文档库 最新最全的文档下载
当前位置:文档库 › 最新九年级数学高频考点核心考点 圆专题复习 (28)

最新九年级数学高频考点核心考点 圆专题复习 (28)

最新九年级数学高频考点核心考点 圆专题复习 (28)
最新九年级数学高频考点核心考点 圆专题复习 (28)

最新九年级数学高频考点核心考点 圆专题复习

第一讲 圆的有关性质

【回顾与思考】

【例题经典】

有关弦、半径、圆心到弦的距离之间的计算

例1 如图,在半径为5cm 的⊙O 中,圆心O 到弦AB 的距离为

3cm ,则弦AB 的长是( )

A .4cm

B .6cm

C .8cm

D .10cm

圆心角、弧、弦和垂径定理的应用

例2如图所示,AB 是⊙O 的弦,半径OC 、OD 分别交AB

于点E 、F ,?且AE=BF ,请你找出弧AC 与弧BD 的数量关系,

并给予证明.

圆周角定理的应用

例3、如图,A 、B 、C 、D 是⊙O 上的三点,∠BAC=30°,则∠BOC 的大小 是

( ) A 、60° B 、45° C 、30° D 、15°

例4 已知:如图,△ABC 是⊙O 的内接三角形,AD ⊥BC 于D ,

AE 是⊙O 的直径,若S △ABC =S ,⊙O 的半径为R .

(1)求证:AB·AC=AD·AE;(2)求证:AB·AC·BC=4RS.

第二讲与圆有关的位置关系

与圆有关的位置关系

d r

d r

d r ?<

?

??

>

?

?

??

=

?

?

?

?

相交

直线与圆的位置关系相离

相切

圆与圆的位置关系

【例题经典】

直线与圆位置关系的判定

例1 (1)已知⊙O的半径为r,圆心O到直线L的距离为d,?若直线L与⊙O 有交点,则下列结论中正确的是()A.d=r B.d≤r C.d≥r D.d>r (2)已知Rt△ABC的斜边AB=8cm,AC=4cm,以点C为圆心作圆,当半径R=?_____?时,AB与⊙O相切.

第三讲圆的切线的性质和判定

现实情境?

?

?

?

??

?

?

?

?

圆的切线的性质--三角形内切圆

应用:d=r

圆的切线的判定

判定定理

圆的切线性质与判定综合应用

【例题经典】

关于三角形内切圆的问题

例1如图,点O是△ABC的内切圆的圆心,若∠BAC=80°,则∠BOC=()A.130°B.100°C.50°D.65°

例2已知:如图,AB是⊙O的直径,PA是⊙O的

切线,过点B?作BC?∥OP交⊙O于点C,连结AC.

(1)求证:△ABC∽△POA;(2)若AB=2,

求BC的长.(结果保留根号)

圆的切线的判定

例3已知:如图,AB是⊙O的直径,P是⊙O外一点,PA⊥AB,?弦BC∥OP,请判断PC是否为⊙O的切线,说明理由.

第四讲圆与圆的位置关系

知识点:圆和圆的位置关系、两圆的连心线的性质、两圆的公切线

【例题经典】

两圆位置关系的识别

例1(1)已知两圆的半径分别为3和4,圆心距为8,?那么这两个圆的位置关系是()A.内切B.相交C.外离D.外切

(2)如果两圆半径分别为3和4,圆心距为7,那么两圆位置关系是()A.相离B.外切C.内切D.相交

(3)已知⊙O1和⊙O2的半径分别为2和5,圆心距O1O2=3,?则这两圆的位置关系是()

A.相离B.外切C.相交D.内切

(4)若⊙A和⊙B相切,它们的半径分别为8cm和2cm,?则圆心距AB为()A.10cm B.6cm C.10cm或6cm D.以上答案均不对

例2 如图,PA,PB是⊙O的切线,A,B为切点,∠OAB=30°.

(1)求∠APB的度数;

中考数学精编—初中数学圆专题复习

初中数学圆的专题圆 一、知识点梳理 知识点1:圆的定义: 1. 圆上各点到圆心的距离都等于 . 2. 圆是对称图形,任何一条直径所在的直线都是它的; 圆又是对称图形,是它的对称中心. 知识点2:弦、弧、半圆、优弧、同心圆、等圆、等弧、圆心角、圆周角等与圆有关的概念 1.在同圆或等圆中,相等的弧叫做 2. 同弧或等弧所对的圆周角,都等于它所对的圆心角的 . 3. 直径所对的圆周角是,90°所对的弦是 . 例1 P为⊙O内一点,OP=3cm,⊙O半径为5cm,则经过P点的最短弦长为________;?最长弦长为_______. 例2 如图,在Rt△ABC中,∠ACB=90度.点P是半圆弧AC的中点,连接BP交AC于点D,若 半圆弧的圆心为O,点D、点E关于圆心O对称.则图中的两个阴影部分的面积S 1,S 2 之间的关系是 () A.S 1<S 2 B.S 1 >S 2 C.S 1 =S 2 D.不确定 例3 如图,正方形的边长为a,以各边为直径在正方形内画半圆,所围成的图形(阴影部分)

的面积为() 例4 车轮半径为0.3m的自行车沿着一条直路行驶,车轮绕着轴心转动的转速为100转/分,则自行车的行驶速度() A.3.6π千米/时 B.1.8π千米/时 C.30千米/时 D.15千米/时 例5 如图,⊙O中,点A,O,D以及点B,O,C分别在一条直线上,图中弦的条数有() A.2条 B.3条 C.4条 D.5条 知识点3:圆心角、弧、弦、弦心距之间的关系 在同圆或等圆中,如果两个圆心角,两条弧,两条弦,两个圆周角中有一组量,那么它们所对应的其余各组量都分别 . 知识点4:垂径定理 垂直于弦的直径平分,并且平分; 平分弦(不是直径)的垂直于弦,并且平分 . 例1、如图(1)和图(2),MN是⊙O的直径,弦AB、CD?相交于MN?上的一点P,?∠APM=∠CPM.(1)由以上条件,你认为AB和CD大小关系是什么,请说明理由. (2)若交点P在⊙O的外部,上述结论是否成立?若成立,加以证明;若不成立,请说明理由.

初三数学圆的经典讲义

圆 目录 圆的定义及相关概念 垂经定理及其推论 圆周角与圆心角 圆心角、弧、弦、弦心距关系定理 圆内接四边形 会用切线, 能证切线 切线长定理 三角形的内切圆 了解弦切角与圆幂定理(选学) 圆与圆的位置关系 圆的有关计算 一.圆的定义及相关概念 【考点速览】 考点1: 圆的对称性:圆既是轴对称图形又是中心对称图形。经过圆心的每一条直线都是它的对称轴。圆心是它的对称中心。 考点2: 确定圆的条件;圆心和半径 ①圆心确定圆的位置,半径确定圆的大小; ②不在同一条直线上的三点确定一个圆; 考点3: 弦:连结圆上任意两点的线段叫做弦。经过圆心的弦叫做直径。直径是圆中最大的弦。 弦心距:圆心到弦的距离叫做弦心距。 弧:圆上任意两点间的部分叫做弧。弧分为半圆,优弧、劣弧三种。 (请务必注意区分等弧,等弦,等圆的概念) 弓形:弦与它所对应的弧所构成的封闭图形。 弓高:弓形中弦的中点与弧的中点的连线段。 (请务必注意在圆中一条弦将圆分割为两个弓形,对应两个弓高) 固定的已经不能再固定的方法:

求弦心距,弦长,弓高,半径时通常要做弦心距,并连接圆心和弦的一个端点,得到直角三角形。如下图: 考点4: 三角形的外接圆: 锐角三角形的外心在,直角三角形的外心在,钝角三角形的外心在。 考点5 点和圆的位置关系设圆的半径为r,点到圆心的距离为d, 则点与圆的位置关系有三种。 ①点在圆外?d>r;②点在圆上?d=r;③点在圆内? d<r; 【典型例题】 例1 在⊿ABC中,∠ACB=90°,AC=2,BC=4,CM是AB边上的中线,以点C为圆心,以5为半径作圆,试确定A,B,M三点分别与⊙C有怎样的位置关系,并说明你的理由。 例2.已知,如图,CD是直径,? = ∠84 EOD,AE交⊙O于B,且AB=OC,求∠A的度数。 M A B C

人教版九年级数学圆和正多边形专题

圆和正多边形 教学目标:了解正多边形和圆的有关概念;理解并掌握正多边形半径和边长、边心距、中心角之间的关系,会应用多边形和圆的有关知识画多边形。 教学重点:讲清正多边形和圆中心正多边形半径、中心角、弦心距、?边长之间的关系。 教学难点:理解四者:正多边形半径、中心角、?弦心距、边长之间的关系. 正多边形是轴对称图形,正n 边形有n 条对称轴;?正2n 边形是中心对称图形,其对称中心是正多边形对角线交点。 知识结构及知识点: 1、正多边形:各边相等,各角也相等的多边形是正多边形。 2、正多边形的外接圆:一个正多边形的各个顶点都在圆上,我们就说这个圆是这个正多边形的外接圆。把一个正多边形的外接圆的圆心叫做这个正多边形的中心,外接圆的半径叫做这个正多边形的半径,正多边形每一边所对的圆心角叫做正多边形的中心角,中心到正多边形的一边的距离叫做正多边形的边心距。 正n 边形每一个内角的度数为:(n-2)*180°/n 正n 边形的一个中心角的度数为:360°/n 正多边形的中心角与外角的大小相等。 3、圆内接四边形的性质:圆内接四边形的对角和相等,都是180°。 4、圆内接正n 边形的性质(n ≥3,且为自然数): (1) 当n 为奇数时,圆内接正n 边形是轴对称图形,有n 条对称轴;但不是中心对称图形。 (2) 当n 为偶数时,圆内接正n 边形即是轴对称图形又是中心对称图形,对称中心是正多边形的中心,即外接圆的圆心。 5、常见圆内接正多边形半径与边心距的关系:(设圆内接正多边形的半径为r ,边心距为d) (1)圆内接正三角形:d=12 r (2)圆内接正四边形:d=22 r (3)圆内接正六边形:2 r 6、常见圆内接正多边形半径r 与边长x 的关系: (1)圆内接正三角形:(2)圆内接正四边形:x= 22r (3)圆内接正六边形:x=r 7、正多边形的画法:画正多边形一般与等分圆正多边形周有关,要做半径为R 的正n 边形,只要把半径为R 的圆n 等分,然后顺次连接各点即可。 (1)用量角器等分圆周。 (2)用尺规等分圆(适用于特殊的正n 边形)。 8、定理1:把圆分成n(n≥3)等份: (1)依次连结各分点所得的多边形是这个圆的内接正n 边形;

人教版九年级数学上册圆知识点归纳及练习含答案

24.1.1 圆 知识点一圆的定义 o叫作圆圆的定义:第一种:在一个平面内,线段0A绕它固定的一个端点0旋转一周,另一个端点A所形成的图形叫作圆。固定的端点 心,线段0A叫作半径。第二种:圆心为0,半径为r的圆可以看成是所有到定点0的距离等于定长r的点的集合。 比较圆的两种定义可知:第一种定义是圆的形成进行描述的,第二种是运用集合的观点下的定义,但是都说明确定了定点与定长, 也就确定了圆。 知识点二圆的相关概念 (1)弦:连接圆上任意两点的线段叫做弦,经过圆心的弦叫作直径。 (2)弧:圆上任意两点间的部分叫做圆弧,简称弧。圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆。( 等圆:等够重合的两个圆叫做等圆。 (4)等弧:在同圆或等圆中,能够互相重合的弧叫做等弧。 弦是线段,弧是曲线,判断等弧首要的条件是在同圆或等圆中,只有在同圆或等圆中完全重合的弧才是等弧,而不是长度相等的弧。 24.1.2垂直于弦的直径 知识点一圆的对称性 圆是轴对称图形,任何一条直径所在直线都是它的对称轴。 知识点二垂径定理 (1)垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧。如图所示,直径为CD, AB是弦,且CDLAE, C ~|M A B AM=BM 垂足为M AC=BC AD=BD D 垂径定理的推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧如 上图所示,直径CD与非直径弦AB相交于点M CDLABAM=BMAC=BC AD=BD 注意:因为圆的两条直径必须互相平分,所以垂径定理的推论中,被平分的弦必须不是直径,否则结论不成立。 24.1.3弧、弦、圆心角 知识点弦、弧、圆心角的关系(1)弦、弧、圆心角之间的关系定理:在同圆或等圆中,相等的圆心角所对的弧相 等,所对的弦也相等。 (2)在同圆或等圆中,如果两个圆心角,两条弧,两条弦中有一组量相等,那么它们所对应的其余的各组量也相等。 (3)注意不能忽略同圆或等圆这个前提条件,如果丢掉这个条件,即使圆心角相等,所对的弧、弦也不一定相等,比如两个同心 圆中,两个圆心角相同,但此时弧、弦不一定相等。 24.1.4圆周角 知识点一圆周角定理

初三数学重点难点总复习专题圆生

初三数学重点难点总复 习专题圆生 集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]

2018年九年级数学总复习— 圆专题复习 一、圆的概念 集合形式的概念: 1、圆可以看作是到定点的距离等于定长的点的集合; 2、圆的外部:可以看作是到定点的距离大于定长的点的集合; 3、圆的内部:可以看作是到定点的距离小于定长的点的集合 轨迹形式的概念: 1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆; 2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线); 3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线; 4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线; 5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。 二、点与圆的位置关系 1、点在圆内?d r ?点A在圆外; 三、直线与圆的位置关系 1、直线与圆相离?d r >?无交点; 2、直线与圆相切?d r =?有一个交点; 3、直线与圆相交?d r +; 外切(图2)?有一个交点?d R r =+; 相交(图3)?有两个交点?R r d R r -<<+; A

内切(图4)? 有一个交点 ? d R r =-; 内含(图5)? 无交点 ? d R r <-; 五、垂径定理 垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。 推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧; (3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即: ①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD 中任意2个条件推出其他3个结论。 推论2:圆的两条平行弦所夹的弧相等。 即:在⊙O 中,∵AB ∥CD ∴弧AC =弧BD 例题1、 基本概念 1.下面四个命题中正确的一个是( ) A .平分一条直径的弦必垂直于这条直径 B .平分一条弧的直线垂直于这条弧所对的弦 C .弦的垂线必过这条弦所在圆的圆心 D .在一个圆内平分一条弧和它所对弦的直线必过这个圆的圆心 2.下列命题中,正确的是( ). A .过弦的中点的直线平分弦所对的弧 B .过弦的中点的直线必过圆心 C .弦所对的两条弧的中点连线垂直平分弦,且过圆心 D .弦的垂线平分弦所对的弧 图4 图5 B D

初三数学讲义

初三数学讲义(10)(圆) 知识梳理: 1.圆定义:圆可以看作是到定点的距离等于定长的点的集合 2. 垂径定理 垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。 推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧; (3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即: ①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD 中任意2个条件推出其他3个结论。 推论2:圆的两条平行弦所夹的弧相等。(不能 直接用)即:在⊙O 中,∵AB ∥CD ∴弧AC =弧BD 3. 圆心角定理:同圆或等圆中,相等的圆心角所对的弦相等,所对的弧相等,弦心距相等。 此定理也称1推3定理,即上述四个结论中, 只要知道其中的1个相等,则可以推出其它的3个结论, 即:①AOB DOE ∠=∠;②AB DE =; ③OC OF =;④ 弧BA =弧BD 4. 圆周角定理:同弧所对的圆周角等于它所对的圆心的角的一半。 即:∵AOB ∠和ACB ∠是弧AB 所对的圆心角和圆周角 ∴2AOB ACB ∠=∠ B D

圆周角定理的推论: 推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧是等弧; 推论2:半圆或直径所对的圆周角是直角;圆周角是直角所对的弧是半圆,所对的弦是直径。 5. 圆内接四边形 圆的内接四边形定理:圆的内接四边形的对角互补,外角等于它的内对角。 6. 切线的性质与判定定理 (1)切线的判定定理:过半径外端且垂直于半径的直线是切线;两个条件:过半径外端且垂直半径,二者缺一不可 (2)性质定理:切线垂直于过切点的半径(如上图) 推论1:过圆心垂直于切线的直线必过切点。 推论2:过切点垂直于切线的直线必过圆心。 以上三个定理及推论也称二推一定理: 即:①过圆心;②过切点;③垂直切线,三个条件中知道其中两个条件就能推出最后一个。7、切线长定理 切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,这点和圆心的连线平分两条切线的夹角。 即:∵PA 、PB 是的两条切线 ∴PA PB = PO 平分BPA ∠ B A

九年级 圆的专题-初三数学关于圆的大题

九年级 圆的专题(含答案) 1. 求证:若半径为R 的圆内接四边形对角线垂直,则以对角线交点到四边射影为顶点的四边形有内 切圆,且此圆半径不大于2 R . 解析 如图,已知圆内接四边形ABCD ,AC BD ⊥,垂足为P ,P 在AB 、BC 、CD 、DA 上的射影分别为E 、F 、G 、H ,则由几组四点共圆易知 sin sin sin 2AC BD EH FG AP BAD CP BCD AC BAD R ?+=∠+?∠=∠∠= ,同理EF HG +也是此值,因此四边形EFGH 有内切圆. 由于FEP CBD CAD HEP ∠=∠=∠=∠,故EP 平分FEH ∠,同理HP 、GP 、FP 平分另外3个角,P 为四边形EFGH 的内心.于是内切圆半径sin sin sin 2AD r PF PFG PF ACD PF PC ACB R =?∠=?∠=?=?∠? 2 2 24222AD PC AB AD PC PA R R R R R R ???==≤=.取到等号仅当P 为圆心时. 2. 如图(a),已知O e 的直径为AB ,1O e 过点O ,且与O e 内切于点B .C 为O e 上的点,OC 与 1O e 交于点D , 且满足OD CD >,点E 在线段OD 上,使得D 为线段CE 的中点,连结BE 并延长,与1O e 交于点F ,求证:BOC △∽1DO F △. 解析 如图(b),连结BD ,因为OB 为1O e 的直径,所以90ODB ∠=?,结合DC DE =,可得BDE △≌BDC △. 设BC 与1O e 交于点M ,连结OM ,则90OMB ∠=?,于是OM 平分COB ∠,从而有 122222BOC DOM DBM DBC DBE DBF DO F ∠=∠=∠=∠=∠=∠=∠. 又因为BOC ∠,1DO F ∠分别是等腰BOC △,1DO F △的顶角,所以BOC △∽1DO F △. 3. I 是ABC △的内心,线段AI 延长交ABC △的外接圆于D ,若3AB =,4AC =,且IBC DBC S S =△△, 求BC . 解析 如图,设BC 与AD 交于E ,则IE ED x ==,2BD CD ID x ===,又设AE y =,由于在等腰三角 形BCD 中,有熟知的结论22BD DE BE CE AE ED -=?=?,此即23x yx =,3y x =,故2AB AC AI BC IE +==, 72 BC =. C F G P H D B E A (b) (a)O 1A O B M E C D F O 1 O B E C D F

九年级数学圆的知识点总结大全

圆知识点总结 知识回顾 圆的周长: C=2πr或C=πd、圆的面积:S=πr2 圆环面积计算方法:S=πR2-πr2或S=π(R2-r2)(R是大圆半径,r是小圆半径) 知识要点 一、圆的概念 集合形式的概念: 1、圆可以看作是到定点的距离等于定长的点的集合; 2、圆的外部:可以看作是到定点的距离大于定长的点的集合; 3、圆的内部:可以看作是到定点的距离小于定长的点的集合 轨迹形式的概念: 1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆; 固定的端点O为圆心。连接圆上任意两点的线段叫做弦,经过圆心的弦叫直径。圆上任意两点之间的部分叫做圆弧,简称弧。 2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线; 3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线; 4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线; 5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。 二、点与圆的位置关系 1、点在圆内?d r ?点A在圆外; 三、直线与圆的位置关系 1、直线与圆相离?d r >?无交点; 2、直线与圆相切?d r =?有一个交点; 3、直线与圆相交?d r

外离(图1)? 无交点 ? d R r >+; 外切(图2)? 有一个交点 ? d R r =+; 相交(图3)? 有两个交点 ? R r d R r -<<+; 内切(图4)? 有一个交点 ? d R r =-; 内含(图5)? 无交点 ? d R r <-; 五、垂径定理 垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。 推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧; (3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即: ①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD 中任意2个条件推出其他3个结论。 推论2:圆的两条平行弦所夹的弧相等。 即:在⊙O 中,∵AB ∥CD ∴弧AC =弧BD 六、圆心角定理 顶点到圆心的角,叫圆心角。 圆心角定理:同圆或等圆中,相等的圆心角所对的弦相等,所对的弧相等,弦心距相等。 此 图4 图5 B D

初三数学圆知识点复习专题经典

《圆》 一、圆的概念 概念:1、圆可以看作是到定点的距离等于定长的点的集合; 2、圆的外部:可以看作是到定点的距离大于定长的点的集合; 3、圆的内部:可以看作是到定点的距离小于定长的点的集合 轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆; (补充)2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线); 3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线; 4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线; 5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。 二、点与圆的位置关系 1、点在圆内?d r ?点A在圆外; 三、直线与圆的位置关系 1、直线与圆相离?d r >?无交点; 2、直线与圆相切?d r =?有一个交点; 3、直线与圆相交?d r +; 外切(图2)?有一个交点?d R r =+; 相交(图3)?有两个交点?R r d R r -<<+; 内切(图4)?有一个交点?d R r =-; 内含(图5)?无交点?d R r <-; A

r R d 图3 r R d 五、垂径定理 垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。 推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧; (3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即: ①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD 中任意2个条件推出其他3个结论。 推论2:圆的两条平行弦所夹的弧相等。 即:在⊙O 中,∵AB ∥CD ∴弧AC =弧BD 例题1、 基本概念 1.下面四个命题中正确的一个是( ) A .平分一条直径的弦必垂直于这条直径 B .平分一条弧的直线垂直于这条弧所对的弦 C .弦的垂线必过这条弦所在圆的圆心 D .在一个圆内平分一条弧和它所对弦的直线必过这个圆的圆心 2.下列命题中,正确的是( ). A .过弦的中点的直线平分弦所对的弧 B .过弦的中点的直线必过圆心 C .弦所对的两条弧的中点连线垂直平分弦,且过圆心 D .弦的垂线平分弦所对的弧 例题2、垂径定理 1、 在直径为52cm 的圆柱形油槽内装入一些油后,截面如图所示,如果油的最大 深度为16cm ,那么油面宽度AB 是________cm. r R d 图4 r R d 图5 r R d O E D C A O C D A B

2017-2018九年级数学上册 圆中的基本概念及定理讲义 (新版)新人教版

圆中的基本概念及定理(讲义) 课前预习 在小学的时候,我们知道“一中同长”表示的是圆,中心称为,固定的线段长称为,还知道半径为r 的圆的周长为,面积为 . 在七年级我们学习了圆的另外一种说法:平面上,一条线段绕着它固定的一个端点旋转一周,另一个端点形成的图形叫做圆.固定的端点O 称为圆心,线段OA 称为半径. 一条弧AB 和经过这条弧的两条半径OA,OB 所组成的图形叫做扇形.顶点在圆心的角叫做圆心角.

知识点睛 1.在一个平面内,线段OA 绕它固定的一个端点O 旋转一周,另一个 端点A 所形成的图形叫做.其固定的端点O叫做,线段OA 叫做.以点O 为圆心的圆,记作,读作“圆O”. 2.圆中概念: 弧:,弧包括和; 弦:; 圆周角:; 圆心角:; 弦心距:; 等圆:; 等弧:. 3.圆的对称性: 圆是轴对称图形,其对称轴是; 圆是中心对称图形,其对称中心为.4.圆中基本定理: *(1)垂径定理: .推论: .(2)四组量关系定理:在中,如果 、、、 中有一组量相等,那么它们所对应的其余各组量都分别相等. (3)圆周角定理:.推论1:. 推论2:, .推论3:. 注:如果一个多边形的所有顶点都在同一个圆上,那么这个多边 形叫做圆内接多边形,这个圆叫做这个多边形的外接圆. 圆中处理问题的思路: ①找圆心,连半径,转移边; ②遇弦,作垂线,垂径定理配合勾股定理建等式; ③遇直径,找直角,由直角,找直径; ④由弧找角,由角看弧.

C D A R B 精讲精练 1. 如图,AB 是⊙O 的直径,弦 CD ⊥AB ,垂足为 M ,下列结论不一定成立 的是( ) ︵ ︵ A .CM =DM B . C B =B D C .∠ACD =∠ADC D .OM =MB 第 1 题图 第 2 题图 2. 如图,⊙O 的弦 AB 垂直平分半径 OC ,若 AB = 的半径为 . ,则⊙O 3. 工程上常用钢珠来测量零件上小圆孔的宽口,假设钢珠的直径是 10 mm ,测得钢珠顶端离零件表面的距离为 8 mm ,如图所示,则这个小圆孔的宽口 AB 的长度为 mm . 第 3 题图 第 4 题图 4. 如图,圆拱桥桥拱的跨度 AB =12 m ,桥拱高 CD =4 m ,则拱桥的直径为 . 5. 如图,在⊙O 中,直径 CD 垂直于弦 AB ,垂足为 E ,连接 OB , CB .已知⊙O 的半径为 2,AB = 2 ,则∠BCD = . 6 3

(完整版)九年级数学中考圆专题复习

九年级圆专题复习 第21题圆这道题对于升学考高中的学生来说是一道必得分题,随着中考复习的逐步深入,学生从知识上对于这道题已经很熟练了,都知道这道题的第(2)问主要考查圆与相似、三角函数、勾股定理等等。如果不进行归类,学生的脑海中还是显得比较杂,比较乱。在复习的过程中,教师如何引导学生进行归类,如何提升学生的转化能力,这些则是教学最需要突破的地方。如果教师能够引导学生对第21题考查的题型结构进行有效的归类,那么学生在面对这道题的时候,首先将这道题归纳为几个重要的熟悉的题型,然后利用自己对这几个题型的熟练理解,则可以大大提高解决问题的速度和准确性。 一、历年题型对比分析及2017年中考题型预测 1. (2013?武汉四月调考)在圆O 中,AB 为直径,PC 为弦,且PA=PC. (1)如图1,求证:OP//BC ; (2)如图2,DE 切圆O 于点C ,若DE//AB ,求tan ∠A 的值。 2. (2013?武汉中考)如图,已知△ABC 是⊙O 的内接三角形,AB =AC ,点P 是弧AB 的中点,连接PA 、PB 、PC (1)如图①,若∠BPC =60°,求证:AP AC 3 ; (2)如图②,若sin ∠BPC= 25 24 ,求tan ∠PAB 的值。 3. (2014?武汉四月调考)已知:P 为⊙O 外一点,PA 、PB 分别切⊙O 于A 、B 两点,点C 为⊙O 上一点. (1)如图1,若AC 为直径,求证:OP ∥BC ; (2)如图2,若sin ∠P=,求tan ∠C 的值.

4.(2014?武汉中考)如图,AB 是⊙O 的直径,C 、P 是弧AB 上两点,AB =13,AC =5 (1) 如图(1),若点P 是弧AB 的中点,求PA 的长 (2) 如图(2),若点P 是弧BC 的中点,求PA 得长 5.(2015?武汉四月调考)已知:⊙O 为Rt △ABC 的外接圆,点D 在边AC 上,AD =AO . (1)如图1,若弦BE ∥OD ,求证:OD=BE ; (2)如图2,点F 在边BC 上,BF =BO ,若OD =2 2 ,OF =3,求⊙O 的直径. 6.(2015?武汉中考)如图,AB 是⊙O 的直径,∠ABT=45°,AT=AB . (1)求证:AT 是⊙O 的切线; (2)连接OT 交⊙O 于点C ,连接AC ,求tan ∠TAC . 7.(2016?武汉四月调考) 已知⊙O 为△ABC 的外接圆,点E 是△ABC 的内心,AE 的延长线交BC 于点F ,交⊙O 于点D . (1)如图1,求证:BD= ED ; (2)如图2,AO 为⊙O 的直径,若BC= 6,sin ∠BAC=5 3 ,求OE 的长. E D O A B C F D O A B C

最新九年级数学知识点:圆的认识知识点

多阅读和积累,可以使学生增长知识,使学生在学习中做到举一反三。在此本站初中频道为您提供圆的认识知识点,希望给您学习带来帮助,使您学习更上一层楼! 圆的定义: 圆是一种几何图形。当一条线段绕着它的一个端点在平面内旋转一周时,它的另一个端点的轨迹叫做圆。 在一个个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径。 相关定义: 1 在同一平面内,到定点的距离等于定长的点的集合叫做圆。这个定点叫做圆的圆心。图形一周的长度,就是圆的周长。 2 连接圆心和圆上的任意一点的线段叫做半径,字母表示为r。 3 通过圆心并且两端都在圆上的线段叫做直径,字母表示为d。直径所在的直线是圆的对称轴。 4 连接圆上任意两点的线段叫做弦。最长的弦是直径,直径是过圆心的弦。 5 圆上任意两点间的部分叫做圆弧,简称弧。大于半圆的弧称为优弧,优弧是用三个字母表示。小于半圆的弧称为劣弧,劣弧用两个字母表示。半圆既不是优弧,也不是劣弧。优弧是大于180度的弧,劣弧是小于180度的弧。 6 由两条半径和一段弧围成的图形叫做扇形。 7 由弦和它所对的一段弧围成的图形叫做弓形。 8 顶点在圆心上的角叫做圆心角。 9 顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。 10 圆周长度与圆的直径长度的比值叫做圆周率。它是一个无限不循环小数,通常用π表示,π=3.14159265……在实际应用中,一般取π≈3.14。 11圆周角等于相同弧所对的圆心角的一半。 12 圆是一个正n边形(n为无限大的正整数),边长无限接近0但不等于0。 圆的集合定义: 圆是平面内到定点的距离等于定长的点的集合,其中定点是圆心,定长是半径。 ? 圆的字母表示: 以点O为圆心的圆记作“⊙O”,读作O”。 圆—⊙ ; 半径—r或R(在环形圆中外环半径表示的字母); 弧—⌒ ; 直径—d ; 扇形弧长—L ; 周长—C ; 面积—S。 圆的性质: (1)圆是轴对称图形,其对称轴是任意一条通过圆心的直线。 圆也是中心对称图形,其对称中心是圆心。 垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的2条弧。 逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的2条弧。 (2)有关圆周角和圆心角的性质和定理 ①在同圆或等圆中,如果两个圆心角,两个圆周角,两组弧,两条弦,两条弦心距中有

沪科版数学 九年级下册 -圆 讲义

圆 考点1:圆以及与圆有关的概念 考点2:圆的性质定理垂径定理 圆周角定理 切线长定理 三角形的内切圆和外接圆 圆的内接多边形定理 圆 相离 考点3:与圆有关的位置关系外切 相交 内切 内含 考点4:与圆有关的计算弧长,扇形面积的计算 圆柱,圆锥相关计算 考点一:圆以及与圆有关的概念 【笔记】知识点一圆的定义

(1)在一个平面内,线段绕它固定的一个端点旋转一周,另一个端点随之旋转所形成的图形叫做圆,固定的端点叫圆心,线段叫做半径; (2)圆是到定点的距离等于定长的点的集合。 知识点二与圆有关的概念 (1)半径:圆心到圆周的距离;直径:经过圆心的弦叫做直径。直径是半径的2倍。(2)弦:连接圆上任意两点的线段叫做弦。弦心距:从圆心到弦的距离叫圆心距。 (3)弧:圆上任意两点间的部分叫弧。 优弧:大于半圆的弧叫做优弧。 劣弧:小于半圆的弧叫做劣弧。 半圆:圆的任意一条直径的两个端点分圆成两条弧,每一条弧.都叫做半圆。 等弧 ..:在同圆或等圆中,能够互相重合的弧叫做等弧。(在大小不等的两个圆中,不存在等弧。 (4)圆周角:顶点在圆周上,两条边都与圆相交的角。 (5)圆心角:顶点在圆心上,以半径为两条边的角。 (6)切线:直线和圆有唯一公共点时,这条直线是圆的切线。在经过圆外一点的切线上,这点和切点之间的线段的长,叫做这点到圆的切线长。 (7)弓形:由弦及其所对的弧 ......组成的图形叫做弓形。(一弦对两弧) (8)同心圆:圆心相同,半径不相等 .....的两个圆叫做同心圆。 【例1】下列判断中正确的是( ) A. 长度相等的弧是等弧 B. 平分弦的直线也必平分弦所对的两条弧 C. 弦的垂直平分线必平分弦所对的两条弧 D. 平分一条弧的直线必平分这条弧所对的弦 【答案】C 【例2】下列说法中:(1)圆心角相等,所对的弦相等。(2)过圆心的线段是直径。(3)长度相等的弧是等弧。(4)弧是半圆。(5)三点确定一个圆。(6)平分弦的直径垂直于弦,并且平分弦所对的弧。(7)弦的垂直平分线必经过圆心正确的个数有( ) A. 1个 B. 2个 C. 3个 D. 4个 【答案】A 【例3】如图,在△ABC中,∠ACB=90°,∠A=40°,以C为圆心, CB为半径的圆交AB于点D,连接CD,则∠ACD的度数为() A. 10° B. 15° C. 20° D. 25°

九年级数学证明圆的切线专题

证明圆的切线专题 证明一条直线是圆的切线,主要有两个思路: 1是证这条直线到圆心的距离等于这个圆的半径: 2,是利用切线的判判定定理,证明这条直线经过一条半径的外端,并且和这条半径垂直. 1不常用,一般常用2. 1. 如图,在Rt ABC ?中, 90C ?∠=,点D 是AC 的中点,且90A CDB ?∠+∠=,过点,A D 作O ,使圆心O 在AB 上,O 与AB 交于点E . (1)求证:直线BD 与O 相切; (2)若:4:5,6AD AE BC ==,求O 的直径. 2.如图,在Rt △ABC 中,∠C=90o,O 、D 分别为AB 、BC 上的点,经过A 、D 两点的⊙O 分别交AB 、AC 于点E 、F ,且D 为EF 的中点。 (1)(4分)求证:BC 与⊙O 相切 (2)(4分)当,∠CAD=30o时,求AD 的长。 3. 如图,已知CD 是ΘO 的直径,AC ⊥CD ,垂足为C ,弦DE ∥OA ,直线AE 、CD 相交于点B . (1)求证:直线AB 是OO 的切线; (2)如果AC =1,BE =2,求tan ∠OAC 的值.

4. 如图,在△ABC 中,AB=AC ,以AB 为直径作⊙O ,交BC 于点D ,过点D 作DE ⊥AC ,垂足为E 。 (1)求证:DE 是⊙O 的切线; (2)如果BC =8,AB =5,求CE 的长。 5.如图,在△ABC 中,∠C=90°,∠ACB 的平分线交AB 于点O ,以O 为圆心的⊙O 与AC 相切于点D . (1)求证:⊙O 与BC 相切; (2)当AC=3,BC=6时,求⊙O 的半径 6. 如图,AB 是⊙O 的直径,AM ,BN 分别切⊙O 于点A ,B ,CD 交AM ,BN 于点D ,C ,DO 平分∠A DC . (1)求证:CD 是⊙O 的切线; (2)若AD=4,BC=9,求⊙O 的半径R . 7.如图,在平面直角坐标系中,△ABC 是⊙O 的内接三角形,AB =AC ,点P 是?AB 的中点,连接P A ,PB ,PC . (1)如图①,若∠BPC =60°,求证: AP AC 3=; (2)如图②,若2524sin = ∠BPC ,求PAB ∠tan 的值.

九年级数学圆知识点归纳

:从网络收集整理.word版本可编辑. 圆知识点归纳 一、圆的定义。 1、以定点为圆心,定长为半径的点组成的图形。 2、在同一平面内,到一个定点的距离都相等的点组成的图形。 二、圆的各元素。 1、半径:圆上一点与圆心的连线段。 2、直径:连接圆上两点有经过圆心的线段。 3、弦:连接圆上两点线段(直径也是弦)。 4、弧:圆上两点之间的曲线部分。半圆周也是弧。 (1)劣弧:小于半圆周的弧。 (2)优弧:大于半圆周的弧。 5、圆心角:以圆心为顶点,半径为角的边。 6、圆周角:顶点在圆周上,圆周角的两边是弦。 7、弦心距:圆心到弦的垂线段的长。 三、圆的基本性质。 1、圆的对称性。 (1)圆是轴对称图形,它的对称轴是直径所在的直线。 (2)圆是中心对称图形,它的对称中心是圆心。 (3 )圆是旋转对称图形。 2、垂径定理。 (1)垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧。 (2)推论: ?平分弦(非直径)的直径,垂直于弦且平分弦所对的两条弧。 ?平分弧的直径,垂直平分弧所对的弦。 3、圆心角的度数等于它所对弧的度数。圆周角的度数等于它所对弧度数的一半。(1)同弧所对的圆周角相等。 (2)直径所对的圆周角是直角;圆周角为直角,它所对的弦是直径。 4、在同圆或等圆中,两条弦、两条弧、两个圆周角、两个圆心角、两条弦心距 五对量中只要有一对量相等,其余四对量也分别相等。 5、夹在平行线间的两条弧相等。 6、设⊙O的半径为r,OP=d。 7、(1 (2 (直角三角形的外心就是斜边的中点。) 8、直线与圆的位置关系。d表示圆心到直线的距离,r表示圆的半径。 直线与圆有两个交点,直线与圆相交;直线与圆只有一个交点,直线与圆相切;直线与圆没有交点,直线与圆相离。 2 9A(x1,y1)、B(x2,y2)。 d= r 直线与圆相切。 d< r(r > d直线与圆相交。 d > r(r d点P在⊙O内 d > r(r

2020年九年级数学中考专题复习:隐形圆求最值问题(含答案)

隐形圆问题 一、确定动点轨迹是圆 【例题 1】如图,已知圆 C 的半径为 3,圆外一定点 O 满足OC=5,点 P 为圆C 上一动点, 经过点 O 的直线 l 上有两点 A ,且 OA=OB ,∠APB=90°,l 不过点 C ,则 AB 的最小值为 【举一反三】 1、如图,在边长为 2的菱形 ABCD 中,∠ A=60°, M 是 AD 边的中点, N 是 AB 边上的一动 点,将△ AMN 沿 MN 所在直线翻折得到△ A'MN,连接 A'C ,则 A'C 长度的最小值是 3、如图,已知等边 △ABC 的边长为 8,点 P 是 AB 边上的一个动点 (与点 A 、B 不重合 ).直线 l 是经过点 P 的一条直线, 把△ABC 沿直线 l 折叠,点 B 的对应点是点 B'.当PB=6时,在直 线 l 变化过程中,则 △ ACB '面积的最大值是 . 4、如图,矩形 ABCD 中,AB =4,BC=8,P 、Q 分別是直线 BC 、AB 上的两个动点, AE =2, △AEQ 沿 EQ 翻折形成△ FEQ ,连接 PF 、PD ,则 PF+PD 的最小值是 2、如图,在 Rt △ABC 中, ∠C=90°,AC =6, 为边 BC 上的动点,将 △ CEF 沿直线 EF 翻折, 小值是 BC=8,点 F 在边 AC 上,并且 CF = 2,点 E 点 C 落在点 P 处,则点 P 到 边 AB 距离的最 第 2

二、定边对直角 知识回顾 :直径所对的圆周角是直角 构造思路 :一条定边所对的角始终为直角,则直角顶点轨迹是以定边为直径的圆或圆弧 图形释义 : 【例题 1】已知正方形 ABCD 边长为 2,E 、F 分别是 BC 、CD 上的动点,且满足 BE = CF , 连接 AE 、 BF ,交点为 P 点,则 PC 的最小值为 【举一反三】 1、如图, E 、F 是正方形 ABCD 的边 AD 上的两个动点,满足 AE =DF ,连接 CF 交 BD 于 点 G ,连接 BE 交 AG 于点 H ,若正方形边长为 2,则线段 DH 长度的最小值是 2、如图,Rt △ABC 中,AB ⊥BC ,AB=6,BC =4,P 是△ABC 内部的一个动点, 且满足 ∠PAB =∠ PBC ,则线段 CP 长的最小值是 若 AB 是一条定线段,且 ∠APB-90 °, 则 P 点轨迹是以 AB 为直径的圆

精品 九年级数学上册 圆的基本性质讲义+同步练习题

圆的基本性质 知识点 圆的定义 几何定义:线段OA,绕O点旋转一周得到的图形,叫做圆。其中,O为圆心,OA为半径。 集合定义:到定点等于定长的所有点的集合。其中,定点为圆心,定长为半径。 圆的书写格式: 圆的对称性 (1)圆是轴对称图形,它的对称轴是直径所在的直线。 (2)圆是中心对称图形,它的对称中心是圆心。 (3)圆是旋转对称图形。 与圆有关的线段 半径:圆上一点与圆心的连线段。确定一个圆的要素是圆心和半径。 弦:连结圆上任意两点的线段叫做弦。 直径:经过圆心的弦叫做直径。 弦心距:圆心到弦的垂线段的长。 弧:圆上任意两点间的部分叫做圆弧,简称弧。 劣弧:小于半圆周的圆弧叫做劣弧。表示方法: 优弧:大于半圆周的圆弧叫做优弧。表示方法: 在同圆或等圆中,能够互相重合的弧叫做等弧。 注意:同弧或等弧对应的弦相等。 垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。 注意:定理中的“垂直于弦的直径”可以是直径,也可以是半径,深圳可以是过圆心的直线或线段;该定理也可以理解为:若一条直线具有两条性质:①过圆心;②垂直于一条弦,则此直线具有另外三条性质:①平分此弦;②平分此弦所对的优弧;③平分此弦所对的劣弧. 推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。 (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧。 (3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧。 推论2:圆的两条平行弦所夹的弧相等。 在下列五个条件中:①CD是直径;②CD⊥AB;③AM=BM;④AC=BC;⑤AD=BD.只要具备其中两个条件,就可推出其余三个结论. 注意:(1)在圆中,与已知弦(非直径)相等的弦共有条;共端点且相等的弦共有条。 (2)在圆中,与已知弦(非直径)平行的弦共有条;平行且相等的弦共有条。 例1.如图:OA、OB为⊙O的半径,C、D分别为OA、OB的中点,求证:AD=BC.

中考初三数学专题隐形圆

中考初三数学专题 隐形圆 辅助圆 模型一:“隐形圆”解点的存在性 模型分析“定边、定角”圆上找.具体来说:当边长一定,其所对角度也一定时,该角顶点 在两段弧上. 1. 如图,已知线段AB. (1)请你在图①中画出使∠APB=90°的所有满足条件的点P; (2)请你在图②中画出使∠APB=60°的所有满足条件的点P; (3)请你在图③中画出使∠APB=45°的所有满足条件的点P. 2. (1)如图①,在矩形ABCD中,AB=2,BC=5.请你在图①中矩形ABCD的边上画出使∠BPC=90°的点P; (2)如图②,在矩形ABCD中,AB=2,BC=.请你在图②中矩形ABCD的边上画出使∠BPC=60°的点P;(3)如图③,在正方形ABCD中,AB=2,BC= .请你在图③正方形ABCD的边上画出使∠BPC=45°的点P. 3. 如图,线段AB和动点C构成△ABC,AB=2,∠ACB=120°,则△ABC周长的最大值为___________. . 模型二:“隐形圆”解角的最值 模型分析同弧所对的圆周角相等,其所对的“圆外角”小于圆周角,“圆内角”大于圆周角. 如图①,∠ B=∠D=∠E;如图②,∠F>∠B>∠G.

4. 如图,线段AB是球门的宽,球员(前锋)在距球门前一定距离的直线b上,在直线b上是否存在一点P,使得球员在P点射门更易进球?若存在这样的点,请找出;若不存在,请说明理由. 5. 如图,点A与点B的坐标分别是(1,0),(5,0),点P是该直角坐标系内的一个动点. (1)使∠APB=30°的点P有________个; (2)若点P在y轴上,且∠APB=30°,求满足条件的点P的坐标; (3)当点P在y轴上移动时,∠APB是否有最大值?若有,求点P的坐标,并说明此时∠APB最大的理由;若没有,请说明理由. 模型三:“隐形圆”解线段的最值 模型分析平面内一定点D和⊙O上动点E的连线中,当连线过圆心O时,线段DE有最大值和最小值. 具体分以下三种情况讨论(规定OD=d,⊙O半径为r): 第一种:当点D在⊙O外时,d>r,如图①、②:当D,E,O三点共线时,线段DE出现最值,DE的最大值为(d+r),DE的最小值为(d-r); 第二种:当点D在圆上时,d=r,如图③:当D,E,O三点共线时,线段DE出现最值, DE的最大值为d+r=2r(即为⊙O的直径),DE的最小值为d-r=0(点D,E重合); 第三种:当点D在⊙O内时,d

相关文档
相关文档 最新文档