文档库 最新最全的文档下载
当前位置:文档库 › 长波红外高光谱成像系统的设计与实现

长波红外高光谱成像系统的设计与实现

长波红外高光谱成像系统的设计与实现
长波红外高光谱成像系统的设计与实现

第40卷第2期红外与激光工程2011年2月Vol.40No.2Infrared and Laser Engineering Feb.2011长波红外高光谱成像系统的设计与实现

袁立银1,林颖1,何志平1,徐卫明1,张滢清2,舒嵘1,王建宇1

(1.中国科学院上海技术物理研究所,上海200083;2.上海太阳能工程技术研究中心,上海200241)

摘要:针对长波红外高光谱系统背景辐射强以及信噪比低的特点,设计了能有效抑制背景辐射的长波红外精细分光光谱成像系统。利用杂散辐射分析软件,对系统进行了背景辐射分析,包括全波段各辐射面源对背景辐射的贡献分量、各光学通道的背景辐射、机械内壁吸收率对背景辐射的影响、以及光机内壁温度对背景辐射的影响。主要通过制冷光机系统的温度、抛光亮化处理光谱仪的内部表面,降低系统的背景辐射。搭建了一套地面实验装置,该系统光谱范围为7.7~9.3μm,光谱分辨率为54nm,空间分辨为0.75mrad,推扫式成像。整机的测试结果表明,系统的光谱分辨率(SRF)达到了预先设计的要求值,低温150K时,系统的噪声等效温差NETD接近300mK。

关键词:光谱成像系统;长波红外;高光谱;背景辐射

中图分类号:TN744.1文献标志码:A文章编号:1007-2276(2011)02-0181-05

Design and realization of an long-wave infrared hyperspectral

imaging system

Yuan Liyin1,Lin Ying1,He Zhiping1,Xu Weiming1,Zhang Yingqing2,Shu Rong1,

Wang Jianyu1

(1.Shanghai Institute of Technical Physics,Chinese Academy of Science,Shanghai200083,China;

2.Shanghai Solar Energy Research Center,Shanghai200241,China)

Abstract:In view of the strong background radiation and the low signal noise rate of the long-wave hyperspectral imaging spectrometer,an infrared spectral imaging system which could restrain the background radiation was designed.The background radiation was analyzed by the TacePro software.The analysis include composition of the background radiation(within the whole spectral range),relative background radiation of each channel,background radiation as different mechanism inwall surfaces absorbance,and background radiation at different temperature of machine inwall.The background radiation was mainly suppressed by cooling opto-mechanic system and polishing inwall surface.A ground-based experimental device was established,whose spectral range was from7.7to9.3μm,spectral resolution was54nm,spatial resolution was0.75mrad and scanning way was push broom.Measurement of the whole instrument presents that spectral resolution(SRF)of the system reaches the designed value and NETD is less than300mK as the inwall surfaces of opto-mechanic is at150K.

Key words:imaging spectrometer system;long-wave infrared;hyperspectral;background radiation

收稿日期:2010-05-10;修订日期:2010-06-05

基金项目:国家863计划资助项目(2007AA12Z104);福建省青年科技人才创新项目(2007F3066)

作者简介:袁立银(1981-),女,博士后,研究方向为红外系统设计及应用技术研究。Email:yuanliyintongji@https://www.wendangku.net/doc/732927635.html,

导师简介:王建宇(1959-),男,研究员,研究方向为光电遥感系统、信息获取与处理技术。Email:jywang@https://www.wendangku.net/doc/732927635.html,

红外与激光工程第40卷

0引言

长波红外成像光谱仪是一种用来获取物体自身长波红外辐射二维空间信息和一维光谱信息的仪器,由望远物镜、光谱仪、背景抑制模块、FPA和辅助电路部分组成,工作波长一般在8~14μm波段。

长波红外成像光谱仪在物质探测识别方面优势明显。其获取的空间和长波红外波段光谱的信息,能发现光谱特征的细微不同,进而具有更高的目标识别能力和探测效率。可用于航天器昼夜识别,化学气体流检测,地雷探测,航天器排气口探测,化学云层绘图等。

我国长波红外高光谱成像技术与国际上[1-4]差距很大,只有极少数科研单位在开展预先研究。

1设计难点

目前,红外成像光谱仪的设计存在以下难点:

(1)目标信号微弱。当太阳高度角为45°时,地面景物接收的长波红外(8~12μm)波段的太阳辐照度约为可见光(0.45~0.78μm)波段的2‰。长波红外仪器接收到的信息主要来自目标景物的自身辐射,是其接收到太阳辐照度的160倍。折算成一个光谱采样间隔内,长波红外仪器(光谱采样间隔50nm)的入射太阳辐照度仅为可见光仪器(光谱采样间隔5nm)的1/4。

(2)背景热辐射严重。一切高于绝对零度的物体都会有热辐射,因此,每个光机内表面都是背景热辐射源。常温300K时,光机系统的自身热辐射对信号的干扰特别严重,来自远处景物的辐射信号分光之后可能淹没在光机系统的热辐射背景噪声之中。无背景抑制措施,长波红外成像光谱仪图像数据不能满足使用要求。

(3)可应用的探测器少。目前国际上用于长波红外波段的面阵探测器主要有3种:QWIP量子阱探测器、Micro bolometer探测器和HgCdTe探测器。但迄今还没有一种新材料能超过HgCdTe的基本优点。为满足更高的性能要求,HgCdTeFPA仍然是首选探测器。

2系统设计

长波红外成像光谱仪器的目标信号微弱,背景辐射严重,整机的信噪比(SNR)非常低,与之相关的等效噪声温差、等效光谱噪声温差等指标都会降低,因此必须采取有效的背景抑制处理措施。主要是:(1)对光机系统进行真空制冷;(2)冷光阑设计;(3)探测器窗口前加滤光片。

系统组成如图1所示。系统由光机子系统、探测器及制冷组件(含辅助电路)、抑制辐射模块(真空制冷组件)组成。其中,光机子系统由成像镜、视场光阑(狭缝)、准直镜、平面反射光栅和会聚镜组成。

图1系统组成框图

Fig.1Block diagram of the system

3背景辐射仿真分析

利用TracePro软件分析背景杂散辐射的主要来源,从理论上给出达到成像要求时的最高光机系统制冷温度,为系统的结构设计、制冷方式和探测器成像电路设计提供设计依据。

3.1仿真原理与辐射定律

TracePro是基于蒙特卡洛法的一种杂光分析软件。将系统外的杂散辐射或系统内部构件的自身热辐射看作是大量相互独立的能量束光线组成,光线在系统内部的传递过程是随机的,服从特定分布函数的随机数确定。这种特定分布函数即是概率模型,每一种随机过程的概率分布应符合相应的热辐射定律、表面的热辐射性质和光学原理。当追迹光线数足够多时,可以得到一个反应实际情形较为稳定的统计结果。

由普朗克定律可知,一定温度和波长下,单位时间内,单位面积发射的λ1-λ2波段的辐射能为:

W△λ(T)=ε·

λ

2

λ

1

乙c1λ-5

e

c

2

-1

dλ(1)式中:c1、c2为辐射常量;ε为表面发射率。

3.2系统建模

系统的光路部分需装配镜筒。如图2所示,光

182

第2期

系统包括由前锗平片窗口、三组红外镜头、反射光栅及探测器保护窗口、冷光阑组成的光学系统和由前端连接筒(1)、成像镜筒(2)、狭缝筒(3)、狭缝(4)、准直镜筒(5)、光栅座(6)、光栅方盒(7)、会聚镜筒(8)、后端连接筒(9)及探测器杜瓦腔体(10)组成的机械部分。内壁吸收率ε取典型值0.8。

图2机械件内表面

Fig.2Inwall surfaces of the mechanical elements

3.3全波段各辐射面源对背景辐射的贡献分量

光机系统温度为300K时,光学件、探测器杜瓦腔体和机械件内表面属性不变,考察全波段各个辐射面源对背景辐射的贡献分量。

如图3所示,对背景辐射较为严重的辐射面源依次是会聚镜筒内壁、狭缝后表面、准直镜筒内壁、狭缝筒内壁、光栅盒内壁以及光栅座端面等。

图3全波段各辐射面源对背景辐射的贡献

Fig.3Contribution of each surface to background radiation within whole spectral range

低温下杂散辐射的主要来源保持不变,但因温度降低,物体辐射峰值往长波方向漂移,因此各辐射面源对背景辐射的贡献比份略有变化。

狭缝前的辐射由于视场光阑狭缝的存在,可以忽略。狭缝之后,与光轴垂直的且通过光栅反射或直接正对光敏面的表面,其辐射对背景辐射的贡献较大,如会聚镜镜片、准直镜镜片面和光栅表面等;此外,沿光轴方向有一定夹角,但吸收率高、面积大的表面,其辐射对背景辐射的贡献也比较大,如准直镜筒和会聚镜筒内壁等。这些关键表面的温度必须降低。

3.4各光学通道的背景辐射

由图4可知,7.7~9.3μm波段内的30个通道的背景辐射较均匀。当光机温度下降到150K时,各光学通道背景辐射有较大变化,最后一个光学通道的背景辐射是第一个光学通道的3倍。反映在光谱图像上,系统的信噪比越往长波越低。

图4各光学通道的背景辐射相对值

Fig.4Relative background radiation of each optical channel

3.5机械内壁吸收率对背景辐射的影响

由图5可知,随着机械件内表面吸收率的降低,到达光敏面的背景辐射总量逐渐减少,光敏面上的平均辐照度也逐渐减少。当机械件内表面的吸收率从0.9降低到0.1时,光敏面上的平均辐照度约降低了50%。因此,通过抛光亮化处理机械件内表面以降低其表面吸收率,一定程度上实现对背景辐射的抑制。

图5机械内壁吸收率对背景辐射的影响

Fig.5Effect of absorption rate of mechanical inwall on

background radiation

3.6光机内壁温度对背景辐射的影响

设背景辐射相对值是以某一光机温度的第一个光学通道的背景辐射为参考的比值。由图6可知,随着光机系统温度的降低,到达光敏面的背景辐射总量逐渐减少,光敏面上的平均辐照度也逐渐减少。光

机袁立银等:长波红外高光谱成像系统的设计与实现183

红外与激光工程第40卷

系统温度从300K下降到80K的过程中,光敏面上的平均辐照度降低速度越来越缓慢。当光机系统温度降低到150K时,光敏面上的平均辐照度约是300K时的1/250。因此,降低光机系统的温度可以有效抑制背景辐射。

图6光机内壁温度对背景辐射的影响

Fig.6Effect of temperature of mechanical inwall on

background radiation

进一步理论分析表明,当光机系统制冷至150K 左右时,探测器的输入信噪比接近50dB。

4系统实现

4.1长波红外成像光谱系统

如图7所示,光机子系统固定于光学底板上,再盖上光学罩(铝皮盖)封闭成箱体,光机箱体通过5根隔热柱固定于真空罐内。

图7长波红外高光谱成像系统

Fig.7Long-wave infrared hyperspectral imaging system

光学罩和光学底板外层包有隔热多层,使其与外界环境隔离,避免受到真空环境里的辐射。光学罩靠近成像镜处开有一圆形窗口;真空罐靠近成像镜一侧处开有一更大的圆形窗口,此窗口内装有长波红外锗平面透镜,以使真空罐内部所有组件与外界环境隔离,并使来自目标景物的辐射透过此窗口进入光学系统。真空罐内的杜瓦底部有一铜板由铝带连接到光学底板上。

系统采用液氮制冷,当液氮注入杜瓦后,通过导热铝带使光机系统降温。在杜瓦底部铜板、光学底板、探测器座和光学罩上各有两个测温点,实时监测各部件温度;同时,各有两个加热点实时控制温度,进行各温度点的数据采集。

4.2性能测试及定标

4.2.1空间分辨率测试

狭缝对紧贴在黑体源上,置于平行光管焦面处模拟无穷远的辐射,观察探测器光敏面上的0级光谱(未分光)[5]光管焦距为4000mm,狭缝对缝宽和两缝间隔设为3mm。如图8所示,系统能分辨出上述宽度的狭缝对,表明系统空间分辨率和成像质量达到设计要求。

图8空间分辨率测试

Fig.8Testing of spatial resolution

4.2.2光谱响应度标定

单色仪出射狭缝置于平行光管焦面处,待测系统在平行光管前方。单色仪出射狭缝小于0.5mm,其光谱宽度大约为16nm,小于被测系统光谱分辨率设计值的1/3,保证测试精度。控制单色仪以3nm步长由7700nm到9300nm进行光谱扫描。由图9可知,系统的光谱通道与中心波长成线性关系。

图9各通道中心波长

Fig.9Center wavelength of each channel

4.2.3光谱分辨率测试及定标

测试装置同4.2.2。以第2通道为例,如图10所示,光谱分辨率约为50nm,与设计值偏差不超过8%

。184

第2期

图10第2通道光谱分辨率曲线

Fig.10Spectral resolution curve of the2nd channel

4.2.4系统噪声等效温差

长波红外系统通过物体辐射成像,系统本身与景物周围辐射环境将产生噪声,对图像质量影响很大,NETD的测量是评价红外系统的重要指标之一。NETD与光学系统的入瞳孔径、焦距以及探测像元尺寸等参数有关,NETD数值的实验室测量中,按下式进行计算:

NETD=△T

s n

(2)

参考文献[6]中对系统NETD进行测试。当光机系统制冷到150K时,测试目标温度为305K,背景温度为295K,即温差为10K时,测试得到系统各谱段的平均噪声等效温差NETD为310mK;而当光机温度为300K时,其对应的NETD为2.8K。

4.3低温分光成像实验

系统在完成测试和定标后,整机制冷到170K,借助真空罐窗口前的扫描振镜,进行了远处目标地物成像。经非均匀性校正,得到某一光谱通道(第2通道)的图片如图11所示。

图11第2通道光谱成像

Fig.11Spectral image of the2nd channel 5结束语

长波红外成像光谱仪实现分光成像的关键是对背景辐射进行有效抑制,提高系统的信噪比。文中对长波红外成像光谱仪的背景辐射的来源和对其影响较大的各因素进行了仿真分析,可知对主要的辐射面源进行亮化抛光处理,对狭缝后的光机部分进行制冷处理,能有效抑制背景辐射。搭建的系统采用冷光阑设计,在光学装校、系统测试和定标后,进行真空制冷,在低温170K实现了长波红外波段的常温地物目标的高光谱成像。

参考文献:

[1]Karen Y,Harold J,Theodore H,et al.NGST long-wave

hyperspectral imaging spectrometer system characterization and calibration[C]//SPIE,2003,5159:262-274.

[2]Wang Jianyu,Shu Rong,Xue Yongqi.The development of

Chinese hyperspectral remote sensing technology[C]//SPIE, 2005,5640:358-362.

[3]Raymond H.Long-wave infrared hyperspectral sensor design

trade space[C]//SPIE,2000,4127:157-168.

[4]Pantazis M,Sellar R,Daniel W,et al.Optical design of a

compact imaging spectrometer for planetary mineralogy[J].

Optical Engineering,2007,46(6):063001-9.

[5]He Zhiping,Liu Qiang,Xu Weiming,et al.Equipment of

performance testing and calibration of shortwave infrared hyperspectral imager[J].Infrared and Laser Engineering, 2009,38(S):531-535.(in Chinese)

何志平,刘强,徐卫明,等.短波红外成像光谱仪性能检测与定标装置[J].红外与激光工程,2009,38(增刊):531-535.

[6]Huan Kewei,Pang Bo,Shi Xiaoguang,et al.Research on

performance testing and evaluation of infrared imaging system [J].Infrared and Laser Engineering,2009,38(S):482-486.

(in Chinese)

宦克为,庞博,石晓光,等.红外成像系统的性能测试及评价方法[J].红外与激光工程,2009,38(增刊):

482-486.

袁立银等:长波红外高光谱成像系统的设计与实现185

Nicoletis5红外光谱仪检定标准操作规程.docx

1目的 建立 Nicoletis5 红外光谱仪的检定规程,确保仪器的性能可靠和测量的准确性。 2范围 适用于 Nicoletis5 红外光谱仪的检定。 3职责 质量检验部负责执行此规程,质量保证部负责监督实施。 4定义 无。 5内容 5.1 检定项目和技术要求 序号检定项目技术要求 1波数示值误差在 3000cm-1附近的波数视值误差±5cm-1在 1000cm-1附近的波数视值误差±1cm-1 -1 附近的波数重复性 -1 2波数重复性在 3000cm≤2.5cm -1 附近的波数重复性 -1在 1000cm≤0.5cm 3透射比重复性不大于 0.5% 在 3200cm-1~2800cm-1分辨峰7 个 4分辨力2851cm-1与 2870cm-1之间分辨深度≥18% 1583cm-1与 1589cm-1之间分辨深度≥12% -1 峰半高宽 -1水汽 1554.4cm≤2cm 5本底光谱能量分布不小于20% 3200cm-1~2800cm-1内 100%线的平直度≤1% 6 线的平直度-1-1内 100%线的平直度≤1% 100%2200cm~1900cm 800cm-1~500cm-1内 100%线的平直度≤4% 7噪声不大于 1% 5.2 检定环境 5.2.1 环境温度: 16~25℃,相对湿度:≤60%; 5.2.2 仪器应置于平稳的工作台上,不应有强光、强气流、强烈振动和强电磁干扰;5.2.3 环境无腐蚀性气体、烟尘干扰;供电电源电压220V±22V ,频率 50Hz±1Hz。 5.3 标准物质

聚苯乙烯膜红外波长标准物质。 5.4 检定内容 5.4.1 波数示值误差与波数重复性 Nicoletis5 红外光谱仪扫描范围为4000cm-1~400cm-1,分辨率为 4.0cm-1,常用扫描速度,扫描次数为 15.待 Nicoletis5 红外光谱仪稳定后,采集空气本底背景,扫描聚苯乙烯红外波长 标准物质,测量 3027cm-1, 2851cm-1,1601cm-1,1028cm-1,907cm-15 个主要吸收 峰。重复测量 3 次。按公式( 1)计算,取△V绝对值最大值为波数示值误差。按公式(2)计算,取δv绝对值最大值为波数重复性。 v=v i- v(1) δv=v max-v min(2) 式中: v——波数示值误差, cm-1; δ v——波数重复性, cm-1; -1 vi ——第 i 峰值波数测量平均值, cm ; -1 v max——第 i 峰波数测量最大值, cm-1; -1 v min——第 i 峰波数测量最小值, cm 。 在 T 绝对值最大值为透射比重复性。 R T=T max-T min( 3) 式中: R T——透射比重复性, %; T max——聚苯乙烯峰值透射比最大值,%; T min——聚苯乙烯峰值透射比最小值,%; 5.4.3 分辨力 分辨苯环特征吸收峰的个数 -1~2800cm-1范围内,谱图可分辨的吸收峰的个数,见图1。 分辨深度 -1(峰)与 2870cm-1(谷)之间的峰谷深度和1583cm-1(峰)和 1589cm-1(谷)之间的峰谷深度,用T 表示。见图 2 和图 3。 5.4.3.3 半高宽

高光谱成像检测技术

高光谱成像检测技术 一、高光谱成像技术的简介 高光谱成像技术是近二十年来发展起来的基于非常多窄波段的影像数据技术,其最突出的应用是遥感探测领域,并在越来越多的民用领域有着更大的应用前景。它集中了光学、光电子学、电子学、信息处理、计算机科学等领域的先进技术,是传统的二维成像技术和光谱技术有机的结合在一起的一门新兴技术。 高光谱成像技术的定义是在多光谱成像的基础上,在从紫外到近红外(200-2500nm)的光谱范围内,利用成像光谱仪,在光谱覆盖范围内的数十或数百条光谱波段对目标物体连续成像。在获得物体空间特征成像的同时,也获得了被测物体的光谱信息。 高光谱成像技术具有超多波段(上百个波段)、高的光谱分辨率(几个nm)、波段窄(≤10-2λ)、光谱范围广(200-2500nm)和图谱合一等特点。优势在于采集到的图像信息量丰富,识别度较高和数据描述模型多。由于物体的反射光谱具有“指纹”效应,不同物不同谱,同物一定同谱的原理来分辨不同的物质信息。 二、高光谱成像系统的组成和成像原理 高光谱成像技术的硬件组成主要包括光源、光谱相机(成像光谱仪+CCD)、装备有图像采集卡的计算机。光谱范围覆盖了200-400nm、400-1000nm、900-1700 nm、1000-2500 nm。 CCD 光源光栅光谱仪成像镜头

光谱相机的主要组成部分有:准直镜、光栅光谱仪、聚焦透镜、面阵CCD。 高光谱成像仪的扫描过程:面阵CCD探测器在光学焦面的垂直方向上做横向排列完成横向扫描(X方向),横向排列的平行光垂直入射到透射光栅上时,形成光栅光谱。这是一列像元经过高光谱成像仪在CCD上得到的数据。它的横向是X方向上的像素点,即扫描的一列像元;它的纵向是各像元所对应的光谱信息。 同时,在检测系统输送带前进的过程中,排列的探测器扫出一条带状轨迹从而完成纵向扫描(Y方向)。

红外光谱仪操作规程及注意事项

发表日期:2007年6月3日【编辑录入:admin】 1.保持室内干燥,空调和除湿机必须全天开机(保持环境条件25±10℃左右,湿度≤70%); 2.保持实验室安静和整洁,不得在实验室内进行样品化学处理,实验完毕即取出样品室内的样品。 3.经常检查干燥剂颜色,如果兰色变浅,立即更换。 4.根据样品特性以及状态,制定相应的制样方法并制样。5.测试红外光谱图时,扫描空光路背景信号和样品文件信号,经傅立叶变换得到样品红外光谱图。根据需要,打印或者保存 红外光谱图。 6.实验完毕后在记录本上记录使用情况。 7.设备停止使用时,样品室内应放置盛满干燥剂的培养皿。8.干燥剂再生:将干燥剂在烘箱内105℃烘干至兰色(约3小时)即可。 9.将压片模具、KBr晶体、液体池及其窗片放在干燥器内备用。10.液体池使用NaCl、CaF2、BaF2等晶体很脆易碎,应小心保存。11.液体池使用的KRS-5晶体剧毒,使用时避免直接接触(戴手套),打磨KRS-5晶体时避免接触或吸入KRS-5粉末,打磨的 废弃物必须妥善处理。

2010-01-12 17:11:38 来源:实验室设备信息网浏览:342次 红外光谱仪操作规程及注意事项 一、操作步骤 1.开机前准备 开机前检查实验室电源、温度和湿度等环境条件,当电压稳定,室温为21±5℃左右,湿度≤65%才能开机。 2.开机 开机时,首先打开仪器电源,稳定半小时,使得仪器能量达到最佳状态。开启电脑,并打开仪器操作平台OMNIC软件,运行Diagnostic菜单,检查仪器稳定性。 3.制样 根据样品特性以及状态,制定相应的制样方法并制样。 4.扫描和输出红外光谱图 测试红外光谱图时,先扫描空光路背景信号(Collect→Background),再扫描样品文件信号(Collect→Sample),经傅立叶变换得到样品红外光谱图。 5.关机 (1)关机时,先关闭OMNIC软件,再关闭仪器电源,最后关闭计算机并盖上仪器防尘罩。(2)在记录本记录使用情况。 二、注意事项1.测定时实验室的温度应在15~30℃,所用的电源应配备有稳压装置。2.为防止仪器受潮而影响使用寿命,红外实验室应保持干燥(相对湿度应在65%以下)。3.样品的研磨要在红外灯下进行,防止样品吸水。 4.压片用的模具用后应立即把各部分擦干净,必要时用水清洗干净并擦干,置干燥器中保存,以免锈蚀。 5.OMNI采样器使用过程中必须注意以下几点: (1)样品与Ge晶体间必须紧密接触,不留缝隙。否则红外光射到空气层就发生衰减全反

红外偏振成像探测技术综述

第 28 卷 第 2 期 2006 年 2 月
红 外 技 术 Infrared Technology
Vol.28 No.2 Feb. 2006
〈综述与评论〉
红外偏振成像探测技术综述
聂劲松[1],汪 震[2]
(1.电子工程学院 503 室,安徽 合肥 230037;2.中科院安徽光机所,安徽 合肥 230031)
摘要:论文对红外偏振成像技术进行了全面系统的综述,在论述红外偏振特性物理本质的基础上,指 出了红外偏振成像技术比较传统的红外成像技术具有的优势;给出了国内外该技术的研究概况;分析 了国外研究红外偏振成像技术得到的主要结论;最后,指出红外偏振成像技术不仅是红外侦察技术的 一次革命性进步,而且对传统的红外伪装技术提出了严峻的挑战,需要引起我们高度的重视。 关键词:偏振;红外;成像;探测技术 中图分类号:TN219 文献标识码:A 文章编号:1001-8891(2006)02-0063-05
Summarize of Infrared Polarization Imaging Detection Technology
NIE Jing-song[1],WANG Zhen[2]
(1.503 office, Institute of Electronic Engineering, Anhui Hefei, 230037, China; 2.Anhui Institute of Optics and Fine Mechanics, the Chinese Academy of Sciences, Anhui Hefei, 230031, China)
Abstract:The technology of infrared polarization imaging detect was discussed. The advantages of infrared polarization imaging detect to traditional infrared imaging detect were given, and the main conclusion of overseas on infrared polarization imaging detect was analyzed. In the end, the significance of infrared polarization imaging detection technology and the challenge of this technology to traditional detect technology were pointed out. Key words:polarization;infrared;imaging;detection technology 式显示隐蔽的军事目标。 红外偏振成像技术作为比较传统的红外成像技术 具有以下几点优势: 1) 偏振测量无需准确的辐射量校准就可以达到相 当高的精度,这是由于偏振度是辐射值之比。而在传 统的红外辐射量测量中红外测量系统的定标对于红外 系统的测量准确度至关重要。红外器件的老化,光电 转换设备的老化,电子线路的噪声,甚至环境温度、 湿度的变化都会影响到红外系统。如果红外系统的状 态已经改变,但是系统又没有及时定标,那么所测得 的红外辐射亮度和温度必然不能反映被测物的真实辐 射温度和亮度。 2) 根据调研国外公开发表的文献的数据说明, 目 标和背景差别较大,其中自然环境中地物背景的红外
收稿日期:2005-07-05;修改日期:2005-11-08 作者简介:聂劲松(1970-),男,博士,现在解放军电子工 程学院从事军用光学工程专业教学和科研工作,主 要研究方向是激光技术和光电子技术。
引言
由菲涅耳反射定律可知当非偏振光束从光滑介质 表面反射时,会产生部分偏振光。另外根据基尔霍夫 理论,热辐射也表现出偏振效应。所以地球表面和大 气中的任何目标,在反射和发射电磁辐射的过程中都 会产生由他们自身性质和光学基本定律决定的偏振特 性。不同物体或同一物体的不同状态(例如粗糙度、 含水量、构成材料的理化特征等)会产生不同的偏振 状态,且与波长有密切关系,形成偏振光谱。由于偏 振信息是不同于辐射的另一种表征事物的信息,相同 辐射的被测物体可能有不同的偏振度,使用偏振手段 可以在复杂的辐射背景下检出有用的信号,以成像方
偏振度非常小(<1.5%) ,只有水体体现出较强的偏 振特性, 其偏振度一般在 8%~10%。 而金属材料目标 的红外偏振度相对较大,达到了 2%~7%,因此以金 63

高光谱成像检测技术.

高光谱成像检测技术 、高光谱成像技术的简介 高光谱成像技术是近二十年来发展起来的基于非常多窄波段的影像数据技术, 其最突出的应用是遥感探测领域, 并在越来越多的民用领域有着更大的应用前景。 它集中了光学、光电子学、电子学、信息处理、计算机科学等领域的先进传统的二维成像技术和光谱技术有机的结合在一起的一门新兴技术。 技术,是高光谱成像 技术的定义是在多光谱成像的基础上,在从紫外到近红外(200-2500nm 的光谱范围内,利用成像光谱仪,在光谱覆盖范围内的数十或数百条光谱波段对目标物体连续成 像。在获得物体空间特征成像的同时, 也获得了被测物体的光谱信息。 高光谱成像技术具有超多波段(上百个波段、高的光谱分辨率(几个nm 、波 段窄(<1-2入光谱范围广(200-2500nm和图谱合一等特点。优势在于采集到的图像信息量丰富, 识别度较高和数据描述模型多。由于物体的反射光谱具有“指纹” 效应, 不同物不同谱, 同物一定同谱的原理来分辨不同的物质信息。、高光谱成像系统的组成和成像原理 高光谱成像技术的硬件组成主要包括光源、光谱相机(成像光谱仪+CCD 、装备有图像采集 卡的计算机。光谱范围覆盖了200-400nm 、400-1000nm 、900-1700 nm 、1000-2500 nm。

CC D 朮源「一光栅壯谱以 —a I \、 「维电移台 . 样品 A CCD。 光谱相机的主要组成部分有:准直镜、光栅光谱仪、聚焦透镜、面阵

高光谱成像仪的扫描过程:面阵CCD探测器在光学焦面的垂直方向上做横向排列完成横向扫描(X方向,横向排列的平行光垂直入射到透射光栅上时,形成光栅光谱。这是一列像元经过高光谱成像仪在CCD上得到的数据。它的横向是X方 向上的像素点,即扫描的一列像元;它的纵向是各像元所对应的光谱信息。 同时,在检测系统输送带前进的过程中,排列的探测器扫出一条带状轨迹从而完成纵向扫描(丫方向。 1\ 综合横纵扫描信息就可以得到样品的三维高光谱图像数据。

傅里叶红外光谱仪操作规程

傅里叶红外光谱仪操作规程 1.开机前准备 开机前检查实验室电源、温度和湿度等环境条件,当电压稳定,室温在 15~25℃、湿度≤60%才能开机。 2.开机 首先打开仪器的外置电源,稳定半小时,使得仪器能量达到最佳状态。开启电脑,并打开仪器操作平台 OMNIC软件,运行 Diagnostic菜单,检查仪器稳定性。 3.制样 根据样品特性以及状态,制定相应的制样方法并制样。固体粉末样品用 KBr 压片法制成透明的薄片;液体样品用液膜法、涂膜法或直接注入液体池内进行测定;(液膜法是在可拆液体池两片窗片之间,滴上 1-2滴液体试样,使之形成一薄的液膜;涂膜法是用刮刀取适量的试样均匀涂于 KBr窗片上,然后将另一块 窗片盖上,稍加压力,来回推移,使之形成一层均匀无气泡的液膜;沸点较低,挥发性较大的液体试样,可直接注入封闭的红外玻璃或石英液体池中,液层厚度一般为 0.01~1mm)。 4.扫描和输出红外光谱图 将制好的 KBr薄片轻轻放在锁氏样品架内,插入样品池并拉紧盖子,在软 件设置好的模式和参数下测试红外光谱图。先扫描空光路背景信号(或不放样品时的 KBr薄片,有 4个扣除空气背景的方法可供选择),再扫描样品信号,经 傅里叶变换得到样品红外光谱图。根据需要,打印或者保存红外光谱图。5.关机 (1)先关闭 OMNIC软件,再关闭仪器电源,盖上仪器防尘罩。 (2)在记录本上记录使用情况。 6.清洗压片模具和玛瑙研钵 KBr对钢制模具的平滑表面会产生极强的腐蚀性,因此模具用后应立即用水冲洗,再用去离子水冲洗三遍,用脱脂棉蘸取乙醇或丙酮擦洗各个部分,然后用电吹风吹干,保存在干燥箱内备用。玛瑙研钵的清洗与模具相同。

偏振成像研究综述

偏振成像研究综述 西安工业大学光电工程学院 学生:刘彬彬指导老师:高明 摘要:偏振成像技术是光学领域得一项新技术,国内外十分重视对该技术及其应用的研究。地球表面和大气中的目标在反射、散射、透射及发射电磁辐射的过程中,会产生由它们自身性质决定的特征偏振。由于大气及地物光谱辐射的偏振敏感性,又由于偏振特性与物体的表面状态和固有属性密切相关,加上不同种类的目标具有不同的偏振特性,使得偏振成像逐步发展成地基、航空和卫星观测的新技术手段。在全球气候变迁研究,对地遥感探测和天文研究等领域得到应用。根据不同探测目标,从偏振分析机制和偏振信息获取模式等方面介绍了光学偏振成像技术的研究进展,并结合国内外相关领域偏振成像实验研究结果,描述了偏振成像技术在大气、自然地物、人工目标、医学诊断以及天文学探测领域的应用基础研究情况,最后总结和展望了偏振成像技术的问题和发展趋势。 关键字:偏振成像技术;特征偏振:遥感探测。 1 引言 光波的信息量是非常丰富的。依据光波的电磁理论,光波包含的信息主要有:振幅(对应于光强),波长(频率),相位,偏振态。通常的光辐射成像是获取目标的光谱,辐射强度及空间状态等信息,用于反演目标性质参数。但是,从电磁波的横波性质来看,偏振或称极化也是电磁波的重要特征之一。偏振特性与物质性质密切相关,是遥感需要获取的主要信息参数。在光学波段,无论是可见还是红外谱段,不同目标都具有各自一定的偏振特性。偏振参数能够很好的表征被探测目标的性质特征。因此,人们将光学遥感与偏振测量技术相结合,促进了偏振成像技术的发展。 传统的遥感方法获取的信息主要是电磁强度特征和几何特征,而偏振特性取 决于其表面的固有属性,如其介质特征,结构特征,粗糙度,水分含量等,还与观察角度和辐照条件有关,正是由于偏振测量同非偏振测量(通常为光强测量)相比能获得与物质自身特性相关的偏振信息,所以,通过解析目标的偏振信息可以更加容易的识别目标,同时由于偏振测量所具有的上述优点,它在云和大气气溶胶的探测、地质勘探、海洋开发、农牧业发展和军事等相关领域都具有重要的应用价值。同时,传统偏振成像一般采用被动工作方式,具有隐蔽性好的优点,但成像效果和距离均受到气象条件、目标温度对比度和天空背景照度等因素的限制。激光照明偏振成像技术克服了被动成像的缺点,在远距离暗目标探测和水下探测方面有着重要的应用。相对于被动成像而言,主动成像不依赖目标自身辐射(热成像)和目标对太阳或月亮等次光源的反射(可见光或近红外成像),而是依靠仪器自身(激光雷达)发出激光作为照明光源,由被探测目标反射或散射光子来提取目标的信息。所以激光照明偏振成像技术不受气象条件、目标温度及背景照度

高光谱应用研究综述

浙江师范大学 研究生课程论文封面 课程名称:遥感理论与技术 开课时间: 2014-2015年第一学期 学院地理与环境科学学院学科专业自然地理学 学号2014210580 姓名张勇 学位类别全日制硕士 任课教师陈梅花 交稿日期2015年1月21日 成绩 评阅日期 评阅教师 签名 浙江师范大学研究生学院制

高光谱遥感应用研究综述 张勇 (浙江师范大学地理环境与科学学院,浙江金华321004) 摘要:高光谱遥感是近二十年发展起来的谱像和一的遥感前沿技术。虽然发展时间不长,但由于其本身的特点,使其获得了广泛的重视和应用。本文阐述了高光谱遥感的特点、优势,以及在航空及航天领域的发展情况,列举了几种典型高光谱成像仪的光学系统原理和主要技术指标。在此基础上,概述了高光谱遥感在植被生态、大气环境、地质矿产、海洋、军事等领域的应用情况。最后对高光谱遥感发展趋势提出了几点建议,包括低反射率目标遥感、高信噪比、高空间分辨率及宽覆盖范围等方面。 关键字:高光谱遥感;应用;成像光谱以;研究综述 Conclusion application of hyperspectral remote sensing Zhang Yong (Geography and environmental sciences, Zhejiang Normal University, Jinhua 321004) Abstract:Hyperspectral remote sensing, developed in the late twenty years, is the advanced technology of remote sensing. Because of its characters, Hyperspectral Remote Sensing has been attached importance to and used widly. The characteristics and advantages of hyperspectral remote sensing, and development situation are presented in the fields of aviation and aerospace. Several typical hyperspectral imager optical system principle and the main technical indicators are particularized. At the same time, the applications with hyperspectral remote sensing in vegetation ecology, atmospheric science ,geology and mineral resources, marine and military fields are summarized. The suggestions for the future development trend of hyperspectral remote sensing are given in the end,including the remote sensing of low reflectivity target, high signal-to-noise ratio, high spatial resolution and wide coverages. Keywords: hyperspectral remote sensing;application;imaging spectrometer 1 引言 遥感是20世纪60年代发展起来的对地观测综合性技术,是指应用探测仪器,不与探测目标相接触,从远处把目标的电磁波特性记录下来,通过分析,揭示出物体的特征性质及其变化的综合性探测技术[1]。经过几十年的发展,无论在遥感平台、遥感传感器、还是遥感信息处理、遥感应用等方面,都获得了飞速的发展,目前遥感正进入一个以高光谱遥感技术、微波遥感技术为主的时代。本文系统地阐述了高光谱遥感技术在分析技术及应用方面的发展概况,并简要介绍了高光谱遥感技术主要航空/卫星数据的参数及特点。 1.1高光谱遥感简介 高光谱遥感技术又称为成像光谱技术,是指利用很多很窄的电磁波波段从感兴趣的物体

高光谱成像国内外研究与应用

前言 随着科学技术的发展,人们的感官得到了延伸,认识事物的能力也不断的提高,其中光谱成像和雷达成像成为其中的佼佼者,高谱和图像使人们能够在大千世界更好的认识到事物。高光谱成像技术作为一项优点显著,实用的成像技术,从20世纪80年代开始得到了世界各国的重视,经过深入的研究和发展如今已经被广泛地应用于各个领域。 高光谱遥感是当前遥感技术的前沿领域,它利用很多很窄的电磁波波段从感兴趣的物体获得有关数据,它包含了丰富的空间、辐射和光谱三重信息。高光谱遥感的出现是遥感界的一场革命,它使本来在宽波段遥感中不可探测的物质,在高光谱遥感中能被探测。 高光谱成像技术是基于非常多窄波段的影像数据技术,其中最突出的应用是在遥感探测领域,并在民用领域有着更大的应用前景。 本文通过分析介绍高光谱图像的成像原理,探讨了高光谱图像在国内外发展现状及其应用。

1.高光谱图像成像原理及特点 1.1高光谱遥感基本概念 高光谱遥感是通过高光谱传感器探测物体反射的电磁波而获得地物目标的空间和频谱数据,成立于20世纪初期的测谱学就是它的基础。高光谱遥感的出现使得许多使用宽波段无法探查到的物体,更加容易被探测到,所以高光谱遥感的出现时成功的是革命性的。 1.2高光谱图像成像原理 光源相机(成像光谱仪+ccd)装备有图像采集卡的计算机是高光谱成像技术的硬件组成,其光谱的覆盖范围为200-400nm,400-1000nm,900-1700nm,1000-2500nm。其中光谱相机的主要组成部分为准直镜,光栅光谱仪,聚焦透镜以及面阵ccd。 其扫描过程是当ccd探测器在光学焦面的垂直方向上做横向扫描(x),当横向的平行光垂直入射到投身光栅是就形成了光栅光谱,这是象元经过高光谱仪在ccd上得出的数据,它的横向式x方向上的像素点也就是扫描的象元,它的总想是各象元对应的信息。在检测系统输送前进是排列的他测器完成纵向扫面(y)。综合扫描信息即可得到物体的三围高光谱数据。 1.3高光谱遥感的特点 (1)波段多且宽度窄能够使得高光谱遥感探测到别的宽波段无法探测到的物体。 (2)光谱响应范围更广和光谱分辨率高使得它能够更加精细的发硬出被探测物的微小特征。 (3)它可以提供空间域和光谱域信息也就是“谱像合一”。 (4)数据量大和信息冗余多,由于高光谱数据的波段多,其数据量大,而且和相邻波段的相关性比较高就使得信息冗余度增加很多。 (5)高光谱遥感的数据描述模型多能够分析的更灵活。经常使用的3种模型有:图像,光谱和特征模型。 1.4高光谱的优势 随着高光谱成像的光谱分辨率的提高,其探测能力也有所增强。因此,与全色和多光谱成像相比较,高光谱成像有以下显著优著: (1)有着近似连续的地物光谱信息。高光谱影像在经过光谱反射率重建后,能获取与被探测物近似的连续的光谱反射率曲线,与它的实测值相匹配,将实验室中被探测物光谱分析模型应用到成像过程中。 (2)对于地表覆盖的探测和识别能力极大提高。高光谱数据能够探测具有诊断性光谱

长波红外高光谱成像系统的设计与实现_袁立银

第40卷第2期红外与激光工程2011年2月Vol.40No.2Infrared and Laser Engineering Feb.2011长波红外高光谱成像系统的设计与实现 袁立银1,林颖1,何志平1,徐卫明1,张滢清2,舒嵘1,王建宇1 (1.中国科学院上海技术物理研究所,上海200083;2.上海太阳能工程技术研究中心,上海200241) 摘要:针对长波红外高光谱系统背景辐射强以及信噪比低的特点,设计了能有效抑制背景辐射的长波红外精细分光光谱成像系统。利用杂散辐射分析软件,对系统进行了背景辐射分析,包括全波段各辐射面源对背景辐射的贡献分量、各光学通道的背景辐射、机械内壁吸收率对背景辐射的影响、以及光机内壁温度对背景辐射的影响。主要通过制冷光机系统的温度、抛光亮化处理光谱仪的内部表面,降低系统的背景辐射。搭建了一套地面实验装置,该系统光谱范围为7.7~9.3μm,光谱分辨率为54nm,空间分辨为0.75mrad,推扫式成像。整机的测试结果表明,系统的光谱分辨率(SRF)达到了预先设计的要求值,低温150K时,系统的噪声等效温差NETD接近300mK。 关键词:光谱成像系统;长波红外;高光谱;背景辐射 中图分类号:TN744.1文献标志码:A文章编号:1007-2276(2011)02-0181-05 Design and realization of an long-wave infrared hyperspectral imaging system Yuan Liyin1,Lin Ying1,He Zhiping1,Xu Weiming1,Zhang Yingqing2,Shu Rong1, Wang Jianyu1 (1.Shanghai Institute of Technical Physics,Chinese Academy of Science,Shanghai200083,China; 2.Shanghai Solar Energy Research Center,Shanghai200241,China) Abstract:In view of the strong background radiation and the low signal noise rate of the long-wave hyperspectral imaging spectrometer,an infrared spectral imaging system which could restrain the background radiation was designed.The background radiation was analyzed by the TacePro software.The analysis include composition of the background radiation(within the whole spectral range),relative background radiation of each channel,background radiation as different mechanism inwall surfaces absorbance,and background radiation at different temperature of machine inwall.The background radiation was mainly suppressed by cooling opto-mechanic system and polishing inwall surface.A ground-based experimental device was established,whose spectral range was from7.7to9.3μm,spectral resolution was54nm,spatial resolution was0.75mrad and scanning way was push broom.Measurement of the whole instrument presents that spectral resolution(SRF)of the system reaches the designed value and NETD is less than300mK as the inwall surfaces of opto-mechanic is at150K. Key words:imaging spectrometer system;long-wave infrared;hyperspectral;background radiation 收稿日期:2010-05-10;修订日期:2010-06-05 基金项目:国家863计划资助项目(2007AA12Z104);福建省青年科技人才创新项目(2007F3066) 作者简介:袁立银(1981-),女,博士后,研究方向为红外系统设计及应用技术研究。Email:yuanliyintongji@https://www.wendangku.net/doc/732927635.html, 导师简介:王建宇(1959-),男,研究员,研究方向为光电遥感系统、信息获取与处理技术。Email:jywang@https://www.wendangku.net/doc/732927635.html,

红外光谱仪操作规程及注意事项

红外光谱仪操作规程及注意事项 第一环境部分: 1. 保持室内干燥,空调和除湿机必须全天开机(保持环境条件不要低于20度,湿度≤65%);在南方潮湿地方,除湿机要每天都开着控制湿度,如果是由于湿度的原因,造成KBr窗片被腐蚀,是不在保修范围内的。温度变化梯度不能大于1摄氏度每小时. 2. 保持实验室清洁,不得在实验室内进行样品化学处理,实验完毕即取出样品室内的样品。 3. 一般要求红外光谱仪24小时开机,即使做不到这一点也要保证每周都开机预热三次以上,每次两个小时以上。 4.随机带的干燥剂是分子筛,可以重复使用。若仪器humidity指示灯变红色,表明干燥剂已经受潮,应倒出放到一个烧杯里在烘箱中烘干,条件是150度下连续烘24小时,降温时可置于干燥皿中以防止再度吸潮。千万不能连干燥管一起放到烘箱烘干。(由技术员负责) 5.样品室内放有盛变色硅胶的烧杯,一旦有半数以上颜色变红,必须更换硅胶。干燥剂再生:将干燥剂在烘箱内105℃烘干至兰色(约3小时)即可。 第二制样部分: 固体样品的准备 1. 样品和KBr的比例一般为1—2mg样品配上200mg的KBr。如果样品太多,测出来的吸收峰太强,如果样品太少,有些弱峰将测不出来。因不可能用天平称量,并且每种样品的对红外光的吸收程度不一致,故常凭经验取用。一般要求所测得的光谱图中绝大多数吸收峰处于10%~80%透光率范围在内。最强吸收峰的透光率如太大(如大于30%),则说明取样量太少; 相反,如最强吸收峰为接近透光率为0%,且为平头峰,则说明取样量太多,此时均应调整取样量后重新测定。一般片子厚度应在0.5mm以下,厚度大于0.5mm时,常可在光谱上观察到干涉条纹,对供试品光谱产生干扰。 2. 红外光谱测定最常用的溴化钾最好应为光学试剂级,至少也要分析纯级。溴化钾和样品用前在红外干燥箱里充分干燥,研磨3—5分钟要连同玛瑙研钵一块放到红外烘干箱里进行干燥5分钟。 3. 压片时,把样品和KBr混合物放到压片模具时,保证样品是均匀铺平在模具里,一般压力在10-15MPa, 压力太小压出来的片子不透明,压力太大容易损坏模具。一般加上压以后,保持压力1—2分钟,然后放压取片。 4、模具用后应立即把各部分用乙醇擦干净,必要时先用水清洗干净后再用乙醇擦干,置干燥器中保存,以兔锈蚀。

红外使用操作步骤

红外光谱仪使用操作步骤 1.把仪器主机插头和计算机主机插头插入排插中,首先打开稳压电 源的开关,然后打开排插电源;开仪器主机电源(开关在仪器后面),预热20min左右;开启计算机。 2.样品处理:(在预热的过程中操作,以便节省时间) 在玛瑙研钵中分别研磨少量KBr粉末(用来做本底),固体样品和KBr粉末的混合物(比例约1:100~300,用来测样)至2.5微米以下(大约需时2~3min),装样。取样和装样时,药品匙不能混合使用,应分别装不同的样品。测定多个样品时,中间需要清洗附件,应非常小心地拿放玛瑙研钵,附件先用自来水冲洗干净,然后用蒸馏水冲洗,再用乙醇润洗,最后放入干燥器中。 3.测试: (1)双击打开桌面omnic应用程序,当右上角Bench Status旁出现“√”,即可进行测量。 (2)测试本底: 把装本底KBr的样品槽轻轻推进光路中,点击工具栏中Collect,点击其下的collect background (或直接点击工具栏中第一个图标collect background),按ok即收集本底谱图,测试完后按yes加到窗口中。 (3)测试样品: 把装样品的样品槽轻轻推进光路中;点击工具栏中Window,点击其下的new window,新建窗口;点击工具栏中collect,点击其下

的collect sample(或直接点击工具栏中第二个图标collect sample),按ok即收集样品谱图,测试完后按yes加到窗口中。 (4)图谱处理或保存:在工具栏中File或Edit进行文件保存或编辑处理。 A.若需要做曲线平滑,点击工具栏中的Process,再点击其下的Smooth…,根据需要设定平滑的数据,平滑完后可以删掉原始的曲线,(选中原始曲线,点击工具栏中的第八个剪刀图标即可),保存平滑后的曲线。 B.若需做基线校正,应先把图转换为ABs形式(点击工具栏中第三个图标ABs即可),再进行自动基线校正(点击工具栏中第六个图标即可),校正后的图为红色,选中原有图(此时,绿色变为红色)删除,可再把图转换为透过率形式(点击工具栏中第四个图标%T即可)。 C.若想看几个图的叠加图,点击工具栏中的Window,再点击其下的New Window…,然后在这个窗口中打开想要叠加的图谱即可。 4.测试完后,关闭测试窗口,退出程序;关闭仪器主机电源,点击 “开始”,关计算机,关插排电源和稳压电源的开关,拔出插排中仪器插头。 5.清洗所用的附件,并放回原处;KBr瓶放回干燥器中。 6.使用后登记:认真记录每次开机时间、使用者、测试样品名、样 品数、机器运转情况、指导老师等。

我国高光谱遥感的发展历程

我国高光谱遥感的发展历程 遥感对地观测要解决的两个重要问题,一是几何问题,二是物理问题。前者正是摄影测量的目标,后者则要回答观测的对象是什么?这就是遥感问题。图像和光谱是人们在纷繁的大千世界中认识事物,以至识别所要寻求的对象最重要的两种依据。图像为解决地物少儿英语剑桥少儿英语的几何问题提供了基础,光谱往往反映了地物所特有的物理性状。现代遥感技术的发展,使得地物的成像范围不仅延伸到人们不可见的紫外和红外波长区,而且可以在人们需要的任何波段独立成像或连续成像。高光谱遥感的光谱分辨率高于百分之一波长达到纳米(nm)数量级,其光谱通道数多达数十甚至数百。高光谱或成像光谱技术就是将由物质成分决定的地物光谱与反映地物存在格局的空间影像有机地结合起来,对空间影像的每一个像素都可赋予对它本身具有特征的光谱信息。遥感影像和光谱的合一英语培训英语培训学校,实现了人们认识论中逻辑思维和形象思维的统一,大大提高了人们对客观世界的认知能力,为人们观测地物、认识世界提供了一种犀利手段,这无疑是遥感技术发展历程中的一项重大创新。 20多年来,高光谱遥感已发展成一个颇具特色的前沿技术,并孕育形成了一门成像光谱学的新兴学科门类。它的出现和发展将人们通过遥感技术观测和认识事物的能力带入了又一次飞跃,续写和完善了光学遥感从全色经多光谱到高光谱的全部影像信息链。由于高光谱遥感影像提供了更为丰富的地球表面信息,因此受到国内外学者的很大关注,并有了快速发展地物光谱仪荧光光谱仪。其应用领域已涵盖地球科学的各个方面,在地质找矿和制图、大气和环境监测、农业和森林调查、海洋生物和物理研究等领域发挥着越来越重要的作用。 1983年,世界第一台成像光谱仪AIS-1在美国研制成功,并在矿物填图、植被生化特征等研究方面取得了成功,初显了高光谱遥感的魅力。在此后,许多国家先后研制了多种类型的航空成像光谱仪。如美国的A VIRIS、DAIS,加拿大的FLI、CASI,德国的ROSIS,澳大利亚的HyMap等。 在经过航空试验和成功运行应用之后,90年代末期终于迎来了高光谱遥感的航天发展。1999年美国地球观测计划(EOS)的Terra综合平台上的中分辨率成像光谱仪(MODIS)、号称新千年计划第一星的EO-1,欧洲环境卫星(ENVISA T)上的MERIS,以及欧洲的CHRIS卫星相继升空,宣告了航天高光谱时代的来临。 上世纪80年代初、中期,在国家科技攻关项目和863计划的支持下,我国亦开展了高光谱成像技术的独立发展计划。我国高光谱仪的发展,经历了从多波段到成像光谱扫描,从光学机械扫描到面阵推扫的发展过程。根据我国海洋环境监测和森林探火的需求,研制发展了以红外和紫外波段以及以中波和长波红外为主体的航空专用扫描仪。80年代中期紫外光谱仪超声波测厚仪,面向地质矿产资源勘探,又研制了工作在短波红外光谱区间(2.0-2.5 mm)的6—8波段细分红外光谱扫描仪(FIMS)和工作波段在8-12mm 光谱范围的航空热红外多光谱扫描仪(ATIMS)。在此基础上于80年代后期又研制和发展了新型模块化航空成像光谱仪(MAIS)。这一成像光谱系统在可见—近红外—短波红外具有64波段,并可与6-8波段的热红外多光谱扫描仪集成使用,从而使其总波段达到70—72个。这一系列高光谱仪器的研制成功,为中国遥感科学家提供了新的技术手段。通过在我国西部干旱环境下的地质找矿试验,证明这一技术对各种矿物的识别以及矿化蚀变带的制图十分有利,成为地质研究和填图的有效工具。 此后,中国又自行研制了更为先进的推帚式成像光谱仪(PHI)和实用型模块化成像光谱仪(OMIS)等,并在国内外得到多次应用,成为世界航空成像光谱仪大家庭中的一员。PHI成像光谱仪在可见到近红外光谱区具有244个波段,其光谱分辨率优于5nm;OMIS则具有更宽泛的光谱范围,如OMIS-1具有128波段,其中可见—近红外光谱区(0.46—1.1μm)32波段,短波红外区(1.06—1.70μm及2.0—2.5μm)48

Bruker红外光谱仪软件安装、使用步骤及注意事项(精)

Bruker 红外光谱仪软件安装、使用步骤及注意事项 1. OPUS软件需要工作在win2000/XP操作系统,显示器的最小分辨率要为 1024×768。 2. 需要一块 10M 或 10M/100M兼容网卡 (实际工作在 10M 模式 , 并安装好驱动程序及 TCP/IP协议。网卡的 TCP/IP协议需要指定 IP 地址 , 一般设 为 :10.10.0.100(最后一位为 2-255之间的任意整数。子网掩码为 :255.0.0.0。其它不用设置。 3. 仪器的初始 IP 地址是 10.10.0.1,可以在 IE 地址栏中键入 10.10.0.1打开仪器的硬件信息。这步操作可以检查仪器与是否联通,在日常操作过程中不会用到, 只有当仪器出现异常时,在 BRUKER 工程师的电话指导下使用。 4. 仪器使用过程中任何时候 Internet Explorer中文件菜单下的脱机工作不能被选中,否则将导致仪器不能和电脑连接。 5. windows 系统如果要安装防火墙之类软件,请在使用本仪器前关闭 , 或设置成对本仪器 IP 地址是开放的状态。 6. 在使用仪器时, IE 上所有代理服务器设置应该取消,否则仪器与电脑不能正常通讯。 7. 必须以系统管理员的身份登陆 windows 系统,才能进行 OPUS 软件的安装, 并进行用户管理设置。 8. OPUS软件安装完毕后,需要重启电脑。运行 OPUS 软件,可以点击桌面上的OPUS 图标,缺省的密码是 OPUS (大写 ,启动软件后可以更改登陆密码。 9. 每次开始测量时,点击个性化工具条的高级数据采集(或测量菜单下高级测 量选项 ,检查(或调入事先设置好的实验参数文件(例如 c:\program files\opus\xpm\MIR_TR.XPM 文件后 , 切换到检查信号页面, 应该在几秒钟后看到红色十字架形干涉图。新仪器的干涉图正常幅度(Amplitude 的绝对值应在 18000以上 (随仪器使用时间而减弱 , 位置 (position 范围应该在 58000-62000. 看见十字型干

Nicoletis红外光谱仪检定标准操作规程

1目的 建立Nicoletis5红外光谱仪的检定规程,确保仪器的性能可靠和测量的准确性。 2范围 适用于Nicoletis5红外光谱仪的检定。 3职责 质量检验部负责执行此规程,质量保证部负责监督实施。 4定义 无。 5内容 5.1检定项目和技术要求 5.2检定环境 5.2.1环境温度:16~25℃,相对湿度:≤60%; 5.2.2仪器应置于平稳的工作台上,不应有强光、强气流、强烈振动和强电磁干扰;5.2.3环境无腐蚀性气体、烟尘干扰;供电电源电压220V±22V,频率50Hz±1Hz。 5.3标准物质

聚苯乙烯膜红外波长标准物质。 5.4检定内容 5.4.1波数示值误差与波数重复性 Nicoletis5红外光谱仪扫描范围为4000cm-1~400cm-1,分辨率为4.0cm-1,常用扫描速度,扫描次数为15.待Nicoletis5红外光谱仪稳定后,采集空气本底背景,扫描聚苯乙烯红外波长标准物质,测量3027cm-1,2851cm-1,1601cm-1,1028cm-1,907cm-15个主要吸收峰。重复测量3次。按公式(1)计算,取△V绝对值最大值为波数示值误差。按公式(2)计算,取δv绝对值最大值为波数重复性。 ?v=?v i-v(1) δv=v max-v min(2) 式中:?v——波数示值误差,cm-1; δv——波数重复性,cm-1; ?vi——第i峰值波数测量平均值,cm-1; v——第i峰波数标准值,cm-1; v max——第i峰波数测量最大值,cm-1; v min——第i峰波数测量最小值,cm-1。 5.4.2透射比重复性 在T绝对值最大值为透射比重复性。 R T=T max-T min(3) 式中:R T——透射比重复性,%; T max——聚苯乙烯峰值透射比最大值,%; T min——聚苯乙烯峰值透射比最小值,%; 5.4.3分辨力 分辨苯环特征吸收峰的个数 -1~2800cm-1范围内,谱图可分辨的吸收峰的个数,见图1。 分辨深度 -1(峰)与2870cm-1(谷)之间的峰谷深度和1583cm-1(峰)和1589cm-1(谷)之间的峰谷深度,用T表示。见图2和图3。 5.4.3.3半高宽

相关文档