氨基酸的共同体,即图中“不变部分”(连接在同一碳原子上的—NH2、—COOH和—H),剩下的部分即为R基。倘若找不到上述“不变部分”,则不属于构成蛋白质的氨基酸。

构成蛋白质的氨基酸种类

构成蛋白质的氨基酸种类、分子量、功能和作用(一) 序号分类名称 缩写及 分子量 生理功能 必需氨基酸 1 赖氨酸Lys 146.13 促进大脑发育,是肝及胆的组成成分,能促进脂肪代谢,调节松果腺、乳腺、黄体及卵巢,防止细胞退化; 2 蛋氨酸 (甲硫氨酸) Met 149.15 参与组成血红蛋白、组织与血清,有促进脾脏、胰脏及淋巴的功能; 3 色氨酸 Trp 204.11 促进胃液及胰液的产生; 4 苯丙氨酸 Phe 165.09 参与消除肾及膀胱功能的损耗; 5 苏氨酸 Thr 119.18 有转变某些氨基酸达到平衡的功能; 6 异亮氨酸 Ile 131.11 参与胸腺、脾脏及脑下腺的调节以及代谢;脑下腺属总司令部作用于甲状腺、性腺; 7 亮氨酸Leu 131.11 作用平衡异亮氨酸; 8 缬氨酸 Val 117.09 作用于黄体、乳腺及卵巢; 指人体(或其它脊椎动物)不能合成或合成速度远不适应机体的需要,必需由食物蛋白供给,这些氨基酸称为必需氨基酸。成人必需氨基酸的需要量约为蛋白质需要量的20%~37%。 条件必需氨基酸 9 精氨酸Arg 174.4 它能促使氨转变成为尿素,从而降低血氨含量。它也是精子蛋白的主要成分,有促进精子生成,提供精子运动 能量的作用。 10 组氨酸 His 155.09 在组氨酸脱羧酶的作用下,组氨酸脱羧形成组胺。组胺具有很强的血管舒张作用,并与多种变态反应及发炎有 关。

人体虽能够合成,但通常不能满足正常的需要,因此,又被称为半必需氨基酸或条件必需氨基酸,在幼儿生长期这两种是必需氨基酸。人体对必需氨基酸的需要量随着年龄的增加而下降,成人比婴儿显著下降。(近年很多资料和教科书将组氨酸划入成人必需氨基酸) 构成蛋白质的氨基酸种类、分子量、功能和作用(二) 序号分类名称 分子量及缩 写 生理功能和作用 非必需氨基酸 11 丙氨酸Ala 89.06 预防肾结石、协助葡萄糖的代谢,有助缓和低血糖,改善身体能量。 12 脯氨酸Pro 115.08 脯氨酸是身体生产胶原蛋白和软骨所需的氨基酸。它保持肌肉和关节灵活,并有减少紫外线暴露和正常老化造 成皮肤下垂和起皱的作用。 13 甘氨酸Gly 75.05 在中枢神经系统,尤其是在脊椎里,甘氨酸是一个抑制性神经递质。 14 丝氨酸Ser 105.06 是脑等组织中的丝氨酸磷脂的组成部分,降低血液中的胆固醇浓度,防治高血压 15 半胱氨酸Cys 121.12 异物侵入时可强化生物体自身的防卫能力、调整生物体的防御机构。 16 酪氨酸 Tyr 181.09 是酪氨酸酶单酚酶功能的催化底物,是最终形成优黑素和褐黑素的主要原料。 17 天冬酰胺Asn 132.6 天冬酰胺有帮助神经系统维持适当情绪的作用,有时还有助于预防对声音和触觉的过度敏感,还有助于抵御疲 劳。 18 谷氨酰胺Gln 146.08 平衡体内氨的含量,谷酰胺的作用还包括建立免疫系统,加强大脑健康和消化功能 19 天冬氨酸Asp 133.6 它可作为K+、Mg+离子的载体向心肌输送电解质,从而改善心肌收缩功能,同时降低氧消耗,在冠状动脉循环 障碍缺氧时,对心肌有保护作用。它参与鸟氨酸循环,促进氧和二氧化碳生成尿素,降低血液中氮和二氧化碳 的量,增强肝脏功能,消除疲劳。 20 谷氨酸 Glu 147.08 参与脑的蛋白和塘代谢,促进氧化,改善中枢神经活动,有维持和促进脑细 胞功能的作用,促进智力的增加 指人(或其它脊椎动物)自己能由简单的前体合成,不需要从食物中获得的氨基酸。 备注:以上简单阐述了各种氨基酸在体内发挥的生理作用,没有阐述其药理和保健作用。以上分类是从营养学角度区分。

蛋白质中氨基酸数

蛋白质中氨基酸数、氨基数、羧基数、肽链数、肽键数、脱水数、分子量等各因素之间的数量关系是高考的必考点,为生物计算题型的命题提供了很好的素材,因此,对蛋白质中有关数量的计算题应重点关注。现对此归类如下: 题型1 有关蛋白质相对分子质量的计算 在解答这类问题时,必须明确的基本关系式是:蛋白质的相对分子质量=氨基酸数×氨基酸的平均相对分子质量-脱水数×18(水的相对分子质量)【例1】组成生物体某蛋白质的20种氨基酸的平均相对分子质量为128,一条含有100个肽键的多肽链的分子量为多少 【解析】本题中含有100个肽键的多肽链中氨基酸数为:100+1=101,肽键数为100,脱水数也为100,则依上述关系式,蛋白质分子量=101×128-100×18=11128。 题型2 有关蛋白质中氨基酸数、肽链数、肽键数、脱水数的计算在解答这类问题时,必须明确的基本知识是蛋白质中氨基酸数、肽链数、肽键数、脱水数的数量关系。基本关系式有: n个氨基酸脱水缩合形成一条多肽链,则肽键数=(n-1)个; n个氨基酸脱水缩合形成m条多肽链,则肽键数=(n-m)个; 无论蛋白质中有多少条肽链,始终有:脱水数=肽键数=氨基酸数肽链数 【例2】若某蛋白质的分子量为11935,在合成这个蛋白质分子的过程中脱水量为1908,假设氨基酸的平均分子量为127,则组成该蛋白质分子的肽链有() 条 B. 2条 条条 【答案】C

【解析】据脱水量,可求出脱水数=1908÷18=106,形成某蛋白质的氨基酸的分子质量之和=11935+1908=13843,则氨基酸总数=13843÷127=109,所以肽链数=氨基酸数脱水数=109-106=3。 变式:现有一分子式为C63H103O45N17S2的多肽化合物,已知形成该化合物的氨基酸中有一个含2个氨基,另一个含3个氨基,则该多肽化合物水解时最多消耗多少个水分子 【解析】本题首先要搞清楚,多肽水解消耗水分子数=多肽形成时生成水分子数;其次,要知道,要使形成多肽时生成的水分子数最多,只有当氨基酸数最多和肽链数最少两个条件同时满足时才会发生。已知的2个氨基酸共有5个N原子,所以剩余的12个N原子最多可组成12个氨基酸(由于每个氨基酸分子至少含有一个-NH2),即该多肽化合物最多可由14个氨基酸形成;肽链数最少即为1条,所以该化合物水解时最多消耗水分子数=14-1=13。答案:13. 题型3 有关蛋白质中至少含有氨基数和羧基数的计算 【例3】某蛋白质分子含有4条肽链,共有96个肽键,则此蛋白质分子中至少含有-COOH和-NH2的数目分别为( ) A. 4、100 B. 4、 4 C. 1 00、100 D. 96、96 【答案】B 【解析】以一条由n个氨基酸组成的肽链为例:在未反应前,n个氨基酸至少含有的-COOH和-NH2的数目都为n(因每个氨基酸至少含有1个-COOH和1个-NH2),由于肽链中包括(n-1)个肽键,而形成1个肽键分别消耗1个-COOH 和1个-NH2,所以共需消耗(n-1) 个-COOH和(n-1)个-NH2 ,所以至少含有的-COOH和-NH2的数目都为1,与氨基酸R基团中-COOH和-NH2 的数目无关。本题中蛋白质包含4条肽链,所以至少含有-COOH和-NH2的数目都为4。 题型4 有关蛋白质中氨基酸的种类和数量的计算

蛋白质二级结构

蛋白质二级结构(secondary structure) 二级结构是指多肽链借助于氢键沿一维方向排列成具有周期性的结构的构象,是多肽链局部的空间结构(构象),主要有α-螺旋、β-折叠、β-转角等几种形式,它们是构成蛋白质高级结构的基本要素。 α-螺旋(α-helix)是蛋白质中最常见最典型含量最丰富的二级结构元件.在α螺旋中,每个螺旋周期包含 3.6 个氨基酸残基,残基侧链伸向外侧,同一肽链上的每个残基的酰胺氢原子和位于它后面的第4个残基上的羰基氧原子之间形成氢键。这种氢键大致与螺旋轴平行。一条多肽链呈α-螺旋构象的推动力就是所有肽键上的酰胺氢和羰基氧之间形成的链内氢键。在水环境中,肽键上的酰胺氢和羰基氧既能形成内部(α-螺旋内)的氢键,也能与水分子形成氢键。如果后者发生,多肽链呈现类似变性蛋白质那样的伸展构象。疏水环境对于氢键的形成没有影响,因此,更可能促进α-螺旋结构的形成。 四种不同的α-螺旋 β-折叠(β-sheet)也是一种重复性的结构,可分为平行式和反平行式两种类型,它们是通过肽链间或肽段间的氢键维系。可以把它们想象为由折叠的条状纸片侧向并排而成,每条纸片可看成是一条肽链, 称为β折叠股或β股(β-strand),肽主链沿纸条形成锯齿状,处于最伸展的构象,氢键主要在股间而不是股内。α-碳原子位于折叠线上,由于其四面体性质,连续的酰氨平面排列成折叠形式。需要注意的是在折叠片上的侧链都垂直于折叠片的平面,并交替的从平面上下二侧伸出。平行折叠片比反平行折叠片更规则且一般是大结构而反平行折叠片可以少到仅由两个β股组成。

在平行(A)和反平行(B)β-折叠片中氢键的排列 反向β-折叠

蛋白质分子自然构象和二级结构的计算分析及预测

蛋白质分子自然构象和二级结构的计算分析及预测本文是关于蛋白质分子的模拟计算,由两部分组成:一是计算蛋白质分子自然构象;一是蛋白质二级结构预测。对第一部分,提出了基于王朝更替策略的遗传算法来搜索蛋白质分子的自然构象。 二维toy模型是一种简化的蛋白质折叠的模型。随着环境的变化,一个王朝不能经久不衰,受这个的启发提出了王朝更替策略。 这个方法解决可能的早熟问题。为了测试这个方法,计算了蛋白质1AGT和1AHO,得到能量最小值分别为-20.8296、-21.0853,而这在文献中得到的最好结果是-19.6169和-15.1911,我们的值比文献中的值低了6-38%。 因此相信对应我们的最小自由能的构象是自然构象。在本文的第二部分,提出了基于氨基酸短序列的统计方法,用于预测蛋白质二级结构。 这是对基于单个氨基酸的传统统计方法的延伸。本文进行了大量的计算以确定最优短序列长度的选取,发现用3、4、5、6个氨基酸的短序列最好。 对于测试蛋白质组126 protein set、396 protein set、2180 protein set,得到的Q3二级结构预测准确度分别为89.9%、88.8%、89.2%,SOV准确度分别为84.3%、82.4%、84.1%。然后我们分析了新的蛋白质组153 protein set,这组蛋白质在PDB数据库中的发布日期晚于2007-11-15。 对这组新的蛋白质,本文计算结果的准确度Q3=73.7%、SOV=68.2%,好于常用的GORⅣ、GORⅤ、JPred这3个预测方法的平均结果Q3=69.7%、sov=66.9%。从计算结果看来所提出的短序列统计方法是一个很有希望的蛋白质二级结构预测方法。 随着已知蛋白质结构数据量的增加,这个方法的效果会更好。

1.蛋白质结构与功能-----氨基酸

蛋白质结构与功能——氨基酸 2010遗传学 Chapter 1 氨基酸 I 蛋白质的天然组成 天然蛋白质几乎都是由18种普通的氨基酸组成:L-氨基酸,L-亚氨基酸(脯氨酸)和甘氨酸。 一些稀有的氨基酸在少量的蛋白质中结合了L-硒代胱氨酸。 II 氨基酸的结果 每种氨基酸(除了脯氨酸):都有一个羧基,一个氨基,一个特异性的侧链(R基)连接在α碳原子上。 在蛋白质中,这些羧基和氨基几乎全部都结合成肽键。在一般情况下,除了氢键的构成以外,是不会发生化学反应的。 氨基酸的侧链残基(R基)提供了多种多样的功能基团,这些基团赋予蛋白质分子独特的性质,导致: A.一种独特的折叠构象 B.溶解性的差异 C.聚集态 D.和配基或其他大分子构成复合物的能力,酶 活性等等。 蛋白质的功能是与蛋白质氨基酸排列顺序和每个氨基酸残基的特征有关。那些残基赋予蛋白质独一无二的功能。 氨基酸的分类是依照它的侧链性质的 A.非极性侧链的氨基酸 B.不带电的极性侧链氨基酸 C.酸性侧链的氨基酸

D . 碱性侧链的氨基酸 A.非极性侧链氨基酸 非极性氨基酸在蛋白质中的位置: 在可溶性蛋白质中,非极性氨基酸链趋向于集中在蛋白质内部。 甘氨酸 (Gly G ) 结构:最简单的氨基酸,在蛋白质氨基酸当中,是唯一缺乏非对称结构的氨基酸。 特征:甘氨酸在蛋白质结构中起到一个很重要的作用,与其它氨基酸残基相比,由于缺少β-碳原子,它在蛋白质的构象上有很大的灵活性和更容易达到它的空间结构。 功能和位置: 1. 甘氨酸经常位于紧密转角;和出现在大分子侧链产生空间位阻影响螺旋的紧密包装处(如胶原) 和结合底物的地方。 2. 由于缺乏空间位阻侧链,所以甘氨酸在邻近的肽键的位置有更强化学反应活性。例如:Asn-Gly 3. 甘氨酸也出现在酶催化蛋白质特异性修饰的识别位点,例如N 端的十四酰基化(CH2(CH2)12CO -)和精氨酸甲基化的信号序列。 丙氨酸 (Ala A ) 结构:是20种氨基酸中最没有“个性”的氨基酸,没有长侧链,没有特别的构象性质,可以出现在蛋白质结构的任何部位。 特征: 1、 丙氨酸是蛋白质中含量最丰富的氨基酸残基 之一,弱疏水性。 2、 化学活性非常弱。 缬氨酸 (Val V) 特征:中度疏水的脂肪族侧链残基。 功能: 3、 这个中度疏水残基β碳原子上的甲基降低了 蛋白质的构象的灵活性。 2、使邻近的肽键的化学反应产生空间位阻,特别是相邻残基具有β-分支的侧链(缬氨酸或异亮氨酸)。 异亮氨酸 (Ile I ) 特征:疏水的脂肪族残基侧链 功能: 1. β-分支链在空间上阻碍邻近的肽键反应。 2. 疏水侧链趋向在折叠蛋白的内部,比起α螺 旋这种侧链在二级结构中更容易形成β折叠。

蛋白质结构预测网址

蛋白质结构预测网址 物理性质预测: Compute PI/MW Peptidemass TGREASE SAPS 基于组成的蛋白质识别预测 AACompIdent PROPSEARCH 二级结构和折叠类预测 nnpredict Predictprotein SSPRED 特殊结构或结构预测 COILS MacStripe 与核酸序列一样,蛋白质序列的检索往往是进行相关分析的第一步,由于数据库和网络技校术的发展,蛋白序列的检索是十分方便,将蛋白质序列数据库下载到本地检索和通过国际互联网进行检索均是可行的。 由NCBI检索蛋白质序列 可联网到:“”进行检索。 利用SRS系统从EMBL检索蛋白质序列 联网到:”,可利用EMBL的SRS系统进行蛋白质序列的检索。 通过EMAIL进行序列检索 当网络不是很畅通时或并不急于得到较多数量的蛋白质序列时,可采用EMAIL方式进行序列检索。 蛋白质基本性质分析 蛋白质序列的基本性质分析是蛋白质序列分析的基本方面,一般包括蛋白质的氨基酸组成,分子质量,等电点,亲水性,和疏水性、信号肽,跨膜区及结构功能域的分析等到。蛋白质的很多功能特征可直接由分析其序列而获得。例如,疏水性图谱可通知来预测跨膜螺旋。同时,也有很多短片段被细胞用来将目的蛋白质向特定细胞器进行转移的靶标(其中最典型的例子是在羧基端含有KDEL序列特征的蛋白质将被引向内质网。WEB中有很多此类资源用于帮助预测蛋白质的功能。 疏水性分析 位于ExPASy的ProtScale程序()可被用来计算蛋白质的疏水性图谱。该网站充许用户计算蛋白质的50余种不同属性,并为每一种氨基酸输出相应的分值。输入的数据可为蛋白质序列或SWISSPROT数据库的序列接受号。需要调整的只是计算窗口的大小(n)该参数用于估计每种氨基酸残基的平均显示尺度。 进行蛋白质的亲/疏水性分析时,也可用一些windows下的软件如, bioedit,dnamana等。 跨膜区分析 有多种预测跨膜螺旋的方法,最简单的是直接,观察以20个氨基酸为单位的疏水性氨基酸残基的分布区域,但同时还有多种更加复杂的、精确的算法能够预测跨膜螺旋的具体位置和它们的膜向性。这些技术主要是基于对已知跨膜螺旋的研究而得到的。自然存在的跨膜螺旋Tmbase 数据库,可通过匿名FTP获得(),参见表一

蛋白质的二级结构主要有哪些类型

1.蛋白质的二级结构主要有哪些类型,其特点如何? 答:α-右手螺旋,β-折叠,无规卷曲,U型回折(β-转角) <1>α-右手螺旋 α-螺旋为右手螺旋,每一圈含有3.6个aa残基(或肽平面),每一圈高5.4?,即每一个aa 残基上升1.5?,旋转了100度,直径为5 ?,2个二面角(ф,ψ)=(-570,-480)。维持α-右手螺旋的力量是螺旋内氢键,它产生于一个肽平面的C=O与相邻一圈的在空间上邻近的另一个肽平面的N-H之间,它的方向平行于螺旋轴,每个氢键串起的长度为3.6个肽平面或3.6个aa残基,被氢键串起来的这个环上含有13个原子,故α-右手螺旋也被称为 3.613螺旋。Pro破坏α-螺旋。 <2>β-折叠 肽链在空间的走向为锯齿折叠状,二面角(ф,ψ)=(-119℃,+113℃)。维持β-折叠的力量是折叠间的氢键,它产生于一个肽平面的C=O与相邻肽链的在空间上邻近的另一个肽平面的N-H之间,两条肽链上的肽平面互相平行,有平行式和反平行式两种, <3>U型回折:也叫β-转角,肽链在某处回折1800所形成的结构。这个结构包括的长度为 4个aa残基,其中的第三个为Gly,稳定该结构的力量是第一和第四个aa残基之间形成的氢键。 <4>无规卷曲:无固定的走向,但也不是任意变动的,它的2个二面角(ф,ψ)有个变化 范围。论 述 04 蛋 白 质 简述蛋白质一级结构的分析方法。 第一步:前期准备,第二步:肽链的端点测定,第三步:每条肽链aa顺序的测定,第四步:二硫键位置的确定。 <1>第一步:前期准备 分离纯化蛋白质:纯度要达到97%以上。 蛋白质分子量的测定:用于判断分子的大小,估计肽链的数目,有渗透压法、凝胶电泳法(聚丙烯酰胺、SDS)、凝胶过滤法、超离心法等 aa组成的测定:用于最后核对,氨基酸自动分析仪。 肽链拆分:非共价键的如氢键、离子键、疏水键、范德华力4种,可用尿素或盐酸胍等有机溶液来拆分。共价键的仅二硫键1种,可用巯基乙醇、碘代乙酸、过甲酸来拆分。 <2>第二步:肽链的端点测定 N端测定:Sanger法,DNFB→DNP-肽→水解→乙醚萃取→层析鉴定。 Edman法,PITC→PTC-肽→PTH-aa→层析鉴定。 C端测定:肼解法。 <3>第三步:每条肽链aa顺序的测定 事先要将蛋白质打断成多肽甚至寡肽,再上机分析,而且要2套以上,便于以后拼接。 常用的工具酶和特异性试剂有: 胰蛋白酶:-(Arg、Lys)↓-。产物为C端Arg、Lys的肽链。 糜蛋白酶:表示为-(Trp、Tyr、Phe)↓-。 CNBr:-Met↓-。 <4>第四步:二硫键位置的确定 包括链内和链间二硫键的位置,用对角线电泳来测,这项工作在AA序测定完毕后进行。在肽链未拆分的情况下用胃蛋白酶水解之,可以得到被二硫键连着的多肽产物。先进行第一向电泳,将产物分开。再用巯基乙醇处理,将二硫键打断。最后进行第二向电泳,条件与第一向电泳完全相同。选取偏离对角线的样品(多肽或寡肽),它们就是含二硫键的片段,上机测aa顺序,根据已测出的蛋白质的aa顺序,把这些片段进行定位,就能找到二硫键的位置。

蛋白质结构预测在线软件

蛋白质结构预测在线软 件 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

蛋白质预测分析网址集锦? 物理性质预测:? Compute PI/MW? ? SAPS? 基于组成的蛋白质识别预测? AACompIdentPROPSEARCH? 二级结构和折叠类预测? nnpredict? Predictprotein? SSPRED? 特殊结构或结构预测? COILS? MacStripe? 与核酸序列一样,蛋白质序列的检索往往是进行相关分析的第一步,由于数据库和网络技校术的发展,蛋白序列的检索是十分方便,将蛋白质序列数据库下载到本地检索和通过国际互联网进行检索均是可行的。? 由NCBI检索蛋白质序列? 可联网到:“”进行检索。? 利用SRS系统从EMBL检索蛋白质序列? 联网到:”,可利用EMBL的SRS系统进行蛋白质序列的检索。? 通过EMAIL进行序列检索?

当网络不是很畅通时或并不急于得到较多数量的蛋白质序列时,可采用EMAIL方式进行序列检索。? 蛋白质基本性质分析? 蛋白质序列的基本性质分析是蛋白质序列分析的基本方面,一般包括蛋白质的氨基酸组成,分子质量,等电点,亲水性,和疏水性、信号肽,跨膜区及结构功能域的分析等到。蛋白质的很多功能特征可直接由分析其序列而获得。例如,疏水性图谱可通知来预测跨膜螺旋。同时,也有很多短片段被细胞用来将目的蛋白质向特定细胞器进行转移的靶标(其中最典型的例子是在羧基端含有KDEL序列特征的蛋白质将被引向内质网。WEB中有很多此类资源用于帮助预测蛋白质的功能。? 疏水性分析? 位于ExPASy的ProtScale程序()可被用来计算蛋白质的疏水性图谱。该网站充许用户计算蛋白质的50余种不同属性,并为每一种氨基酸输出相应的分值。输入的数据可为蛋白质序列或SWISSPROT数据库的序列接受号。需要调整的只是计算窗口的大小(n)该参数用于估计每种氨基酸残基的平均显示尺度。? 进行蛋白质的亲/疏水性分析时,也可用一些windows下的软件如, bioedit,dnamana等。? 跨膜区分析? 有多种预测跨膜螺旋的方法,最简单的是直接,观察以20个氨基酸为单位的疏水性氨基酸残基的分布区域,但同时还有多种更加复杂的、精确的算法能够预测跨膜螺旋的具体位置和它们的膜向性。这些技术主要是基于对已知跨膜螺旋的研究而得到的。自然存在的跨膜螺旋Tmbase 数据库,可通过匿名FTP获得(,参见表一? 资源名称网址说明?

蛋白质二级结构指定和功能分析

蛋白质二级结构指定和功能分析 蛋白质二级结构是指蛋白质骨架结构中有规律重复的构象。由蛋白质原子坐标正确地指定蛋白质二级结构是分析蛋白质结构与功能的基础,二级结构的指定对于蛋白质分类、蛋白质功能模体的发现以及理解蛋白质折叠机制有着重要的作用。 并且蛋白质二级结构信息广泛应用到蛋白质分子可视化、蛋白质比对以及蛋白质结构预测中。而目前蛋白质二级结构指定方法的一致性较差,因此,蛋白质二级结构指定仍然是结构生物信息学中一个比较活跃的课题。 目前有超过20种蛋白质二级结构指定方法,这些方法大体可以分为两大类:基于氢键和基于几何,不同方法指定结果之间的差异较大。对于蛋白质中最重要的二级结构之一的螺旋而言,这种差异可能是来源于已有的方法指定螺旋时并没有严格地遵循螺旋的几何特征:它们或者使用不能准确计算的氢键能量,或者使用没有准确范围的残基骨架二面角,或者使用的几何特征(如Cα原子之间距离与夹角)不足以定义一条完整的螺旋曲线。 DSSP(Define Secondary Structure of Proteins)是蛋白质二级结构指定领域比较公认的标准,DSSP是基于氢键的指定方法,它利用静电能量代替氢键能量并且通过近似计算得到氢原子坐标。蛋白质内部疏水环境的介电常数和蛋白质表面的介电常数差异很大,DSSP并没有考虑残基所处的环境而将介电常数作为一个定值,另外由于氢键模式会有交叉重叠(与多个残基形成氢键),因此DSSP会指定出一些在几何上明显异常与不规则的二级结构。 STRIDE(STRuctural IDEntification)可以看做是DSSP的改进,STRIDE统计了螺旋和片层残基骨架二面角在拉氏图上的分布,在指定时将具有异常骨架二面

第二章蛋白质的结构与功能

第二章蛋白质的结构与功能 一.教学基本要求 在熟记蛋白质生理功能的基础上,论述蛋白质是生命活动的物质基础。 熟记蛋白质元素组成特点;多肽链的基本组成单位一—L—α氨基酸;20种氨基酸缩写符号、结构式及主要特点。 准确描述肽键、多肽链、蛋白质一级结构、高级结构概念。 结合实例论述蛋白质结构与功能的关系。 熟记蛋白质重要的理化性质及有关的基本概念,并列举蛋白质性质与医学的关系;结合蛋白质的性质,列举蛋白质分离纯化及测定方法。 知道多肽链氨基酸序列分析方法及关键试剂名称。 二.教材内容精要 (一)蛋白质的生物学功能 蛋白质是一切生命活动重要的物质基础,是构成生物体各种组织的主要有机成分。人体中蛋白质含量丰富,约占固体成分的45%。蛋白质具有多种多样的生物学功能:催化生物体内代谢反应的酶大多是蛋白质;调节代谢反应的某些激素是蛋白质;免疫球蛋白对机体具有防御保护功能;转运蛋白可在不同组织间载运代谢物;结构蛋白对生物体起支持和保护作用,还有运动蛋白、储存蛋白、甜味蛋白、抗冻蛋白等。 (二)蛋白质的分子组成 1.蛋白质的元素组成 组成蛋白质的元素主要有碳、氢、氧、氮和硫,有些蛋白质还含有少量磷和金属元素。各种蛋白质的含氮量很接近,平均为16%。这与样品中蛋白质含量的测定有关。 2.蛋白质的基本组成单位——氨基酸 L-α氨基酸是蛋白质的基本组成单位,常见者有20种。按其侧链(R)的结构和理化性质可分为4类:①非极性、疏水氨基酸(非极性R基氨基酸);②极性、中性氨基酸(不带电荷的极性R氨基酸);③酸性氨基酸;④碱性氨基酸。所有氨基酸都含有氨基(-NH2)能与质子(H+)结合而呈阳离子(-NH3+);又含有羧基(-COOH)能与羟基(-OH)结合失去质子而变成阴离子(-COO-),所以它是一种两性电解质,具有两性游离的特性。在某一pH环境中,氨基酸游离成阳性离子及阴性离子的趋势相等,成为氨基酸的兼性离子。兼性离子所带净电荷为零,在电场中不泳动。此时,氨基酸所处环境的pH值称为该种氨基酸的等电点(PI)。氨基酸的PI是由α-COOH、α-NH2解离常数的负对数pK1和pK2决定的。若一个氨基酸侧链R基团可以解离,则pK R应予以考虑。具体每一种氨基酸pI的计算公式可分为三种情况: (1)为非极性基团或虽为极性基团但并非游离的氨基酸,PI=1/2(pK1+ pK2)。Tyr 的酚-OH基具有弱酸性,但解离程度很小,故其pI按此情况计算。 (2)酸性氨基酸(谷、天冬),pI=1/2(pK1+ pKR)。半胧氨酸(Cys)不属酸性氨基酸但其一SH具有弱酸性,在pH7.0时,Cys的-SH大约解离8%,故其PI按酸性氨基酸计算。 (3)碱性氨基酸(赖、精、组),PI=1/2 (pK2+ pKR)。各种氨基酸的解离常数通过实验测得。 色氨酸、酪氨酸和苯丙氨酸在280 nm波长附近具有最大吸收峰,大多数蛋白质中又含有这些氨基酸,故在280 nm测定蛋白质溶液的光吸收值,是定量测定溶液中蛋白质含量的一种最迅速简便的方法。利用氨基酸与茚三酮的颜色反应,也可定量测定。 蛋白质的分子组成与蛋白质的结构、功能、序列分析、合成、测定、分离纯化以及蛋白质的分子设计等都关系密切,因而氨基酸这部分内容既是下一步学习的基础,也是今后从事相关工作的基础。20种氨基酸的中、英文名字及中、英文缩写都应记忆,可结合氨基酸的

蛋白质和氨基酸的测定复习题

蛋白质和氨基酸的测定复习题 一、填空 1.构成蛋白质的基本物质是氨基酸;所有的蛋白质都含氮素;测定蛋白质的含量主要是测定其中的含氮量。 2.凯氏定氮法测定N元素含量时,样品与浓硫酸,催化剂一同加热消化,其中碳和氢氧化成二氧化碳和水,N最终转化为硫酸铵。 3.测定蛋白质的主要消化剂是硫酸;消化时,凯氏烧瓶应倾斜45度角;温度控制时应先低温消化,待泡末停止产生后再加高温消化;消化结束时,凯氏烧瓶内的液体应呈透明蓝绿色;蒸馏过程中,接收瓶内的液体是硼酸;蛋白质测定所用的氢氧化钠的浓度是45%左右;所用的指示剂是甲基红—溴甲酚绿混合指示剂。。将甲基红—溴甲酚绿混合指示剂加入硼酸溶液中,溶液应显暗红色。 4.测氨基酸态氮时,加入甲醛的目的是使氨基的碱性消失;氨基酸态氮含量测定的公式是X= c V×0.014×100/m 。 二、判断: 1.(√)凯氏定蛋法测蛋白质含量时,酸吸收液的温度不应超过40°C 2.(×)凯氏定氮法测氮含量时,消化中采用K2SO4作为催化剂。 3.(√)牛磺酸是一种氨基酸。 4.(√)氨基酸分析仪检测牛磺酸时,因为牛磺酸与强酸性树脂结合力不强,首先被洗脱下来。 三、单项选择题 1、凯氏定氮法只能测粗蛋白的含量是因为样品中常含有 A 、 D 、 E 、以及 F 等非蛋白质的含氮物质,故结果为粗蛋白质含量。 A 核酸、B无机氮、C 尿素、D生物碱、E含氮类脂、F含氮色素 2. (D )凯氏定氮法测定蛋白质,蒸馏前,若加碱后消化液呈蓝色,此时应。 A. 不必在意,马上进行蒸馏 B. 增加消化液用量 C. 加入适量的水 D. 增加氢氧化钠的用量 四、简答题 1.粗蛋白 答:粗蛋白是食品中含氮化合物的总称,既包括真蛋白又包括非蛋白含氮化合物,后者又可能包括游离氨基酸、嘌呤、吡啶、尿素、硝酸盐和氨等。 2.凯氏定氮法测定蛋白质,结果计算为什么要乘以蛋白质的折算数?消化中K2SO4和CuSO4分别起什么作用? 答:凯氏定氮法测得的是样品中N元素的含量,而样品中蛋白质的含量一般为15~17%,只要乘以相应的折算系数就可以计算粗蛋白的含量,样品不同,折算系数有所差异,要视具体原料不同,选用不同的折算系数。 K2SO4可提高浓H2SO4的沸点,加快反应速度。CuSO4起到催化作用,也可加快反应速度 五、综合题 1、试述蛋白质测定的原理及样品消化过程所必须注意的事项。 答:⑴原理利用硫酸及催化剂与食品试样一同加热消化,使蛋白质分解,其中C、H形成CO2及H2O

第二章蛋白质的结构与功能

第二章蛋白质的结构与功能 一.教学基本要求 在熟记蛋白质生理功能的基础上,论述蛋白质是生命活动的物质基础。 熟记蛋白质元素组成特点;多肽链的基本组成单位一—L—α氨基酸;20种氨基酸缩写符号、结构式及主要特点。 准确描述肽键、多肽链、蛋白质一级结构、高级结构概念。 结合实例论述蛋白质结构与功能的关系。 熟记蛋白质重要的理化性质及有关的基本概念,并列举蛋白质性质与医学的关系;结合蛋白质的性质,列举蛋白质分离纯化及测定方法。 知道多肽链氨基酸序列分析方法及关键试剂名称。 二.教材内容精要 (一)蛋白质的生物学功能 蛋白质是一切生命活动重要的物质基础,是构成生物体各种组织的主要有机成分。人体中蛋白质含量丰富,约占固体成分的45%。蛋白质具有多种多样的生物学功能:催化生物体内代谢反应的酶大多是蛋白质;调节代谢反应的某些激素是蛋白质;免疫球蛋白对机体具有防御保护功能;转运蛋白可在不同组织间载运代谢物;结构蛋白对生物体起支持和保护作用,还有运动蛋白、储存蛋白、甜味蛋白、抗冻蛋白等。 (二)蛋白质的分子组成 1.蛋白质的元素组成 组成蛋白质的元素主要有碳、氢、氧、氮和硫,有些蛋白质还含有少量磷和金属元素。各种蛋白质的含氮量很接近,平均为16%。这与样品中蛋白质含量的测定有关。 2.蛋白质的基本组成单位——氨基酸 L-α氨基酸是蛋白质的基本组成单位,常见者有20种。按其侧链(R)的结构和理化性质可分为4类:①非极性、疏水氨基酸(非极性R基氨基酸);②极性、中性氨基酸(不带电荷的极性R氨基酸);③酸性氨基酸;④碱性氨基酸。所有氨基酸都含有氨基(-NH2)能与质子(H+)结合而呈阳离子(-NH3+);又含有羧基(-COOH)能与羟基(-OH)结合失去质子而变成阴离子(-COO-),所以它是一种两性电解质,具有两性游离的特性。在某一pH环境中,氨基酸游离成阳性离子及阴性离子的趋势相等,成为氨基酸的兼性离子。兼性离子所带净电荷为零,在电场中不泳动。此时,氨基酸所处环境的pH值称为该种氨基酸的等电点(PI)。氨基酸的PI是由α-COOH、α-NH2解离常数的负对数pK1和pK2决定的。若一个氨基酸侧链R基团可以解离,则pK R应予以考虑。具体每一种氨基酸pI的计算公式可分为三种情况: (1)为非极性基团或虽为极性基团但并非游离的氨基酸,PI=1/2(pK1+ pK2)。Tyr的酚-OH 基具有弱酸性,但解离程度很小,故其pI按此情况计算。 (2)酸性氨基酸(谷、天冬),pI=1/2(pK1+ pK R)。半胧氨酸(Cys)不属酸性氨基酸但其一SH具有弱酸性,在pH7.0时,Cys的-SH大约解离8%,故其PI按酸性氨基酸计算。 (3)碱性氨基酸(赖、精、组),PI=1/2 (pK2+ pK R)。各种氨基酸的解离常数通过实验测得。 色氨酸、酪氨酸和苯丙氨酸在280 nm波长附近具有最大吸收峰,大多数蛋白质中又含有这些氨基酸,故在280 nm测定蛋白质溶液的光吸收值,是定量测定溶液中蛋白质含量的一种最迅速简便的方法。利用氨基酸与茚三酮的颜色反应,也可定量测定。 蛋白质的分子组成与蛋白质的结构、功能、序列分析、合成、测定、分离纯化以及蛋白质的分子设计等都关系密切,因而氨基酸这部分内容既是下一步学习的基础,也是今后从事

蛋白质化学习题与答案

一、填空题 1.构成蛋白质的氨基酸有种,一般可根据氨基酸侧链(R)的大小分为 侧链氨基酸和侧链氨基酸两大类。其中前一类氨基酸侧链基团的共同特怔是具有性;而后一类氨基酸侧链(或基团)共有的特征是具有 性。碱性氨基酸(pH6~7时荷正电)有两种,它们分别是氨基酸和氨基酸;酸性氨基酸也有两种,分别是氨基酸和氨基酸。 2.紫外吸收法(280nm)定量测定蛋白质时其主要依据是因为大多数可溶性蛋白质分子中含有氨基酸、氨基酸或氨基酸。 4.氨基酸与水合印三酮反应的基团是,除脯氨酸以外反应产物的颜色是;因为脯氨酸是α—亚氨基酸,它与水合印三酮的反应则显示色。 6.镰刀状贫血症是最早认识的一种分子病,患者的血红蛋白分子β亚基的第六位 氨酸被氨酸所替代,前一种氨基酸为性侧链氨基酸,后者为性侧链氨基酸,这种微小的差异导致红血蛋白分子在氧分压较低时易于聚集,氧合能力下降,而易引起溶血性贫血。 11.在适当浓度的β-巯基乙醇和8M脲溶液中,RNase(牛)丧失原有活性。这主要是因为RNA 酶的被破坏造成的。其中β-巯基乙醇可使RNA酶分子中的键破坏。而8M脲可使键破坏。当用透析方法去除β-巯基乙醇和脲的情况下,RNA酶又恢复原有催化功能,这种现象称为。 12.细胞色素C,血红蛋白的等电点分别为10和7.1,在pH8.5的溶液中它们分别荷的电性是、。 13.在生理pH条件下,蛋白质分子中氨酸和氨酸残基的侧链几乎完全带负电,而氨酸、氨酸或氨酸残基侧链完全荷正电(假设该蛋白质含有这些氨基酸组分)。 15.当氨基酸溶液的pH=pI时,氨基酸(主要)以离子形式存在;当pH>pI 时,氨基酸(主要)以离子形式存在;当pH<pI时,氨基酸(主要)以 离子形式存在。 18.蛋白质变性的主要原因是被破坏;蛋白质变性后的主要特征 是;变性蛋白质在去除致变因素后仍能(部分)恢复原有生物活性,表明没被破坏。这是因为一级结构含有的结构信息,所以蛋白质分子构象恢复后仍能表现原有生物功能。 19.盐析作用是指;盐溶作用是指。 20.当外界因素(介质的pH>pI、电场电压、介质中离子强度、温度等)确定后,决定蛋白质在电场中泳动速度快慢的主要因素是和。 二、选择填空题 1.侧链含有咪唑基的氨基酸是() A、甲硫氨酸 B、半胱氨酸 C、精氨酸 D、组氨酸 2.PH为8时,荷正电的氨基酸为() A、Glu B、Lys C、Ser D、Asn 3.精氨酸的Pk1=2.17、Pk2=9.04(α-NH3)Pk3=12.48(胍基)PI=() A、1/2(2.17+9.04) B、1/2(2.17+12.48) C、1/2(9.04+12,48) D、1/3(2.17+9。04+12。48) 4.谷氨酸的Pk1=2.19(α-COOH)、pk2=9.67(α-NH3)、pk3=4.25(γ-COOH) pl=() A、1/2(2.19+9。67) B、1/2(9.67+4.25)

相关文档
相关文档 最新文档