文档库 最新最全的文档下载
当前位置:文档库 › 冷热水管道系统的压力损失

冷热水管道系统的压力损失

冷热水管道系统的压力损失
冷热水管道系统的压力损失

冷热水管道系统的压力损失

无论在供暖、制冷或生活冷热水系统,管道是传送流量和热量必不可少的部分。计算管道系统的压力损失有助于: (1) 设选择正确的管径。

(2) 设选择相应的循环泵和末端设备。也就是让系统水循环起来并且达到热能传送目的

的设备。

如果不进行准确的管道选型,会导致系统出现噪音、腐蚀(比如管道阀门口径偏小)、严重的能耗及设备的浪费(比如管道阀门水泵等偏大)等。

管道系统的水在流动时遇到阻力而造成其压力下降,通常将之简称为压降或压损。

压力损失分为延程压力损失和局部压力损失:

— 延程压力损失指在管道中连续的、一致的压力损失。

— 局部压力损失指管道系统内特殊的部件,由于其改变了水流的方向,或者使局部水流通道变窄(比如缩径、三通、接头、阀门、过滤器等)所造成的非连续性的压力损失。

以下我们将探讨如何计算这两种压力损失值。在本章节内我们只讨论流动介质为水的管道系统。

一、 延程压力损失的计算方式

对于每一米管道,其水流的压力损失可按以下公式计算

其中:r=延程压力损失 Pa/m Fa=摩擦阻力系数

ρ=水的密度 kg/m 3

v=水平均流速 m/s

D=管道内径 m

公式(1)

延程压力损失

局部压力损失

管径、流速及密度容易确定,而摩擦阻力系数的则取决于以下两个方面:

(1)水流方式,(2)管道内壁粗糙程度

表1:水密度与温度对应值

水温°C10 20 30 40 50 60 70 80 90 密度 kg/m3999.6 998 995.4 992 987.7 982.8 977.2 971.1 964.6

1.1 水流方式

水在管道内的流动方式分为3种:

—分层式,指水粒子流动轨迹平行有序(流动方式平缓有规律)

—湍流式,指水粒子无序运动及随时变化(流动方式紊乱、不稳定)

—过渡式,指介于分层式和湍流式之间的流动方式。

流动方式通过雷诺数(Reynolds Number)予以确定:

其中:

Re=雷诺数

v=流速m/s

D=管道内径m。

?=水温及水流动力粘度,m2/s

表2:水温及相关水流动力粘度

水温m2/s cSt °E

10°C 1.30×10-6 1.30 1.022 20°C 1.02×10-6 1.02 1.000 30°C 0.80×10-6 0.80 0.985 40°C 0.65×10-6 0.65 0.974 50°C 0.54×10-6 0.54 0.966 60°C 0.47×10-6 0.47 0.961 70°C 0.43×10-6 0.43 0.958 80°C 0.39×10-6 0.39 0.956 90°C 0.35×10-6 0.35 0.953

通过公式2计算出雷诺数就可判断水流方式:

Re<2,000:分层式流动

Re:2,000-2,500:过渡式流动

Re>2,500: 湍流式流动

由于过渡式流动方式的雷诺数范围较窄,且其流动方式多变,因此大多将大于2,000的归为湍流式流动。将雷诺数2,000带入以下公式计算出的流速就是分层式流动和湍流式流动的界线

由公式(3)可以看出,管径与流速是成反比的,也就是说,管径越小,其流速也更高。 表1简单地示范了几个口径在Re=2,000时的流速。 表3 界定水流方式的速度 温度

粘度 m 2/s

1/2″ 16.4mm

1″ 27.4 mm

2″ 53.2 mm

10°C 1.30×10-6 0.16 0.09 0.05 50°C 0.54×10-6 0.07 0.04 0.02 80°C

0.39×10-6

0.05 0.03 0.01

1.2 管道内壁粗糙程度

管道内壁的粗糙程度分为:

(1) 低粗糙程度:多指铜管、不锈钢管和塑料管道。 (2) 中粗糙程度:多指黑钢管、镀锌钢管 1. 3 摩擦阻力系数Fa 的计算方式

在分层式流动方式下,Fa 的计算公式为

对于湍流式流动方式,以前常使用Colebrook 公式。然而,这个公式计算较为复杂。现在则普遍使用Blasius 公式:

针对低粗糙程度管道,公式为

针对中粗糙程度管道,公式为

1.3 湍流式流动延程压力损失的计算方法

将以上计算出的Fa值(公式4)代入公式(1)中,则可以根据其它已知的数据计算出延程阻力。

在实际计算时,往往更多地将流速转换为流量,因此公式也相应地改变为以下公式:

r=1,153,983 x ? x ρ x G / D4公式 7

其中:

r=延程阻力:mm/m

?=动力粘度:m2/s

ρ=水密度:kg/ m3

G=流量:l/h

D=管内径:mm

分层流动方式的流速较低,往往只存在于以下两种情况:

1,没有循环泵的自然循环系统,因为没有强制循环所以流速较低;

2,输送燃油的管道,由于其粘度较高因此流速较低。

1. 4 分层式流动延程压力损失的计算方法

将以上计算出的Fa值(公式5, 6)代入公式(1)中,则可以根据其它已知的数据计算出延程阻力。

在实际计算时,往往更多地将流速转换为流量,因此公式也相应地改变为以下公式:r =14.68×ν0.25×ρ×G1.75/D4.75 公式 8

r =3.3×ν0.13×ρ×G1.87/D5.01 公式 9

其中:

r=延程阻力:mm/m

?=动力粘度:m2/s

ρ=水密度:kg/ m3

G=流量:l/h

D=管内径:mm

公式8针对低粗糙度管道,公式9针对中粗糙度管道。

湍流式流动方式的低粗糙度管道主要指铜管和各类塑料管;而中粗糙度管道则指各类钢管。

1. 5 管道延程压力损失的图表图示

以上所讲到的计算管道阻力的公式在实际运用时往往不是很方便。因此我们提供了各种管道不同管径的压力图表和曲线图,以便能迅速、直观地得到数据。

延程压力损失(r )表

这种表根据管道管径和流量提供相应的压力损失(r )值。同时,在流量值下也注明了流速,以便能了解此流速是否过高而会带来噪音和管道腐蚀。

同时,表格还根据10°C ,50°C ,80°C 这三个不同水温制定,因为在不同水温下的压力损失也不一样。 比如说,内径20mm 的PEX 管,在10°C 时,其延程压力损失为r=39.4mm/m, 而在80°C 时,其压力损失为28.3mm/m.

由于篇幅关系,我们在这儿只提供了一个水温在80°C 时钢管的延程压力损失表仅供参考。更为详细的表格可向我公司技术部咨询。见表4

延程压力损失(r )曲线图

同样的压力损失、流量、管径、流速的数据也可以用曲线图示的方法表达。见图1

二、 局部压力损失计算方法

局部压力损失指管道系统内一些元件, 如阀门、弯头、三通、缩径、接头、过滤器等,它们造成水流方向或流通面积改变,因此在其元件内部所产生的压力损失。计算局部压力损失分为以下3种方法:

2.1 直接计算法

根据局部元件的形状,大小而确定阻力系数,然后再使用相关的公式:

Z=局部压力损失 Pa ξ =局部阻力系数

ρ=水密度 kg/ m 3 v=水流速 m/s

如果Z 用mm 表示,则转换公式为:

其中,局部阻力系数ξ可根据相关资料查阅(可参考CALEFFI技术手册1)

2.2额定流量计算法

这种方法通常运用于阀门的阻力计算。它根据制造厂家在实验室得出的, 并由第三方检测机构认证的, 在水流通过阀门时,阀前与阀后压力差1bar或0.01bar时的流量值为额定流量进行计算。

KV:阀前后压差为1bar的额定流量计算公式:

ΔP=(G / KV)2 公式 12

ΔP =局部压力损失bar

G=流量:m3/h

KV=额定流量(压差=1bar)m3/h

KV值的计算方法一般运用于口径和流量较大的阀门。

KV0.01:阀前后压差为0.01bar的额定流量计算公式:

ΔP= 102 x(G / KV0.01)2 公式 13

ΔP =局部压力损失mm

G=流量l/h

KV0.01=额定流量(压差=0.01bar)l/h

KV0.01值的计算方法一般运用于口径及流量相对较小的阀门.

范例: 计算一个口径为1/2”的手动温控阀在流量600 l/h时的压力损失值, KV0.01值:399 l/h:

计算: ΔP=102 x (G/KV0.01)2= 102 x (600/399)2=271mm

2.3对应管径计算法

这种方法是:将每个部件局部的压力损失转换为相对应的一段管道作为计算,即一段管道的压力损失等于这一部分的压力损失。

这种方法较为简便,但是它不能准确地反应压力损失,只能根据近似值估计。因此并未广泛地得到使用。

在下一期的章节里,我们将更为详细地讨论管道系统内流量与压力损失的变化关系,及其平衡方式.。

管道压力损失计算

冷热水管道系统的压力损失 无论在供暖、制冷或生活冷热水系统,管道是传送流量和热量必不可少的部分。计算管道系统的压力损失有助于: (1) 设选择正确的管径。 (2) 设选择相应的循环泵和末端设备。也就是让系统水循环起来并且达到热能传送目的 的设备。 如果不进行准确的管道选型,会导致系统出现噪音、腐蚀(比如管道阀门口径偏小)、严重的能耗及设备的浪费(比如管道阀门水泵等偏大)等。 管道系统的水在流动时遇到阻力而造成其压力下降,通常将之简称为压降或压损。 压力损失分为延程压力损失和局部压力损失: — 延程压力损失指在管道中连续的、一致的压力损失。 — 局部压力损失指管道系统内特殊的部件,由于其改变了水流的方向,或者使局部水流通道变窄(比如缩径、三通、接头、阀门、过滤器等)所造成的非连续性的压力损失。 以下我们将探讨如何计算这两种压力损失值。在本章节内我们只讨论流动介质为水的管道系统。 一、 延程压力损失的计算方式 对于每一米管道,其水流的压力损失可按以下公式计算 其中:r=延程压力损失 Pa/m Fa=摩擦阻力系数 ρ=水的密度 kg/m 3 v=水平均流速 m/s D=管道内径 m 公式(1) 延程压力损失 局部压力损失

管径、流速及密度容易确定,而摩擦阻力系数的则取决于以下两个方面: (1)水流方式,(2)管道内壁粗糙程度 表1:水密度与温度对应值 水温°C10 20 30 40 50 60 70 80 90 密度 kg/m3999.6 998 995.4 992 987.7 982.8 977.2 971.1 964.6 1.1 水流方式 水在管道内的流动方式分为3种: —分层式,指水粒子流动轨迹平行有序(流动方式平缓有规律) —湍流式,指水粒子无序运动及随时变化(流动方式紊乱、不稳定) —过渡式,指介于分层式和湍流式之间的流动方式。 流动方式通过雷诺数(Reynolds Number)予以确定: 其中: Re=雷诺数 v=流速m/s D=管道内径m。 ?=水温及水流动力粘度,m2/s 表2:水温及相关水流动力粘度 水温m2/s cSt °E 10°C 1.30×10-6 1.30 1.022 20°C 1.02×10-6 1.02 1.000 30°C 0.80×10-6 0.80 0.985 40°C 0.65×10-6 0.65 0.974 50°C 0.54×10-6 0.54 0.966 60°C 0.47×10-6 0.47 0.961 70°C 0.43×10-6 0.43 0.958 80°C 0.39×10-6 0.39 0.956 90°C 0.35×10-6 0.35 0.953 通过公式2计算出雷诺数就可判断水流方式: Re<2,000:分层式流动 Re:2,000-2,500:过渡式流动

水泵管道压力损失计算公式

水泵的管道压力损失计算,水泵管道压力损失计算公式 点击次数:7953 发布时间:2011-10-28 管道压力损失,管道压力损失计算公式 为了方便广大用户在水泵选型时确定管道压力损失博禹公司技术工程师特意在此发布管道压力损 失计算公式供大家选型参考。通过水泵性能曲线可以看出每台水泵在一定转速下,都有自己的性能曲线,性能曲线反映了水泵本身潜在的工作能力,这种潜在的工作能力,在泵站的实际运行中,就表现为在某一特定条件下的实际工作能力。水泵的工况点不仅取决于水泵本身所具有的性能,还取决于进、出水位与进、出水管道的管道系统性能。因此,工况点是由水泵和管路系统性能共同决定的。 水泵的管道系统,包括管路及其附件。由水力学知,管路水头损失包括管道沿程水头 损失与局部损失。 Σh=Σhf+Σhj=Σλι/d v2/2g+Σζv2/2g (3-1) 式中Σh—管道水头损失,m; Σhf--管道沿程水头损失,m; Σhj--管道局部水头损失,m; λ--沿程阻力系数; ζ--局部水头损失系数; ι--管道长度,m; d--管道直径,m; v --管道中水流的平均流速,m/s。 对于圆管v=4Q/πd2,则式(3-1)可写成下列形式

Σh=(Σλι/12.1d5+Σζ/12.1d4)Q2=(ΣS沿+ΣS局)Q2=SQ2 (3-2) 式中S沿--管道沿程阻力系数,S2/m5,当管材、管长和管径确定后,ΣS沿值为一常数;S局--管道局部阻力系数,S2/m5,当管径和局部水头损失类型确定后,ΣS局值为一常数; S--管路沿程和局部阻力系数之和,S2/m5。 由式(3-2)可以看出,管路的水头损失与流量的平方成正比,式(3-2)可用一条顶点在原点的二次抛物线表示,该曲线反映了管路水头损失与管路通过流量之间的规律,称为管路水头损失特性曲线。如图3-1所示。 在泵站设计和运行管理中,为了确定水泵装置的工况点,可利用管路水头损失特性曲线,并将它与水泵工作的外界条件联系起来。这样,单位重力液体通过管路系统时所需要的能 量H需为 H需=H st+v2出-v2进/2g+Σh (3-3) 式中H需--水泵装置的需要扬程,m; H st--水泵运行时的净扬程,m; v2出-v2进/2g --进、出水的流速水头差,m; Σh--管路水头损失,m。 若进、出水池的流速水头差较小可忽略不计,则式(3-3)可简化为 H需=H st+Σh=H st=SQ2 (3-4) 利用式(3-4)可以画出如图3-2所示的二次抛物线,该曲线上任意一点表示水泵输送某一流量并将其提升H st高度时,管道中每位重力的液体所消耗的能量。因此,称该曲线为水泵装置的需要扬程或管路系统特性曲线。 本文档部分内容来源于网络,如有内容侵权请告知删除,感谢您的配合!

水泵管道压力损失计算公式资料

水泵管道压力损失计 算公式

精品资料 水泵的管道压力损失计算,水泵管道压力损失计算公式 点击次数:7953 发布时间:2011-10-28 管道压力损失,管道压力损失计算公式 为了方便广大用户在水泵选型时确定管道压力损失博禹公司技术工程师特意在此发布管道压力损失计算公式供大家选型参考。通过水泵性能曲线可以看出每台水泵在一定转速下,都有自己的性能曲线,性能曲线反映了水泵本身潜在的工作能力,这种潜在的工作能力,在泵站的实际运行中,就表现为在某一特定条件下的实际工作能力。水泵的工况点不仅取决于水泵本身所具有的性能,还取决于进、出水位与进、出水管道的管道系统性能。因此,工况点是由水泵和管路系统性能共同决定的。 水泵的管道系统,包括管路及其附件。由水力学知,管路水头损失包括管道沿程水头损失与局部损失。 Σh=Σhf+Σhj=Σλι/d v2/2g+Σζv2/2g (3-1) 式中Σh—管道水头损失,m; Σhf--管道沿程水头损失,m; Σhj--管道局部水头损失,m; λ--沿程阻力系数; ζ--局部水头损失系数; ι--管道长度,m; d--管道直径,m; v --管道中水流的平均流速,m/s。 对于圆管v=4Q/πd2,则式(3-1)可写成下列形式 Σh=(Σλι/12.1d5+Σζ/12.1d4)Q2=(ΣS沿+ΣS局)Q2=SQ2 (3-2) 式中 S沿--管道沿程阻力系数,S2/m5,当管材、管长和管径确定后,ΣS沿值为一常数; S局--管道局部阻力系数,S2/m5,当管径和局部水头损失类型确定后,ΣS局值为一常数;S--管路沿程和局部阻力系数之和,S2/m5。 由式(3-2)可以看出,管路的水头损失与流量的平方成正比,式(3-2)可用一条顶点在原点的二次抛物线表示,该曲线反映了管路水头损失与管路通过流量之间的规律,称为管路水头损失特性曲线。如图3-1所示。 在泵站设计和运行管理中,为了确定水泵装置的工况点,可利用管路水头损失特性曲线,并将它与水泵工作的外界条件联系起来。这样,单位重力液体通过管路系统时所需要的能量H需为 H需=H st+v2出-v2进/2g+Σh (3-3) 式中H需--水泵装置的需要扬程,m; 仅供学习与交流,如有侵权请联系网站删除谢谢2

管道阻力损失计算

管道的阻力计算 风管内空气流动的阻力有两种,一种是由于空气本身的粘滞性及其与管壁间的摩擦而产生的沿程能量损失,称为摩擦阻力或沿程阻力;另一种是空气流经风管中的管件及设备时,由于流速的大小和方向变化以及产生涡流造成比较集中的能量损失,称为局部阻力。通常直管中以摩擦阻力为主,而弯管以局部阻力阻力为主(图6-1-1)。 图6-1-1 直管与弯管 (一)摩擦阻力 1.圆形管道摩擦阻力的计算 根据流体力学原理,空气在横断面形状不变的管道内流动时的摩擦阻力按下式计算: (6-1-1) 对于圆形风管,摩擦阻力计算公式可改为: (6-1-2) 圆形风管单位长度的摩擦阻力(又称比摩阻)为: (6-1-3) 以上各式中 λ——摩擦阻力系数;

v——风秘内空气的平均流速,m/s; ρ——空气的密度,kg/m3; l——风管长度,m; Rs——风管的水力半径,m; f——管道中充满流体部分的横断面积,m2; P——湿周,在通风、空调系统中即为风管的周长,m; D——圆形风管直径,m。 摩擦阻力系数λ与空气在风管内的流动状态和风管管壁的粗糙度有关。在通风和空调系统中,薄钢板风管的空气流动状态大多数属于紊流光滑区到粗糙区之间的过渡区。通常,高速风管的流动状态也处于过渡区。只有流速很高、表面粗糙的砖、混凝土风管流动状态才属于粗糙区。计算过渡区摩擦阻力系数的公式很多,下面列出的公式适用范围较大,在目前得到较广泛的采用: (6-1-4) 式中K——风管内壁粗糙度,mm; D——风管直径,mm。 进行通风管道的设计时,为了避免烦琐的计算,可根据公式(6-1-3)和(6-1-4)制成各种形式的计算表或线解图,供计算管道阻力时使用。只要已知流量、管径、流速、阻力四个参数中的任意两个,即可利用线解图求得其余的两个参数。线解图是按过渡区的λ值,在压力B0=101.3kPa、温度t0=20℃、宽气密度ρ0=1.204kg/m3、运动粘度 v0=15.06×10-6m2/s、管壁粗糙度K=0.15mm、圆形风管等条件下得出的。当实际使用条件下上述条件不相符时,应进行修正。 (1)密度和粘度的修正 (6-1-5) 式中Rm——实际的单位长度摩擦阻力,Pa/m; Rmo——图上查出的单位长度摩擦阻力,Pa/m; ρ——实际的空气密度,kg/m3; v——实际的空气运动粘度,m2/s。

管道压力损失

除尘系统中的管道压力损失计算 管道的压力损失就是含尘空气在管道中流动的压力损失.它等于管道沿程(摩擦)压力损失和局部损失之和 ,在实际计算中以最长沿程一条管道进行计算,其计算结果作为风机造型的参考依据. 一:管道的沿程压力损失 1. a △P m =△P m λR S P -----湿周,既管道的周长(m ) 左管道系统计算中,一般先计算出单位长度的摩擦损失,通常也称比摩阻(Pa/m ): △P m =λ 比摩阻力可通过查阅图表14-1得出,我公司的管道主要应用于除尘系统中,考虑到含尘空气中粉尘沉降的问题,除尘管道内的风速选择为25~28m/s. 4R S 1 2 V 2e

根据计算图标得出的以下数据: 局部阻力引起的能量损失,称之为局部压力损失或局部损失。 局部损失可按下列公式计算: △P J =δ △P J ----局部压力损失(Pa ) δ------局部阻力系数 2 V 2e

局部阻力系数δ可根据不同管道组件:如进出风口、弯头、三通等的不同尺寸比例,在相关资料中可查得,然后再根据上式计算出局部损失的大小。 例如:整体压制900圆弯头:当r/D=1.5时 δ=0.15 当r/D=2.0时 δ=0.13 当r/D=2.5时 δ=0.12 0总之,△P 为数。 F---Pq---风机全压(Pa ) Q---风机风量(m 3/s ) η----风机效率(一般为0.8~0.86) K---安全系统(1.0~1.2) 上式所得结果即为风机数电机功率,实际使用功率为:

Fs= Fs/F 即为风机的实际使用负载率 Pq*Q 1000* η

管径和压力损失计算

管径和压力损失计算 一、管径计算 1、管径计算 蒸汽、热水、压缩空气、氮气、氧气、乙炔按下述三式计算: 按体积流量计算 按质量流量计算 按允许压降计算 式中—管道内径(mm); —在工作状态下的体积流量(m3/h); —在工作状态下的质量流量(t/h); —在工作状态下的流速(m/s); —在工作状态下的密度(kg/m3); —摩擦阻力系数; —允许比压降(Pa/m)。 压缩空气、氮气、氧气、乙炔等气体工作状态下的体积流量可由标准状态(0℃,绝对压力0.1013MPa)下的体积流量换算而得 式中—标准状态下气体体积流量(m3/h); —气体工作温度(℃); —气体绝对工作压力(MPa)。 二、管道压力损失计算 管道中介质流动产生的总压差包括直管段的摩擦阻力压降和管道附件的局部阻力压降,以及管内介质的静压差。 管内介质的总静压差:; 直管的摩擦阻力压降:; 管道附件的局部阻力压降:; 管内介质的静压差:。 式中Δp—管内介质的总静压差(Pa); Δpm—直管的摩擦阻力压降(Pa); Δpd—管道附件的局部阻力压降(Pa); Δpz—管内介质的静压差(Pa); ∑ξ—管件局部阻力系数之和; ∑Ld—管道局部阻力当量长度之和(m); H1—管段始点标高(m); H2—管段终点标高(m); 对液体,因其密度大,计算中应计入介质静压差。对蒸汽或气体,其静压差可以忽略不计。 三、允许比压降计算 对各种压力管路的计算公式为 式中—单位压力降(Pa/m); 、—起点、终点压力(MPa); —管道直管段总长度(m);

—管道局部阻力当量长度(m)。 在做近似估算时,对厂区管路可取=(0.1-0.15);对车间的蒸汽、压缩空气、热水管路,取=(0.3-0.5);对车间氧气管路去=(0.15-0.20) 看见公式,写上自己知道的公式吧。 管径计算公式。 d=18.8乘以(Q/u)的开平方,其中Q=Qz(273+t)/(293*P),其中,Qz为标准状态下的压力,P为绝对压力。 对于u的确定,p=0.3~0.6MPa时,u=10~20s; p=0.6~1MPa时,u=10~15s; p=1~2MPa时,u=8~12s; p=2~3MPa时,u=3~6s; p>3MPa时,u=0~3s

管路压力损失计算.doc

管路压力损失计算 管路是一种由管子、管件、阀门等连接而成的、用于输送流体或松散固体 物质的管状设备。 流体在管道内流动时,由于同管壁发生摩擦和流体本身的内部摩擦,会产 生压力损失。这种压力损失称为沿程阻力损失或摩擦阻力损失。 流体经过弯头、三通、变径管、阀门等构件时,流动状态会发生急剧改 变,即出现转向、加速、撞击、旋涡、变形等情况,这同样会造成压力损失。 这种压力损失称为局部损失。 如果管路不在同一水平面上,则管路爬高时,流体压强的一部分要用于克 服重力。这种压力损失称为位置损失。 管路出口流速大于进口时,流体的一部分压力能要转化为动能,这种压力 损失称为出口速度损失。 对于短管,局部损失和出口速度损失之和大于沿程阻力损失的 5%,计算时不能忽略。而对于长管,即长距离的输送管路,由于局部损失和出口速度损失所占的比例很小,一般可忽略不计。 管路的形态一般可分两类:简单管路和复杂管路。 复杂管路又可分为四种:( 1)串联管路;( 2)并联管路;( 3)枝状管路;( 4)环状管路。 2.1 简单管路的压力损失计算 简单管路是无分支的等直径管路。 简单管路的沿程阻力损失可用下式计算: P1 = (λγl/d )( V2/2g) 式中: V——管子内流体的平均流速;

λ——摩擦阻力系数; γ——气体重度; l——管子长度; g——重力加速度。 若将管件、阀门等都看作是具有一定长度( li)的管子,将局部损失折算成沿 程阻力损失,则可得局部损失的另一种计算形式: P2 = (λγΣ li/d)( V2/2g) 在忽略位置损失和出口速度损失的情况下,简单管路的总压力损失ΔP为:

管道压力损失计算

管道总阻力损失hw=∑hf+∑hj, hw—管道的总阻力损失(Pa); ∑hf—管路中各管段的沿程阻力损失之和(Pa); ∑hj—管路中各处局部阻力损失之和(Pa)。 hf=RL、 hf—管段的沿程损失(Pa); R—每米管长的沿程阻力损失,又称比摩阻(Pa/m); L—管段长度(m), R的值可在水力计算表中查得。 也可以用下式计算, hf=[λ×(L/d)×γ ×(v^2)]÷(2×g), L—管段长度(m); d—管径(m); λ—沿程阻力因数; γ—介质重度(N/m2); v—断面平均流速(m/s); g—重力加速度(m/s2)。 管段中各处局部阻力损失 hj=[ζ×γ ×(v^2)]÷(2×g), hj—管段中各处局部阻力损失(Pa); ζ—管段中各管件的局部阻力因数,可在管件的局部阻力因数表中查得。(引自《简明管道工手册》.P.56—57) 管道压力损失怎么计算

其实就是计算管道阻力损失之总和。 管道分为局部阻力和沿程阻力:1、局部阻力是由管道附件(弯头,三通,阀等)形成的,它和局阻系数,动压成正比。局阻系数可以根据附件种类,开度大小通过查手册得出,动压和流速的平方成正比。2、沿程阻力是比摩阻乘以管道长度,比摩阻由管道的管径,内壁粗糙度,流体流速确定 总之,管道阻力的大小与流体的平均速度、流体的粘度、管道的大小、管道的长度、流体的气液态、管道内壁的光滑度相关。它的计算复杂、分类繁多,误差也大。如要弄清它,应学“流体力学”,如难以学懂它,你也可用刘光启著的“化工工艺算图手册”查取。 管道主要损失分为沿程损失和局部损失。Δh=ΣλL/d*(v2/2g)+Σξv2/2g。其中的λ和ξ都是系数,这个是需要在手册上查询的。L-------管路长度。d-------管道内径。v-------有效断面上的平均流速,一般v=Q/s,其中Q是流量,S是管道的内截面积。希望你能看懂 液体压力计算公式是什么 1mm水柱=10pa 10m=100000pa= 1毫米汞柱(mmHg)=帕(Pa) 1工程大气压=千帕(kPa) 对静止液体,就是初中的公式 压强P=ρgh 压力F=PS 如果受力表面不规则,需要积分计算 常用两种方法计算: 1.液体在柱形器具中,且放在水平面上,此时: F=G液=m液g=ρ液gV液

系统压力损失及流量平衡

管道系统的压力损失和流量平衡 意大利卡莱菲公司北京办事处舒雪松 一、平衡流量 指系统的压头(扬程)改变后随之改变的新流量。它可以通过以下公式计算: G1 = G ×(H1/H)0.525公式(1) 其中:G1=系统平衡后流量(新流量) H1=系统新的压头 G=系统原流量 H=系统原压头 注:G1,G,H1,H的单位应该一致。比如G用m3/h为单位,则G1也应该是m3/h。 以上公式根据流体动力学的理论衍变出来,它假设在水循环系统中,压力损失的总和与流量的指数为1.9的关系,即Z=ΔP X G 1.9, Z就是系统流量曲线的特征系数。这个公式适合于我们在上一个章节里讲到的高、中、低粗糙度管道。 新流量与原流量的关系通过倍率F表述: F = G1 / G公式(2) 这个倍率用于确定系统经过平衡后每个支路、末端的新流量。 范例(1)一个传统双管系统的平衡流量计算方式 回路A 回路B 汇合点N 图1

如图1所示: 循环回路A有四个末端,其特征为: HA=980mm水柱(扬程) GA=550 l/h(流量) G1=160 l/h , G2=140 l/h, G3=140 l/h, G4=110 l/h 循环回路B有3个末端,其特征为: HB=700mm水柱(扬程) GB=360 l/h (流量) G5=140 l/h ,G6=120 l/h,G7=100 l/h 现在,如果A、B回路汇合到一起,其流量及压损特征都会产生变化。以下我们将用3种方式进行计算。 在AB汇合后,其汇合点的压差一致。这个压差值可以选择其中一个回路的压差值或者重新设定一个压差值。 A,按压差值大的回路A为标准计算: 即Hn=HA=980mm水柱,因此只需要平衡回路B的流量。通过公式(1)计算B回路的新流量,得出: GBn=GB×(Hn/HB) 0.525=360×(980/700) 0.525 = 429.5 l/h 通过公式(2)得到倍率F=429.5/360=1.193 因此,B回路每个末端新的流量就变为: G5=140×F=167 l/h,G6=120×F =143 l/h,G7=100×F=119 l/h B,按压差值小的回路B为标准计算: 即Hn=HB=700mm水柱,因此只需要平衡回路A的流量,通过公式(1)计算A回路新流量,得出: GAn=GA×(Hn/HA) 0.525=550×(700/980) 0.525 = 460.9 l/h 通过公式(2)得到倍率F=460.9/550=0.838 因此可以计算出A回路每个末端的新流量: G1=160×F=134 l/h,G2=140 ×F =117 l/h,G3=140 ×F =117 l/h,G4=110×F=92 l/h C,按平均压差值为标准计算: 即Hn =(HB+HA)/2 = 840mm水柱,因此A,B回路流量却需要进行平衡,通过公式

压力损失的计算

压力损失的计算 管道1:据Q=4284m3/h ,v=14.80m/s ,查阅《工业通风》孙一坚附表,我们选定管段直径D=320mm 局部压力损失:集气罩1:ξ=0.16,90°弯头R d =1.5,ξ=0.17, ξ=0.27+0.17+0.17+0.21=0.82 ∴?p 1局部=ξ× ρ×v2 =0.82×169.24=138.78p a 沿程压力损失: l 垂直 =4?0.8?0.2?0.537?0.233=2.23m, ∴l 总 =2.23+1+7=10.23m 查表可知:R m=15.43P a·m?1 ∴?p 1沿程=R m×l 总 =157.85P a ∴?p 1总 =157.85+138.78=296.63P a 管道2:局部压力损失:集气罩1: ξ=0.27,90°弯头R d =1.5,ξ=0.17,45°合流三通,F2 F1 =0.5,F3 F1 =0.5,L3 L2 = 1,ξ=0.88 ξ=0.27+0.17+0.88=1.32 ∴?p 2局部=ξ× ρ×v2 =1.32×169.24=223.40p a 沿程压力损失: l 垂直 =4?0.8?0.2?0.537?0.233=2.23m, ∴l 总 =2.23+1.41=3.64m ∴?p 2沿程=R m×l 总 =56.17P a ∴?p 2总 =157.85+138.78=279.5P a 管道3:总流量q v=5927.04m3/h,v=16.16m/s 局部压力损失:90°弯头R d =1.5,ξ=0.17 ∴ξ=0.17×3=0.51,除尘器压力损失为1100Pa ∴?p 3局部=ξ× ρ×v2 +1100=0.51×169.24=1186.31p a 沿程压力损失: l 总 =1.9+4.4+3.5+0.975=10.775m

(完整版)管道内的局部阻力及损失计算

第四节管道内的局部阻力及损失计算 在实际的管路系统中,不但存在上一节所讲的在等截面直管中的沿程损失,而且也存在有各种各样的其它管件,如弯管、流道突然扩大或缩小、阀门、三通等,当流体流过这些管道的局部区域时,流速大小和方向被迫急剧地发生改变,因而出现流体质点的撞击,产生旋涡、 二次流以及流动的分离及再附壁现象。此时由于粘性的作用,流体质点间发生剧烈的摩擦和动量交换,从而阻碍着流体的运动。这种在局部 障碍物处产生的损失称为局部损失,其阻力称为局部阻力。因此一般的管路系统中,既有沿程损失,又有局部损失。 4.4.1 局部损失的产生的原因及计算 一、产生局部损失的原因 产生局部损失的原因多种多样,而且十分复杂,因此很难概括全面。这里结合几种常见的管道来说明。 ()() 图4.9 局部损失的原因 对于突然扩张的管道,由于流体从小管道突然进入大管道如图 4.9 ()所示,而且由于流体惯性的作用,流体质点在突然扩张 处不可能马上贴附于壁面,而是在拐角的尖点处离开了壁面,出现了一系列的旋涡。进一步随着流体流动截面面积的不断的扩张,直到 2 截面处流体充满了整个管截面。在拐角处由于流体微团相互之间的摩擦作用,使得一部分机械能不可逆的转换成热能,在流动过程中,不断地 有微团被主流带走,同时也有微团补充到拐角区,这种流体微团的不断补充和带走,必然产生撞击、摩擦和质量交换,从而消耗一部分机械 能。另一方面,进入大管流体的流速必然重新分配,增加了流体的相对运动,并导致流体的进一步的摩擦和撞击。局部损失就发生在旋涡开 始到消失的一段距离上。 图4.9()给出了弯曲管道的流动。由于管道弯曲,流线会发生弯曲,流体在受到向心力的作用下,管壁外侧的压力高于内侧的 压力。在管壁的外侧,压强先增加而后减小,同时内侧的压强先减小后增加,这样流体在管内形成螺旋状的交替流动。 综上所述,碰撞和旋涡是产生局部损失的主要原因。当然在 1-2之间也存在沿程损失,一般来说,局部损失比沿程损失要大得多。 在测量局部损失的实验中,实际上也包括了沿程损失。 二、局部损失的计算 如前所述,单位重量流体的局部能量损失以表示

管道压头损失计算式

管道阻力损失计算式 一、雷若数Re 的计算 Re =d u ρ/μ =(m )(m/s )(kg/m 3)/(N.s/m 2)=m 0kg 0s 0 式中:d 管径,u 流速,μ流体粘度,ρ流体密度。 流体粘度μ的计算式: μ=469 .0R (00158.0460.0s 11 ) φη-- = (mPa.s ) 式中:溶剂(水)密度η1(g/cm 3),纯溶质密度η2(g/cm 3 ), R =η1/η2 , 固体体积分率Φs 。 (备注:20℃时,水密度η1=1g/cm 3 ,石灰密度η2=0.64g/cm 3 , 石灰浆液中质量浓度为5%,8%,10%,15%,20%的石灰浆液密度ρ(g/cm 3 )和固体体积分率 Φs 分别为:1.031,1.055,1.061,1.093,1.126;0.05,0.08,0.1,0.15,0.2。) 二、湍流时的摩擦损失因数 λ (一)光滑管 1. 柏拉修斯式: λ=0.316/Re 0.25 其适用范围为Re =5×103~105 2. 顾袖珍式: λ=0.0056+0.5/ Re 0.32 其适用范围为Re =3×103~3×106 3. 尼库拉则与卡门式 1/λ 0.5 =2 logRe λ 0.5 -0.8 此式可用于更广的湍流范围,但由于式两边都含有待求的λ,计算较为不便。 (二)粗糙管 1. 顾袖珍式: λ=0.01227+0.7543/ Re 0.38 上式适用范围为Re =3×103~3×106。此式所指的粗糙管为内径50~200mm 的新钢铁管。 2. 柯尔布鲁克式: 1/λ 0.5 =1.14-2 log[ e/d + 9.35/ (Re λ 0.5 )] 其适用范围甚广(Re =4×103~108,e/d =5×10-2~10-6),但由于算式两边都含

管道阻力损失计算(终审稿)

管道阻力损失计算公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

管道的阻力计算 风管内空气流动的阻力有两种,一种是由于空气本身的粘滞性及其与管壁间的摩擦而产生的沿程能量损失,称为摩擦阻力或沿程阻力;另一种是空气流经风管中的管件及设备时,由于流速的大小和方向变化以及产生涡流造成比较集中的能量损失,称为局部阻力。通常直管中以摩擦阻力为主,而弯管以局部阻力阻力为主(图6-1-1)。 ? 图6-1-1 直管与弯管 (一)摩擦阻力 1.圆形管道摩擦阻力的计算 根据流体力学原理,空气在横断面形状不变的管道内流动时的摩擦阻力按下式计算: (6-1-1) 对于圆形风管,摩擦阻力计算公式可改为:

(6-1-2) 圆形风管单位长度的摩擦阻力(又称比摩阻)为: (6-1-3) 以上各式中 λ——摩擦阻力系数; v——风秘内空气的平均流速,m/s; ρ——空气的密度,kg/m3; l——风管长度,m; Rs——风管的水力半径,m; f——管道中充满流体部分的横断面积,m2; P——湿周,在通风、空调系统中即为风管的周长,m; D——圆形风管直径,m。 摩擦阻力系数λ与空气在风管内的流动状态和风管管壁的粗糙度有关。在通风和空调系统中,薄钢板风管的空气流动状态大多数属于紊流光滑区到粗糙区之间的过渡区。通常,高速风管的流动状态也处于过渡区。只有流速很高、表面粗糙的砖、混凝土风管流动状态才属于粗糙区。计算过渡区摩擦阻力系数的公式很多,下面列出的公式适用范围较大,在目前得到较广泛的采用: (6-1-4) 式中 K——风管内壁粗糙度,mm;

D——风管直径,mm。 进行通风管道的设计时,为了避免烦琐的计算,可根据公式(6-1-3)和(6-1-4)制成各种形式的计算表或线解图,供计算管道阻力时使用。只要已知流量、管径、流速、阻力四个参数中的任意两个,即可利用线解图求得其余的两个参数。线解图是按过渡区的λ值,在压力 B0=、温度t0=20℃、宽气密度ρ0=m3、运动粘度v0=×10-6m2/s、管壁粗糙度K=、圆形风管等条件下得出的。当实际使用条件下上述条件不相符时,应进行修正。 (1)密度和粘度的修正 (6-1-5) 式中 Rm——实际的单位长度摩擦阻力,Pa/m; Rmo——图上查出的单位长度摩擦阻力,Pa/m; ρ——实际的空气密度,kg/m3; v——实际的空气运动粘度,m2/s。 (2)空气温度和大气压力的修正 (6-1-6) 式中 Kt——温度修正系数。 KB——大气压力修正系数。 (6-1-7) 式中 t——实际的空气温度,℃。 (6-1-8) 式中 B——实际的大气压力,kPa。

管道内压力损失的计算

管道内压力损失的计算 一、液体在直管中流动时的压力损失 液体在直管中流动时的压力损失是由液体流动时的摩擦引起的,称之为沿程压力损失,它主要取决于管路的长度、内径、液体的流速和粘度等。液体的流态不同,沿程压力损失也不同。液体在圆管中层流流动在液压传动中最为常见,因此,在设计液压系统时,常希望管道中的液流保持层流流动的状态。 1.层流时的压力损失 在液压传动中,液体的流动状态多数是层流流动,在这种状态下液体流经直管的压力损失可以通过理论计算求得。 圆管中的层流 (1)液体在流通截面上的速度分布规律。如图所示,液体在直径d 的圆管中作层流运动,圆管水平放置,在管内取一段与管轴线重合的小圆柱体,设其半径为r ,长度为l 。在这一小圆柱体上沿管轴方向的作用力有:左端压力p 1,右端压力p 2,圆柱面上的摩擦力为F f ,则 其受力平衡方程式为: 122()0 f p p r F π--= ( 由式(2-6)可知: 式中:μ 因为速度增量du 与半径增量dr 符号相反,则在式中加一负号。 Δp =p 1- p 2 Δp 、式(2-45)代入式(2-44),则得: 对式积分得: 当r =R 时,u =0,代入(2-47)式得: 则 22()4p u R r l μ?= - 由式可知管内流速u 沿半径方向按抛物线规律分布,最大流速在轴线上,其值为:

2max 4pR u l μ? = (1) (1)? 管路中的流量。图(b)所示抛物体体积,是液体单位时间内流过通流截面的体积即 流量。为计算其体积,可在半径为r 处取一层厚度为 的微小圆环面积,通过此环 形面积的流量为: 对式积分,即可得流量q : (2) (2)? 平均流速。设管内平均流速为 υ 对比可得平均流速与最大流速的关系: υ=max 2 u (4)沿程压力损失。层流状态时,液体流经直管的沿程压力损失可从式求得: 232lv p d μ?= 由式可看出,层流状态时,液体流经直管的压力损失与动力粘度、管长、流速成正比,与管径平方成反比。 在实际计算压力损失时,为了简化计算,得μ=υd ρ/Re ,并把 μ=υd ρ/Re 代入,且分子分母同乘以2g 得 : 2 64...Re 2l l v p g d g ρ?= 式中:λ为沿程阻力系数。它的理论值为λ=64/Re ,而实际由于各种因素的影响,对光滑金属管取λ=75/Re ,对橡胶管取λ=80/Re 。 2.紊流时的压力损失层流流动中各质点有沿轴向的规则运动。而无横向运动。紊流的重要特性之一是液体各质点不再是有规则的轴向运动,而是在运动过程中互相渗混和脉动。这种极不规则的运动,引起质点间的碰撞,并形成旋涡,使紊流能量损失比层流大得多。 由于紊流流动现象的复杂性,完全用理论方法加以研究至今,尚未获得令人满意的成果,故仍用实验的方法加以研究,再辅以理论解释,因而紊流状态下液体流动的压力损失仍用式来计算,式中的λ值不仅与雷诺数Re 有关,而且与管壁表面粗糙度Δ 有关,具体的 λ值见表2-5。 表2-5圆管紊流时的λ值 2.局部压力损失 局部压力损失是液体流经阀口、弯管、通流截面变化等所引起的压力损失。液流通过这些地方时,由于液流方向和速度均发生变化,形成旋涡,使液体的质点间相互撞击,从而产生较大的能量损耗。 突然扩大处的局部损失

管道流量计算公式

蒸汽管道设计表ssccsy 蒸汽管道设计表。流量(kg/hour)管道口径Pipe Size(mm)DN_蒸汽压力(bar)蒸汽流速(m/s)饱和蒸汽管道流量选型表(流速30米/秒)(流量:公斤/小时)压力BAR.管道口径(mm)备注:1Pa=100bar. 油管的选取小样~ 油管的选取油管的选取。问题:液压系统中液压泵的额定压力位,输出流量为40l/min,怎么确定油管规格。压力管路为15通径,管子外径22,管子接头M27X2。3.回油管路.1~3m/s同样根据公式计算,回油管路在17~29mm,往标准上靠的话,可以选20通径或者25通径,如果安装空间允许当然选大的好,25通径的管子外径为34,接头螺纹M42X2如果选20通径的话,管子外径28,螺纹M33X2以上说的都是国标,你也可以往美标等上靠,基本上差不多。 压缩空气管径、流量及相关晴天多云 如:标准状态下流量为5430Nm3/h,换算成下流量为5430/=639m3/h, 取流速为15m/s, 可以求得管径为123,取整为D N125的管径。 自吸泵的扬程、距离和功率的关系_百度知道李12子 自吸泵的扬程、距离和功率的关系_百度知道自吸泵的扬程、距离和功率的关系悬赏分:10 - 提问时间2010-6-16 22: 58.我需要一台汽油机水泵,自吸式,要求水平运输水150米左右,垂直运输2米,请问一台扬程为32米,功率为马力,流量为25吨/h的水泵能满足要求吗 管道气体流量的计算公式。浅墨微澜 管道气体流量的计算公式。1、管道气体流量的计算是指气体的标准状态流量或是指指定工况下的气体流量。未经温度压力工况修正的气体流量的公式为:流速*截面面积经过温度压力工况修正的气体流量的公式为:流速*截面面积*(压力*10+1)*(T+20)/(T+t)压力:气体在载流截面处的压力,MPa; T:绝对温度,t:气体在载流截面处的实际温度2、Q=Dn*Dn*V*(P1+1bar)/353Q为标况流量; 关于消防设计几点问题辉煌华宇 "并注明消火栓给水管道设计流速不宜超过s,而厦门消防部门规定室外消防给水管道流速不能大于s,笔者对此规定有不同的看法。消防部门的依据是市政部门所提供的市政管道流速为s,故在选择室外消防给水管的流速也不大于s,但笔者认为管道流速应与市政管道压力有关,只要市政给水管道压力足够大,室外消防管道流速又满足规范不宜大于s的要求,既能满足消防流量的设计要求。 反渗透膜的化学清洗- 大将军王电厂化学的日...老姚同志 反渗透膜的化学清洗- 大将军王电厂化学的日志- 网易博客反渗透膜的化学清洗。停止清洗泵的运行,让膜元件完全浸泡在清洗液中。在对大型系统清洗之前,建议从待清洗的系统内取出1支膜元件,进行单个膜元件清洗效果试验,确认清洗效果后再实施整套系统的清洗。此处反向清洗是指在膜组件的浓排端泵入清洗液,在膜外侧进行组件内循环,使清洗液流经膜表面,以适当的流速在膜表面形成一定的冲刷力,将系统内和膜表面的污染物清除排出。 [转载]锅炉选择(201--300)(2010-07-06 13:...锅炉主操作

管道阻力计算说明

管道阻力计算 阻力计算公式 2 1() 2 r l le u pf pf pf d ρλ ξ+?=?+?=+∑∑-----------------------------------公式1 其中 le -----------局部阻力当量长度 ξ------------局部阻力系数 λ------------摩擦系数 pf ?--------阻力损失,Pa 将其分解为直管和局部阻力损失之和。 1. 直圆管内阻力损失 2 2 r l u pf d ρλ?=----------------------------------------------------------------------------------------公式2 e du R ρ μ = ------------------------------------------------------------------------------------------------公式3 2. 当量长度法

一、三氯车间散发尾气处理计算 1.1 给定条件及假设条件 隔离房体积为1000m 3 依据《化工工艺设计手册》第二十八章 采暖通风和空气调节 第二节 通风 2.3.4 防火与防暴(3)事故通风系统设计的特殊要求②事故排风的风量应根据工艺所提供的资料计算确定,当缺乏上述资料时,应按每小时不小于厂房总体积的8次换气量进行确定。ε-----------------------------------------内衬MFE 材质玻璃钢管壁粗糙度0.0048ε= ρ-----------------------------------------吸入混合空气密度,按常温;31.293/kg m ρ= μ----------------------------------------吸入混合气体粘度,按常温;0.0000186pa s μ=? e du R ρ μ = -----------------------------雷诺准数 e du R ρ μ = 1789002e R = 使用关联全图范围内的流体阻力摩擦系数关联式 本公式摘自《天津大学化工教研室组编.化工原理.天津:科学技术出版社,1993.》 1 122 238()8e A B R λ-?? ??=++ ??????? 16 0.972.4571/(()(0.27/))Re A Ln d ε??=+?? ()16 37530/Re B =

(完整版)管道内的局部阻力及损失计算

第四节 管道内的局部阻力及损失计算 在实际的管路系统中,不但存在上一节所讲的在等截面直管中的沿程损失,而且也存在有各种各样的其它管件,如 弯管、流道突然扩大 或缩小、阀门、三通等,当流体流过这些管道的局部区域时,流速大小和方向被迫急剧地发生改变,因而出现流体质点的撞击,产生旋涡、 二次流以及流动的分离及再附壁现象。此时由于粘性的作用,流体质点间发生剧烈的摩擦和动量交换,从而阻碍着流体的运动。这种在局部 障碍物处产生的损失称为 局部损失,其 阻力称为局部阻力。因此一般的 管路系统中,既有沿程损失,又有局部损失。 4.4.1 局部损失的产生的原因及计算 、产生局部损失的原因 产生局部损失的原因多种多样,而且十分复杂,因此很难概括全面。这里结合几种常见的管道来说明 ( ) ( ) 图 4.9 局部损失的原因 对于突然扩张的管道,由于流体从小管道突然进入大管道如图 4.9 ( ) 所示,而且由于流体惯性的作用,流体质点在突然扩张 处不可能马上贴附于壁面, 而是在拐角的尖点处离开了壁面,出现了一系列的旋涡。进一步随着流体流动截面面积的不断的扩张,直到 2 截 面处流体充满了整个管截面。在拐角处由于流体微团相互之间的摩擦作用,使得一部分机械能不可逆的转换成热能,在流动过程中,不断地 有微团被主流带走,同时也有微团补充到拐角区,这种流体微团的不断补充和带走,必然产生撞击、摩擦和质量交换,从而消耗一部分机械 能。另一方面,进入大管流体的流速必然重新分配,增加了流体的相对运动,并导致流体的进一步的摩擦和撞击。局部损失就发生在旋涡开 始到消失的一段距离上。 图 4.9 ( ) 给出了弯曲管道的流动。由于管道弯曲,流线会发生弯曲,流体在受到向心力的作用下,管壁外侧的压力高于内侧的 压力。在管壁的外侧,压 强先增加而后减小,同时内侧的压强先减小后增加,这样流体在管内形成螺旋状的交替流动。 综上所述,碰撞和旋涡是产生局部损失的主要原因。当然在 1-2 之间也存在沿程损失,一般来说,局部损失比沿程损失要大得多 在测量局部损失的实验中, 实际上也包括了沿程损失。 二、局部损失的计算 如前所述,单位重量流体的局部能量损失以 表示

09 管道阻力降的计算

管道阻力降 计算 王勇

2011年12月18日第2页 概述一 主要内容 管径选择的一般要求二 如何确定管径三 管道阻力降计算四 常见管道压降元件典型压降 五

1.概述 石油化工装置主要是由设备、管道、仪表构成的一个系统。管道系统的主要作用是流体输送,控制着设备的 输入与输及操作条件,管道系统设计是工艺设计的一项 重要内容。而管道阻力降计算则是管道系统设计的一项 最基本的工作。 一般的管道可根据物料平衡表中的物料流量、推荐流速或允许压力降来选用管径(所选管径应符合材料标准)。但对某些水力计算有特殊要求的管道,则应进行 详细的水力学计算。 如下部位的管道协调通常就需要进行详细水力学计算:?塔及反应器的入口管道; ?泵的吸入管道; ?往高位输送或长距离输送的液体管道; 2011年12月18日第3页

?要求流量均匀分配的管道; ?液封管道(须校核液封足否会被冲掉或吸入); ?提升管道; ?两相流管道; ?压缩机吸入或排出管道; ?塔的回流管道; ?安全阀的入口和出口管道(控制安全阀人口管道的压降不超过其定压的3%,出口管道须校核安全阀的背压对安全阀定压的影响); ?热虹吸再沸器工艺物料的进出口管道; ?有调节阀的管道(确定合适的调节阀压降)等。 2011年12月18日第4页

2011年12月18日 第5页 2.管径选择的一般要求 管道尺寸的确定,应在充分分析实际情况的基础上进行,对于给定的流量,管径的大小与管道系统的一次投资费(材料和安装)、操作费(动力消耗和维修)和折旧费等有密切的关系。应根据这些费用作出经济比较,并使管道系统的总压力降控制在给定的工作压力范围内,以选择适当的管径,此外还应考虑安全流速及其它条件的限制。在选定管道系统管径时,应考虑以下几个原则。 2.1 流量的考虑 管道系统的设计应满足工艺对管道系统的要求,其流通能力应按正常生产条件下介质的最大流量考虑。其最大摩擦压力降应不超过工艺允许值,其流速应位于根据介质的特性所确定的安全流速的范围内。

相关文档