文档库 最新最全的文档下载
当前位置:文档库 › 化工原理共18页

化工原理共18页

化工原理共18页
化工原理共18页

化工原理

课程设计指导书

二元混合物连续精馏装置的设计

浙江工业大学

化工原理教研室

二OO四年一月

目录

一、课程设计的目的

二、本设计的基本内容和要求

1、关于精馏塔方案的选定

2、关于工艺计算

3、关于塔板(或填料层)和塔体主要工艺尺寸的设计计算

4、关于附属设备的设计

5、关于精馏塔的结构设计

6、关于设计说明书的编写

7、关于考核和答辩

三、进行本设计必须注意的几点

四、设计纪律

五、参考资料

一、课程设计的目的

精馏是化工生产过程中的重要单元操作,精馏塔是典型的化工单元设备之一,进行本课程设计的目的是:培养学生综合运用所学知识,特别是本门课程的有关知识解决化工实际问题的能力,使学生学到进行化工设计的基本步骤和方法,得到一次进行化工设计的初步训练,为今后从事设计工作打下基础.通过课程设计,学生应特别注意如下几个“能力”的训练和培养:查阅资料、选用公式和数据的能力;从技术上的可行性与经济上的合理性两方面树立正确的设计思想、分析和解决工程实际问题的能力;熟练应用计算机(包括编程计算和使用工程设计软件)的能力以及用简洁文字、图表表达设计思想的能力.因此,不论课程设计的成果是否将应用于实际生产,设计都应同时满足实践性和教学性两方面的要求。

设计的实践性应体现在以下设计准则中:

1、经济性:应符合能量充分合理利用和节能原则,符合经常生产费和设备投资费的综合核算最经济的原则;符合有用物质高回收率、低损耗率原则.

2、先进性:应对目前工厂生产过程和设备上存在的问题提

出改进方案和改进措施,并尽量采用国内外最新技术成果。 3、可靠性和稳定性:保证运行的安全可靠和操作的稳定易控是现代化生产应优先考虑的原则,不得采用缺乏可靠性的、不成熟的技术和设备,不得采用难以控制或难以保证安全生产的技术和设备。

4、可行性:流程布置和设备结构不应超出一般土建要求和机械加工能力,整个设计方案应考虑符合国情和因地制宜的原则。

二、本设计的基本内容和要求

设计内容包括:选定精馏方案;进行精馏塔的工艺计算;结构和附属设备的选型设计;将设计结果编写成设计说明书。

1、关于精馏塔方案的选定

选定精馏方案是完成设计的先决条件,因为精溜塔工艺尺寸的确定不仅与所处理物系的性质、给定的生产能力、组成要求有关,还与操作压力、回流液状态、加热方式以及所选用设备的型式等一系列因素有关,所以在进行精馏塔设计选定精馏方案和拟定精馏装置流程的工作必须首先进行.

(1)精馏方案选定涉及的内容大致包括:

a.精馏方式的选定:

根据生产规模和产品质量要求,可选用简单蒸馏、水蒸汽蒸馏、间歇精馏、连续精馏或特殊精馏等。

b.操作压力的选取:

根据精馏物系的特点,可以是常压精馏、减压精馏或加压精馏。

c. 塔型的选择[2]:

通过技术经济综合评价,可以选用不同塔型(板式塔、填料塔〕和不同板型(如浮间搭、筛板塔等)或填料塔。

d.再沸器、冷凝器、冷却器等换热设备的配置[3]:再沸器配置与所采用的加热方式有关,通常采用间接蒸汽加热,有时也可采用直接蒸汽加热;冷凝器的型式多采用列管式换热器,冷凝器的安装位置从技术和经济上考虑,对于小塔,当传热面积较小时常将冷凝器直接安装在塔顶,而当处理量较大或搭较高时,则常将冷凝器移至地面,然后再用回流泵强制回流入塔。

(2)选定方案必须考虑的问题

确定精馏方案的原则主要有两条:

a、必须考虑工艺要求与平稳操作问题;

b、必须考虑经济上的合理性,如在精馏方式的选定中必须

考虑生产规模、产品质量、产量的要求以及投资费用等,如用水蒸汽蒸馏或简单蒸馏虽投资省,但所获得的产品质量不高,欲要得到高纯度产品则必须采用连续精馏等方式。

在确定操作压力时则必须考虑所处理的液体混合物的性质等因素,如热敏性物料采用真空蒸馏,而对于沸点低常压下呈气态的物料则应在加压下进行蒸馏。

在塔型的选择中固然要尽量设法选用性能优良的塔型,但因每种塔型绝非十全十美,故选型时还必须从产量、质量和能耗等实际需要出发,努力做到兼顾技术上的可行性和经济上的合理性两个方面.

在确定进料状态和加料方式时既要考虑便于平稳操作,还要考虑相关工序的实际情况等因素。如精馏塔的加料方式用高位槽就比用加料泵直接加料较易平稳操作。但必须注意,无论进料状态还是加料方式均与前道工序以至整个车间的流程安排有关。

在考虑精馏塔附属的换热设备的配置中,必须注意到精馏过程一方面要供给热量,一方面又要用大量的冷却水进行冷却,故从经济观点出发存在着如何合理利用热能的问题,为此可以用定性或定量的方法论述塔底釜液与塔顶蒸汽热能利用的可能

性(可以从传热温差的大小以及回收热量的多少进行可行性比较),考虑它们能否用于预热料液或有别的用处。此外,在考虑回收热能的方案时还要以精馏塔可能实现平稳操作为前题。

必须注意:

a、对任务书中根据规定的操作条件所选用的塔型、板型、填料类型等必须进行简要论证.对流程安排中合理利用热能的可能性必须作简要分析,并绘制精馏装置流程图[4](直接画在设计说明书上)。

b、设计开始通常只能对方案,流程作初步安排,待整个计算完成后再对方案流程进行修正并作较全面的论证讨论。

2、关于工艺计算

工艺计算的主要内容是:物料衡算确定产品的质量、收率和流率。确定操作条件指塔主要部位的压力和温度。精馏计算根据相平衡数据和分离要求,根据经济核算,确定适宜回流比;计算精馏塔的理论权数;计算板式塔的实际板数(或填料层高度),并确定进料位置。为了提高课程设计的效率和准确性,可使用计算机软件“化工原理课程设计工艺优化自检系统”,自我检查计算过程和结果。

着重说明以下几点:

a、操作条件的确定:

确定塔主要部位的压力和温度是求取塔板数和进行塔内气液接触构件(塔板或填料层)设计的重要依据。设计任务书中给定的操作压力一般指塔顶的压力,由于塔板或填料层存在的压降,致使沿塔压力(因而也使温度)发生变化,使物性和气液负荷亦将随之而变,这对真空操作精馏塔的影响尤为显著,设计时势必注意。但由于操作压力(温度)沿塔分布规律又与塔内构件、气液负荷、物性等因素有关,故确定操作条件的基本做法是先预估计再校验。

b、相平衡关系:

精馏系统的汽液平衡数据来源很多,具体可参考有关文献[5]。为了便于计算机应用,尽可能选择用解析式表达汽液平衡关系,如对乙醇--水体系,简化处理的方法有多种,如相对挥发度与x的直接关联等。

相对挥发度α与液相浓度x的直接关联:

y=αx/(1+(α—1)x)

α=1.1213(x+0.2)-1.5235 x<0.3

α=0.8938 x-1.0632 x≥0.3

如苯一甲苯、乙苯一苯乙烯等物系则可作为理想系统处

理。

C、回流比的确定:

对于一般体系最小回流比的确定可按常规方法处理[9],但对于某些特殊体系,如乙醇水体系则要特殊处理,该体系最小回流比Rmin的求取应通过精馏段操作线与平衡线相切得到。而适宜回流比R的确定,应体现最佳回流比选定原则即装置设备费与操作费之和最低,我们推荐以下简化方法计算各项费用,从而确定最佳回流比[6]。

设备费用:C

D

塔成本费C

D

=39870 x D1.2元

式中D为塔径,N为实际塔板数

假定精馏塔每年操作7200小时,折旧率对33%

蒸汽费用: C

S

=70元/吨

冷却水费用: C

W

=0.3元/吨

年总费用 C=0.33 X C

D +C

S

+C

W

计算费用时应注意:①年总费用应是每年的设备折旧费与每年的操作费之和;②蒸汽费用的计算应考虑过程的蒸汽损失,一般取总蒸汽耗量5-10%.

D、全塔效率的确定

全塔效率的确定对所设计的塔能否完成任务关系极大,但至今尚无可靠的计算方法,一般可用如下三种方法之一来确定:

①参考工厂同类型塔的全塔效率经验数据;

②对同类型塔进行现场测定取得可靠的塔效数据;

③当缺乏经验数据时可用经验关联式估算,比如对于板式精馏塔可采用0’co nne11塔效经验式[2]估算塔效;对于填料精馏塔可采用Murch法等经验公式[2]估算等板高度。

3、关于塔板(或填料层)和塔体主要工艺尺寸的设计计算:

板式塔工艺尺寸设计计算的主要内容包括:板间距、塔径、塔板型式、溢流装置、塔板布置、流体力学性能校核、负荷性能图以及塔高等。其设计计算方法可查阅有关资料[2][3][7][8]。着重应注意的是:塔板设计的任务是以流经塔内气液的物流量、操作条件和系统物性为依据,确定具有良好性能(压降小、弹性大、效率高)的塔板结构与尺寸。塔板设计的基本思路是:以通过某一块板的气液处理量和板上气液组成,温度、压力等条件为依据,首先参考设计手册上推荐数据初步确定有关的独立变量,然后进行流体力学计算,校核其是否符合所规定的范围,如不符合要求就必须修改结构参数,重复上述设计步骤直到满意为止。最后给制出负荷性能图,以确定适宜操作区和操

化工原理教案(下册)

化工原理教案(下册) 第一章蒸馏(下册) 1. 教学目的 通过本章的学习,掌握蒸馏的基本概念和蒸馏过程的基本计算方法。 2. 教学重点 (1)两组分理想物系的汽液平衡关系 (2)蒸馏过程的原理 (3)两组分连续精馏过程的计算(物料衡算与进料热状况的影响、理论板层数的计算与回流比的影响、塔板效率) 3. 教学难点 进料热状况参数及对精馏的影响;多侧线的精馏塔理论板层数的求解;间歇精馏的计算。 4. 本章学习应注意的问题 (1)汽液平衡关系是精馏过程计算的基础,要理解平衡常数、相对挥发度等基本概念,熟练地运用汽液平衡关系进行有关计算。 (2)两组分连续精馏过程计算的主要内容是物料衡算、理论板层数的计算及塔高和塔径的计算,涉及到进料热状况、最小回流比和回流比、塔板效率等诸多概念,要理解上述概念,熟练地掌握各计算公式之间的联系。 (3)两组分连续精馏过程计算所涉及的公式较多,学习时不要机械地记忆,应注意掌握其推导过程。 (4)塔板效率计算通常需联立操作线方程、汽液平衡方程及塔板效率定义式,应注意给出有关组成可计算塔板效率;给出塔板效率亦可计算有关组成。计算时应注意所求塔板的位置和类型(是理论板还是实际板)。 5. 教学方法 以课堂讲授为主,辅之以课堂讨论和习题课进行巩固和强化训练。 6. 本章学习资料 (1)夏清等.化工原理,下册. 天津: 天津大学出版社, 2005 (2)姚玉英等. 化工原理,下册. 天津: 天津大学出版社, 1999 (3)大连理工大学. 化工原理,下册. 大连: 大连理工大学出版社, 1992 (4) 贾绍义,柴诚敬.化工传质与分离过程.北京:化学工业出版社,2001 (5) 蒋维钧,雷良恒,刘茂林.化工原理,下册.北京:清华大学出版社, 1993 1-1 蒸馏过程概述与汽液平衡关系

化工原理实验报告

化工原理实验报告 Prepared on 22 November 2020

实验一 伯努利实验 一、实验目的 1、熟悉流体流动中各种能量和压头的概念及相互转化关系,加深对柏努利方程式的理解。 2、观察各项能量(或压头)随流速的变化规律。 二、实验原理 1、不可压缩流体在管内作稳定流动时,由于管路条件(如位置高低、管径大小等)的变化,会引起流动过程中三种机械能——位能、动能、静压能的相应改变及相互转换。对理想流体,在系统内任一截面处,虽然三种能量不一定相等,但能量之和是守恒的(机械能守恒定律)。 2、对于实际流体,由于存在内磨擦,流体在流动中总有一部分机械能随磨擦和碰撞转化为热能而损失。故而对于实际流体,任意两截面上机械能总和并不相等,两者的差值即为机械损失。 3、以上几种机械能均可用U 型压差计中的液位差来表示,分别称为位压头、动压头、静压头。当测压直管中的小孔(即测压孔)与水流方向垂直时,测压管内液柱高度(位压头)则为静压头与动压头之和。任意两截面间位压头、静压头、动压头总和的差值,则为损失压头。 4、柏努利方程式 式中: 1Z 、2Z ——各截面间距基准面的距离 (m ) 1u 、2u ——各截面中心点处的平均速度(可通过流量与其截面积求得) (m/s)

1P 、2p ——各截面中心点处的静压力(可由U 型压差计的液位差可 知) (Pa ) 对于没有能量损失且无外加功的理想流体,上式可简化为 ρ ρ2 222121122p u gz p u gz + +=++ 测出通过管路的流量,即可计算出截面平均流速ν及动压g 22 ν,从而可得到各截面测管水头和总水头。 三、实验流程图 泵额定流量为10L/min,扬程为8m,输入功率为80W. 实验管:内径15mm 。 四、实验操作步骤与注意事项 1、熟悉实验设备,分清各测压管与各测压点,毕托管测点的对应关系。 2、打开开关供水,使水箱充水,待水箱溢流后,检查泄水阀关闭时所有测压管水面是否齐平,若不平则进行排气调平(开关几次)。 3、打开阀5,观察测压管水头和总水头的变化趋势及位置水头、压强水头之间的相互关系,观察当流量增加或减少时测压管水头的变化情况。 4、将流量控制阀开到一定大小,观察并记录各测压点平行与垂直流体流动方向的液位差△h 1…△h 4。要注意其变化情况。继续开大流量调节阀,测压孔正对水流方向,观察并记录各测压管中液位差△h 1…△h 4。 5、实验完毕停泵,将原始数据整理。 实验二 离心泵性能曲线测定 一、实验目的 1. 了解离心泵的构造和操作方法 2. 学习和掌握离心泵特性曲线的测定方法

化工原理答案必下

第一章流体流动 1.某设备上真空表的读数为×103 Pa,试计算设备内的绝对压强与表压强。已知该地区大气压强为×103 Pa。 解:由绝对压强 = 大气压强–真空度得到: 设备内的绝对压强P绝= ×103 Pa ×103 Pa =×103 Pa 设备内的表压强 P表 = -真空度 = - ×103 Pa 2.在本题附图所示的储油罐中盛有密度为 960 ㎏/?的油品,油面高于罐底 6.9 m,油面上方为常压。在罐侧壁的下部有一直径为 760 mm 的圆孔,其中心距罐底 800 mm,孔盖用14mm 的钢制螺钉紧固。若螺钉材料的工作应力取为×106 Pa , 问至少需要几个螺钉 分析:罐底产生的压力不能超过螺钉的工作应力即 P油≤σ螺 解:P螺 = ρgh×A = 960×××× ×103 N σ螺 = ×103×××n P油≤σ螺得 n ≥ 取 n min= 7 至少需要7个螺钉 3.某流化床反应器上装有两个U 型管压差计,如本题附图所示。测得R1= 400 mm , R2 = 50 mm,指示液为水银。为防止水银蒸汽向空气中扩散,于右侧的U 型管与大气连通的玻璃管内灌入一段水,其高度R3 = 50 mm。试求A﹑B两处的表压强。 分析:根据静力学基本原则,对于右边的U管压差计,a–a′为等压面,对于左边的压差计,b–b′为另一等压面,分别列出两个等压面处的静力学基本方程求解。 解:设空气的密度为ρg,其他数据如图所示

a–a′处 P A + ρg gh1 = ρ水gR3 + ρ水银ɡR2 由于空气的密度相对于水和水银来说很小可以忽略不记 即:P A = ×103×× + ×103×× = ×103 Pa b-b′处 P B + ρg gh3 = P A + ρg gh2 + ρ水银gR1 P B = ×103×× + ×103 =×103Pa 4. 本题附图为远距离测量控制装置,用以测定分相槽内煤油和水的两相界面位置。已知两吹气管出口的距离H = 1m,U管压差计的指示液为水银,煤油的密度为820Kg/?。试求当压差计读数R=68mm时,相界面与油层的吹气管出口距离h。 分析:解此题应选取的合适的截面如图所示:忽略空气产生的压强,本题中1-1′和4-4′为等压面,2-2′和3-3′为等压面,且1-1′和2-2′的压强相等。根据静力学基本方程列出一个方程组求解 解:设插入油层气管的管口距油面高Δh 在1-1′与2-2′截面之间 P1 = P2 + ρ水银gR ∵P1 = P4,P2 = P3 且P3 = ρ煤油gΔh , P4 = ρ水g(H-h)+ ρ煤油g(Δh + h) 联立这几个方程得到 ρ水银gR = ρ水g(H-h)+ ρ煤油g(Δh + h)-ρ煤油gΔh 即 ρ水银gR =ρ水gH + ρ煤油gh -ρ水gh 带入数据 3×103×1 - ×103× = h×103×103) h= m 5.用本题附图中串联U管压差计测量蒸汽锅炉水面上方的蒸气压,U管压差计的指示液为水银,两U管间的连接管内充满水。以知水银面与基准面的垂直距离分别为:h1﹦2.3m,h2=1.2m, h3=2.5m,h4=1.4m。锅中水面与基准面之间的垂直距离h5=3m。大气压强pa= ×103pa。 试求锅炉上方水蒸气的压强P。

化工原理实验答案

实验四 1.实验中冷流体和蒸汽的流向,对传热效果有何影响? 无影响。因为Q=αA△t m,不论冷流体和蒸汽是迸流还是逆流流动,由 于蒸汽的温度不变,故△t m不变,而α和A不受冷流体和蒸汽的流向的影响, 所以传热效果不变。 2.蒸汽冷凝过程中,若存在不冷凝气体,对传热有何影响、应采取什么 措施? 不冷凝气体的存在相当于增加了一项热阻,降低了传热速率。冷凝器 必须设置排气口,以排除不冷凝气体。 3.实验过程中,冷凝水不及时排走,会产生什么影响?如何及时排走冷 凝水? 冷凝水不及时排走,附着在管外壁上,增加了一项热阻,降低了传热速 率。在外管最低处设置排水口,及时排走冷凝水。 4.实验中,所测定的壁温是靠近蒸汽侧还是冷流体侧温度?为什么?传热系数k 接近于哪种流体的 壁温是靠近蒸汽侧温度。因为蒸汽的给热系数远大于冷流体的给热系 数,而壁温接近于给热系数大的一侧流体的温度,所以壁温是靠近蒸汽侧温度。而总传热系数K接近于空气侧的对流传热系数 5.如果采用不同压强的蒸汽进行实验,对α关联式有何影响? 基本无影响。因为α∝(ρ2gλ3r/μd0△t)1/4,当蒸汽压强增加时,r 和△t 均增加,其它参数不变,故(ρ2gλ3r/μd0△t)1/4变化不大,所以认为蒸汽压强 对α关联式无影响。

实验五固体流态化实验 1.从观察到的现象,判断属于何种流化? 2.实际流化时,p为什么会波动? 3.由小到大改变流量与由大到小改变流量测定的流化曲线是否重合,为什么? 4流体分布板的作用是什么? 实验六精馏 1.精馏塔操作中,塔釜压力为什么是一个重要操作参数,塔釜压力与哪些因素有关? 答(1)因为塔釜压力与塔板压力降有关。塔板压力降由气体通过板上孔口或通道时为克服局部阻力和通过板上液层时为克服该液层的静压力而引起,因而塔板压力降与气体流量(即塔内蒸汽量)有很大关系。气体流量过大时,会造成过量液沫夹带以致产生液泛,这时塔板压力降会急剧加大,塔釜压力随之升高,因此本实验中塔釜压力可作为调节塔釜加热状况的重要参考依据。(2)塔釜温度、流体的粘度、进料组成、回流量。 2.板式塔气液两相的流动特点是什么? 答:液相为连续相,气相为分散相。 3.操作中增加回流比的方法是什么,能否采用减少塔顶出料量D的方法? 答:(1)减少成品酒精的采出量或增大进料量,以增大回流比;(2)加大蒸气量,增加塔顶冷凝水量,以提高凝液量,增大回流比。 5.本实验中进料状态为冷态进料,当进料量太大时,为什么会出现精馏段干板,甚至出现塔顶既没有回流也没有出料的现象,应如何调节?

化工原理第10章

第10章习题解答 1 在操作条件下,以纯净的氯苯为萃取剂,在单级接触萃取器中,萃取含丙酮的水溶液。丙酮-水-氯苯三元混合液的平衡数据见本题附表。试求: ⑴在直角三角形坐标系下,绘制此三元体系的相图,其中应包括溶解度曲线、联接线和辅助曲线; ⑵若近似地将前五组数据中B与S视为不互溶,试在X-Y直角坐标图上标绘分配曲线; ⑶若丙酮水溶液质量比分数为0.4,并且m B/m S=2.0,在X-Y直角坐标图上求丙酮在萃余相中的浓度; ⑷求当水层中丙酮浓度为45%(质量%,下同)时,水与氯苯的组成以及与该水层成平衡时的氯苯层的组成; ⑸由0.12kg氯苯和0.08kg水所构成的混合液中,尚需加入多少kg丙酮即可成为三元均相混合液; ⑹预处理含丙酮35%的原料液800kg,并要求达到萃取平衡时,萃取相中丙酮浓度为30%,试确定萃取剂(氯苯)的用量; ⑺求条件⑹下的萃取相和萃余相的量,并计算萃余相中丙酮的组成; ⑻若将条件⑹时的萃取相中的溶剂全部回收,求可得萃取液的量及组成。 解:⑴依平衡数据绘出溶解度曲线如附图1-1所示,图中各点代号与数据的对应关系注于附表1-1中。联结互成平衡的两液层组成点得E1R1、E2R2、E2R2……等平衡联结线。 由E1、E2、E3……各点作平行于AB边的直线,再由R1、R2、R3……各点作平行于AS边的

直线,两组线分别相交于点G、H、I、J、K,连接P、G、H、I、J、K即得辅助曲线。 ⑵将前五组数据转换为质量比浓度,其结果列于附表1-2中,并在X-Y直角坐标图上标绘分配曲线,如图1-2。 附表1-2 ⑶由X F=0.4,在图1-2上,自点X F作斜率为-m B/m S=-2.0的直线与分配曲线相交于点T,点T的横坐标即为丙酮在萃余相中的浓度X R=0.25。 图1-1 图1-2 ⑷水层中各组分的浓度 由所绘制的溶解度曲线如图1-3,在AB边上确定组分A的浓度为45%的点F,由点F绘直线FW平行于三角形底边BS,则FW线上各点表示A的组成均为45%。FW与溶解度曲线左侧的交点R,即代表水层中含A为45%的组成点,由图可读得点R组成为(质量%): x A=45%x B=52.8%x S=2.2%

化工原理下册第二章

第二章 吸收 1. 从手册中查得 KPa 、25 ℃时,若100 g 水中含氨1 g ,则此溶液上方的氨气平衡分压为 KPa 。已知在此组成范围内溶液服从亨利定律,试求溶解度系数H (kmol/ (m 3·kPa))及相平衡常数m 。 解:(1) 求H 由33NH NH C P H * = .求算. 已知:30.987NH a P kP *=.相应的溶液浓度3NH C 可用如下方法算出: 以100g 水为基准,因为溶液很稀.故可近似认为其密度与水相同.并取其值为 31000/kg m .则: 3333 31/17 0.582/1001 1000 0.582 /0.590/() 0.987NH NH NH a C kmol m H C P kmol m kP *= =+∴===? (2). 求m .由333 333330.987 0.00974 101.33 1/17 0.0105 1/17100/18 0.00974 /0.928 0.0105 NH NH NH NH NH NH NH NH y m x P y P x m y x ** **== = ===+=== 2. kpa 、10 ℃时,氧气在水中的溶解度可用p O2=×106x 表示。式中:P O2为氧在气相中的分压,kPa 、x 为氧在液相中的摩尔分数。试求在此温度及压强下与空气充分接触后的水中,每立方米溶有多少克氧。 解: 氧在空气中的摩尔分数为0.21.故: 222 26 6 101.330.2121.2821.28 6.4310 3.31106 3.3110O O a O O P Py kP P x -==?====??? 因2O x 值甚小,故可以认为X x ≈ 即:2266.4310O O X x -≈=?

化工原理实验资料

实验一 干燥实验 一、实验目的 1. 了解洞道式循环干燥器的基本流程、工作原理和操作技术。 2. 掌握恒定条件下物料干燥速率曲线的测定方法。 3. 测定湿物料的临界含水量X C ,加深对其概念及影响因素的理解。 4. 熟悉恒速阶段传质系数K H 、物料与空气之间的对流传热系数α的测定方法。 二、实验内容 1. 在空气流量、温度不变的情况下,测定物料的干燥速率曲线和临界含水量,并了解其 影响因素。 2. 测定恒速阶段物料与空气之间的对流传热系数α和传质系数K H 。 三、基本原理 干燥操作是采用某种方式将热量传给湿物料,使湿物料中水分蒸发分离的操作。干燥操作同时伴有传热和传质,而且涉及到湿分以气态或液态的形式自物料内部向表面传质的机理。由于物料含水性质和物料形状上的差异,水分传递速率的大小差别很大。概括起来说,影响传递速率的因素主要有:固体物料的种类、含水量、含水性质;固体物料层的厚度或颗粒的大小;热空气的温度、湿度和流速;热空气与固体物料间的相对运动方式。目前尚无法利用理论方法来计算干燥速率(除了绝对不吸水物质外),因此研究干燥速率大多采用实验的方法。 干燥实验的目的是用来测定干燥曲线和干燥速率曲线。为简化实验的影响因素,干燥实验是在恒定的干燥条件下进行的,即实验为间歇操作,采用大量空气干燥少量的物料,且空气进出干燥器时的状态如温度、湿度、气速以及空气与物料之间的流动方式均恒定不变。 本实验以热空气为加热介质,甘蔗渣滤饼为被干燥物。测定单位时间内湿物料的质量变化,实验进行到物料质量基本恒定为止。物料的含水量常用相对与物料总量的水分含量,即以湿物料为基准的水分含量,用ω来表示。但因干燥时物料总量在变化,所以采用以干基料为基准的含水量X 表示更为方便。ω与X 的关系为: X = -ω ω 1 (8—1) 式中: X —干基含水量 kg 水/kg 绝干料; ω—湿基含水量 kg 水/kg 湿物料。 物料的绝干质量G C 是指在指定温度下物料放在恒温干燥箱中干燥到恒重时的质量。干燥曲线即物料的干基含水量X 与干燥时间τ的关系曲线,它说明物料在干燥过程中,干基含水量随干燥时间变化的关系。物料的干燥曲线的具体形状因物料性质及干燥条件而变,但是曲线的一般形状,如图(8—1)所示,开始的一小段为持续时间很短、斜率较小的直线段AB 段;随后为持续时间长、斜率较大的直线BC ;段以后的一段为曲线

(完整版)化工原理下册习题及章节总结(陈敏恒版).doc

第八章课堂练习: 1、吸收操作的基本依据是什么?答:混合气体各组分溶解度不同 2、吸收溶剂的选择性指的是什么:对被分离组分溶解度高,对其它组分溶解度低 3、若某气体在水中的亨利系数 E 值很大,说明该气体为难溶气体。 4、易溶气体溶液上方的分压低,难溶气体溶液上方的分压高。 5、解吸时溶质由液相向气相传递;压力低,温度高,将有利于解吸的进行。 6、接近常压的低浓度气液平衡系统,当总压增加时,亨利常数 E 不变, H 不变,相平衡常数 m 减小 1、①实验室用水吸收空气中的O2 ,过程属于( B ) A 、气膜控制B、液膜控制C、两相扩散控制 ② 其气膜阻力(C)液膜阻力 A 、大于B、等于C、小于 2、溶解度很大的气体,属于气膜控制 3、当平衡线在所涉及的范围内是斜率为m 的直线时,则 1/Ky=1/ky+ m /kx 4、若某气体在水中的亨利常数 E 值很大,则说明该气体为难溶气体 5 、总传质系数与分传质系数之间的关系为l/KL=l/kL+1/HkG ,当(气膜阻力 1/HkG) 项可忽略时,表示该吸收过程为液膜控制。 1、低含量气体吸收的特点是L 、 G 、Ky 、 Kx 、T 可按常量处理 2、传质单元高度HOG 分离任表征设备效能高低特性,传质单元数NOG 表征了(分离任务的难易)特性。 3、吸收因子 A 的定义式为 L/ ( Gm ),它的几何意义表示操作线斜率与平衡线斜率之比 4、当 A<1 时,塔高 H= ∞,则气液两相将于塔底达到平衡 5、增加吸收剂用量,操作线的斜率增大,吸收推动力增大,则操作线向(远离)平衡线的方向偏移。 6、液气比低于(L/G ) min 时,吸收操作能否进行?能 此时将会出现吸收效果达不到要求现象。 7、在逆流操作的吸收塔中,若其他操作条件不变而系统温度增加,则塔的气相总传质单元 高度 HOG 将↑,总传质单元数NOG将↓,操作线斜率(L/G )将不变。 8、若吸收剂入塔浓度 x2 降低,其它操作条件不变,吸收结果将使吸收率↑,出口气体浓度↓。 x2 增大,其它条件不变,则 9、在逆流吸收塔中,吸收过程为气膜控制,若进塔液体组 成气相总传质单元高度将( A )。 A. 不变 B.不确定 C.减小 D. 增大 吸收小结: 1、亨利定律、费克定律表达式 及温度而异,单位与压强的 2、亨利系数与温度、压力的关系; E 值随物系的特性单 位一致; m 与物系特性、温度、压力有关(无因次) 3、 E 、 H 、 m 之间的换算关系 4、吸收塔在最小液气比以下能否正常工作。 5、操作线方程(并、逆流时)及在y~x 图上的画法 6、出塔气体有一最小值,出塔液体有一最大值,及各自的计算式 7、气膜控制、液膜控制的特点 8、最小液气比(L/G)min 、适宜液气比的计算 9、加压和降温溶解度高,有利于吸收 减压和升温溶解度低,有利于解吸

化工原理实验实验报告

篇一:化工原理实验报告吸收实验 姓名 专业月实验内容吸收实验指导教师 一、实验名称: 吸收实验 二、实验目的: 1.学习填料塔的操作; 2. 测定填料塔体积吸收系数kya. 三、实验原理: 对填料吸收塔的要求,既希望它的传质效率高,又希望它的压降低以省能耗。但两者往往是矛盾的,故面对一台吸收塔应摸索它的适宜操作条件。 (一)、空塔气速与填料层压降关系 气体通过填料层压降△p与填料特性及气、液流量大小等有关,常通过实验测定。 若以空塔气速uo[m/s]为横坐标,单位填料层压降?p[mmh20/m]为纵坐标,在z ?p~uo关系z双对数坐标纸上标绘如图2-2-7-1所示。当液体喷淋量l0=0时,可知 为一直线,其斜率约1.0—2,当喷淋量为l1时,?p~uo为一折线,若喷淋量越大,z ?p值较小时为恒持z折线位置越向左移动,图中l2>l1。每条折线分为三个区段, 液区,?p?p?p~uo关系曲线斜率与干塔的相同。值为中间时叫截液区,~uo曲zzz ?p值较大时叫液泛区,z线斜率大于2,持液区与截液区之间的转折点叫截点a。 姓名 专业月实验内容指导教师?p~uo曲线斜率大于10,截液区与液泛区之间的转折点叫泛点b。在液泛区塔已z 无法操作。塔的最适宜操作条件是在截点与泛点之间,此时塔效率最高。 图2-2-7-1 填料塔层的?p~uo关系图 z 图2-2-7-2 吸收塔物料衡算 (二)、吸收系数与吸收效率 本实验用水吸收空气与氨混合气体中的氨,氨易溶于水,故此操作属气膜控制。若气相中氨的浓度较小,则氨溶于水后的气液平衡关系可认为符合亨利定律,吸收姓名 专业月实验内容指导教师平均推动力可用对数平均浓度差法进行计算。其吸收速率方程可用下式表示: na?kya???h??ym(1)式中:na——被吸收的氨量[kmolnh3/h];?——塔的截面积[m2] h——填料层高度[m] ?ym——气相对数平均推动力 kya——气相体积吸收系数[kmolnh3/m3·h] 被吸收氨量的计算,对全塔进行物料衡算(见图2-2-7-2): na?v(y1?y2)?l(x1?x2) (2)式中:v——空气的流量[kmol空气/h] l——吸收剂(水)的流量[kmolh20/h] y1——塔底气相浓度[kmolnh3/kmol空气] y2——塔顶气相浓度[kmolnh3/kmol空气] x1,x2——分别为塔底、塔顶液相浓度[kmolnh3/kmolh20] 由式(1)和式(2)联解得: kya?v(y1?y2)(3) ??h??ym 为求得kya必须先求出y1、y2和?ym之值。 1、y1值的计算:

化工原理第十章-液-液萃取和液-固浸取

第十章 液-液萃取和液-固浸取 1. 25℃时醋酸(A )–庚醇-3(B )–水(S )的平衡数据如本题附表所示。 习题1附表1 溶解度曲线数据(质量分数/%) 试求:(1)在直角三角形相图上绘出溶解度曲线及辅助曲线,在直角坐标图上绘出分配曲线。(2)确定由200 kg 醋酸、200 kg 庚醇-3和400 kg 水组成的混合液的物系点位置。混合液经充分混合并静置分层后,确定两共轭相的组成和质量。(3)上述两液层的分配系数A k 及选择性系数β。(4)从上述混合液中蒸出多少千克水才能成为均相溶液? 解:(1)溶解度曲线如附图1中曲线SEPHRJ 所示。辅助曲线如附图1曲线SNP 所示。分配曲线如附图2 所示。 (2)和点醋酸的质量分率为 25.0400 200200200 A =++= x 水的质量分率为 50.0400 200200400 S =++=x 由此可确定和点M 的位置,如附图1所示。由辅助曲线通过试差作图可确定M 点的差点R 和E 。由杠杆规则可得 kg 260kg 80040 13 4013=?==M R ()kg 540kg 260800=-=-=R M E

由附图1可查得E 相的组成为 A S B 0.28, 0.71,0.01y y y === R 相的组成为 A S B 0.20, 0.06,0.74x x x === (3)分配系数 A A A 0.28 1.40.20y k x === B B B 0.010.01350.74 y k x = == 选择性系数 7.1030135 .04.1B A === k k β (4)随水分的蒸发,和点M 将沿直线SM 移动,当M 点到达H 点时,物系分层消失,即变为均相物系。由杠杆规则可得 kg 5.494kg 80055 34 5534=?== M H 需蒸发的水分量为 ()kg 5.305kg 5.494800=-=-H M 2. 在单级萃取装置中,以纯水为溶剂从含醋酸质量分数为30%的醋酸–庚醇-3混合液中提取醋酸。已知原料液的处理量为1 000 kg/h ,要求萃余相中醋酸的质量分数不大于10%。试(1)水的用量;(2)萃余相的量及醋酸的萃取率。操作条件下的平衡数据见习题1。 解:(1)物系的溶解度曲线及辅助曲线如附图所示。 由原料组成x F =0.3可确定原料的相点F ,由萃余相的组成x A =0.1可确定萃余相的相点R 。借助辅助曲线,由R 可确定萃取相的相点E 。联结RE 、FS ,则其交点M 即为萃取操作的物系点。由杠杆规则可得 习题1 附图1 习题1 附图2

化工原理实验—吸收

化工原理实验—吸收 一、实验目的 1.了解填料吸取塔的结构和流程; 2.了解吸取剂进口条件的变化对吸取操作结果的阻碍; 3.把握吸取总传质系数Kya 的测定方法 4. 学会使用GC 二、实验原理 吸取操作是分离气体混合物的方法之一,在实际操作过程中往往同时具有净化与回收双重目的。因而,气体出口浓度y2是度量该吸取塔性能的重要指标,但阻碍y2的因素专门多,因为吸取传质速率NA 由吸取速率方程式决定。 (一). 吸取速率方程式: 吸取传质速率由吸取速率方程决定 : m y A y aV K N ?=填 或 m y A y A K N ?= 式中: Ky 气相总传系数,mol/m3.s ; A 填料的有效接触面积,m2; Δym 塔顶、塔底气相平均推动力, V 填 填料层堆积体积,m3; Kya 气相总容积吸取传质系数,mol/m2.s 。 从前所述可知,NA 的大小既与设备因素有关,又有操作因素有关。

(二).阻碍因素: 1.设备因素: V 填与填料层高度H 、填料特性及放置方式有关。然而,一旦填料塔制成,V 填就为一定值。 2.操作因素: a .气相总容积吸取传质系数Kya 按照双膜理论,在一定的气温下,吸取总容积吸取传质系数Kya 可表示成: a k m a k a K x y y +=11 又有文献可知:a y G A a k ?=和b x L B a k ?=,综合可得 b a y L G C a K ?=,明显Kya 与气体流量及液体流量均有紧密关系。 比较a 、b 大小,可讨论气膜操纵或液膜操纵。 b .气相平均推动力Δym 将操作线方程为:22)(y x x G L y +-=的吸取操作线和平稳线方程为:y =mx 的平稳线在方格纸上作图,从图5-1中可得知: 2 12 1ln y y y y y m ???-?= ? 图5-1 吸取操作线和平稳线 其中 ;11*111mx y y y y -=-=?,22* 2 22mx y y y y -=-=?,另外,从图5-1中还可看出,该塔是塔顶接近平稳。 (三). 吸取塔的操作和调剂: 吸取操作的结果最终表现在出口气体的组成y2上,或组分的回收率η上。在低浓度气体吸取时,回收率η可近似用下式运算:

化工原理各章节知识点总结

第一章流体流动 质点含有大量分子的流体微团,其尺寸远小于设备尺寸,但比起分子自由程 却要大得多。 连续性假定假定流体是由大量质点组成的、彼此间没有间隙、完全充满所占空间的连续介质。 拉格朗日法选定一个流体质点,对其跟踪观察,描述其运动参数(如位移、速度等)与时间的关系。 欧拉法在固定空间位置上观察流体质点的运动情况,如空间各点的速度、压强、密度等,即直接描述各有关运动参数在空间各点的分布情况和随时间的变化。定态流动流场中各点流体的速度u 、压强p不随时间而变化。 轨线与流线轨线是同一流体质点在不同时间的位置连线,是拉格朗日法考察的结果。流线是同一瞬间不同质点在速度方向上的连线,是欧拉法考察的结果。系统与控制体系统是采用拉格朗日法考察流体的。控制体是采用欧拉法考察流体的。 理想流体与实际流体的区别理想流体粘度为零,而实际流体粘度不为零。粘性的物理本质分子间的引力和分子的热运动。通常液体的粘度随温度增 加而减小,因为液体分子间距离较小,以分子间的引力为主。气体的粘度随温度上升而增大,因为气体分子间距离较大,以分子的热运动为主。 总势能流体的压强能与位能之和。 可压缩流体与不可压缩流体的区别流体的密度是否与压强有关。有关的称为可压缩流体,无关的称为不可压缩流体。 伯努利方程的物理意义流体流动中的位能、压强能、动能之和保持不变。平均流速流体的平均流速是以体积流量相同为原则的。 动能校正因子实际动能之平均值与平均速度之动能的比值。 均匀分布同一横截面上流体速度相同。 均匀流段各流线都是平行的直线并与截面垂直,在定态流动条件下该截面上

的流体没有加速度, 故沿该截面势能分布应服从静力学原理。 层流与湍流的本质区别是否存在流体速度u、压强p的脉动性,即是否存在流体质点的脉动性。 稳定性与定态性稳定性是指系统对外界扰动的反应。定态性是指有关运动参数随时间的变化情况。 边界层流动流体受固体壁面阻滞而造成速度梯度的区域。 边界层分离现象在逆压强梯度下,因外层流体的动量来不及传给边界层,而形成边界层脱体的现象。 雷诺数的物理意义雷诺数是惯性力与粘性力之比。 量纲分析实验研究方法的主要步骤: ①经初步实验列出影响过程的主要因素; ②无量纲化减少变量数并规划实验; ③通过实验数据回归确定参数及变量适用围,确定函数形式。 摩擦系数 层流区,λ与Re成反比,λ与相对粗糙度无关; 一般湍流区,λ随Re增加而递减,同时λ随相对粗糙度增大而增大; 充分湍流区,λ与Re无关,λ随相对粗糙度增大而增大。 完全湍流粗糙管当壁面凸出物低于层流层厚度,体现不出粗糙度过对阻力 损失的影响时,称为水力光滑管。Re很大,λ与Re无关的区域,称为完全湍流粗糙管。同一根实际管子在不同的Re下,既可以是水力光滑管,又可以是完全湍流粗糙管。 局部阻力当量长度把局部阻力损失看作相当于某个长度的直管,该长度即为局部阻力当量长度。 毕托管特点毕托管测量的是流速,通过换算才能获得流量。 驻点压强在驻点处,动能转化成压强(称为动压强),所以驻点压强是静压强与动压强之和。 孔板流量计的特点恒截面,变压差。结构简单,使用方便,阻力损失较大。转子流量计的特点恒流速,恒压差,变截面。 非牛顿流体的特性 塑性:只有当施加的剪应力大于屈服应力之后流体才开始流动。

化工原理下册答案

化工原理(天津大学第二版)下册部分答案 第8章 2. 在温度为25 ℃及总压为 kPa 的条件下,使含二氧化碳为%(体积分数)的混合空气与含二氧化碳为350 g/m 3的水溶液接触。试判断二氧化碳的传递方向,并计算以二氧化碳的分压表示的总传质推动力。已知操作条件下,亨 利系数51066.1?=E kPa ,水溶液的密度为 kg/m 3。 解:水溶液中CO 2的浓度为 对于稀水溶液,总浓度为 3t 997.8kmol/m 55.4318 c ==kmol/m 3 水溶液中CO 2的摩尔分数为 由 54* 1.6610 1.44310kPa 23.954p Ex -==???=kPa 气相中CO 2的分压为 t 101.30.03kPa 3.039p p y ==?=kPa < *p 故CO 2必由液相传递到气相,进行解吸。 以CO 2的分压表示的总传质推动力为 *(23.954 3.039)kPa 20.915p p p ?=-=-=kPa 3. 在总压为 kPa 的条件下,采用填料塔用清水逆流吸收混于空气中的氨气。测得在塔的某一截面上,氨的气、液相组成分别为0.032y =、3 1.06koml/m c =。气膜吸收系数k G =×10-6 kmol/(m 2skPa),液膜吸收系数k L =×10-4 m/s 。假设操作条件下平衡关系服从亨利定律,溶解度系数H = kmol/(m 3kPa)。 (1)试计算以p ?、c ?表示的总推动力和相应的总吸收系数; (2)试分析该过程的控制因素。 解:(1) 以气相分压差表示的总推动力为 t 1.06*(110.50.032)kPa 2.0740.725 c p p p p y H ?=-=- =?-=kPa 其对应的总吸收系数为 6G 1097.4-?=K kmol/(m 2skPa) 以液相组成差表示的总推动力为 其对应的总吸收系数为 (2)吸收过程的控制因素 气膜阻力占总阻力的百分数为 气膜阻力占总阻力的绝大部分,故该吸收过程为气膜控制。 4. 在某填料塔中用清水逆流吸收混于空气中的甲醇蒸汽。操作压力为 kPa ,操作温度为25 ℃。在操作条件下平衡关系符合亨利定律,甲醇在水中的溶解度系数为 kmol/(m 3kPa)。测得塔内某截面处甲醇的气相分压为 kPa ,液相组成为 kmol/m 3,液膜吸收系数k L =×10-5 m/s ,气相总吸收系数K G =×10-5 kmol/(m 2skPa)。求该截面处(1)膜吸收系数k G 、k x 及k y ;(2)总吸收系数K L 、K X 及K Y ;(3)吸收速率。 解:(1) 以纯水的密度代替稀甲醇水溶液的密度,25 ℃时水的密度为 0.997=ρkg/m 3 溶液的总浓度为

化工原理下册部分题

1. 某双组分理想物系当温度t=80℃时,P A°=106.7kPa,P B°=40kPa,液相摩尔组成x A=0.4,试求:⑴与此液相组成相平衡的汽相组成y;⑵相对挥发度α。解:(1)x A=(P总-P B°)/(P A°-P B°) ; 0.4=(P总-40)/(106.7-40) ∴P总=66.7kPa; y A=x A·P A°/P总=0.4×106.7/66.7=0.64 (2)α=P A°/P B°=106.7/40=2.67 5. 某精馏塔在常压下分离苯-甲苯混合液,此时该塔的精馏段和提馏段操作线方程分别为y=0.723x+0.263和y'=1.25x'-0.0188,每小时送入塔内75kmol的混合液,进料为泡点下的饱和液体,试求精馏段和提馏段上升的蒸汽量为多少(kmol/h)。 解:已知两操作线方程: y=0.723x+0.263(精馏段) y′=1.25x′-0.0188(提馏段) ∴R/(R+1)=0.723 R=2.61 x D / (R+1)=0.263 x D=3.61×0.263=0.9494 两操作线交点时, y=y′x=x′ ∴0.723x+0.263=1.25x-0.0188 x F =0.5347 饱和液体进料q=1, x F = x =0.5347 提馏段操作线经过点(x W,x W) ∴y′=x w =1.25x W-0.0188 x W=0.0752 由全塔物料衡算F=D+W F x F = D x D + W x W D =(x F—x W)/(x D-x W)F

=(0.5347-0.0752)/(0.9494-0.0752)×75=39.42kmol/h ∵饱和液体进料 V′=V=L+D=(R+1)D=3.61×39.42=142.3kmol/h 6. 已知某精馏塔进料组成x F=0.5,塔顶馏出液组成x D=0.95,平衡关系y=0.8x+0.2,试求下列二种情况下的最小回流比R min。⑴饱和蒸汽加料;⑵饱和液体加料。 解:R min = (x D-y q)/(y q -x q ) (1) ; y q=0.8 x q + 0.2 (2) ; y q= qx q/ (q-1)-x f / (q-1) (3) ⑴q=0, 由(3) y q=x f=0.5,由(2) x q = (0.5-0.2)/0.8=0.375, R min =(0.95-0.5)/(0.5-0.375)=3.6 ⑵q=1, 由(3) x q =x f =0.5,由(2) y q =0.8×0.5+0.2=0.6, R min= (0.95-0.6)/(0.6-0.5)=3.5 9. 用常压精馏塔分离双组分理想混合物,泡点进料,进料量100kmol/h,加料组成为50% ,塔顶产品组成x D=95%,产量D=50kmol/h,回流比R=2R min,设全塔均为理论板,以上组成均为摩尔分率。相对挥发度α=3。求:1.R min(最小回流比) 2.精馏段和提馏段上升蒸汽量。3.列出该情况下的精馏段操作线方程。解:1. y=αx/[1+(α-1)x]=3x/(1+2x) 泡点进料q=1, x q = x F = 0.5, y q =3×0.5/(1+2×0.5)=1.5/2=0.75 R min / (R min+1)=(0.95-0.75)/(0.95-0.5)=0.20/0.45=4/9 R min=4/5=0.8 2. V=V′=(R+1)D=(2×0.8+1)×50=130kmol/h

化工原理(各章节考试重点题与答案)汇总

第1章流体流动重点复习题及答案 学习目的与要求 1、掌握密度、压强、绝压、表压、真空度的有关概念、有关表达式和计算。 2、掌握流体静力学平衡方程式。 3、掌握流体流动的基本概念——流量和流速,掌握稳定流和不稳定流概念。 4、掌握连续性方程式、柏努利方程式及有关应用、计算。 5、掌握牛顿黏性定律及有关应用、计算。 6、掌握雷诺实验原理、雷诺数概念及计算、流体三种流态判断。 7、掌握流体流动阻力计算,掌握简单管路计算,了解复杂管路计算方法。 8、了解测速管、流量计的工作原理,会利用公式进行简单计算。 综合练习 一、填空题 1.某设备的真空表读数为200 mmHg,则它的绝对压强为____________mmHg。当地大气压强为101.33 103Pa. 2.在静止的同一种连续流体的内部,各截面上__________与__________之和为常数。 3.法定单位制中粘度的单位为__________,cgs制中粘度的单位为_________,它们之间的关系是__________。 4.牛顿粘性定律表达式为_______,它适用于_________流体呈__________流动时。 5.开口U管压差计是基于__________原理的测压装置,它可以测量管流中___________上的___________或__________。 6.流体在圆形直管内作滞流流动时的速度分布是_____________形曲线,中心最大速度为平均速度的________倍。摩擦系数与_____________无关,只随_____________加大而_____________。 7.流体在圆形直管内作湍流流动时,摩擦系数λ是_____________函数,若流动在阻力平方区,则摩擦系数是_____________函数,与_____________无关。 8.流体在管内作湍流流动时,在管壁处速度为_____________。邻近管壁处存在_____________层,Re值越大,则该层厚度越_____________ 9.实际流体在直管内流过时,各截面上的总机械能_________守恒,因实际流体流动时有_____________。

(完整版)化工原理实验试卷

1 化工原理实验试卷 注意事项:1. 考前请将密封线内填写清楚; 2. 所有答案请直接答在试卷上; 3.考试形式:闭卷; 一、填空题 1.在阻力实验中,两截面上静压强的差采用倒U 形压差计测定。 2.实验数据中各变量的关系可表示为表格,图形和公式. 3.影响流体流动型态的因素有流体的流速、粘度、温度、尺寸、形状等. 4.用饱和水蒸汽加热冷空气的传热实验,试提出三个强化传热的方案(1)增加空气流速(2)在空气一侧加装翅片(3)定期排放不 凝气体。 5.用皮托管放在管中心处测量时,其U 形管压差计的读数R 反映管中心处的静压头。 6.吸收实验中尾气浓度采用尾气分析装置测定,吸收剂为稀硫酸,指示剂为甲基红。 7.在精馏实验数据处理中需要确定进料的热状况参数q 值,实验中需要测定进料量、进料温度、进料浓度等。 8.干燥实验操作过程中要先开鼓风机送风后再开电热器,以防烧坏加热丝。 9.在本实验室中的精馏实验中应密切注意釜压,正常操作维持在0.005mPa,如果达到0.008~0.01mPa,可能出现液泛,应减 少加热电流(或停止加热),将进料、回流和产品阀关闭,并作放空处理,重新开始实验。 10.吸收实验中尾气浓度采用尾气分析装置测定,它主要由取样管、吸收盒和湿式体积流量计组成的,吸收剂为稀硫酸,指示 剂为甲基红。 11.流体在流动时具有三种机械能:即①位能,②动能,③压力能。这三种能量可以互相转换。 12.在柏努利方程实验中,当测压管上的小孔(即测压孔的中心线)与水流方向垂直时,测压管内液柱高度(从测压孔算起) 为静压头,它反映测压点处液体的压强大小;当测压孔由上述方位转为正对水流方向时,测压管内液位将因此上升,所增加的液 位高度,即为测压孔处液体的动压头,它反映出该点水流动能的大小。 13.测量流体体积流量的流量计有转子流量计、孔板流量计和涡轮流量计。 14.在精馏实验中,确定进料状态参数q 需要测定进料温度,进料浓度参数。 15.在本实验室的传热实验中,采用套管式换热器加热冷空气,加热介质为饱和水蒸汽,可通过增加空气流量达到提高传热系

化工原理下册

第一章蒸馏 1-1正戊烷(C5H12)和正已烷(C6H14)的饱和蒸汽压数据列于本题附表,试计算总压P=13.3kPa 下该溶液的汽液平衡数据和平均相对挥发度。假设该物系为理想溶液。 习题1-1 附表 1-2 某精馏塔再沸器的操作压力为105.0kPa,釜液中含苯0.15(摩尔分率),其余为甲苯。苯与甲苯的安托尼常数列于本题附表,安托尼方程中温度的单位为℃,压力单位为kPa。本物系可视作理想溶液。求此溶液的泡点及其平衡汽相组成。 习题1-2 附表 1-3 常压下对含苯0.6(摩尔分率)的苯—甲苯混合液进行蒸馏分离,原料处理量为 100kmol。物系的平均相对挥发度为2.6,汽化率为0.45,试计算: (1) 平衡蒸馏的汽液相组成;

(2) 简单蒸馏的馏出液量及其平均组成。 1-4 两组分连续精馏的计算(Ⅰ) 1-4 在连续精馏塔中分离某理想二元混合液。已知原料液流量为100 kg/h,组成为0.5 (易挥发组分的摩尔分率,下同),若要求釜液组成不大于0.05,馏出液回收率为95%。试求馏出液的流量和组成。 1-5 在连续精馏塔中分离含甲醇0.45(摩尔分率,下同)的甲醇-水溶液,其流量为 100kmol/h,要求馏出液中甲醇的含量为0.96,釜液中甲醇的含量为0.03,回流比为2.6。试求: (1)馏出液的流量; (2)饱和液体进料时,精馏段和提馏段的操作线方程。 1-6 在连续精馏操作中,已知加料量为100kmol/h,其中汽、液各半,精馏段和提馏段的操作线方程分别为 y=0.75x+0.24 及y=1.25x-0.0125 试求操作回流比,原料液的组成、馏出液的流量及组成。 1-5 两组分连续精馏的计算(Ⅱ) 1-7 在连续精馏塔中分离某理想二元混合液。已知精馏段操作线方程为 ,提馏段操作线方程为。若原料液于露点温度下进入精馏塔中,试求原料液、馏出液和釜残液的组成及回流比。 1-8 在连续精馏塔中,分离苯-甲苯混合液。若原料为饱和液体,其中含苯0.5(摩尔分率,下同)。塔顶馏出液组成为0.95,塔底釜残液组成为0.06,回流比为2.6。试求理论板层数和加料板位置。苯-甲苯混合液的平衡数据见例1-2附表。

相关文档