文档库 最新最全的文档下载
当前位置:文档库 › 微藻保存技术

微藻保存技术

微藻保存技术
微藻保存技术

微藻保存技术

微藻营养丰富,是鱼、虾、贝等经济动物人工育苗的基础。特别是海洋微藻,由于富含EPA和DHA,在许多方面受到人们的青睐。在微藻的培养和应用中,保种技术十分重要,它是微藻培养和进一步应用的基础和关键环节。由于藻种极易受污染,分离培养方法比较复杂而且耗时较长,因此,在微藻保种工作中要尽量减少接种次数,避免藻种被杂藻、细菌或原生动物污染,既能达到长期贮藏种质的目的,又能维持藻种的活性,是微藻科研工作者努力的方向之一。本文就微藻保存的几种常用方法介绍如下。

一、继代法保存

继代保存法是目前普遍采用的方法,使用于一切藻种的保存。通常在常温或常低温进行。常温一般指15℃~25℃,常低温一般指0℃~15℃,藻种可接种在固体、液体或双相培养基中。接种后应首先放在适宜的光照条件下培养,待藻细胞生长繁殖达到较高密度,可见明显的条状或块状的藻细胞群时,再移置低温、弱光的条件下保藏。保藏半年到1年后必须进行转接。此方法简单易行,但是保存时间短,而且继代频繁,容易发生污染和变异。

二、固定化保存法

固定化细胞(1mmobilized cells)是指将游离细胞包埋在多糖或多聚化合物制成的网状支持物中,固定载体束缚藻种,影响其代谢过程,从而抑制细胞的生长和分裂。固定化微生物技术是在20世纪60年代固定化酶技术的基础上发展起来的,1978年以来,固定化技术就被用来作为延长光合细胞寿命的一种重要手段。但微藻存活时间从1个月到几年不等。张继红将三角褐脂藻固定在褐藻酸钙凝胶中,可保存3~5年;Tamponnet等报道了固定化纤细裸藻存活2年;矮小海链藻(Thalassiosira pseudonana)和贺氏钙板金藻(Emiliana hux liyi)仅能保存3个月。近来孟妍等人采用褐藻胶包埋技术与干燥脱水技术相结合将绿色巴夫藻常温保存,保存时间可达6个月存活率高达77.6%。

固定化保种技术对多数微藻是适用的,该法可以在常低温下实现对藻类的中期保存,培养保存时间较长,活化复苏快,技术设备简单,细胞外渗少,而且可用于次生代谢物质的生产。在一般的微藻实验室内都能进行。但固定化程序较复杂,大多数微藻在培养后期常会从胶珠中溢出。而且,现有的资料表明,某种固定化方法只适用一定种类的微藻,对于其他种类的微藻会有不同的反应,原因复杂,还需要做更深入、广泛的研究。这就给固定化保种技术的推广带来了一定的困难。

三、超低温保种技术

所谓超低温保存区别于其他低温概念的冰箱温度(4℃~~40℃)和干冰温度(~79℃),是指在液氮低温(~196℃)下保存。此时生物体的物质代谢和生长活动几乎完全停止。可是它们仍处于可逆的成活状态。早在20世纪70年代,英国的Morris等就对海产单胞藻进行了超低温保存研究,取得了在~196℃下保存1年,存活率100%的结果。目前普遍采用两步冷冻法,即慢速降温进行冷适应,然后投入液氮中保存。王起华等用两步冷冻法研究了3种饵料金藻,其存活率均在30%左右。

超低温保存法具有保持种质遗传稳定性、对藻种进行优胜劣汰、便于长期保存、能最大限度地减少污染等方面的优点,还能省去藻种的活力监测和繁殖更新。但微藻的种类很多,生理状态各异,适宜的保存条件各不相同,找出不同微藻的超低温保种方法困难,而且不同的细胞要求不同类型、不同浓度的抗冻剂,至今还没有找出1种对所有种类都适用的保护剂。但随着研究的深入,在探明生物细胞冻害和抗冻机理的基础上,超低温保存微藻藻种的应用前景将会是十分光明的。

四、浓缩低温保存技术

浓缩低温保存法是将藻液高密度培养后,采用物理、化学的方法浓缩1000倍左右,再低温保存。国外自80年代末开始就有对海洋经济微藻的浓缩方法和低温保存方法进行研究,取得了不少的研究成果,其中美国、英国和日本已有相应的产品(微藻浓缩细胞或称“藻膏”)问世。蒋霞敏等将小球藻和球等鞭金藻301(1sochrysis galbana Park)浓缩后,在5℃~7℃的冰箱中保存1~3个月后恢复生长获得好于常温的效果。孙建华、王如才(1993)对小新月菱形藻(Nitzschia closterium)、球等鞭金藻的浓缩和保存方法进行了研究,浓缩藻液在1℃~4℃的低温下加保护剂SAMs保存3个月,复苏后效果良好。

浓缩低温保存多用于海洋微藻。微藻浓缩液的生产,可以使海洋微藻的生产与使用保留一定的时间差。但相对保存时间较短,海洋微藻的抗逆原理还有待作更多的研究和探讨。

五、冷冻真空干燥保存法

冷冻真空干燥保存法是在极低温度下(~70℃左右)快速冷冻,然后在极低温度下真空干燥,使藻种的新陈代谢活动处于高度静止状态。19世纪末Fkral与Mudd创立的冷冻真空干燥法是迄今公认最佳的藻种保存法,严珍等选择脱脂牛奶作为保护剂,将藻液放入安瓿管中,冷冻、干燥并抽真空,火焰熔封。在低温避光处保存,预计最大保存年限为18年。冷冻干燥保存法优点是微藻复苏效果好,保藏期内可避免其他杂菌污染,便于携带运输,易实现商品化生产;其缺点是操作繁琐、对设备要求高等;应用前景十分光明。

六、低温甘油生理盐水法

低温甘油生理盐水法是对甘油原液保存法的改进。加入生理盐水适当降低了甘油的高渗作用,更有利于藻种的保存。在藻液中人一定的甘油作保护剂,同时加入一定的生理盐水,混匀后直接放置在~20℃±0.5℃冰箱放置保存。保存时间长,一般3年左右。

综上所述,单细胞藻类的保种技术尚没有发展成为一项成熟稳定的技术,许多问题还有待于我们去探索,开展微藻保种方面的研究工作,不但会填补微藻保种理论研究上的空白,还会在生产实践中发挥应有的作用。

湿地保护与湿地生态恢复技术(一)

湿地保护与湿地生态恢复技术(一) 摘要介绍了湿地保护与湿地生态恢复技术,并提出湿地重点攻关技术,以期为维护生态平衡,改善生态状态,实现人与自然和谐发展提供参考。 关键词湿地保护;湿地生态恢复;技术 湿地与森林、海洋并称为全球三大生态系统,具有保持水源、净化水质、蓄洪防旱、调节气候和维护生物多样性等重要生态功能。健康的湿地生态系统,是国家生态安全体系的重要组成部分和经济社会可持续发展的重要基础。保护湿地以及湿地生态的恢复,对于维护生态平衡,改善生态状况,实现人与自然和谐,促进经济社会可持续发展,具有十分重要的意义。 1湿地保护技术 由于湿地处于水陆交互作用的区域,生物种类十分丰富,仅占地球表面面积6%的湿地,却为世界20%的生物提供了生境,特别是为濒危珍稀鸟类提供了生息繁殖的基地,成为众多珍稀濒危水禽完成生命周期的必经之地。 一个系统的面积越大,该系统内物种的多样性和系统的稳定性越有保证。因此,增加湿地的面积是有效恢复湿地生态系统平稳的基础。严禁围地造田,对湿地周围影响和破坏湿地生境的农田要退耕还湿,恢复湿地生境,增加湿地面积1]。湿地入水量减少是造成湿地萎缩不可忽视的原因,水文条件成为湿地健康发展的制约因素,需要通过相关水利工程加以改善,增加湖泊的深度和广度以扩大湖容;增加鱼的产量,增强调蓄功能;积极进行各湿地引水通道建设,以获得高质量的补充水源;加强水利工程设施的建设和维护,加固堤防,搞好上游的水土保持工作,减少泥沙淤积;恢复泛滥平原的结构和功能以利于蓄纳洪水,提供野生生物栖息地。 2湿地生态恢复技术 湿地恢复是指通过生态技术或生态工程对退化或消失的湿地进行修复或重建,再现干扰前的结构和功能,以及相关的物理、化学和生物学特性,使其发挥应有的作用2]。根据湿地的构成和生态系统特征,湿地的生态恢复技术可概括为以下3个部分:一是湿地生境恢复技术。湿地生境恢复的目标是通过采取各类技术措施,提高生境的异质性和稳定性。湿地生境恢复包括湿地基底恢复、湿地水状况恢复和湿地土壤恢复等。湿地的基底恢复是通过采取工程措施,维护基底的稳定性,稳定湿地面积,并对湿地的地形、地貌进行改造。基底恢复技术包括湿地基底改造技术、湿地及上游水土流失控制技术、清淤技术等。湿地水状况恢复包括湿地水文条件的恢复和湿地水环境质量的改善。水文条件的恢复通常是通过筑坝、修建引水渠等水利工程措施来实现;湿地水环境质量改善技术包括污水处理技术、水体富营养化控制技术等。二是湿地生物恢复(修复)技术。主要包括物种选育和培植技术、物种引入技术、物种保护技术、种群动态调控技术、种群行为控制技术、群落结构优化配置与组建技术、群落演替控制与恢复技术等。三是生态系统结构与功能恢复技术。主要包括生态系统总体设计技术、生态系统构建与集成技术等。湿地生态恢复技术的研究既是湿地生态恢复研究中的重点,又是难点。 退化湿地生态系统恢复,在很大程度上,需要依靠各级政府和相关部门重视,切实加强对湿地保护管理工作的组织领导,强化湿地污染源的综合整治与管理,通过部门间的联合,加大执法力度。要严格控制湿地氮、磷肥及农药的施用量,控制畜禽养殖场废水对湿地的污染影响,大型畜禽养殖场废水要严格按有关污染物排放标准达标排放,有条件的地区应推广养殖废水土地处理。 植物是人工湿地生态工程中最主要的生物净化材料,它能直接吸收利用污水中的营养物质,对水质的净化有一定作用。目前,在人工湿地植物种类应用方面,国内外均以水生植物类型为主,尤其是挺水植物。由于不同植物种类在营养吸收能力、根系深度、氧气释放量、生物量和抗逆性等方面存在差异,所以它们在人工湿地中的净化作用并不相同。在选择净化植物时既要考虑地带性、地域性种类,还要选择经济价值高、用途广以及与湿地园林化建设相结合的种

微藻

微藻制备生物柴油的研究 一、微藻概述 藻类,尤其是海洋单细胞藻类,即微藻,是地球上最早的生物物种,它们中的某些物种已经在地球上生存了35亿年之久。它们能十分有效地利用太阳能将H2O、CO2和无机盐类转化为有机资源,是地球有机资源的最初级生产力,有了它们才有了大气中的氧气,才有了海洋和陆地的其他生物,也才有了人类。随着科技水平的不断提高,人口的不可逆性增长、人类生活水平的不可逆性提高、陆地资源和可耕种面积的不可逆性减少,全球性食品资源短缺压力日益增加。开发和利用海洋微藻是最长远的解决人类食品资源和能源的重要途径。因为藻类不仅富含蛋白质、脂肪和碳水化合物这三大类人类所必需的要素,而且还含有可燃性油类、各种氨基酸、多种维生素、抗生素、高不饱和脂肪酸以及其他多种生物活性物质,是人类向海洋索取食品、药品、燃料、生化试剂、精细化工产品以及其他重要材料的一把金钥匙。 微藻是一类单细胞生物,与陆地微生物相比,微藻具有如下特点: (1)微藻具有叶绿素等光合器官,是非常有效的生物系统,能有效地利用太阳能通过光合作用将H2O、CO2和无机盐转化为有机化合物,因其固定和利用CO2可以减少温室效应。 (2) 微藻一般是以简单的分裂式繁殖,细胞周期较短,易于进行大规模培养,由于微藻通常无复杂的生殖器官,使整体生物量容易采收和利用。 (3)可以用海水、咸水或半咸水培养微藻,因此是淡水短缺、土地贫瘠地区获得有效生物资源的重要途径。 (4) 微藻富含蛋白质、脂肪和碳水化合物,某些种类还富含油料、微量元素和矿物质,是人类未来重要的食品及油料的来源。 (5)微藻,尤其是海洋微藻,因其独特的生存环境使其能合成许多结构和生理功能独特的生物活性物质。特别是经过一定的诱导手段微藻可以高浓度地合成这些具有商业化生产价值的化合物,是人类未来医药品、保健品和化工原料的重要资源。 1、小球藻简介 小球藻(Chlorella)是小球藻属绿藻门,绿藻纲,绿球藻目,卵孢藻科,小球藻属,包括大约10 个种. 小球藻细胞组成中的蛋白质含量为7.3%~88%,碳水化合物为5.7%~38%,脂类为 4.5~86%。小球藻细胞中脂类含量的增加主要是由于脂肪酸积累的结果。在氮饥饿条件下,蛋白核小球藻在生长时可形成高达86%的脂类,而在正常的小球藻细胞中,脂类含量为25%。在正常和氮饥饿条件下生长的小球藻在脂肪酸组成上没有明显的差异。此外,小球藻的异养培养技术,特别是高细胞浓度培养技术的研究得到了较深入的发展,这对于我们制备生物柴油需要高生物量的微藻来说,也是具有重要价值的。 2、微藻油脂 美国国家可更新实验室(NREL)通过现代生物技术建成“工程微藻”,即硅藻类的一种“工程小球藻”,其利用“工程微藻”生产生物柴油,为生物柴油生产开辟了一条新的技术途径。在实验室条件下可使“工程微藻”中脂质含量增加到60%以上,户外生产也可增加到40%以上,而一般自然状态下微藻的脂质含量为5%-20%。“工程微藻”中脂质含量的提高主要由于乙酰辅酶A 羧化酶(ACC)基因在微藻细胞中的高效表达,在控制脂质积累水平方面起到了重要作用。目前,正在研究选择合适的分子载体,使ACC 基因在细菌、酵母和植物中充分表达,还进一步将修饰的ACC 基因引入微藻中以获得更高效表达。在国内,清华大学吴庆余,缪晓玲等也报道利用微藻快速热解的方法制备生物柴油。 利用微藻或“工程微藻”生产生物柴油的优越性在于:微藻生产能力高、用海水作为天然培养基可节约农业资源;比陆生植物单产油脂高出几十倍;生产的生物柴油不含硫,燃烧

利用有机溶剂提取微藻油脂的方法探究

2015年第34卷第5期CHEMICAL INDUSTRY AND ENGINEERING PROGRESS ·1291· 化工进展 利用有机溶剂提取微藻油脂的方法探究 殷海1,2,许瑾2,王忠铭2,郝小红1,袁振宏2,王亚兵1 (1上海理工大学能源与动力工程学院,上海 200093;2中国科学院广州能源研究所,广东广州 510640 )摘要:在传统化石能源日益枯竭的趋势下,微藻生物柴油作为第三代绿色可再生的替代型能源越来越受到人们的重视。在微藻生物柴油的产业链上,油脂的提取是影响其推广应用的一个关键环节。本文实验利用有机溶剂提取微藻油脂,探究在不同的条件下微藻油脂的提取效果,并特别研究了先后使用甲醇和石油醚两种有机溶剂对微藻油脂提取率的影响。研究结果表明:温度、液料比、浸提时间对提取效率都有一定的影响,并且使用甲醇和石油醚两种溶剂分步提取时会使微藻油脂提取率明显提高;在液料比为15mL/g、提取温度为45℃、提取时间为5h时,使用石油醚作为提取剂的提取率为58.71%;使用甲醇溶剂提取后再使用石油醚提取时,在液料比和提取时间相同的条件下,温度为35℃时提取率即可达87.90% 关键词:生物质;微藻油脂;油脂提取;提取率;生物能源;生物柴油 中图分类号:TK 6 文献标志码:A 文章编号:1000–6613(2015)05–1291–05 DOI:10.16085/j.issn.1000-6613.2015.05.018 Research on microalgae oil extraction by organic solvent YIN Hai1,2,XU Jin2,WANG Zhongming2,HAO Xiaohong1,YUAN Zhenhong2,WANG Yabing1(1School of Energy and Power Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China;2Guangzhou Institute of Energy Conversion,Chinese Academy of Sciences,Guangzhou 510640, Guangdong,China) Abstract:With increasing depletion of conventional fossil energy,more and more attention has been paid to biodiesel as a renewable alternative energy source. Microalgae oil extraction is a key part in promotion and the application of biodiesel. In this study,microalgae oil was extracted with organic solvents,and oil extraction yield of microalgae was investigated under different conditions. Microalgae oil extraction yield was especially studied by successive use of two organic solvents,methanol and petroleum ether. Temperature,liquid-material ratio and extraction time affected extraction rate,and the use of methanol and petroleum ether increased algae oil extraction yield significantly via two steps. Extraction yield was 58.71% when organic solvent was petroleum ether,liquid-material ratio was 15mL/g,temperature was 45℃and extraction time was 5h. Moreover,extraction yield could be increased to 87.90% when methanol and petroleum ether were used successively in two steps,while temperature could be lowered to 35℃under the same conditions of liquid-material ratio and extraction time. Key words:biomass;microalgae oil;oil extraction;extraction yield;bioenergy;biodiesel 能源是人类赖以生存的基础,是促使经济可持 续发展的动力。目前为止,人类使用的能源绝大多数来自于传统的化石燃料。然而随着传统化石能源的逐步耗尽、环境污染的日益严重,人们迫切要求收稿日期:2014-11-28;修改稿日期:2014-11-18。 基金项目:国家自然科学基金项目(51476177)。 第一作者:殷海(1990—),男,硕士研究生。E-mail Echiy_hy@https://www.wendangku.net/doc/7d2920139.html,。联系人:郝小红,博士,讲师。E-mail xiaohong_hao@https://www.wendangku.net/doc/7d2920139.html,。

微藻工厂化培养经验分享(附单胞藻的培养配方)

微藻工厂化培养经验分享(附单胞藻的培养配方) 大家好,很高兴今天能跟大家交流一下微藻的规模培育。规模培育在水产养殖方面现在主要运用于大棚生物饵料方面(一定地点建立车间、浓缩之后近距离管道运输到养殖区域)、提取色素添加在饲料中,至于土塘泼洒,如何控制量、增氧和开口饵料这方面正在摸索,需要大家一起总结出经验。今天我跟大家主要跟大家分享一下藻种的工厂化规模化培育。 群里面应该很多人都培育过藻,大家都知道藻种的培育分为一级、二级、三级培养,今天我是简单从一级、二级、三级培养过程可能中遇到的问题、日常管理、接种、藻种营养配方这些方面做一下简单的交流。 因各地环境气候、温度、光照、水质条件不同。不同季节、藻种性质不同,单位水体养殖品种的需求量也不同。所以培养条件、营养盐配方等各有不同。今天我主要是以金藻为例,引申出其他藻种的营养配方,让大家学习一下其中的相似点。 国内大部分水产育苗企业,在育苗生产中都是自备微藻养殖设施,自行生产各类饵料用微藻。但是一般育苗场都普遍缺乏相应的专业技术力量,只能利用各自的藻池和天然水体粗放培养,在饵料微藻种质、生产技术和应用方法上都各自为正,导致微藻种质混乱、供应不稳定、营养成分不平衡、饵料效价低、缺乏多品种集约化生产应用技术;同时,受限于微藻高密度养殖、采收技术和浓缩液保藏技术的限制,国内几乎没有统一的、专业化的饵料微藻质量标准和集中供应点。所以工厂化育苗需要及时的补充藻种,开口饵料非常重要。 首先从工艺流程上来说 一级培养:主要用于保种,主要用的仪器是锥形瓶,其能够完全消毒,所以应用在保种上面特别多。

二级培养:主要是用塑料白桶(聚丙烯材料),生产上也用20L的饮水桶,但是瓶口小,操作不方便,消毒也不彻底;而用氧气袋又易破裂。在南方经常可以见到用玻璃制作的大型鱼缸和氧气袋。

湿地生态恢复的原则、目标、特点、修复理论基础及技术和方案确定

湿地生态恢复的原则、目标、特点、修复理论基础及技术和方案确定 1 湿地生态恢复的原则 1.1 地域性原则 我国湿地分布广,涵盖了从寒温带到热带,从沿海到内陆,从平原到高原山区各种类型的湿地。因此应根据地理位置、气候特点、湿地类型、功能要求、经济基础等因素,制定适当的湿地生态恢复策略、指标体系和技术途径。 1.2 生态学原则 生态学原则主要包括生态演替规律、生物多样性原则、生态位原则等。生态学原则要求根据生态系统自身的演替规律分步骤分阶段进行恢复,并根据生态位和生物多样性原理构建生态系统结构和生物群落,使物质循环和能量转化处于最大利用和最优循环状态,达到水文、土壤、植被、生物同步和谐演进。 1.3 最小风险和最大效益原则 国内外的实践证明,退化湿地系统的生态恢复是一项技术复杂、时间漫长、耗资巨大的工作。由于生态系统的复杂性和某些环境要素的突变性,加之人们对生态过程及其内部运行机制认识的局限性,人们往往不可能对生态恢复的后果以及最终生态演替方向进行准确的估计和把握,因此,在某种意义上,退化生态系统的恢复具有一定的风险性。这就要求对被恢复对象进行系统综合的分析、论证,将风险降到最低程度,同时,还应尽力做到在最小风险、最小投资的情况下获得最大效益。在考虑生态效益的同时,还应考虑经济和社会效益,以实现生态、经济、社会效益相统一。 2 湿地生态恢复的目标 湿地生态恢复的总体目标是采用适当的生物、生态及工程技术,逐步恢复退化湿地生态系统的结构和功能,最终达到湿地生态系统的自我持续状态。但对于不同的退化湿地生态系统,其侧重点和要求也会有所不同。总体而言,湿地生态恢复的基本目标和要求如下: (1)实现生态系统地表基底的稳定性。地表基底是生态系统发育和存在的载体,基底不稳定就不可能保证生态系统的演替与发展。这一点应引起足够重视,因为中国湿地所面临的主要威胁大都属于改变系统基底类型的,在很大程度上加剧了我国湿地的不可逆演替。

微藻生物质能源

2018 年秋季学期研究生课程考核 考核科目:绿色黄金-微藻生物质液态能 源 学生所在院(系): 学生所在学科: 学生姓名: 学号: 学生类别: 考核结果阅卷人

微藻生物质能源 一.立项报告 (一)立项背景 能源是人类社会赖以生存和发展的重要物质基础。纵观人类社会发展的历史,人类文明的每一次重大进步都伴随着能源的改进和更替。能源的开发利用极大地推进了世界经济和人类社会的发展。与世界相比,中国资源总量虽大,却不易开发。中国煤炭资源地质开采条件较差,大部分储量需要井工开采,极少量可供露天开采。石油天然气资源地质条件复杂,埋藏深,勘探开发技术要求较高。未开发的水力资源多集中在西南部的高山深谷,远离负荷中心,开发难度和成本较大。非常规能源资源勘探程度低,经济性较差,缺乏竞争力。而且中国人口众多,人均能源资源拥有量在世界上处于较低水平。煤炭和水力资源人均拥有量相当于世界平均水平的50%,石油、天然气人均资源量仅为世界平均水平的1/15左右。因而如今处于二十一世纪的中国正面临着严峻的能源短缺问题,也正是上述原因,开发新能源,发掘新型能源的潜力我们势在必行。 2009年11月在珠海举行的中国藻类学会议上,利用微藻生产生物能源的研究十分抢眼。从会议报告来看,许多学者的研究甚至达到了一定的深度。而其中微藻大规模快速培养技术的研究发展得更是十分迅速。从研究规模和投入看,目前已有中国科学院水生生物所、中国科学院武汉植物园、过程工程研究所、中国科学院南海海洋所、中国科学院青岛海洋所等单位开展了选种、育种、大量培养、收集和提油等研究,并积极开展与我国大型石油化工企业的合作。 不仅中国如此,世界各国都在摩拳擦掌。1978年,美国能源部国家可再生能源实验室(NREL)最早启动了这项利用微藻生产生物柴油的水生生物种计划。从1990年到2000年,日本国际贸易和工业部曾资助了一项名为“地球研究更新技术计划”的项目,该项目利用微藻来生物固定二氧化碳, 并着力开发密闭光合生物反应器技术,通过微藻吸收火力发电厂烟气中的二氧化碳来生产生物质能源。2009年日本再次启动利用微藻生产生物能源的计划。进入21世纪,石油价格一度大幅上扬,刺激了微藻生物柴油技术的研究。目前各国的总投入达到数百亿美元。 从目前的研究进展和热衷程度看,一个能够替代石油的新能源似乎已经被找到,利用微藻生产生物燃料的产业化道路也似乎已经被开辟,让我们相信一个高效、清洁、环保的新能源时代已经到来。 微藻就是浮游植物,遍布全球各种水体。其类群繁多,种类丰富。作为生态系统中初级生产者,在能量转化和碳元素循环中起到举足轻重的作用。微藻能够把光合作用产物转化成油贮藏起来,在细胞内形成油滴,如葡萄藻、小球藻。有些藻类在缺氮等条件下,可大量积累油脂,含油量可高达70%。首先通过萃取、热裂解等方法从这些微藻中将油提取出来,再通过转酯化后可转变为脂肪酸甲酯,即生物柴油。因此,微藻确实能够生产生物能源。 由于微藻的生物量大,可利用滩涂、盐碱地、荒漠进行大规模培养,可利用海水、盐碱水和荒漠地区地下水进行培养,不与农作物争地、争水。微藻培养还可利用工业废气中的二氧化碳和氮氧化合物,缓解温室气体的排放,减少环境污染。

生态修复技术

受污染水体的生物 董哲仁,刘蒨,曾向辉 1 概述 对受污染的江河湖库水体进行修复,已是社会经济发展及生态环境建设的迫切需要。特别是南水北调东线沿线的治污工程,量大面广,寻找先进实用、造价低廉的技术迫在眉睫。 我国的江河湖库水体污染主要包括氮磷等营养物和有机物污染两方面。另外,湖泊水库蓝藻及赤潮给水域生态、人体健康也造成了严重危害。对于富营养化的控制,发达国家以控制营养盐为主,大多采取“高强度治污-自然生态恢复”的技术路线,即控制外源磷污染负荷并配合生态恢复措施,在这方面已经取得较大成效。 去除藻类与控制其生长是湖泊水库水体恢复与保护的难题。目前国际上采用的技术主要有三类:1〕化学方法:如加入化学药剂杀藻、加入铁盐促进磷的沉淀、加入石灰脱氮等,但是易造成二次污染;2〕物理方法:疏挖底泥、机械除藻、引水冲淤等,但往往治标不治本;3〕生物-生态方法:如放养控藻型生物、构建人工湿地和水生植被。开发生物-生态水体修复技术,是当前水环境技术的研究开发热点。实际上,大自然在发展变化的长期过程中,本身已经具备了自我净化、自我完善的强大能力,使得自然界得以持续而有序地运行。其中水体的自然生物净化能力,在人类出现之前的远古时期,就保证了自然界江河湖泊的水体洁净。目前开发的水体生物-生态修复技术,实质上是按照仿生学的理论对于自然界恢复能力与自净能力的强化。可以说,按照自然界自身规律去恢复自然界的本来面貌;强化自然界自身的自净能力去治理被污染水体,这是人与自然和谐相处的合乎逻辑的治污思路,也是一条创新的技术路线。 生物-生态污水处理技术,是利用培育的植物或培养、接种的微生物的生命活动,对水中污染物进行转移、转化及降解作用,从而使水体得到净化的技术。近年来这种技术发展很快,在国外已经达到工程实用化的程度,并且积累了系列观测数据。水体的生物-生态修复技术具有以下优点:首先是处理效果好。其次,生物-生态水体修复的工程造价相对较低,不需耗能或低耗能,运行成本低廉。所需的微生物具有来源广、繁殖快的特点,如能在一定条件下,对其进行筛选、定向驯化、富集培养,可以对大多数有机物质实现生物降解处理。另外,这种处理技术不向水体投放药剂,不会形成二次污染。所以,这种廉价实用技术十分适用我国江河湖库大范围的污水治理工作。用生物-生态方法治污,还可以与绿化环境及景观改善相结合,在治理区建设休闲和体育设施,创造人与自然相融合的优美环境。 帖子28 精华0 威望25 土木币33 在线时间1 小时注册时间2006-11-10 查看详细资料TOP 2 主要处理工艺方法 生物处理技术包括好氧处理、厌氧处理、厌氧-好氧组合处理;利用细菌、藻类、微型动物的生物处理;利用湿地、土壤、河湖等自然净化能力处理等。以下重点介绍几种针对江河湖库污染大水体的修复技术。 2.1 生物膜法处理技术 生物膜法是指用天然材料(如卵石)、合成材料(如纤维)为载体,在其表面形成一种特殊的生物膜,生物膜表面积大,可为微生物提供较大的附着表面,有利于加强对污染物的降解作用。其反应过程是:1〕基质向生物膜表面扩散;2〕在生物膜内部扩散;3〕微生物分泌的酵素与催化剂发生化学反应;4〕代谢生成物排出生物膜。生物膜法具有较高的处理效率。它的有机负荷较高,接触停留时间短,减少占地面积,节省投资。此外,运行管理时

国内微藻研究现状

国内对于微藻的利用及研究进展 摘要:在世界能源危机的影响下,生物质能源由于其环保性,被认为是一个最具有发展潜力的石油替代品。其中微藻就展现了在生物能源方面的重要角色。微藻是一类单细胞或简单多细胞的微生物,其生长快速,能够有效的固定,在细胞内合成油脂用于生物燃料的生产。 CO 2 近些年来,在世界能源危机的影响下,社会各界对于寻求新的可再生能源方面的关注度不断的提高。人们已在沼气,生物醇类,生物柴油等方面取得一定的成效。但面对世界对燃料的巨大需求量,人们要不断的研究开发更高效的生物能源获取方式。 藻类作为一种重要的可再生资源,具有分布广、生物量大、光合高效、含脂量高的优点。其中的微藻在此方面更是具有突出地位。随着世界各国各科研机构对微藻的研究的不断深入,利用微藻改善大气环境,生产生物燃料已成为现实。本文结合国内外对微藻研究的进展,综述利用微藻的优势,生产生物柴油的微藻的筛选,生物柴油的生产技术手段,以及生产中存在的问题和展望等。 1 微藻开发的优势地位 微藻是一类数目巨大的可再生资源,具有较高的CO2固定效率。利用微藻开发生物质能源的优势地位可以总结为一下几点:光和效率高,适应能力强,且不占用耕地;细胞结构简单,含油脂量高;微藻燃烧值高,环境友好。同时,微藻通过细胞代谢产生藻多糖、蛋白质、色素、氨基酸等,为丰富的人体必须营养活性成分,可以作为功能保健品和某些疾病的专方或辅助药物。 微藻不论是在减排CO2方面,还是在生物新能源的开发上都是十

分重要的。微藻是一类单细胞或简单多细胞的微生物,生长迅速,固定CO2和储存太阳能的效率是陆生植物的10-50倍。因此,微藻的产业化生产可以用于CO2减排,缓解地球的温室效应。同时,微藻较高的油脂含量,特别是一些微藻在异养或营养限制的条件下,油脂含量可达20%-70%。若按微藻含油脂量30%计算,年产油脂微藻1.5-2.5万吨,可制备微藻生物柴油3000-5000吨,能有效转化CO2约2.7-4.5万吨。 2 利用微藻生产生物能源的研究现状 目前利用微藻开发可再生能源的领域包括:制备生物柴油,微藻产烃,厌氧发酵制备甲烷等。利用微藻生产生物柴油的同时,藻渣可以用于动物饲料、有机肥料和甲烷生产。 2.1 产油微藻的筛选和高富含培养研究 目前国内研究较多的产油微藻有:小球藻、硅藻,小环藻等。大多数的微藻的油脂含量在20%以上;经过特殊培养,微藻油脂含量可以达到50%以上。通过基因工程改良和培养条件的控制,微藻的产油效率会更高,生物能源的生产量也会更高。 提高微藻细胞油脂含量的最主要方式是高油藻的筛选培育和基因工程构建,通过改变微藻的培养方式也可以,控制微藻的代谢途径,也可以达到提高微藻细胞含油率的效果。研究发现,微藻细胞的含油率会受培养光照、温度、盐度、氮源、硅和Fe3+的影响。 氮源对各种微藻的脂类组成起着关键性作用。氮源限制培养可以提高总脂含量。温度对微藻的油脂含量影响因藻种类而不同,但总体

微藻培养方法汇总

微藻的培养方式,有多种类型,现介绍一些主要的培养方式。 (一)纯培养与单种培养 纯培养与单种培养是按培养的纯度来划分的。 纯培养:是指排除了细菌在内的一切生物的条件下进行的培养。纯培养要求有无菌室、超净工作台等设备条件,容器、工具、培养液等必须严格灭菌。纯培养是科研工作中不可缺少的技术。 单种培养:生产性的培养中,是不排除细菌存在的,为了区别于纯培养而称之为单种培养。 二)一次培养、连续培养和半连续培养该类培养是按采收方式划分的一次培养:又称有限培养,是在一定的容器中,根据藻类需要加入无机和有机营养,配成培养液,把少量的藻种接种进去,然后在适宜于藻类生长的环境条件(温度、盐度、光照、PH 值等)下培养,待藻液达到一定的密度后,便一次性采收或作进一步扩大培养。 连续培养:一般在室内进行,采用自动控温、人工光源、封闭式通气培养。在培养容器内,新的培养液不断流入,达到一定密度的培养液不断流出。培养液的流入量和流出量可根据微藻的生长情况及需要进行人不控制,并保持平衡。在培养过程中,营养物质浓度和藻类细胞相对稳定,产量高,在国外应用较多,我国目前生产上很少采用。 半连续培养:是指在一次培养的基础上,当藻类细胞达到一定密度后,每天收获一部分浓藻液,并加入新的营养液继续培养。半连续培养是生产中常用的方法,每天的收获量根据育苗的需要及藻液的生长情况确定。 三)藻种培养、中继培养和生产性培养该类培养是按培养的规模和目的来划分的藻种培养:在室内进行,一般采用一次性培养法。培养容器为100-3000 毫升的三角烧瓶,瓶口用消毒的纸或纱布包扎。目的是培养和供应藻种。 中继培养:目的在于培养较大量的高密度纯种藻液,供应生产性培养接种使用。中继培养一般在室内用大的玻璃容器或塑料大袋中进行。根据需要可分为一级中继培养和二级中继培养。一级中继培养的容器为10 升的大口玻璃缸(南方各省多用)、10-20 升的细口瓶或鱼苗袋,以封闭式不通气培养为主。二级中继培养的容器为0.2-0.4 立方米的水族箱、0.5-1.0 立方米的玻璃钢水槽、0.5-1.0 立方米的小型水泥池等,以开放式通气一次性培养为主;利用塑料大袋进行二级中继培养也是新兴的、有效的好方法(见图2-13 )。 生产性培养:可在室内也可在室外,有封闭式培养和开放式培养两种类型。目的是供给育苗中的饵料。培养容器为大型水泥池、大型玻璃钢水槽的塑料大袋;也有用土池

湿地生态系统恢复技术

湿地生态系统恢复技术 湿地是分布于陆地生态系统和水域生态系统之间具有独特水文、土壤、植被与生物特征的生态系统。按拉姆萨尔(Ramsar)公约,湿地的定义为:“天然或人工、长久或暂时性的沼泽地、泥炭地、水域地带,静止或流动的淡水、半咸水、咸水体,包括低潮时水深不超过6m的水域。”湿地为人类生产生活提供了水资源、生物资源、能源(泥炭、海盐等)、交通和旅游等资源,是地球上最具生产力的生态系统之一。湿地的物理、化学和生物组成部分交互作用,在调节气候、涵养水源、蓄洪防旱、净化水质、保护生物多样性等方面具有其他系统不可替代的环境功能和生态效益,被称为“地球之肾”。 我国湿地面积约2.5×107平方米,仅次于加拿大和俄罗斯,居世界第三位。但是,由于人口膨胀以及工业化、城市化、农业现代化的发展,湿地生态系统遭受了来自人类社会的巨大压力。主要表现为城市污染物的排放(废水、垃圾)、农业面源污染、湿地盲目开垦、滥捕滥捞、水资源不合理利用等,其结果造成河流断流、泥沙淤积、湖泊萎缩、污染严重、生物多样性减少。湿地己经成为全球最受威胁的生态系统之一,对湿地进行生态修复迫在眉睫。 湿地生态系统属于水域生态系统。其生物群落由水生和陆生种类组成,物质循环、能量流动和物种迁移与演变活跃,具有较高的生态多样性、物种多样性和生物生产力。湿地生态系统的生态过程研究是揭示湿地功能机理的关键。当前,国内外湿地生态过程研究主要集中在以下方面:①化学过程侧重研究各类湿地C、N、S、P等大量元素、微量元素和Hg等重金属循环,沉积物、枯落物的积累和降解及微生物在养分循环中的作用。②生物过程研究更加注意长期定位和模拟实验研究。同时开展了物种迁移与基因流动过程对区域生态环境影响的研究。 ③物理过程仍是侧重湿地生态系统能量流动过程,将系统热力学、信息论及控制论等新兴理论应用于湿地能量流动研究。通过对湿地区域生态环境的影响与相应研究,揭示湿地生态系统的功能过程。 湿地生态系统特点:一是脆弱性。水是建立和维持湿地及其过程特有类型的最重要决定因子,水文流动是营养物质进入湿地的主要渠道,是湿地初级生产力的决定因素,因此,湿地对水资源具有很强的依赖性。由于水文状况易受自然及人为活动干扰,所以湿地生态系统也极易受到破坏,且受破坏后难以恢复,表现出很强的脆弱性。二是过渡性。湿地同时具有陆生和水生生态系统的地带性分布特点,表现出水陆相兼的过渡性分布规律。三是结构和功能的独特性。湿地一般由湿生、沼生和水生植物、动物、微生物等生物因子以及与其紧密相关的阳光、水分、土壤等非生物因子构成。湿地水陆交界的边缘效应使湿地具有独特的资源优势和生态环境特征,为多样的动、植物群落提供了适宜的生境,具有较高的生产力和丰富多样的生物多样性。四是较强的自净和自我恢复能力。湿地通过水生植物和微生物的作用以及化学、生物过程,吸收、固定、转化土壤和水中的营养物质的含量,降解有毒和污染的物质,净化水体。因此,湿地具有较强的自净和自我恢复能力。 湿地恢复 ,一方面指受损湿地生态系统通过保护使之自然恢复的过程 ,另一方面指通过生态技术或生态工程对退化或消失的湿地进行修复或重建 ,再现干扰前的结构和功能 ,以及相关的物理、化学和生物学过程 ,使其发挥应有的作用。具体包括提高地下水位来养护沼泽 ,改善水由栖息地 ;增加湖泊的深度和广度以扩大湖容 ,增强调蓄功能; 迁移湖泊、河流中的富营养沉积物以及有毒物质以净化水质 ; 恢复泛溢平原的结构和功能以利于蓄纳洪水 ,提供野生生物栖息

微藻生产生物能源具有潜在的应用前景等

龙源期刊网 https://www.wendangku.net/doc/7d2920139.html, 微藻生产生物能源具有潜在的应用前景等 作者: 来源:《农业工程技术·新能源产业》2010年第02期 微藻生产生物能源具有潜在的应用前景 中国利用微藻生产生物能源具有潜在的应用前景。目前,在山东省的实验室获得了初步成果,培育出的富油微藻,最高含油比已经达到68%,可在此基础上制取生物柴油。有专家认为,海洋微藻的能源化利用,有望成为“后石油时代”破解能源危机的一把钥匙。 据了解,山东有十几个课题组在从事微藻研究,已发现、筛选、培育几十个富油藻种。并开始运用基因工程技术来改造藻种。还有一些技术力量正在进行微藻生物柴油制备技术的研究。 据了解,中国的有机碳组成中。海洋藻类占了1/3,藻类是一种数量巨大的可再生资 源。也是生产生物质能源的潜在资源,其中微型藻类的含油量非常高,可以用于制取生物柴油。微藻能够有效地利用太阳能,通过光合作用固定二氧化碳,将无机物转化为氢、高不饱和烷烃、油脂等能源物质;而且微藻生物能源可以再生,燃烧后不排放有毒有害物质,对大气二氧化碳没有净增加。此外,微藻的产油效率相当高.在一年的生长期内,每公顷玉米能产172 升生物质燃油。大豆能产446升,油菜籽能产1190升,棕榈树能产5950升,而每公顷的微藻能产生物质燃油95000升。 (文章来源:中国节能减排网) 酿酒厂利用废水生产氢气 近日,美国加州Oakville的一间酿酒厂以细菌及少量电力。加入其酒厂排出的废水中制造出氢气。 宾夕法尼亚州大学环境工程学教授BruceE.Logan指出,这是首个以细菌电解系统从废水 生产氢气的可再生技术示范。该系统由Logan教授及其研究伙伴共同研发。 那柏酿酒公司(NappawineCompany)提供设施及废水供研究。该公司为家族生产,葡萄园占地635英亩,以有机管理技术种植葡萄,并无使用化学品。

微藻工厂化培养经验分享附单胞藻的培养配方

微藻工厂化培养经验分享附单胞藻的培养配方 文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)

微藻工厂化培养经验分享(附单胞藻的培养配方)大家好,很高兴今天能跟大家交流一下微藻的规模培育。规模培育在方面现在主要运用于大棚生物饵料方面(一定地点建立车间、浓缩之后近距离管道运输到养殖区域)、提取色素添加在饲料中,至于土塘泼洒,如何控制量、增氧和开口饵料这方面正在摸索,需要大家一起总结出经验。今天我跟大家主要跟大家分享一下藻种的工厂化规模化培育。 群里面应该很多人都培育过藻,大家都知道藻种的培育分为一级、二级、三级培养,今天我是简单从一级、二级、三级培养过程可能中遇到的问题、日常管理、接种、藻种营养配方这些方面做一下简单的交流。 因各地环境气候、、光照、水质条件不同。不同季节、藻种性质不同,单位水体养殖品种的需求量也不同。所以培养条件、营养盐配方等各有不同。今天我主要是以金藻为例,引申出其他藻种的营养配方,让大家学习一下其中的相似点。 国内大部分水产育苗企业,在育苗生产中都是自备微藻养殖设施,自行生产各类饵料用微藻。但是一般育苗场都普遍缺乏相应的专业技术力量,只能利用各自的藻池和天然水体粗放培养,在饵料微藻种质、生产技术和应用方法上都各自为正,导致微藻种质混乱、供应不稳定、营养成分不平衡、饵料效价低、缺乏多品种集约化生产应用技术;同时,受限于微藻高密度养殖、采收技术和浓缩液保藏技术的限制,国内几乎没

有统一的、专业化的饵料微藻质量标准和集中供应点。所以工厂化育苗需要及时的补充藻种,开口饵料非常重要。 首先从工艺流程上来说 一级培养:主要用于保种,主要用的仪器是,其能够完全消毒,所以应用在保种上面特别多。 二级培养:主要是用塑料白桶(材料),生产上也用20L的饮水桶,但是瓶口小,操作不方便,消毒也不彻底;而用氧气袋又易破裂。在南方经常可以见到用玻璃制作的大型鱼缸和氧气袋。

微藻固定转化高浓度CO2强化技术-2013.7.24

微藻固定转化高浓度CO2强化技术* 姜加伟1程丽华1**徐新华1张林2陈欢林2 (1. 浙江大学环境工程系,杭州310058; 2. 浙江大学化学工程与生物工程学系,杭州310027) 摘要:化石燃料过度使用造成的全球气候变暖和能源危机是21世纪影响人类生存和发展的重要环境问题。微藻由于具有利用太阳能固定CO2转化油脂等产物的能力以及环境适应性强、光合速率高、繁殖快等优势,微藻固碳技术成为缓解温室效应和能源危机的有效方法之一。本文通过微藻固碳过程中碳源传递转化途径的分析,重点讨论了促进高浓度CO2固定转化的技术研究,包括藻种筛选和基因工程改造、光生物反应器气液传质以及微藻固碳系统能量平衡研究,特别是膜组件和耦合系统在微藻固碳中的应用,展望了微藻固定转化高浓度CO2技术的研究方向,旨在通过碳传递途径的强化实现高浓度CO2的微藻高效固定与转化。 关键词:微藻CO2固定转化分子生物学技术膜技术耦合系统 中图分类号:TK6 文献标识码:A 文章编号: Intensified High Concentration CO2 Fixation and Conversion by Microalgae Jiang Jiawei1, Cheng Lihua1**, Xu Xinhua1, Zhang Lin2, Chen Huanlin2 (1.Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China; 2.Department of Chemical and Biochemical Engineering, Zhejiang University, Hangzhou 310027, China) Abstract: The increase of carbon dioxide concentration in atmosphere mainly due to the over combustion of fossil fuels has led to global warming and energy crisis all over the world, which, as a significant environmental issue in twenty-first century, has already caused great impacts on human lives and development. Carbon dioxide fixation by microalgae, owing to the ability of microalgae to convert CO2 into cellular lipid product, better environmental adaptability *国家自然科学基金(No. 21076177, No. 21106130, No. 21276221);国家863项目(2012AA050101);高等学校博士学科点专项科研基金(201101011120074);浙江大学海洋交叉引导基金(2012HY010A)资助. **Corresponding author e-mail: chenglihua@https://www.wendangku.net/doc/7d2920139.html,

湿地修复技术理论.doc

1.3湿地修复的概述 1..31湿地恢复相关概念 湿地恢复,是指受损的湿地生态系统通过保护使之自然恢复的过程,也包括通过生态技术或生态工程对退化湿地或消失的湿地进行修复或重建,再现干扰前的结构和功能,以及相关的物理、化学和生物学特性,使其发挥应有的作用。包括提高地下水位来养护沼泽,改善水禽栖息地,增加湖泊的深度和广度以扩大湖的容积,增加鱼的产量,增强调蓄洪水的功能,迁移湖泊河流中的富营养沉积物以及有毒物质以净化水质,恢复泛滥平原的结构和功能以利于蓄纳洪水,提供野生生物栖息地,同时也有助于水质恢复。目前的湿地恢复实践主要集中在沼泽、湖泊、河流及河缘湿地的恢复上。 1.3.2湿地恢复的理论基础 1.3. 2.1退化湿地恢复的基本模式 受损害的湿地生态系统恢复一般可采用两种模式途径,详见图4一1,当生态系统受损害没有超负荷并且是可逆的情况下,干扰和压力被解除后,恢复可在自然过程中发生。如过度放牧引起的草场退化,在进行围栏保护,几年后草场即可恢复;另一种超负荷的,并发生不可逆变化,仅依靠自然过程是不能使系统恢复到初始状态,必须辅助人工措施才能得以恢复。

1.3. 2.2指导湿地恢复的主要理论 (1)干扰理论 当湿地生态系统结构变化引起功能减弱或丧失时就发生湿地生态系统的退化。引起湿地生态系统结构与功能退化的原因很多,干扰的作用是主要原因,干扰的结果上打破了原有的生态系统的平衡状态,使系统的结构和功能发生变化和障碍,形成破坏性波动和恶性循环,从而导致系统的退化。 干扰分为自然干扰体系和人类干扰体系,任何一种自然环境因子只要对生命系统的作用强度超过正常强度,就可能造成生命系统的结

人工湿地生态修复技术在景观设计中的应用

生态景观规划课程结课作业 人工湿地生态修复技术在景观设计中的应用

目录 一.人工湿地生态修复技术的理论基础 1.概念 2.特点 二.人工湿地生态修复技术在相关领域中的应用分析 1.生态公园的景观设计 2.生态住宅小区景观设计 3.深圳白泥坑人工湿地处理技术 三.人工湿地技术在景观设计应用的关键问题四.人工湿地技术在未来景观设计中的应用展望五.结束语 参考文献

一.人工湿地生态修复技术的理论基础 人工湿地是由人工建造和控制运行的与 沼泽地类似的地面,将污水、污泥有控制的 投配到经人工建造的湿地上,污水与污泥在 沿一定方向流动的过程中,主要利用土壤、 人工介质、植物、微生物的物理、化学、生 物三重协同作用,对污水、污泥进行处理的 1-1 一种技术。其作用机理包括吸附、滞留、过 滤、氧化还原、沉淀、微生物分解、转化、植物遮蔽、残留物积累、蒸腾水分和 养分吸收及各类动物的作用。如图1-1。

物等介质达到去除水中污染物的目的。例如有机物主要通过微生物的好氧、厌氧作用降解;有机氮和无机氮通过挥发、微生物硝化和反硝化、植物吸收、介质吸附和沉淀过滤等去除;对于磷的去除一般认为主要通过土壤或颗粒介质的吸附、沉淀储存,部分可通过植物吸收,如芦苇等;人工湿地对于重金属具有较好的处理效果,主要形式有植物吸收、生物富集、土壤吸附等。 (2)人工湿地的分类 根据植物类型,人工湿地可分为三种类型:浮水植物系统、沉水植物系统、挺水植物系统。目前挺水植物系统应用较为广泛,但为了获得更好的水质,不同类型植物系统一般可以结合使用。 根据人工湿地的水流方式,人工湿地可分为:表面流人工湿地(FWS)、潜流人工湿地(SSF)、垂2直流人工湿地(VFW)、波形流人工湿地(WFSCW)。目前应用较多的为潜流型人工湿地。 人工湿地处理系统具有缓冲容量大、处理效果好、工艺简单、投资省、运行费用低等特点,非常适合中、小城镇的污水处理。 二.人工湿地生态修复技术在相关领域中的应用分析 1.生态公园的景观设计 (1)第九届中国(北京)国际园林博览会 2010年北京市委、市政府开始对北京市界内长170公里的永定河进行全面治理,建设永定河绿色生态发展带。由于北京极度缺水,永定河的生态用水以城市再生水作为主要水源,年需再生水逾1亿立方米。 永定河园博园水源净化工程位于第九届中国国际园林博览会展园东南角,永定河园博湖右岸,是利用最深达23m的砂石垃圾回填坑为场址,以再生水净化为核心功能,采用复合垂直流为主要工艺的复合型人工湿地生态公园,是规划建设的永定河5大再生水水源净化湿地之一,也是目前亚洲最大的潜流型人工湿地。 工程定位: 河湖净化之肾--永定河再生水源深度净化厂,水生动植物家园--再现完善的湿地生态系统,野外科普基地--传播生态文明知识,华北最美的人工湿地--人工湿地生态展园。 设计主题:

相关文档
相关文档 最新文档