文档库 最新最全的文档下载
当前位置:文档库 › 样品预处理对有机碳同位素分析结果的影响

样品预处理对有机碳同位素分析结果的影响

样品预处理对有机碳同位素分析结果的影响
样品预处理对有机碳同位素分析结果的影响

古生物学报,44(3):472-477(2005年7月)

Acta Palaeontologica Sinica ,44(3):472-477(J uly ,2005)

收稿日期:2004210225

3

国家重点基础研究发展规划项目(G2000077700)和中国科学院资源环境领域知识创新工程重大项目(KZCX22116)资助课题。

样品预处理对有机碳同位素分析结果的影响

3

王金权

(中国科学院南京地质古生物研究所,南京 210008)

提要 文中主要阐述样品预处理方法不同对于有机碳同位素分析结果将产生重要影响,并直接关系到由此而得出研究结论的可靠性。分析样品采自扬子地台震旦纪蓝田组剖面,并对相同岩石样品采取两种不同的预处理方法。分析结果显示,得到的两套数据之间存在明显的差值。这种分析差主要是来源于分析样品中残存的碳酸盐。因此,在对全岩分析样品实施有机碳同位素测定之前,务必将分析样品中无机碳除尽。此外,针对目前应用于有机碳同位素分析的样品预处理方法可能存在的问题提出看法。

关键词 有机碳同位素 全岩分析法 样品预处理 碳酸盐

1 前言

近二十年来,稳定性碳同位素在地层划分,以及古环境、古生态和古气候研究中发挥着重要作用,并越来越受到从事前寒武纪-寒武纪研究的科技人员

重视(Walter et al .,2000;Yang et al .,1999;Kauf man et al .,1995;Lambert et al .,1987)。尤

其是碳同位素应用于那些缺乏生物化石地层的划分更加显示它的优越性(Glumac et al .,2002;Shen ,2002;周传明等,2001;Bartley et al .,1998)。

岩石中元素碳是以无机碳或有机碳形式保存在沉积物中。无机碳主要是通过碳酸盐的沉积固定下来,而有机碳则是通过生物体的埋藏得以保存。由于生物在进行光合作用过程中优先吸收12C ,有机质的埋藏使其脱离了碳的循环,从而导致其海洋环境中13C 相对富集。然而,影响有机碳同位素变化的因素较为复杂,生物类型的不同、海洋环境中的物理和化学条件(如深度、水动力、氧含量、温度、CO 2浓度等)以及有机质的分解作用和成岩作用都可能导致有机碳同位素发生较大的变化(Popp et al .,1997;Kenig et al .,1994;Kuypers et al .,1999;Marails et al .,1992)。尽管沉积物中有机碳同位

素影响因素较多,但是从生物化学原理分析,主要受

原生生物及其类型和它们的生存环境控制(Sackett et al .,1965;Dodd et al .,1981)。

沉积岩中有机碳同位素测定值不但受以上因素的控制而且受到分析方法的影响。在某些情况下,相同样品由于采取分析方法不同,其测定值之间可能产生较大差值。由于研究结论很大程度上取决于分析数据的准确性,因此分析方法的可行性就显得尤为重要。目前,应用于有机碳同位素测试的样品预处理方法主要是全岩分析法或干酪根法(Wedek 2ing et al .,1983)。除了样品预处理方法可能不同外,其余有机碳同位素分析步骤基本相同。就‘全岩分析法’而言,由于分析样品可能来自不同时代、不同沉积环境,因此没有统一的样品预处理方法,即使用盐酸(Morante et al .,1996)或盐酸+氢氟酸预处理(Poop et al .,1997),而且使用酸的浓度也可能各有不同,甚至不使用酸处理。本文通过皖南震旦系蓝田组全岩样品使用两种不同的样品预处理方法,阐述两套分析结果之间的分析差产生的原因,以及解决问题的对策。

2 分析方法

方法1

首先将岩石样品敲碎至1cm2左右的碎块,用镊子挑选岩样中的新鲜小块,用3mol的盐酸浸泡24小时,用蒸馏水冲洗3—4次,除去样品可能存在的表面污染物,然后粉碎至<110目。将粉末样品置于洁净烧杯内,加入50%盐酸(v/v)浸泡24小时后,弃掉浸泡液保留固体,加入15%氢氟酸(v/v)反应24小时,弃去浸泡酸液后用蒸馏水冲洗3—4次至中性,低温烘干,除去样品中可能含有的无机碳。酸处理后的干燥粉末样品装入石英舟内,送入装有氧化铜(加速氧化作用的氧化剂)的真空高温反应炉中,在875℃条件下通入高纯O2条件下充分燃烧20分钟,用液氮冷阱收集燃烧氧化析出的CO2气体。使用Finnigan2mat公司的MA T2251型质谱仪测定CO2气体的δ13C值(PDB标准)。δ13C分析值按下式计算:δ13C={[(13C/12C)样品-(13C/ 12C)标样]/(13C/12C)标样}×1000。仪器分析精度为±0.02‰,数据精度为±0.1‰,分析结果参照PDB 标准。测定值用δ13C org表示,分析结果见表Ⅰ。为了保证分析结果的准确性,在分析过程中使用的所有器皿均需处理后方可使用,以避免可能的污染物。

方法2

全岩样品分析除了不使用50%盐酸(v/v)和15%氢氟酸(v/v)预处理外,其余分析步骤均与“方法1”相同。测定值用δ13C表示,分析结果见表Ⅰ。

3 讨论

目前,国内外使用的有机碳同位素分析程序均是为了真实地体现被分析样品中所含有机碳同位素组分(13C/12C)含量而设计。分析程序一般包括样品的选择,样品的预处理,样品燃烧析出CO2,气体CO2的碳同位素质谱检测。以下将主要讨论样品的预处理,以及可能出现的问题和解决问题的方法。

有机碳同位素的全岩分析就是检测被测沉积岩中总有机质的稳定性碳同位素组分。实施样品预处理目的在于除去样品中可能含有的无机碳。无机碳通常以碳酸盐形式存之于沉积物中。为了阐明样品所含无机碳对有机碳同位素测定结果可能造成影响,本研究使用两种不同方法进行样品预处理。‘方法1’经过反复实验显示出良好的重复性,并参照近年来国际上有关杂志报道的行之有效而且较为稳定的预处理方法(Knoll et al.,1986;Magaritz et al.,1992;Morante et al.,1996;Popp et al., 1997)。然而,‘方法2’并没有采取除去样品中含有无机碳的有效手段。采自皖南蓝田组54块全岩样品的有机碳同位素分析结果(表Ⅰ和插图1)表明:相同样品使用不同预处理方法其分析结果产生了较大的δ13C org差值。例如,位于蓝田组黑色页岩上段,分析差为-22.5‰—-5.1‰。可以认为产生这种较大分析差是由于‘方法2’没有除去样品中碳酸盐所致,并由此而产生δ13C正偏差(插图1)。究其原因,主要是由于被测样品中碳酸盐的13C富有。然而位于黑色页岩下段(插图1),使用两种不同预处理方法得到的有机碳同位素测定值非常接近,其分析差仅为-1.0‰—-0.05‰(表Ⅰ),表明蓝田组黑色页岩下段几乎不含碳酸盐。以上事实说明,样品预处理方法是否可行对于样品的有机碳同位素测定值的准确性至关重要。

以上叙述的是有机碳同位素的全岩分析法,下面简要叙述索格利特萃取法(Soxhlet ext raction)对于有机碳同位素测定值的影响。

索格利特萃取法实际上就是有机溶剂萃取法,它的优越性在于可以完全排除无机碳同位素的干扰。样品预处理主要采取酸解和有机溶剂抽提(Hayes et al.,1989;Kenig et al.,1994)。可溶性有机抽提物使用色谱分离,然后进行单体有机化合物碳同位素测定。值得注意的是,索格利特萃取法仅仅获得样品中可溶性有机质。前寒武纪岩石样品分析表明,可溶性有机抽提物中正构烷烃相对于共生的干酪根富集13C,而无环类异戊二烯烷烃则相对富集12C(Logan et al.,1995,1997)。这一研究结果说明,相同抽提物中不同有机化合物可能含有各不相同的有机碳同位素分馏比(13C/12C)。沉积有机质中究竟哪些单体有机化合物才能代表最初生产者(原生生物)的碳同位素分馏比?这是值得思考的问题。生物分子结构分析表明,海相沉积有机质中卟啉分子源自于叶绿素,它被认为是最初生产者代表组分(Baker et al.,1983;Chicarelli et al., 1984)。尽管卟啉的碳同位素组成不能完全等同于它的母体叶绿素的同位素组成,但是地质卟啉的碳同位素分析对于研究生态环境的确具有广阔的应用前景。

综上所述,可行的‘全岩分析法’(本文方法1)的优势在于样品经酸解后除去了样品中无机碳,剩余部分的碳同位素测定值代表全岩样品中总有机质的碳同位素比率(13C/12C)。可行的‘全岩分析法’

374

 第3期王金权:样品预处理对有机碳同位素分析结果的影响

474古 生 物 学 报第44卷

表Ⅰ 蓝田组黑色页岩的有机碳同位素测定值

Analysis results of organic carbon isotopes from the N eoproterozoic Lantian Form ation black sh ales

编号3

厚度(m)δ13C org(‰PDB)@δ13C(‰PDB)#δ13C org2δ13C Sample no.3

L T25445.8-28.55-14.70-13.85

L T25345.5-28.70-6.84-21.86

L T25244.6-28.80-8.32-20.48

L T25143.8-28.97-17.49-11.48

L T25042.9-28.92-8.58-20.34

L T24941.5-28.27-6.61-21.66

L T24840.4-28.76-6.48-22.28

L T24739.3-28.57-28.50-0.07

L T24638.6-29.44-8.36-21.08

L T24537.6-29.77-10.84-18.93

L T24437.1-29.40-7.92-21.48

L T24335.9-28.75-7.50-21.25

L T24234.7-29.22-8.56-20.66

L T24134.2-29.53-7.74-21.79

L T24033.3-29.35-20.30-9.05

L T23932.7-29.44-8.87-20.57

L T2T832.1-29.15-11.70-17.45

L T23731.2-29.36-8.89-20.47

L T23630.5-29.00-6.50-22.50

L T23529.8-29.36-25.73-3.63

L T23429.1-29.13-16.75-12.38

L T23328.6-29.45-12.61-16.84

L T23227.7-28.98-11.47-17.51

L T23127.2-29.26-28.89-0.37

L T23027.0-29.08-16.76-12.32

L T22925.7-29.11-28.49-0.62

L T22824.6-29.00-11.05-17.95

L T22724.1-29.08-23.81-5.27

L T22623.5-29.25-15.94-13.31

L T22522.8-29.31-24.21-5.10

L T22422.3-29.28-29.17-0.11

L T22320.8-30.12-29.77-0.35

L T22220.3-30.05-29.70-0.35

L T22T19.2-29.59-29.33-0.26

L T22T18.4-29.70-29.21-0.49

L T21918.1-30.09-29.54-0.55

L T21817.8-29.77-29.03-0.74

L T21717.2-29.64-29.40-0.24

L T21616.7-29.66-29.53-0.16

L T21516.2-29.40-29.16-0.24

L T21415.7-29.76-29.51-0.25

L T21314.9-29.81-29.45-0.36

L T21213.8-29.73-29.45-0.28

L T21112.0-30.69-29.69-1.00

L T21011.1-32.63-32.47-0.16

L T20910.5-32.44-32.13-0.31

L T2089.7-32.83-32.59-0.24

L T2078.7-34.27-34.07-0.20

L T2067.3-34.56-34.23-0.33

L T205 6.3-31.50-31.44-0.06

L T204 3.5-29.37-28.72-0.65

L T203 3.1-27.53-27.48-0.05

L T202 1.4-32.81-32.31-0.50

L T2010.0-32.00-31.74-0.26

3按地层层序编号(Samples arranged in stratigraphic sequence)

@粉末样品使用50%盐酸和15%氢氟酸处理后剩余部分的测定结果(Analytical result s of t he remainders after powerful samples were

treated wit h hydrofluoric and hydrochloric acid(HCl50%and HF15%,by volume)to remove inorganic carbon)

#未使用盐酸和氢氟酸处理的粉末样品测定结果(Analytical result s of powerful samples(not t reated wit h hydrofluoric and hydrochloric

acid))

插图1 沉积岩中有机碳同位素随地层的垂直分布曲线

Vertical distribution curves of organic C2isotopes in t he sedimentary rocks 相对于索格利特萃取法具有另一个优势,它的操作

程序简单易行,也是近年来有机地化工作者常用的有机碳同位素分析方法。值得关注的是,沉积有机质单体化合物碳同位素的分析和研究是前寒武纪2寒武纪生态环境研究的一个重要方向。

参考文献(R eferences)

Bartley J K,Pope M,Knoll A H,Semikhatov M A,Petrov P Y, 1998.A Vendian2Cambrian boundary succession from t he nort hwestern margin of t he Siberian Platform:stratigraphy,

574

 第3期王金权:样品预处理对有机碳同位素分析结果的影响

palaeontology,chemostratigraphy and correlation.Geol.

Mag.,135(4):473—494.

Dodd J R,Stanton R J,1981.Paleoecology,Concept s and Applica2 tions.New Y ork:Wiley Interscience.160—164.

G lumac B,Spivak2Birndorf M L,2002.Stable isotopes of carbon an

invaluable stratigrphic tool:An example from t he nort hern Ap2 palachians,USA.Geology,30(6):563—566.

Hayes J M,Popp B N,Takigiku R,Johnson M W,1989.An iso2 topic study of biogeochemical relationship between carbonates and organic carbon in t he Greenhorn Formation.Geochim.Cos2 mochim.Acta,53:2961—2972.

Kauf man A J,Knoll A H,1995.Neoproterozoic variations in t he C2 isotopic composition of seawater:stratigraphic and biogeochem2 ical implications.Precambrian Res.,73:27—49.

Kenig F,Hayes J M,Poop B N,Summons R E,1994.Isotopic Bio2 geochemistry of t he Oxford Clay Formation(J urassic),U K.J.

Geol.Soc.(London),151:139—152.

Knoll A H,Hayes J M,Kauf man A J,Swett K,Lambert I B, 1986.Secular variations in carbon isotope ratios from Upper Proterozoic successions of Svalbard and East Greenland.Na2 ture,321:832—838.

Kuypers M M M,Pancost R D,Damste S J S,1999.A large and abrupt fall in at mospheric CO2concentration during Cretaceous times.Nature,399:342—345.

Lambert L B,Walter M R,Zang Wenlong,Liu Songnian,Ma Guogan,1987.Palaeoenvironment and carbon isotope stratigra2 phy of Upper Proterozoic carbonates of t he Yangtze Platform.

Nature,325:140—142.

Logan G A,Hayes J M et al.,1995.Terminal Proterozoic reorgani2 zation of biogeochemical cycle.Nature,376:53—56.

Logan G A,Summons R E,Hayes J M,1997.An isotopic biogeo2 chemical study of Neoproterozoic and Early Cambrian sediment s from t he Cetralian Superbasin,Australia.Geochimica et Cos2 mochimica Acta,61(24):5391—5409.Marails D J D,Strauss H,Summons R E,Hayes J M,1992.Car2 bon isotope evidence for t he stepwise oxidation of t he Protero2 zoic environment.Nature,359:605—609.

Magaritz M,Krishnamurt hy R V,Holser W T,1992.Parallel trend in organic and inorganic carbon isotopes across t he Permi2 an/Triassic boundary.Amer.J.Sci.,292:727—739. Morante R,Hallam A,https://www.wendangku.net/doc/722436933.html,anic carbon isotopic record across t he Triassic2J urassic boundary in Aust ria and it s bearing on t he cause of t he mass extiction.Geology,24(5):391—394. Popp B N,Parekh P,Tilbrook B,Bidigare R R,Laws E A,1997.

Organic carbonδ13C variations in sedimentary rocks as chemo2 stratigraphic and paleoenvironmental tools.Palaeogeogr.Palae2 oclimat.Palaeoec.,132:119—132.

Sackett W M,Eckelmann W R,Bender M L,Be A W H,1965.

Temperature dependence of carbon isotope composition in ma2 rine plankton and sediment s.Science,148:235—237.

Shen Y,2002.C2isotope variations and paleoceanographic changes during t he late Neoproterozoic on t he Yangtze Platform,China.

Precambrian Res.,113:121—133.

Walter M R,Veevers J J,Calver C R et al.,2000.Dating t he 840—544Ma Neoproterozoic interval by isotopes of strontium, carbon,and sulfur in seawater,and some interpretative models.

Precambrian Res.,100(123):371—433.

Wedeking K W,Hayes J M,Matzigkett U,1983.Procedures of or2 ganic geochemical analysis.I n:J.W.Schope ed.,Eart h’s Earliest Biosphere:it s Origin and Evolution.Princeton Univ.

Press.428—441.

Yang J D,Sun W G,Wang Z Z,Xue Y S,Tao X C,1999.Varia2 tions in Sr and C isotopes and Ce anomalies in successions from China:evidence for t he oxygenation of Neoproterozoic seawa2 ter?Precambrian Res.,93:215—233.

Zhou Chuan2ming(周传明),Yan Kui,Hu Jie et al.,2001.The Neoproterozoic tillites at Lantian,Xiuning County,Anhui Province.Jour.Stratigr.,25(4):247—258.

SAMPL E2PRETREATMENT EFFECTS ON ANALYTICAL

RESU L TS OF ORG ANIC C2ISOT OPES

WAN G Jin2Quan

(N anj ing I nstit ute of Geolog y and Palaeontolog y,t he Chinese A cadem y of S ciences,N anj i ng210008,China) K ey w ords:organic C2isotopes,sample2pretreatment,whole2rocks analysis,Soxhlet Extraction Met hod

Summ ary

In general,t he determinedδ13C values of organic matter in sedimentary rocks are affected by two as2pect s:1)factors affecting t he organic C2isotope frac2 tionation,for example,t he different types of organ2 isms,t he physical and chemical conditions of the ocean environment,including water dept h,water dynamics, oxygen content,temperat ure,CO2concentrations,de2

674古 生 物 学 报第44卷

composition of organic matter ,and later diagenesis ;and 2)analytical met hod ,in particular ,sample 2pre 2treat ment before determining δ13C values of organic matter in sedimentary rocks.

This paper mainly discusses sample 2pretreat ment effect s on analytical result s of organic C 2isotopes.At present ,two sample 2pretreat ment met hods are often used in t he organic C 2isotope analysis ,which are whole 2rocks analysis and Soxhlet Extraction Method ,respectively.The whole 2rocks analysis for t he organic

C 2isotopes in t he late Neoproterozoic Lantian Forma 2tion sedimentary rocks shows t hat rock samples must be treated wit h hydrofluoric and hydrochloric acid (HCl 50%and HF 15%,by volume )to remove car 2bonate before determining δ13C values of the total or 2ganic matter in rock 2samples ,ot herwise ,wit hout using HCl 50%and HF 15%,as t he present test proven it most likely yields great analytical errors (Table Ⅰin Chinese test ).

7

74 第3期王金权:样品预处理对有机碳同位素分析结果的影响

样品预处理大全.

检测实验室样品预处理方法汇总 普通碳钢及中低合金钢的样品溶解体系基本采用如下四种体系 (1)硝酸(1+3) (2)稀王水(硝酸+盐酸+水=50+150+200) (3)硫酸(1+19) (4)盐酸(1+1)滴加过氧化氢 其中试验显示:王水加过氧化氢对于Cr、Al测定更有利,而采用硫酸溶样对Cr、Al测定的数据偏低。因此建议采用如下方法: 准确称取样品0.1-0.5克加入王水或者(1+1)稀王水20-50毫升,缓慢加热到样品基本溶解,滴加三到五滴过氧化氢,加热赶净气泡后冷却定容到100毫升容量瓶,待测。 特殊样品测定和讨论: 钢铁中痕量硼的测定:硼在钢铁中一般以固溶体存在,因此采用王水溶样只能溶解酸溶硼。用密闭消解罐加酸微波消解可测总硼。选择B249.68nm测定。 钢中微量的砷、锡、锑的测定:0.5000克钢样用硝酸(1+3)15毫升,溶解并蒸发至近干,加5毫升浓盐酸溶解残渣,稀释至100毫升,纯铁为基体。 钢铁及高温合金中痕量硒的测定:取1克样品于烧杯中,加10毫升水,10毫升硝酸,30毫升盐酸,低温加热,加6毫升高氯酸至样品溶解,用定量滤纸过滤,于滤液中加3克抗坏血酸,盐酸55毫升,缓慢加热至微,直至出现黑色无定形炭后保持2-3分钟取下,用滤纸过滤,将沉淀连滤纸加硝酸及高氯酸硝化,稀释至10毫升用于测定。 钢中总铝的测定:钢中的铝一般以金属铝、氧化铝及氮化铝等形式存在。一般称取样品0.1-0.5克,加入12毫升王水和0.1毫升HF消解钢样,来测定总铝。王水,硝酸等都无法消解氮化铝,加入一定量HF酸可以使其消解90%以上。 高合金钢:包括不锈钢,高温合金,耐热合金及工具钢等,其共同特点是含较高的合金元素镍、铬、钼等。溶解时容易生成碳化物及其他不溶物,需要专门处理。

水样的常见预处理办法

精心整理 水样的常见预处理方法 样品前处理是目前分析测试工作的瓶颈,也是国内外研究的薄弱环节,同时又非常重要。因为样品被沾污或者因吸附、挥发等造成的损失,往往使监测结果失去准确性,甚至得出错误的结论,所以样品前处理过程是保证监测结果准确度的一个重要环节,样品前处理技术方法及需要注意的问题是保证监测结果真实可靠的保障。 常用的水样前处理方法有多种。无机物测定的前处理方法常用的有过滤、絮凝沉淀、蒸馏、酸化吹气法等;CuPbZnCd等重金属的前处理一般选用消解的方法;从环境水样中富集分离有机物的方法也有许多,半挥发性有机物的方法主要有液-液萃取,液-固萃取及固相微萃取等;对挥发性有机物主要有吹脱捕集法-顶空法和液-液萃取。 样特点等来确定, 准确性。 1、环境水样过滤絮凝沉淀前处理方法 测定天然水样溶解态元素时,用0.45μm 物和颗粒物如可溶性正磷酸盐Fe、Cd、Cu、Pb滤膜过滤,弃去初始50~100ml 滤和不过滤对测定结果影响很大, 否过滤,否则,严重影响测定结果的准确性。 测定沉淀物中硫化物。测定氯化物硝酸盐氮、 过滤后测定滤液中 其中 进一步除去可溶性物质, 2 调节水样的PH值非常重要氟化物在含高氯 PH值4,氰 蒸馏含酚水样时,由于流出液体积和原蒸馏液相当,蒸馏后的残液也须呈酸性,如不呈酸性,则应重新取样,增加磷酸加入量,进行蒸馏,否则苯酚未全部蒸馏,使测定结果偏低。注意检查蒸馏和吸收装置的连接部位,使其严密,氰化物、氨氮蒸馏装置的导管下端插入吸收液面下,这些细节都必须注意,否则蒸馏液损失,使测定结果偏低。蒸馏温度应适当,更应避免发生暴沸,否则可造成流出液温度升高,氰化氢、氨吸收不完全。 3、环境水样消解前处理方法 金属及其化合物的测定,常选择消解水样的方法消解样品,使水样无机结合态的和有机结合态的金属以及悬浮颗粒物中的金属化合物转变为游离态的离子,以便于进行原子吸收等的测定用原子吸收法测定金属时,消解用的酸的选择非常重要,作为基体应不影响后面的原子吸收测定。对于火焰原子吸收法,一般以稀HNO3介质为佳,HCIO3次之,因有分子吸收,不用H2SO4,H3PO4存在化学干扰,也不宜选用。对于石墨炉原子吸收法一般以HNO3介质为佳,应避免使用HCl介质,因一些金属的氯化物在灰化阶段易挥发损失,如CdCl2、ZnCl2、PbCl2等,同时NaCl、CaCl2、MgCl2常常产生基体干扰,也要避免使用H2SO4和HCIO3介质,即使使用了对以后测定有干扰

离子色谱样品预处理

离子色谱样品预处理 随着离子色谱日益广泛的应用,许多样品已经无法用传统的方法采用采样、稀释、过滤后直接进样的模式来进行离子色谱的分析。对于大量复杂基体的样品,离子色谱可以采用合适的方法,通过预处理后再用离子色谱法进行分析,这样一方面可以解决样品复杂基体对离子色谱柱的污染,另一方面也可以大大提高复杂基体样品测定结果和准确性,提高分析方法的灵敏度。 有关样品预处理方法,随着国内离子色谱的用户水平的提高,出现了大量相关离子色谱的预处理方法,这些方法有如下几方面的特点: (1)大部分样品前处理方面,采用国产材料进行,预处理的成本很低,更能适合于中国国情,可以在国内广泛推广使用; (2)大部分样品预处理方法采用离线方法,不需要昂贵的在线设备;但相对而言,样品处理的时间比较长,需要的样品量也比较多一些; (3)与国际上出现的一些样品预处理方法相比较,国内出现的样品前处理绝大多数均出自于基层单位,实用性强;但相关的理论方面的探讨比较少。因此,许多国内采用样品前处理方法,一方面可以再进一步从理论角度进行讨论,另一方面也可以通过适当改进配合包括国内和国外的仪器用于在线样品的预处理。 离子色谱样品前处理遵循的原则 (1)样品处理后待测组分的含量应不低于检测器的检出限 ; (2)样品中各组分的分离必须达到色谱定量要求; (3)样品中不能含有机械杂质和微小颗粒物,以免堵塞色谱柱; (4)尽可能避免待测组分离子发生化学变化,防止和减少待测组分损失; (5)待测组分进行化学反应时其化学计量关系必须明确并且反应彻底; (6)避免和减少无关离子和化合物的引入,防止待测组分被污染并增加分离难度。 1.膜处理法 1.1.滤膜或砂芯处理法 滤膜过滤样品是离子色谱分 析最通用的水溶液样品前处 理方法,一般如果样品含颗 粒态的样品时,可以通过 0.45或0.22μm微孔滤膜过滤后直接进样。由于一般的滤膜不能耐高压,因此滤膜过滤只能用于离线样品处理。有时需要在线样品处理,或者将该方法用于仪器管路中,必须采用砂芯滤片。但滤膜过滤方法只能去除颗粒态不溶性物质,对于极小颗粒或有机大分子可溶性化合物和金属水溶性离子,照样能够进入色谱柱干扰样品的测定并沾污色谱柱。 1.2.电渗析处理法 在国内比较的特色的工作是采用电渗析法,与其它的膜处理方法相比,电渗析处理法有一定的选择性,因此不仅可以有效去除颗粒物、有机污染物,而且也可以去除重金属离子的污染物。是处理复杂基体样品最有效的方法之一。 1.3.电解中和法 强酸、强碱中微量离子的测定是离子色谱较难解决的问题,电解中和法的应用使问题迎刃而解。该方法是利用水电解产生的氢离子或氢氧根离子对高浓度

土壤样品采集与处理实验报告

土壤样品采集与处理实 验报告 Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT

实验一土壤样品的采集与处理 土壤样品的采集是土壤分析工作中的一个重要环节,是关系到分析结果和由此得出的结论是否正确的一个先决条件。由于土壤特别是农业土壤的差异很大,采样误差要比分析误差大若干倍,因此必须十分重视采集具有代表性的样品。此外,应根据分析目的和要求采用不同的采样方法和处理方法。 一、土壤样品的采集 (一)采样时间 土壤中有效养分的含量随季节的改变而有很大变化。分析土壤养分供应情况时,一般都在晚秋或早春采样。同一时间内采取的土样,其分析结果才能相互比较。 (二)采样方法 采样方法因分析目的和要求的不同而有所差别: 1.土壤剖面样品研究土壤基本理化性质,必须按土壤发生层次采样。 2.土壤物理性质样品如果是进行土壤物理性质测定,须采原状样品。 3.土壤盐分动态样品研究盐分在剖面中的分布和变动时,不必按发生层次取样,而自地表起每l0cm 或20cm 采集一个样品。 4.耕层土壤混合样品为了评定土壤耕层肥力或研究植物生长期内土壤耕层中养分供求情况,采用这种方法。 (1)采样要求 在采样时,要求土样有代表性,因此需多点取样,充分混合,布点均匀,混合样品的取样数量应根据试验区的面积以及地力是否均匀而定,通常为5~20个点,采样深度只需耕作层土壤0~20cm ,最多采到犁底层的土壤,对作物根系较深的,可适当增加采样深度。 (2)采样方法 根据地形、样点数量和地力均匀程度布置采样点。面积不大,比较方正,可采用对角线取样法;面积较大,形状方正,肥力不匀的地块可采用棋盘式采样方法(方格取样法);面积较大,形状长条或复杂,肥力不匀的地块多采用 土时应除去地面落叶杂物。采样深度一般取耕作层土壤20cm 左右,最多采到犁底层的土壤,对作物根系较深的土壤,可适当增加采样深度。 对角线取样法 棋盘式取样法蛇形取样法法

样品预处理

徐州工程学院 论文报告 题目:样品预处理 学生:骆乃薇 指导教师:刘辉 专业:食品质量与安全 班级:12质量2 目录 1.样品预处理的目的 1 2.样品预处理的原则 1 3.样品预处理的方法 1 3.1有机物破坏法 2 3.2蒸馏法 3 3.3溶剂抽提法 5 3.4色层分离法 7 3.5化学分离法 7 3.6浓缩---------------------------------------------------------------------------9 一目的: 1、测定前排除干扰组分; 2 、对样品进行浓缩。 二原则: ①消除干扰因素; ②完整保留被测组分; ③使被测组分浓缩; 以便获得可靠的分析结果 三方法: 主要有6种。 (一)有机物破坏法 测定食品中无机成分的含量,需要在测定前破坏有机结合体,如蛋白质等。操作方法分为干法和湿法两大类。 1.干法灰化 原理:将样品至于电炉上加热,使其中的有机物脱水、炭化、分解、氧化,在置高温炉中灼烧灰化,直至残灰为白色或灰色为止,所得残渣即为无机成分。

2.湿法消化 原理:样品中加入强氧化剂,并加热消煮,使样品中的有机物质完全分解、氧化,呈气态逸出,待测组分转化为无机物状态存在于消化液中。 常用的强氧化剂有浓硝酸、浓硫酸、高氯酸、高锰酸钾、过氧化氢等。 湿法消化的优缺点 优点:(1)有机物分解速度快,所需时间短。 (2)由于加热温度低,可减少金属挥发逸散的损失。 缺点:(1)产生有害气体。 (2)初期易产生大量泡沫外溢。 (3)试剂用量大,空白值偏高。 3. 紫外光分解法 高压汞灯提供紫外光。85±5 ℃,加双氧水。 4. 微波高压消煮器。 食品样品最多只要10分钟(2.5 MPa); 其它方法: 1. 高压密封消化法——120~150℃,数小 时,要求密封条件高。 2.自动回流消化仪。 (二)蒸馏法 利用液体混合物中各种组分挥发度的不同而将其分离。 常压蒸馏 蒸减压蒸馏 馏水蒸气蒸馏 方 法 1.常压蒸馏 适用对象:常压下受热不分解或沸点不太高的物质。 蒸馏釜:平底、圆底 冷凝管:直管、球型、蛇型 注意:1. 爆沸现象。(沸石、玻璃珠、 毛细管、素瓷片) 2. 温度计插放位置。 3. 磨口装置涂油脂

实验室样品前处理常用方法

实验室样品前处理常用方法 【样品前处理要求】 1.样品是否要预处理,如何进行预处理,采样何种方法,应根据样品的性状、检验的要求和所用分析仪器的性能第方面加以考虑。 2.应尽量不用或少使用预处理,以便减少操作步骤,加快分析速度,也可减少预处理过程中带来的不利影响,如引入污染、待测物损失等。 3.分解法处理样品时,分解必须完全,不能造成被测组分的损失,待测组分的回收率应足够高。 4.样品不能被污染,不能引入待测组分和干扰测定的物质。 5.试剂的消耗应尽可能少,方法简便易行,速度快,对环境和人员污染少。 1 高温灰化法 高温灰化法是利用热能分解有机试样,使待测元素成可溶状态的处理方法。其处理过程是准确是准确称取0.5~1.0g(有些试样要经过预处理),置于适宜的器皿中,zui常用的是适宜的坩锅,如铂坩锅、石英坩锅、瓷坩锅、热解石墨坩锅等,然后置于电炉进行低温碳化,直至冒烟近尽。再放入马弗炉中,由低温升至375~600℃左右(视样品而定),使试样完全灰化。试样不同,灰化的温度和时间也不相同,冷却后,灰分用无机酸洗出,用去离子水稀释定容后,即可进行待测元素原子吸收法测定。 灰化法是有机试样zui常用的方法之一,其优点:操作比较简单,适宜于大量试样的测定,处理过程中不需要加入其它试剂,可避免污染试样,但灰化法也存在明显的缺点:在灰化过程中,引起易挥发待测元素的挥发损失,待测元素沾壁及滞留在酸不溶性灰粒上的损失。汞和硒等易挥发元素,灰化处理中挥发损失严重,不易采用。As、B、Cd、Cr、Fe、Pb、P、V、Zn等元素在灰化过程中有一定程度的挥发损失。Cu、Ni等形成某些有机复合物,在温度相对较低时,也会挥发。非金属元素能形成多种多样化合物,易于挥发。 应特别指出的是,为克服灰化法的不足,在灰化前加入适量的助灰化剂,可减少挥发损失和粘壁损失。常见的灰化剂有:MgO、Mg(NO3)2、HNO3、H2SO4等。其中HNO3起氧化作用,加速有机物的破坏,因而可适当降低灰化温度,减少挥发损失。加入H2SO4能使挥发性较大的氯酸盐转化为挥发性较小的硫酸盐,起到象基体改良剂的作用,硫酸可是使灰化温度升高到980℃,镉、铅未发现明显的损失。Mg(NO3)2有双重作用,其分解为NO2和MgO,前者促进氧化,后者可稀释灰分,减少灰分与坩锅壁的总接触面积,从而减少沾留。例如:As、Cu、Ag等在常规灰化时会有严重损失,如果加入Mg(NO3)2后,则能得到满意的结果。 2 湿法消化法 湿法消化法亦称湿灰化法,其实质是用强氧化性酸或强氧化剂的氧化作用破坏有机试样,使待测元素以可溶形式存在。其基本方法是:称取预处理过的试样于玻璃烧杯中(或石英烧杯、聚四氟乙烯烧杯),加入适量消化剂,通常应在100~200℃下加热以促进消化,待消化液清亮后,蒸发剩余的少量液体,用纯水洗出,定容后即可进行原子吸收法测定。 湿法消化法中zui常用的试剂是HNO3、HClO4、H2SO4等强氧化性酸,以及H2O2、KMnO4 等氧化性试剂。实际上多用以一定比例配制的混合酸。在消化过程中避免产生易挥发性的物质,避免有新的沉淀形成。例如,HNO3:HClO4:H2SO4=3:1:1的混合酸适于大多数的生物试样的消化,但样品含钙高,则可不用H2SO4,以避免CaSO4沉淀形成。某些硫酸盐(如Pb2+、Ag+、Ba2+)和氯酸盐(Pb2+、Ag+如等)呈不溶性,因此测定这类样品时不宜使用HClO4或H2SO4。其它氧化剂如H2O2、高锰酸盐等也可用于消化试样,钼盐则能作催化剂加速氧化反应。

几种常用样品前处理方法在食品重金属检验中的应用湿消化法湿消化法

几种常用样品前处理方法在食品重金属检验中的应用 湿消化法 湿消化法是在适量的食品样品中,加入氧化性强酸,加热破坏有机物,使待测的无机成分释放出来,形成不挥发的无机化合物,以便进行分析测定。 湿法消化是目前应用比较广泛的一种食品样品前处理方法,该方法实用性强,几乎所有的食品都可以用该方法消化。 下面介绍下湿法消解的优势:首先、前处理所用的试剂即酸都可以找到高纯度的,同时基体成分都比较简单(偶尔也会产生部分硫酸盐);其次、在实验过程中,只要控制好消化温度,大部分元素一般很少或几乎没有损失。例如,在测定酱油中的砷含量时采用湿法消化加入了硝酸高氯酸混合酸和硫酸,加标回收率为95%以上。即便像“汞”等极易挥发的元素,只要正确掌握消化温度,也不会有损失。 但是湿消化法也有一定的缺陷: 首先,由于该反应是氧化反应,样品氧化时间较长,需要一个小时左右的时间(随样品的成分而定),且实验过程中一次不能消化超过10个样品,因此方法的劳动强度比较大。 其次,样品消化时常使用的试剂硝酸、高氯酸、过氧化氢,硫酸都是具有腐蚀性且比较危险的。在用硝酸和高氯酸时产生的酸雾和烟,对通风橱的腐蚀性也很大。特别需要注意的是用高氯酸消解样品时,应严格遵守操作规程,烧杯中液体不能烧干,并且要保证温度达到200摄氏度时只有少量的有机成分存在,否则高氯酸的氧化电位在此温度下会迅速升高,会导致剧烈的爆炸!因此建议,在使用高氯酸时,最好先用硝酸氧化部分的有机物,或者是先加入硝酸与高氯酸的混合液浸泡一夜,同时实验要在通风橱内进行。消化液不能蒸干,以防部分元素如硒、铅的损失。 还有,由于氧化反应过程中加入了浓酸,这些酸可能会对仪器产生损害进而影响试验结果,因此消解结束后需要排酸,例如,用原子荧光测定总砷,测定时硝酸的存在会妨碍砷化氢的产生,对测定有干扰,消解完全后应尽可能的加热驱除硝酸。国标实验中采用硝酸-硫酸消解样品,由于硫酸的沸点比硝酸要高,所以最后消化液里基本上没有硝酸。但是需要注意的是,采用硝酸-硫酸消解样品时因避免发生碳化,消解过程发生碳化时会使砷严重损失,所以在消解过程中注意若消化液色泽变深应适当补加硝酸,值得注意的是在标准曲线也要保证和样品消解液中相同的酸浓度即要基体匹配。 某些特殊食品湿消解时注意事项: 含油脂成分较高的食品,如植物油、桃酥等,在加入混合酸后,由于样品浮在混酸表面上,容易形成完整的膜,加热时液面上有剧烈的反应,容易造成爆沸或飞溅,因此建议样品称样量不高于1g(植物油最好为0.1-0.2g),同时要在消解过程中随时补加硝酸,一般来讲硝酸高氯酸混合液加入15ml,放置过夜让其缓慢氧化,次日消化中途还需要补加混合酸10ml 左右。

样品前处理方法-氮吹浓缩.doc

样品前处理方法 -氮吹浓缩 1.引言 色谱分析样品制备是一个非常重要和复杂的过程,因为色谱分析技术涉及的样品种类繁多、样品组成及其浓度复杂多变。样品物理形态范围广泛,对采用分析方法进行直接分析测定构成的干扰因素特别多,所以需要选择并实施科学有效的处理方法及其技术,达到分析测定或评价和调查的目的。现代色谱仪器对一个样品的分析测定所需要的时间越来越短,但是色谱分析样品制备过程所用的时间却仍然很长。据统计,在大部分的色谱分析实验中,将一个原始样品处理成可直接用于色谱仪器分析测定的样品状态,所消耗的时间只约占整个分析时间的60%-70%,而色谱仪器测定此分析样品的时间只约占 10%,其余的时间是用于此样品测定结果的整理和报告等。 2.样品前处理过程 2.1 预处理 对样品进行粉碎、混匀和缩分等过程称为预处理。 固体样品——含水较低,粉碎过筛。含水量较高取食用部分切碎或先烘干后 粉碎过筛。 液体、浆体——搅拌混合均匀 互不相容的液体——先分离再取样 特殊样品——根据实验要求特殊处理 2.2 提取 浸提——针对固体样品使待测组分转移到提取液中 萃取——针对液体样品,利用某组分在两种互不相容的溶剂中的分配系数不同,从一种溶剂转移到另一种溶剂中,从而达到提取目的。 2.3 净化 去除杂质的过程称为净化。 萃取法——适用于液体样品,少量多次 化学法——通过使杂质或待测物发生化学反应而改变其溶解性,使其与原体系分离。

层析法——利用混合物中各组分的理化性质(如溶解度、吸附能力、电荷、分子量、分子极性和亲和力等)不同,使各组分在支持物上的移 动速度不同,而集中分布在不同区域,借此将各组分分离。 2.4 浓缩 样品经过提取净化后,体积变大,待测物浓度降低,不利于检测,所以浓缩 的目的是减小样品体积提高待测物浓度,常见方法如下: 常压浓缩——适用于挥发性和沸点相对较低的组分,通过升高温度,将溶剂由液态转化成气态被抽走或被通过冷凝器再次收集,从而达到浓缩目 的。 减压浓缩——通过抽真空,使容器内产生负压,在不改变物质化学性质的前提下降低物质的沸点,使一些高温下化学性质不稳定或沸点高的溶剂在 低温下由液态转化成气态被抽走或被通过冷凝器再次收集。 冷冻干燥——冷冻的同时减压抽真空,使溶剂升华,适用于生物活性样品。 氮吹浓缩——适用于体积小、易挥发的提取液。采用惰性气体对加热样液进行吹扫,使待处理样品迅速浓缩,达到快速分离纯化的效果。该方法操 作简便,尤其可以同时处理多个样品,大大缩短了检测时间。被广 泛应用于农残检测,制药行业和通用研究中的样品批量处理。 2.5 氮气漩涡吹扫技术 该装置采用氮气旋涡旋转吹扫技术 , 样品在一定温度下 , 通过氮气吹扫 , 使待测物质获得良好富集效果。浓缩仪由微处理器控制 , 保证样品的自动浓缩蒸发。气体喷嘴吹出氮气流在浓缩管内形成螺旋状气流 , 减缓了气流冲力 , 使溶剂均匀挥发且不飞溅。

血液样品预处理的标准操作

血液样品预处理的标准操作 一、目的 规范色谱分析中血液样品预处理的操作。 二、职责 1. 实验室分析测试人员对本规程的实施负责。 2. 对于每一项具体的研究课题,具体的操作步骤应由实验室负责人负责制定,并由实验室分析测试人员严格实施。 3. 实验室负责人负责对本规程的修订。 三、血液样品预处理的标准操作 1. 实验仪器与设备的准备 试管一般采用有盖子和刻度的尖底试管,要求密封性好,编号清楚准确,并摆放整齐。 EP管一般采用的规格有1ml、、2 ml。要求密封性好,编号清楚准确,并摆放整齐。 移液器要求定量准确,重复性好。 其它涡流混合器、离心机、真空泵、烧杯、量筒、记号笔、试管架、标签纸等。 2. 样品的均匀化 将装有血浆(血清)样品的EP管放置在冰箱冷藏室内,缓慢解冻为血浆(血清)溶液。 然后取出放置至室温,置涡流混合器上混匀或往复振摇亦可到达均匀的目的。 3. 液-液提取 提取溶剂的准备 常用的溶剂有乙酸乙酯,乙醚,环己烷等。 提取溶剂可以是一种也可以是几种溶剂的混合溶液,目的是调整提取溶液的剂性,既保证待测样品被充分萃取进入提取溶剂,同时又有很好的选择性。 根据待测样品的需要用移液器(移液枪)定量吸取血浆(血清)至试管中。 必要时调整血浆(血清)溶液的pH值,根据待测样品的性质加入酸、碱或缓冲溶液,然后涡旋混匀。用移液器定量吸取提取溶液至装有血浆(血清)的试管中,盖好试管塞。 溶液的混匀 涡流混匀将试管置于涡流混合器上进行旋涡,并保证样品溶液旋涡充分混匀,旋涡时间一般为2-3分钟。 样品的离心将试管置于离心机中,分离过程中一般采用4000r/min。离心之前注意要平衡,加速时应注意缓慢逐步加速,以防加速过快试管炸裂,离心时间一般为10分钟。 离心分离后试管中样品分为上下两层,用移液器吸取上层有机相,转移至另一试管中。 溶剂的挥发 自然挥发将样品溶液放置在室温下挥发,有时还可适当加热,加速溶液挥发。 氮气吹干氮气流能防止发生氧化,为了加快挥散速度,将样品溶液置于氮气流下吹干。 减压蒸发在密闭容器内,通过抽真空以降低液体表面的压力,使其沸点降低,样品溶液很快挥发,减少了蒸发过程中样品与空气的接触,避免由此引起的分解等副反应,适于热不稳定的样品。 样品的复溶用于样品溶液残渣复溶的溶液通常采用流动相或其它有机溶剂。用移液器准确定量吸取,并且复溶样品应充分混合均匀。

实验一土壤样品的采集与预处理

实验一土壤样品的采集与预处理 一、目的和要求 土壤样品(简称土样)的采集与处理,是土壤分析工作的一个重要环节,直接关系到分析结果的正确与否。因此必须按正确的方法采集和处理土样,以便获得符合实际的分析结果。 二、内容与原理 学习土壤农化样品的采样布点方法及分样方法。在大田中,采用蛇形取样法采集1kg 有代表性的土壤样品,采用四分法分样。土样标签书写内容,样品风干要求。 三、主要用具 小土铲、布袋或塑料袋、标签 四、操作方法与实验步骤 (一)土样的采集 分析某一土壤或土层,只能抽取其中有代表性的少部份土壤,这就是土样。采样的基本要求是使土样具有代表性,即能代表所研究的土壤总体。根据不同的研究目的,可有不同的采样方法。 1.土壤剖面样品 土壤剖面样品是为研究土壤的基本理化性质和发生分类。应按土壤类型,选择有代表性的地点挖掘剖面,根据土壤发生层次由下而上的采集土样,一般在各层的典型部位采集厚约l0厘米的土壤,但耕作层必须要全层柱状连续采样,每层采一公斤;放入干净的布袋或塑料袋内,袋内外均应附有标签,标签上注明采样地点、剖面号码、土层和深度。 2.耕作土壤混合样品 为了解土壤肥力情况,一般采用混合土样,即在一采样地块上多点采土,混合均匀后取出一部份,以减少土壤差异,提高土样的代表性。 (1)采样点的选择选择有代表性的采样点,应考虑地形基本一致,近期施肥耕作措施、植物生长表现基本相同。采样点5—20个,其分布应尽量照顾到土壤的全面情况,不可太集中,应避开路边、地角和堆积过肥料的地方。 (2)采样方法:在确定的采样点上,先用小土铲去掉表层3毫米左右的土壤,然后倾斜向下切取一片片的土壤(见图1)。将各采样点土样集中一起混合均匀,按需要量装入袋中带回。 3.土壤物理分析样品 测定土壤的某些物理性质。如土壤容重和孔隙度等的测定,须采原状土样,对于研究土壤结构性样品,采样时须注意湿度,最好在不粘铲的情况下采取。此外,在取样过程中,须

水样的常见预处理方法

水样的常见预处理方法 Document serial number【KK89K-LLS98YT-SS8CB-SSUT-SST108】

水样的常见预处理方法 样品前处理是目前分析测试工作的瓶颈,也是国内外研究的薄弱环节,同时又非常重要。因为样品被沾污或者因吸附、挥发等造成的损失,往往使监测结果失去准确性,甚至得出错误的结论,所以样品前处理过程是保证监测结果准确度的一个重要环节,样品前处理技术方法及需要注意的问题是保证监测结果真实可靠的保障。 常用的水样前处理方法有多种。无机物测定的前处理方法常用的有过滤、絮凝沉淀、蒸馏、酸化吹气法等;CuPbZnCd等重金属的前处理一般选用消解的方法;从环境水样中富集分离有机物的方法也有许多,半挥发性有机物的方法主要有液-液萃取,液-固萃取及固相微萃取等;对挥发性有机物主要有吹脱捕集法-顶空法和液-液萃取。 环境水样前处理具体方法的选择应根据处理方法对被测组分的实际影响,测定项目的要求和水样特点等来确定,每种处理方法都有一定的技术要求,操作方法不得当,都会直接影响监测结果的准确性。 1、环境水样过滤絮凝沉淀前处理方法 测定天然水样溶解态元素时,用0.45μm滤膜预处理水样,0.45μm滤膜能够方便地区分开溶解物和颗粒物如可溶性正磷酸盐Fe、Cd、Cu、Pb等的溶解态的测定,水样采集后立即用0.45μm 滤膜过滤,弃去初始50~100ml溶液,收集所需体积的滤液供测定使用,或直接测定,或消解后测定。测定元素总量时,取一定量均匀水样直接消解后进行测定,如总磷、总铁、总铅等。水样的过滤和不过滤对测定结果影响很大,有时可能相差百分之几十甚至几倍。根据测定要求,决定水样是否过滤,否则,严重影响测定结果的准确性。 对于污染较轻的地面水中有些无机物的测定,采用絮凝沉淀处理方法对水样进行前处理。如硫化物测定时,可先用醋酸锌沉淀法除去可溶性还原剂(如亚硫酸盐硫代硫酸盐等)的干扰,用中速定量滤纸或玻璃纤维滤膜对加入醋酸锌的水样进行过滤,测定沉淀物中硫化物。测定氯化物硝酸盐氮、亚硝酸盐氮、氨氮、六价铬等,采用絮凝沉淀法对水样进行前处理。不同的分析项目,絮凝沉淀前处理方法略有差别,但原理都是利用氢氧化物沉淀吸附作用以消除或减弱干扰,过滤后测定滤液中该物质含量一般采用慢速或中速定量滤纸过滤,因为定量滤纸预先已用盐酸和氢氟酸处理过,其中大部分无机物已被除去,采用滤纸为滤料时,用前还应先用蒸馏水洗滤纸,进一步除去可溶性物质,并弃去出滤液20ml。 2、环境水样蒸馏前处理方法 蒸馏法是环境水样前处理的常用方法,可将氟化物、氰化物、挥发酚等以酸的形式蒸出,氨氮以氨的形式蒸出,而干扰物质留在溶液中蒸馏水样时,调节水样的PH值非常重要氟化物在含高氯酸的溶液中,以氟硅酸或氢氟酸被蒸出,含氰化物、酚水样的蒸馏一般用磷酸调节至PH值4,氰化物以氰化氢形式被蒸馏出来,挥发酚和水蒸气一起蒸出;蒸馏含酚水样时,由于流出液体积和原蒸馏液相当,蒸馏后的残液也须呈酸性,如不呈酸性,则应重新取样,增加磷酸加入量,进行蒸馏,否则苯酚未全部蒸馏,使测定结果偏低。注意检查蒸馏和吸收装置的连接部位,使其严密,氰化物、氨氮蒸馏装置的导管下端插入吸收液面下,这些细节都必须注意,否则蒸馏液损失,使测定结果偏低。蒸馏温度应适当,更应避免发生暴沸,否则可造成流出液温度升高,氰化氢、氨吸收不完全。 3、环境水样消解前处理方法 金属及其化合物的测定,常选择消解水样的方法消解样品,使水样无机结合态的和有机结合态的金属以及悬浮颗粒物中的金属化合物转变为游离态的离子,以便于进行原子吸收等的测定用原子吸收法测定金属时,消解用的酸的选择非常重要,作为基体应不影响后面的原子吸收测定。对于火焰原子吸收法,一般以稀HNO3介质为佳,HCIO3次之,因有分子吸收,不用H2SO4,H3PO4存在化学干扰,也不宜选用。对于石墨炉原子吸收法一般以HNO3介质为佳,应避免使用HCl介

液相色谱使用中样品预处理注意的几个环节

液相色谱使用中样品预处理注意的几个环节 高效液相色谱具有分离效率高、分析速度快和应用范围广等特点,特别适合于高沸点、大分子、强极性和热稳定性差的化合物的分离分析。目前高效液相色谱已成为化学、生化、医学、工业、农业、环保、商检和法检等学科领域中重要的分离技术,是分析化学家和生物化学家手中用于解决他们面临的各种实际分析和分离课题必不可少的工具之一。虽然在检测分析中使用了昂贵的、性能优越的高档精密仪器,但是由于在样品的前处理,标准溶液的制备,样品液的测定,分析中的污染,仪器常见故障等等问题上的不注意,而引起大的系统误差,使整个测定分析失败。现就液相色谱分析的应用中样品预处理注意的几个环节,作简要分析,以达到更好的检测效果。 1 样品预处理方法 样品预处理应包括进样前的一切操作。除了称重、溶解、稀释等步骤外,样品需要: ①过滤; ②萃取; ③衍生化(柱前衍生) ; ④液相色谱(低压柱层析) 。这些操作可以是手工进行或实行自动化操作。样品预处理的目的是除去干扰物、增加检测器灵敏度(富集) 、保护色谱柱等。样品预处理同时也是为了避免色谱分离故障,其中样品萃取是关键的一步,要从大量的干扰物中萃取出微量组分难度极大。 有些样品经预处理后还不能作进样分析,需进行衍生化处理,使一些无紫外吸收或无荧光的组分,经过衍生化后能用紫外和荧光检测器检测,这样既提高了灵敏度,又改善了分离度(质量变化) 。样品预处理的同时也会带来一些问题,如样品损失、样品被污染、衍生化反映不完全或多种反应物生成等。衍生反应常会影响试验的精确度,或者在整个样品预处理过程中带来误差。 用于液相色谱分析的样品溶液必须均匀而无颗粒,有颗粒会损坏进样器并阻塞柱头。处理好的样品在准备上柱前应对准光线摇动,检查样品溶液中有无颗粒。只要看到颗粒、混浊或乳化,就应过滤一下,过滤膜要能截留住015μm 以上的颗粒,样品过滤的过程中可能引起:样品被污染,因过滤吸附降低样品组分的含量,样品溶剂挥发引起误差。萃取的目的是从共溶的样

样品预处理的原则是___

1、样品预处理的原则是___、___、__。。 2、脂类的测定方法有__、__、__、__、__、__11、()测定是糖类定量的基础。 A还原糖B非还原糖C葡萄糖D淀粉 12、直接滴定法在测定还原糖含量时用()作指示剂。 A亚铁氰化钾 B Cu2+的颜色C硼酸D次甲基蓝 13、为消除反应产生的红色Cu2O沉淀对滴定的干扰,加入的试剂是() A铁氰化钾B亚铁氰化钾C醋酸铅 D NaOH 14、K2SO4在定氮法中消化过程的作用是( ). A.催化 B. 显色 C.氧化 D.提高温度 15、凯氏定氮法碱化蒸馏后,用( )作吸收液. A.硼酸溶液 B.NaOH液 C.萘氏试纸 D.蒸馏水 16、灰分是标示()一项指标。 A 无机成分总量 B 有机成分 C 污染的泥沙和铁、铝等氧化物的总量 17、测定葡萄的总酸度时,其测定结果以()来表示。 A 柠檬酸 B 苹果酸 C 酒石酸 18、用直接滴定法测定食品还原糖含量时,所用标定溶液是() A、菲林试剂 B、样品 C、葡萄糖 D、酒石酸甲钠 19、高锰酸钾测定食品还原糖含量时,所用标定溶液是() A、菲林试剂 B、次甲基蓝 C、葡萄糖 D、高锰酸钾 20、用水提取水果中的糖分时,应调节样液至()。 A、酸性 B、中性 C、碱性 1、处理样品的干灰化法需要以下()设备 A、坩埚 B、容量瓶 C、马福炉 D、称量瓶 3、采用蒸馏法测水分含量时,选用()作为溶剂 A、苯 B、四氯化碳 C、二甲苯 D、甲苯 8、检测下列()元素时,样品处理不适合用干法消化 A、Ca B、Hg C、As D、Mg 10、脂类测定最常用的提取剂有() A、乙醚 B、苯 C、石油醚 D、二甲苯 11、下列()样品应用乙醇作提取剂。 A 白柠檬 B 巧克力 C 饼干 D、面包

分析样品的预处理

固相萃取技术在样品处理中的应用 在2003版的“食品卫生检测方法”标准系列中,有一个较大的改动就是很多项目,尤其是农药项目的前处理普遍使用了固相萃取技术(详见表1 )。现针对这一技术的原理、使用和误区进行探讨。 一.固相萃取技术简介 固相萃取(Solid Phase Extraction,简称SPE)技术,发展于上世纪70年代,由于其具有高效、可靠、消耗试剂少等优点,在许多领域取代了传统的液-液萃取而成为样品前处理的有效手段。 一些传统的介绍SPE的书籍将其归于一个液相色谱的原理,这其实是引起使用不当的主要源由之一。把SPE小柱看作一根液相色谱柱,不如把它看成单纯的萃取剂更合适,因为:液相色谱的重点在于分离,而SPE的重点在于萃取。 固相萃取技术在样品处理中的作用分两种:一是净化,二是富集,这两种作用可能同时存在。 固体萃取和液-液萃取相比,其长处在于方便和消耗试剂少,短处在于批次间的重复性难以保证。出现这种情况的原因在于:液体试剂的重复性好,只要其纯度可靠,不同年代的产品的物理化学性质都是可靠的。而固体萃取剂就算保证了纯度外,还存在着颗粒度的差异,外形的差异等液体试剂不存在的且难以衡量的因素,不同年代不同批号的萃取性质可能会有较大的区别。 从理论上和厂家宣传来看,固相萃取应该在色谱分析的前处理上得到很好的应用:有机溶剂用得很少,可批量处理样品,既可富集,又能除杂质,给人印象是前处理的革命性进步。然而现实情况,起码在国内,虽然推广了多年,实际应用还是相当有限。 SPE应用得不广,与我们的使用方式和期望有关,也与它本身的局限有关。对于供应商来说,从经济利益出发,向来都是忽略固相萃取的局限与不足。固相萃取可以作为前处理手段的一个很好补充,但是在使用时,一定要清醒知道到它的优点和缺点,注意因地制宜,扬长避短。 二、固相萃取的应用优势 在什么项目的前处理适合使用固相萃取技术,即用固相萃取会比普通的溶剂萃取更理想,个人认为有以下几种情况: (一)水中有机物的前处理。

离子色谱仪分析之分析样品预处理方法及特点简介

离子色谱仪分析之分析样品预处理方法及特点简 介 随着离子色谱日益广泛的应用,许多样品已经无法用传统的方法采用采样、稀释、过滤后直接进样的模式来进行离子色谱的分析。对于大量复杂基体的样品,离子色谱可以采用合适的方法,通过预处理后再用离子色谱法进行分析,这样一方面可以解决样品复杂基体对离子色谱柱的污染,另一方面也可以大大提高复杂基体样品测定结果和准确性,提高分析方法的灵敏度。离子色谱仪分析之分析样品预处理方法及特点简介如下: 有关样品预处理方法,随着国内离子色谱的用户水平的提高,出现了大量相关离子色谱的预处理方法,这些方法有如下几方面的特点: (1)大部分样品前处理方面,采用国产材料进行,预处理的成本很低,更能适合于中国国情,可以在国内广泛推广使用; (2)大部分样品预处理方法采用离线方法,不需要昂贵的在线设备;但相对而言,样品处理的时间比较长,需要的样品量也比较多一些; (3)与国际上出现的一些样品预处理方法相比较,国内出现的样品前处理绝大多数均出自于基层单位,实用性强;但相关的理论方面的探讨比较少。因此,许多国内采用样品前处理方法,一方面可以再进一步从理论角度进行讨论,另一方面也可以通过适当改进配合包括国内和国外的仪器用于在线样品的预处理。 离子色谱样品前处理遵循的原则 (1)样品处理后待测组分的含量应不低于检测器的检出限; (2)样品中各组分的分离必须达到色谱定量要求; (3)样品中不能含有机械杂质和微小颗粒物,以免堵塞色谱柱; (4)尽可能避免待测组分离子发生化学变化,防止和减少待测组分损失; (5)待测组分进行化学反应时其化学计量关系必须明确并且反应彻底; (6)避免和减少无关离子和化合物的引入,防止待测组分被污染并增加分离难度。 1。膜处理法 1.1。滤膜或砂芯处理法 滤膜过滤样品是离子色谱分析最通用的水溶液样品前处理方法,一般如果样品含颗 粒态的样品时,可以通过0.45或0.22μm微孔滤膜过滤后直接进样。由于一般的滤膜不能

相关文档
相关文档 最新文档