文档库 最新最全的文档下载
当前位置:文档库 › hp1600校准

hp1600校准

hp1600校准
hp1600校准

HP1600,2600,2605底灰,校准,颜色偏淡偏色,清零

1.底灰

关于这台机器呈现底灰分离为3种可能性:(1)。废粉仓没清算清洁或满。(2)。碳粉质量有问题。(3)。磁棍和刮板有积粉,或磁棍老化积粉!

阐明:在一次没加粉过的硒鼓涌现底灰,一般情形是废粉满。清算废粉从新加粉就能解决问题。在硒鼓一切正常的情形下涌现底灰,一般是粉的质量不过关或粉仓没清算清洁,调换新粉在使用中突然出现底灰,阐明刮板和磁棍老化,积粉。导致低灰,调换新的,或酒精擦洗!!

1.校准

这款机器在加粉中容易会呈现,套色不准,目前市场2600粉分离为物理粉,化学粉2款粉。总体来说物理粉涌现套色不准要为常见。那么wo们就要及时为打印机校准。

HP1600校准:

校准打印机

校准应当定期进行。为获得最佳的打印质量,可以使用下列步骤从节制面板进行校准:

NOTE:

这样会校准色彩并清洁黑色的静电传送带(ETB)。

使用(左箭头)或(右箭头)按钮选择“System setup”,然后按(选择)。使用(左箭头)或(右箭头)按钮选择“Print quality”,然后按(选择)。“Calibrate color” 会显示再节制面板上。按(选择)。使用(左箭头)或(右箭头)按钮选择“Calibrate now”,然后按(选择)。按(选择)开端校准。2.颜色偏淡偏色至于这个问题一般解决方式有点简略,重要解决一下打印机激光器,可以擦洗一下就能解决问题,但确保本身硒鼓和粉没问题。

3.芯片清零在没有芯片情形下,选择清零技术。2600唆使灯分离为←√→

(清零)打印机启动后,按→2下,按√1下,按→2下,按√1下,按→1下√1下按→1下√1下。

注意阐明:芯片有校准功效,还有锁定颜色功效。指点使用芯片!

大家一般也会遇到这样的问题,在放入硒鼓后机器会报10.1000 10.1001 10.1002 10.1003这样的问题一般是机器认不到该编号的硒鼓,调换该编号硒鼓芯片问题解决。

在机器使用一段时光后,也可能会呈现51.2 51.23 51.4 过错唆使这样的问题一般唆使高压板破坏。HP1600/2600/2605打印机校准

清洁打印机

在打印历程中,打印纸、碳粉和灰尘颗粒会堆积在打印机内部。长时光的积聚会发生打印质量问题,例如出现碳粉斑点或拖尾现象。打印机具有清洁功能,可以改正和防止这类问题。

本打印机打印清洁页有两个进程:一个是主动打印,一个是手动打印。安装新的黑色硒鼓时,在校准前会主动打印清洁页。

使用惠普工具箱清洁热熔器

NOTE:

请使用以下步骤用惠普工具箱清洁热熔器。如果电脑运行的操作体系不支撑HP 工具箱,要清洁打印引擎时,请参见随机光盘根目录下的Readme 文件.

确保打印机已经打开并且处于“Ready”状况。使用下列方式之一打开惠普工具箱。在Windows 桌面上,双击“HP Toolbox”图标。在Windows 的“Start” 菜单上,点击“Programs” (在Windows XP 中点击“All Programs” ),点击HP ,点击HP Color LaserJet 2600n,然后点击HP Color LaserJet 2600n Toolbox 。在“Troubleshooting” 选项卡上,点击“Maintenance” ,点击“Cleaning Page” 然后点击“Print” 。打印机即可输出一张图案页。在打印机中,取出纸盒 2 或选配的纸盒 3 中的所有打印介质。取出打印的页,然后将它正面朝下装入纸盒 2 或选配的纸盒 3 中,免费视频聊天。

在电脑这边,按“Clean” 。清洁溢出的碳粉

有缺点的硒鼓可能产生泄露。另外,产生卡纸后,一些碳粉可能会留在打印机内的滚筒和导轨上。卡纸后立即打印几页可以肃清这些碳粉。

CAUTION:

清洁打印机时,不要用湿布或手指接触静电传送带。

清洁纸通道

本装备具有清洁纸通道的特别清洁功效。

NOTE:

如果有惠普工具箱,惠普建议用它来干净纸通道。

清洁纸通道

使用(左箭头)或(右箭头)按钮选择“Service”,然后按(选择)。使用(左箭头)或(右箭头)按钮选择“Cleaning Mode”,然后按(选择)。一张纸迟缓地进入并通过打印机。清洁进程停止后,摈弃该清洁页。

按装备提醒装入普通讯纸或A4 纸。再按(选择)确认并开端清洁历程。一张纸迟缓地进入并通过打印机。干净进程停止后,摈弃该干净页。

校准打印机

校准应当定期进行。为获得最佳的打印质量,可以使用下列步骤从节制面板进行校准:

NOTE:

这样会校准色彩并清洁黑色的静电传送带(ETB)。

使用(左箭头)或(右箭头)按钮选择“System setup”,然后按(选择)。使用(左箭头)或(右箭头)按钮选择“Print quality”,然后按(选择)。“Calibrate color” 会显示再掌握面板上。按(选择)。使用(左箭头)或(右箭头)按钮选择“Calibrate

HP1600校准:

首先打印机面板按键分别为←√→那么按一下√→√→→√√→√√等按完之后机器启动这样就算完成了。

芯片清零:

在没有芯片情况下,选择清零技术。

(清零)打印机启动后,按→2下,按√1下,按→2下,按√1下,按→1下√1下按→1下√1下

验证码识别常用算法

验证码识别常用算法 图像处理(验证码识别)程序中常用算法:灰度,二值化,去噪(1*1像素或者3*3像素等) 代码: view plaincopy to clipboardprint? //灰度 private void btnGray_Click(object sender, EventArgs e) { try { int Height = this.picBase.Image.Height; int Width = this.picBase.Image.Width; Bitmap newbitmap = new Bitmap(Width, Height); Bitmap oldbitmap = (Bitmap)this.picBase.Image; Color pixel; for (int x = 0; x < Width; x++) { for (int y = 0; y < Height; y++) { pixel = oldbitmap.GetPixel(x, y); newbitmap.SetPixel(x, y, Gray(pixel)); } } this.picBase.Image = newbitmap; } catch (Exception err) { MessageBox.Show("灰度化失败原因:" + err.Message); } } //灰度化算法 protected static Color Gray(Color c) { int rgb = Convert.ToInt32((double)(((0.3 * c.R) + (0.59 * c.G)) + (0.11 * c.B))); return Color.FromArgb(rgb, rgb, rgb); } //灰度 private void btnGray_Click(object sender, EventArgs e) { try { int Height = this.picBase.Image.Height; int Width = this.picBase.Image.Width; Bitmap newbitmap = new Bitmap(Width, Height); Bitmap oldbitmap = (Bitmap)this.picBase.Image; Color pixel; for (int x = 0; x < Width; x++) { for (int y = 0; y < Height; y++) { pixel = oldbitmap.GetPixel(x, y);

自校零和自校准技术

新型传感器论文题目:自校零和自校准技术

摘要 本文从原理上分析论证了自校准与自校零技术;重点论述了实时在线校准技术的实现方法,从校准的定义出发,引申出了仪器仪表自校准的概念,并对自校准实现的基本原理和过程进行了分析,提出了自校准设计过程中几个关键点,以及这些关键点对自校准的影响。 关键词:传感器;电信号;自校零技术;自校准技术

第一章引言 在传感器的测量过程中,由于仪器内部器件的零点偏移及其温漂,即使零输入时也有输出读数,产生测量误差。 进行自校准的目的,其一,不必将测试仪器仪表脱离原有的环境专门送至校准机构进行校准,在误差精度满足的前提下,提高便利性,同时保证环境的一致性;其二,某些电测仪器设备集成在大型设备中,不容易拆卸,若能够自校准,将更加方便;其三,单片机等控制器及校准电路为自校准的实现成为了可能,可实现自动化,不用进行人工校准。 本文主要针对传感器的自校零技术和自校准技术进行论述。通过对这方面的了解与学习,希望可以在现有的技术水平上进行改进,使其有更好的性能,能更准确地工作,更好地为我们所用。

第二章自校零技术 在传感器的测量过程中,由于仪器内部器件的零点偏移及其温漂,即使零输入时也有输出读数,产生测量误差。 2.1自校零的原因 因为仪器存在误差且误差很可能随环境而变化,所以就需要设计一种自校正装置,使得传感器的参数发生漂移时能够实现自我的补偿与校准,从而使得测量结果更加精确。 以线性系统为例,假设一传感器系统经标定实验得到的静态输出(y)—输入(x)特性如下: y=a 0+a 1x 式中:a 0——零位值,即当输入x=0 时之输出值; a 1——灵敏度,又称传感器系统的转换增益。 对于一个理想的传感器系统,a 0与a 1应为保持恒定不变的常量。但是实际上,由于各种内在和外来因素的影响,a 0 , a 1都不可能保持恒定不变。譬如,决定放大器增益的外接电阻的阻值就会因温度变化而变化,因此就会引起放大器增益改变,从而使得传感器系统总增益改变,也就是系统总的灵敏度发生变化。设a 1=S+Δa 1, 其中S 为增益的恒定部分,Δa 1为变化量;又设a 0=P+Δa 0,P 为零位值的恒定部分,Δa 0为变化量,则 x a S a P y )()(10?++?+= 式中:Δa 0——零位漂移; Δa 1——灵敏度漂移。 2.2传感器的实时在线自校准 2.2.1实时测量零点 实时测量零点有两种方法,方法一:不含传感器自校,如图2.1所示;方法二:含传感器自校,如图2.2所示。

自动控制系统的校正

第五章自动控制系统的校正 本章要点 在系统性能分析的基础上,主要介绍系统校正的作用和方法,分析串联校正、反馈校正和复合校正对系统动、静态性能的影响。 第一节校正的基本概念 一、校正的概念 当控制系统的稳态、静态性能不能满足实际工程中所要求的性能指标时,首先可以考虑调整系统中可以调整的参数;若通过调整参数仍无法满足要求时,则可以在原有系统中增添一些装置和元件,人为改变系统的结构和性能,使之满足要求的性能指标,我们把这种方法称为校正。增添的装置和元件称为校正装置和校正元件。系统中除校正装置以外的部分,组成了系统的不可变部分,我们称为固有部分。 二、校正的方式 根据校正装置在系统中的不同位置,一般可分为串联校正、反馈校正和顺馈补偿校正。 1.串联校正 校正装置串联在系统固有部分的前向通路中,称为串联校正,如图5-1所示。为减小校正装置的功率等级,降低校正装置的复杂程度,串联校正装置通常安排在前向通道中功率等级最低的点上。 图5-1 串联校正 2.反馈校正 校正装置与系统固有部分按反馈联接,形成局部反馈回路,称为反馈校正,如图5-2所示。 3.顺馈补偿校正

顺馈补偿校正是在反馈控制的基础上,引入输入补偿构成的校正方式,可以分为以下两种:一种是引入给定输入信号补偿,另一种是引入扰动输入信号补偿。校正装 置将直接或间接测出给定输入信号R(s)和扰动输入信号D(s),经过适当变换以后,作为附加校正信号输入系统,使可测扰动对系统的影响得到补偿。从而控制和抵消扰动对输出的影响,提高系统的控制精度。 三、校正装置 根据校正装置本身是否有电源,可分为无源校正装置和有源校正装置。 1.无源校正装置 无源校正装置通常是由电阻和电容组成的二端口网络,图5-3是几种典型的无源校正装置。根据它们对频率特性的影响,又分为相位滞后校正、相位超前校正和相位滞后—相位超前校正。 无源校正装置线路简单、组合方便、无需外供电源,但本身没有增益,只有衰减;且输入阻抗低,输出阻抗高,因此在应用时要增设放大器或隔离放大器。 2.有源校正装置 有源校正装置是由运算放大器组成的调节器。图5-4是几种典型的有源校正装 置。有源校正装置本身有增益,且输入阻抗高,输出阻抗低,所以目前较多采用有源图5-2 反馈校正 图5-3 无源校正装置 a)相位滞后 b)相位超前 c)相位滞后-超前

各种校验码校验算法分析

各种校验码校验算法分析二进制数据经过传送、存取等环节会发生误码1变成0或0变成1这就有如何发现及纠正误码的问题。所有解决此类问题的方法就是在原始数据数码位基础上增加几位校验冗余位。 一、码距一个编码系统中任意两个合法编码码字之间不同的二进数位bit数叫这两个码字的码距而整个编码系统中任意两个码字的的最小距离就是该编码系统的码距。如图1 所示的一个编码系统用三个bit来表示八个不同信息中。在这个系统中两个码字之间不同的bit数从1到3不等但最小值为1故这个系统的码距为1。如果任何码字中一位或多位被颠倒了结果这个码字就不能与其它有效信息区分开。例如如果传送信息001而被误收为011因011仍是表中的合法码字接收机仍将认为011是正确的信息。然而如果用四个二进数字来编8个码字那么在码字间的最小距离可以增加到2如图2的表中所示。信息序号二进码字 a2 a1 a0 0 0 0 0 1 0 0 1 2 0 1 0 3 0 1 1 4 1 0 0 5 1 0 1 6 1 1 0 7 1 1 1 图 1 信息序号二进码字 a3 a2 a1 a0 0 0 0 0 0 1 1 0 0 1 2 1 0 1 0 3 0 0 1 1 4 1 1 0 0 5 0 1 0 1 6 0 1 1 0 7 1 1 1 1 图 2 注意图8-2的8个码字相互间最少有两bit 的差异。因此如果任何信息的一个数位被颠倒就成为一个不用的码字接收机能检查出来。例如信息是1001误收为1011接收机知道发生了一个差错因为1011不是一个码字表中没

有。然而差错不能被纠正。假定只有一个数位是错的正确码字可以是100111110011或1010。接收者不能确定原来到底是这4个码字中的那一个。也可看到在这个系统中偶数个2或4差错也无法发现。为了使一个系统能检查和纠正一个差错码间最小距离必须至少是“3”。最小距离为3时或能纠正一个错或能检二个错但不能同时纠一个错和检二个错。编码信息纠错和检错能力的进一步提高需要进一步增加码 字间的最小距离。图8-3的表概括了最小距离为1至7的码的纠错和检错能力。码距码能力检错纠错 1 2 3 4 5 6 7 0 0 1 0 2 或 1 2 加 1 2 加 2 3 加 2 3 加 3 图3 码距越大纠错能力越强但数据冗余也越大即编码效率低了。所以选择码距要取决于特定系统的参数。数字系统的设计者必须考虑信息发生差错的概率和该系统能容许的最小差错 率等因素。要有专门的研究来解决这些问题。 二、奇偶校验奇偶校验码是一种增加二进制传输系统最小距离的简单和广泛采用的方法。例如单个的奇偶校验将使码的最小距离由一增加到二。一个二进制码字如果它的码元有奇数个1就称为具有奇性。例如码字“10110101”有五个1因此这个码字具有奇性。同样偶性码字具有偶数个1。注意奇性检测等效于所有码元的模二加并能够由所有码元的 异或运算来确定。对于一个n位字奇性由下式给出奇性a0⊕a1⊕a2⊕…⊕an 奇偶校验可描述为给每一个码字加一个

游标卡尺校准及操作规范

1. 目的 为了确保通用卡尺处于良好的运行状态,确保其寿命和精密度,防止损坏,特制订此作业说明。 2. 适用范围 适应于公司卡尺(数显卡尺、带表卡尺)管理与校准。 3. 术语和定义 通用卡尺:是用来测量外尺寸和内尺寸、盲孔、阶梯形孔及凹槽等相关尺寸的量具。 4. 职责与权限 量校员:负责按量仪校准计划按时实施校准。 仪器使用人员:按文件规定使用保养。 5. 输入信息 无 6.输出信息 各登记表及内校记录 7. 工作说明 使用要点 卡尺表面应镀层均匀、标尺标记应清晰,表蒙透明清洁,不应有锈蚀、碰伤、毛刺、镀层脱落及明显划痕,无目视可见的断线或粗细不匀等以及影响外观质量的其他缺陷; 卡尺上必须有制造厂名或商标、标志、分度值和出厂编号; 使用中和修理后的卡尺,允许有不影响使用准确度的外观缺陷; 尺框沿尺身移动应手感平稳,不应有阻滞或松动现象,数显应清晰、完整,无黑斑和闪跳现象,各按钮功能稳定、工作可靠; 紧固螺钉的作用应可靠,微动装置的空程,新制造的应不超过1/4转,使用中和修理后的应不超过1/2转; 卡尺在使用前,使用者应先检查卡尺外表有没有明显的变形、缺角、碰伤、生锈、螺丝松动、以及校准合格证的有效期是否失效等异常现象(如有应立即交到仪校员校准排除异常方可使用),其次检查刻度清晰,指 针能正确归零将其归零,不能归零时应作适当调整后方可进行测量。测量前应先把量爪和被测工件表 面的灰尘、油污等擦干净,以免碰伤游标卡尺量爪面和影响测量精度,同时检查各部位的相互作用。 如尺框和微动装置移动是否灵活,如是数显卡尺,应确认数显卡尺电池电量是否充足(当数显数字不完 整应立即更换电池),以及紧固螺钉是否能起作用等。 使用时,要掌握好测量面与工作表面接触时的压力,既不能太大,也不能太小,在测量面与工件快要接触时,有

crc校验码 详细介绍看懂了就会了

循环冗余校验码(CRC)的基本原理是:在K位信息码后再拼接R位的校验码,整个编码长度为N位,因此,这种编码又叫(N,K)码。对于一个给定的(N,K)码,可以证明存在一个最高次幂为N-K=R的多项式G(x)。根据G(x)可以生成K位信息的校验码,而G(x)叫做这个CRC码的生成多项式。校验码的具体生成过程为:假设发送信息用信息多项式C(X)表示,将C(x)左移R位,则可表示成C(x)*2的R次方,这样C(x)的右边就会空出R位,这就是校验码的位置。通过C(x)*2的R次方除以生成多项式G(x)得到的余数就是校验码。 编辑本段 几个基本概念 1、多项式与二进制数码 多项式和二进制数有直接对应关系:x的最高幂次对应二进制数的最高位,以下各位对应多项式的各幂次,有此幂次项对应1,无此幂次项对应0。可以看出:x的最高幂次为R,转换成对应的二进制数有R+1位。 多项式包括生成多项式G(x)和信息多项式C(x)。 如生成多项式为G(x)=x^4+x^3+x+1,可转换为二进制数码11011。 而发送信息位1111,可转换为数据多项式为C(x)=x^3+x^2+x+1。 2、生成多项式 是接受方和发送方的一个约定,也就是一个二进制数,在整个传输过程中,这个数始终保持不变。 在发送方,利用生成多项式对信息多项式做模2除生成校验码。在接受方利用生成多项式对收到的编码多项式做模2除检测和确定错误位置。 应满足以下条件: a、生成多项式的最高位和最低位必须为1。 b、当被传送信息(CRC码)任何一位发生错误时,被生成多项式做除后应该使余数不为0。 c、不同位发生错误时,应该使余数不同。 d、对余数继续做除,应使余数循环。 3 CRC码的生成步骤 1、将x的最高次幂为R的生成多项式G(x)转换成对应的R+1位二进制数。 2、将信息码左移R位,相当与对应的信息多项式C(x)*2的R次方。 3、用生成多项式(二进制数)对信息码做除,得到R位的余数。 4、将余数拼到信息码左移后空出的位置,得到完整的CRC码。 【例】假设使用的生成多项式是G(x)=x^3+x+1。4位的原始报文为1010,求编码后的报文。 解: 1、将生成多项式G(x)=x^3+x+1转换成对应的二进制除数1011。 2、此题生成多项式有4位(R+1),要把原始报文C(x)左移3(R)位变成1010000 3、用生成多项式对应的二进制数对左移3位后的原始报文进行模2除,相当于按位异或: 1010000

波特率自动校准技术

21676字)hotpower2004-2-12 1:41:28[70次] HotPower 发表于1/17/2004 12:25:03 AM 新手园地←返回版面 世上雷同的事太多了,当时我在此玩反汇编,并不知是什么软件! 反汇编反出的51串口通讯“波特率自动校准技术”(无名氏作) HotPower 发表于11/21/2003 1:20:50 PM 新手园地 ;----------------------------------------------------------------------- ;反汇编反出的51串口通讯“波特率自动校准技术”(无名氏作) ;----------------------------------------------------------------------- ;Disasm51 Version 3.02 Copyright (c) 2000,2003 Xi'an XXX Co. HotPower ;Binfile_name :[Att51.bin] ;Binfile_length:[4153...1039H] MAIN: ;-------波特率自动校准参数初始化----------------------------- CLR A MOV RCAP2H,A MOV RCAP2L,A MOV TL2,A; MOV TH2,A; MOV T2MOD,A MOV T2CON,A ;-------串口在一定时间内有2个脉冲信号才能运行本程序--------- ;开机必须撞大运!!!此君我服也!!! ;HotPower认为开机“密码”为F5H,不知此君能否给我“大奖” ;2个脉冲信号是否可认为: ;51开机串口(高电平1) ;结束起始位(低电平0) ;数据流10101111B(数据为F5H)停止位(高电平1) ;这样脉冲信号流为10101111111B ;我猜你在应用“波特率自动校准技术”!!! ;此君高人也,HotPower自叹不如!!! ;HotPower一直自称为“魔”,看来要“让位”了。。。 ;但在“让位”前,我敢说此君的“散转技术”必我差点(别拍砖) ;看来此君的P89C51RX2的BootROM中的ISP精神领会的很深!!! ;HotPower这几天在此玩反汇编绝非“捣蛋”!!! ;我想给大家展示此君的“风采” ;----------------------------------------------------------- ;无首脉冲信号在此死机!!! L00BB: JB RXD,$;等待串口低电平(首脉冲信号) L00BE: JNB RXD,$;等待串口高电平(结束起始位D0=1) ;-------有首脉冲信号(起始位)才有资格撞大运--------------------

通用卡尺校验规程

通用卡尺校验规程 1.0目的 规范通用卡尺校验的操作,确保通用卡尺的测量精度处于受控状态,检验结果真实、可靠,以确保产品品质。 2.0范围 本规程适用于公司内部分度值或分辨力为:0.01mm,0.02mm,0.05mm; 测量范围:0~500mm,各种规格游标卡尺、带表卡尺、数显卡尺的首次校准、使用中校准和后续校准,其它类型卡尺也可参照执行。 3.0校验设备 外校合格的标准量块。 4.0环境条件 环境温度:(20±5)℃,校准前被检测量设备在规定温度下恒温不少于2h。 相对湿度:≤80%RH。 校准前,应将被校卡尺及量块等校准用设备同时置于平大理石平台上或木桌上,其平衡温度时间见表-1的规定。 表-1平衡温度时间 5.0校验方法 5.1技术要求 5.1.1零值误差

通用卡尺量爪两测量面相接触(深度通用卡尺的主标尺基准面和测量面在同一平面)时,由表上的“零”标记和“尾”标记与主标尺相应标记应相互重合。其重合度应符合表-2的规定。 5.1.2示值变动性 带表卡尺部超过不超过分度值的1/2,数显卡尺不超过0.01mm. 5.1.3示值误差 应符合表-3的规定,带深度测量杆的卡尺,深度测量杆在20mm点的示值误差应不超过1个分度值。 5.2校准方法 5.2.1零值误差; 5.2.1.1移动通用卡尺的尺框,使通用卡尺的量爪两外侧面接触,分别在尺框紧固和松开的情况下,用目力观察“零”标记和“尾’标记与主标尺相应标记的重合度。必要时用工具显微镜校准。 5.2.1.2对于深度通用卡尺,将尺框基准面与尺身测量面同时与大理石平台接触。

5.2.2示值变动性 5.2.2.1在相同条件下,移动尺框,是电子数显卡尺或带表卡尺两外测量面接触,重复测量10次读数。示值变动性以最大与最小读数的差值确定。 5.2.3示值误差 5.2.3.1川3级或5等量块校准 5.2.3.2受校点的分布:对于测量范围在300mm内的卡尺,不少于均匀分布3点,如测量范围为(0~150mm)的卡尺,其受教点为30mm;60mm;90mm;如测量范围为(0~300mm)的卡尺,其受校点为101.30mm;102.60mm;291.90mm;对于测量范围大于300mm的卡尺,不少于均匀分布6点,如测量范围为(0~500mm)的卡尺,其受校点为80mm;161.30mm;240mm;321.60mm;400mm;491.90mm.根据实际使用情况可以适当增加受校点位。 5.2.3.3校准时每一受校点应在量爪的里端和外端两位置校准,量块工作面的长边和卡尺测量面长边应垂直如;图-1 5.2.3.4对于深度通用卡尺,校准时按受校尺寸依次将两组同一尺寸的量块平行放置在一级平板上,使深度尺的基准面长边和量块工作面的长边方向垂直接触,在移动尺身,使其深度尺测量面和一级平板面接触。校准时量块分别置于深度尺基准面的里端和外端两位置进行校准;如图-2

常用的检错码 - 奇偶校验码

3.2差错控制 3.2.2常用的检错码- 奇偶校验码 奇偶校验码是一种简单的检错码,奇偶校验码分为奇校验码和偶校验码,两者原理相同。它通过增加冗余位来使得码字中“1”的个数保持奇数或偶数。 ?无论是奇校验码还是偶校验码,其监督位只有一位; ?假设信息为为I1, I2, …, I n,对于偶校验码,校验位R可以表示为: R =I 1 ⊕I 2 ⊕Λ⊕I n ?假设信息为为I1, I2, …, I n,对于奇校验码,校验位R可以表示为: R =I 1 ⊕I 2 ⊕Λ⊕I n ⊕1 ?无论是奇校验码还是偶校验码,都只能检测出奇数个错码,而 不能检测偶数个错码。 4 4

讨论: 从检错能力、编码效率和代价等方面来评价垂直奇偶校验、水平奇偶校验和水平垂直奇偶校验 3.2 差错控制 3.2.2 常用的检错码 - 奇偶校验码 奇偶校验在实际使用时又可分为垂直奇偶校验、水平奇偶校验和水平垂直奇偶校验等几种。 5

3.2.2常用的检错码–定比码 所谓定比码,即每个码字中“1”的个数与“0”的个数之比保持恒定, 故又名等比码或恒比码。 ?当码字长一定,每个码字所含“1”的数目都相同,“0”的数目也 都相同。 ?由于若n位码字中“1”的个数恒定为m,还可称为“n中取m”码 定比码(n中取m)的编码效率为: log C m R = ?2 n n 定比码能检测出全部奇数位错以及部分偶数位错。实际上,除了码 字中“1”变成“0”和“0”变成“1”成对出现的差错外,所有其它差 错都能被检测出来 6 4

代码“1011011”对应的多项式为x 6 + x 4 + x 3 +1 多项式“x 5 + x 4 + x 2 + x”所对应的代码为“110110” 3.2.2 常用的检错码 – 循环冗余检验 循环冗余码(Cyclic Redundancy Code ,简称CRC )是无线通信中用得最广泛的检错码,又被称为多项式码。 二进制序列多项式:任何一个由m 个二进制位组成的代码序列都可以和一个只含有0和1两个系数的m-1阶多项式建立一一对应的关系。 CRC 有关的多项式: ? 信息位多项式、冗余位多项式、码字多项式、和生成多项式 信息位1010001:K (x ) = x 6 + x 4 + 1 冗余位1101:R (x ) = x 3 + x 2 + 1; 码字10100011101: T (x ) = x 10 + x 8 + x 4 + x 3 + x 2 + 1 7

通用卡尺校准作业指导书3

1.目的 建立通用卡尺校准作业指导书,规范通用卡尺的校准方法,減少人为误差,提高量測准确度.本校准程序可供本实验室相关人員,对于通用卡尺类之校准方法及步骤,作参考遵循依据.另可供本实验室新进人員教育训练,及提升技术能力. 2.适用范围 本程序适用于符合下列条件的游标卡尺、帶表卡尺、数显卡尺: 本作业指导书规定的基本要求,如客戶有特殊要求,可作适当增刪. 3.环境设备条件和校准項目 3.1环境条件 3.1.1环境溫度:20±2℃. 3.1.2相对湿度:40%-60%R.H. 3.1.3无影响仪器正常工作的电磁场和机械振动. 3.2校准项目 3.2.1外观及各部分相互作用; 3.2.2測量面的平面度; 3.2.3圆弧內量爪的基本尺寸; 3.2.4圆弧內量爪的平行度; 3.2.5刀口內量爪的基本尺寸; 3.2.6刀口內量爪的平行度; 3.2.7零值误差;

3.2.8示值变动性: 3.2.9数字显示器的示值稳定性; 3.2.10深度示值误差; 3.2.11示值误差; 3.3校准用设备 3.4校准方法 直接量測法:用待校准卡尺直接量測标准量块. 4.校准程序 4.1外观及各部分相互作用检查 4.1.1目力观察卡尺表面有无锈蚀、碰伤、毛刺等明显划痕,标尺标记是否清 晰,表蒙是否清洁,以及有无其它影响外观质量的缺陷。 4.1.2尺框沿尺身移动是否手感平稳,有无阻滯和松动现象;数字显示是否清 晰、完整;各按鈕及螺钉功能是否稳定、工作可靠。 4.2校准前准备 4.2.1 用99.5%的酒精(配合无尘紙)清洁待校件工作測量面.

4.2.2 将待校件和使用标准件放于平台上恒溫(在以上标准溫度下)2个小时以上. 4.2.3 校准点分布表: 4.3 測量面的平面度 4.3.1 用刀口直尺在外量爪測量面的长边,短边和对角线的位置上进行光隙法 測量,其平面度根据各方位的间隙情況确定. 4.3.2 用刀口直尺在深度測量面(帶深度測量杆)的长边,短边和对角线的位置 上进行光隙法測量,其平面度根据各方位的间隙确定. 4.4 圆弧內量爪的基本尺寸和平行度 4.4.1 闭合待校卡尺外量爪,用外径千分尺在內量爪距外端2mm处开始測量內 量爪平于尺身的內量爪尺寸(全內量爪范围). 4.4.2 內量爪尺寸偏差以測量值与基本尺寸之差來确定. 4.4.3 內量爪平行度以其全长范围的量測最大值与最小值之差工來确定. 4.5 刀口內量爪的基本尺寸和平行度 4.5.1 将尺寸为10mm的量块平持于两外测量爪测量面之间,紧固螺钉,以量 块能在量爪面间滑动面不脱落为准.用外径千分尺沿刀口内量爪在 平行于尺身方向测量,外径千分尺读值记Xi(mm为单位). 4.5.2 刀口內量爪尺寸偏差 △R = Ximax – 10 4.5.3 刀口內量爪平行度

CRC校验码原理

CRC校验码 CRC即循环冗余校验码(Cyclic Redundancy Check):是数据通信领域中最常用的一种差错校验码,其特征是信息字段和校验字段的长度可以任意选定。 目录 详细介绍 代数学的一般性运算 详细介绍 循环冗余校验码(CRC)的基本原理是:在K位信息码后再拼接R位的校验码,整个编码长度为N位,因此,这种编码又叫(N,K)码。对于一个给定的(N,K)码,可以证明存在一个最高次幂为N-K=R的多项式G(x)。根据G(x)可以生成K位信息的校验码,而G(x)叫做这个CRC码的生成多项式。校验码的具体生成过程为:假设发送信息用信息多项式C(X)表示,将C(x)左移R位,则可表示成C(x)*2的R次方,这样C(x)的右边就会空出R位,这就是校验码的位置。通过C(x)*2的R次方除以生成多项式G(x)得到的余数就是校验码。 几个基本概念 1、多项式与二进制数码 多项式和二进制数有直接对应关系:x的最高幂次对应二进制数的最高位,以下各位对应多项式的各幂次,有此幂次项对应1,无此幂次项对应0。可以看出:x的最高幂次为R,转换成对应的二进制数有R+1位。 多项式包括生成多项式G(x)和信息多项式C(x)。 如生成多项式为G(x)=x4+x3+x+1,可转换为二进制数码11011。 而发送信息位1111,可转换为数据多项式为C(x)=x3+x2+x+1。 2、生成多项式 是接受方和发送方的一个约定,也就是一个二进制数,在整个传输过程中,这个数始终保持不变。 在发送方,利用生成多项式对信息多项式做模2除生成校验码。在接受方利用生成多项式对收到的编码多项式做模2除检测和确定错误位置。 应满足以下条件: a、生成多项式的最高位和最低位必须为1。 b、当被传送信息(CRC码)任何一位发生错误时,被生成多项式做除后应该使余数不为0。 c、不同位发生错误时,应该使余数不同。 d、对余数继续做除,应使余数循环。

通用卡尺校准规范

菲恩(科技)江门有限公司 卡尺校准规范 文件编编号: 发布日期: 实施日期: 1、目的 对内部的卡尺校准,确保准确度和实用性保持完好。 2、规范性引用文件 本规范引用下列文件: JJG 30-2012 通用卡尺检定规程。 3、范围 本规范适用于公司内部分度值或分辨力为:0.01mm,0.02mm,0.05mm;测量范围:0~500mm,各种规格游标卡尺、带表卡尺、数显卡尺的首次校准、使用中校准和后续校准,其它类型卡尺也可参照执行。 4、校准标准 外校合格的标准量块 5、环境条件 5.1 校准室内温度(20±5)℃,恒温时间不少于2h. 5.2 校准室内湿度不超过80%RH 5.3校准前,应将被校卡尺及量块等校准用设备同时置于平大理石平台上或木桌上,其平衡温度时间见 表-1的规定。 表-1 平衡温度时间 6、技术要求 6.1零值误差 通用卡尺量爪两测量面相接触(深度通用卡尺的主标尺基准面和测量面在同一平面)时,由表上的“零”标记和“尾”标记与主标尺相应标记应相互重合。其重合度应符合表-2的规定。 带表卡尺部超过不超过分度值的1/2,数显卡尺不超过0.01mm. 6.3示值误差 应符合表-3的规定,带深度测量杆的卡尺,深度测量杆在20mm点的示值误差应不超过1个分度值。

表-3 通用卡尺的示值误差 5、校准方法 5.1零值误差; 5.1.1 移动通用卡尺的尺框,使通用卡尺的量爪两外侧面接触,分别在尺框紧固和松开的情况下, 用目力观察“零”标记和“尾’标记与主标尺相应标记的重合度。必要时用工具显微镜校准。 5.1.2 对于深度通用卡尺,将尺框基准面与尺身测量面同时与大理石平台接触。 5.2示值变动性 5.2.1在相同条件下,移动尺框,是电子数显卡尺或带表卡尺两外测量面接触,重复测量10次读 数。示值变动性以最大与最小读数的差值确定。 5.3示值误差 5.3.1川3级或5等量块校准 5.3.2受校点的分布:对于测量范围在300mm 内的卡尺,不少于均匀分布3点,如测量范围为(0~ 150mm )的卡尺,其受教点为30mm;60mm;90mm;如测量范围为(0~300mm )的卡尺,其受校点为 101.30mm ;102.60mm ;291.90mm ;对于测量范围大于300mm 的卡尺,不少于均匀分布6点,如测量范围为(0~500mm )的卡尺,其受校点为 80mm ;161.30mm ;240mm ;321.60mm ;400mm ;491.90mm.根据实际使用情况可以适当增加受校点位。 5.3.3校准时每一受校点应在量爪的里端和外端两位置校准,量块工作面的长边和卡尺测量面长 边应垂直如;图-1 图-1 5.3.4对于深度通用卡尺,校准时按受校尺寸依次将两组同一尺寸的量块平行放置在一级平板上, 使深度尺的基准面长边和量块工作面的长边方向垂直接触,在移动尺身,使其深度尺测量面和一级平板面接触。校准时量块分别置于深度尺基准面的里端和外端两位置进行校准;如图-2 里端

自动测试系统校准方法研究

收稿日期:2006204220 作者简介:孙宝江(1971-),男,博士,主要研究领域:自动测试系统通用开发平台设计,ATS 硬件设计自动化,ATS 可靠性分析与设计。  2007年2月宇航计测技术 Feb .,2007 第27卷 第1期 Journal of A str onautic Metr ol ogy and Measure ment Vol .27,No .1 文章编号:1000-7202(2007)01-0030-05 中图分类号:T B9;T M93 文献标识码:A 自动测试系统校准方法研究 孙宝江 沈士团 陈 星 (北京航空航天大学电子信息工程学院,北京100083) 摘 要 自动测试系统的校准是计量界面临的一个新问题,国内还没有相关的校准规范。以实际工程项目 为基础,采用一种面向实际应用的自动测试系统校准方法。对于系统中的仪器,根据实际的测试需求及精度不同分别采用仪器检定和仪器校准方法,对于自动测试系统特有的测试通道采用回路标定、替代标定两种标定方法,满足了被测设备的测试准确度要求,实际测试也证明了该方法的可行性。 关键词 自动测试系统 测试通道 自动校准 Research on Cali brati on M ethod for ATS S UN Bao -jiang SHEN Shi -tuan CHE N Xing (School of Electr onic and I nfor mati on Engineering,Beijing University of Aer onautics and A str onautics,Beijing 100083) Abstract Calibrati on Method of Aut omatic Test Syste m (ATS )is a ne w p r oble m in the metr ol ogy field and there πs not the relevant calibrati on criteri on interi orty .Based on an engineering app licati on,a calibrati on method f or ATS facing p ractical app licati on is intr oduced .For the instruments of syste m ,the instrument verificati on and instrument calibrati on were used according t o the difference of instru ment ac 2curacy;for the peculiar test channels in ATS,the l oop calibrati on and substitute calibrati on were used .This calibrati on method meets the need of test accuracy of Unit Under Test (UUT ),and app licati on result sho ws its feasibility . Key words ATS Test channel Aut omatic calibrati on 1 引 言 自动测试系统已成为航空航天设备、现代武器 装备生产验证、维修保障的重要手段,在军民用领域都有广泛应用,自动测试水平也已成为衡量一个国 家装备维修水平的标志[1] 之一。 从功能角度看,自动测试系统等效于一台综合 测试仪器,因此也就面临作为仪器所必须进行的工作:校准。同时作为一种测试系统,其本身的准确性 与可靠性将直接影响整个测试过程,因此自动测试系统的校准是保证测试精度的重要前提,必须引起足够的重视。由于自动测试系统由众多仪器、开关组成,又引入了测试适配器、测试通道的概念,因此,作为测试系统的校准与单台仪器的校准必然会有所

常见校验算法

常见校验算法 一、校验算法 奇偶校验 MD5校验 求校验和 BCC(Block Check Character/信息组校验码),好像也是常说的异或校验方法 CRC(Cyclic Redundancy Check/循环冗余校验) LRC(Longitudinal Redundancy Check/纵向冗余校验) 二、奇偶校验 内存中最小的单位是比特,也称为“位”,位有只有两种状态分别以1和0来标示,每8个连续的比特叫做一个字节(byte)。不带奇偶校验的内存每个字节只有8位,如果其某一位存储了错误的值,就会导致其存储的相应数据发生变化,进而导致应用程序发生错误。而奇偶校验就是在每一字节(8位)之外又增加了一位作为错误检测位。在某字节中存储数据之后,在其8个位上存储的数据是固定的,因为位只能有两种状态1或0,假设存储的数据用位标示为1、1、1、0、0、1、0、1,那么把每个位相加(1+1+1+0+0+1+0+1=5),结果是奇数,那么在校验位定义为1,反之为0。当CPU读取存储的数据时,它会再次把前8位中存储的数据相加,计算结果是否与校验位相一致。从而一定程度上能检测出内存错误,奇偶校验只能检测出错误而无法对其进行修正,同时虽然双位同时发生错误的概率相当低,但奇偶校验却无法检测出双位错误 三、MD5校验 MD5的全称是Message-Digest Algorithm 5,在90年代初由MIT的计算机科学实验室和RSA Data Security Inc 发明,由MD2/MD3/MD4 发展而来的。MD5的实际应用是对一段Message(字节串)产生fingerprint(指纹),可以防止被“篡改”。举个例子,天天安全网提供下载的MD5校验值软件WinMD5.zip,其MD5值是1e07ab3591d25583eff5129293dc98d2,但你下载该软件后计算MD5 发现其值却是81395f50b94bb4891a4ce4ffb6ccf64b,那说明该ZIP已经被他人修改过,那还用不用该软件那你可自己琢磨着看啦。 四、求校验和 求校验和其实是一种或运算。如下: //-------------------------------------------------------------------------------------------------- //如下是计算校验位函数 // checkdata,包括起始位在内的前九位数据的校验和 //-------------------------------------------------------------------------------------------------- unsigned char CLU_checkdata(void) { //求校验和 unsigned char checkdata=0; for(point=0;point<9,TI=1;point++) { checkdata=checkdata | buffer[point]; } return(checkdata); } 四、BCC(Block Check Character/信息组校验符号)

通用卡尺自校规程

通用卡尺自校标准 1 范围 本标准只适用于本公司内部分度值(游标类和表类)或分辨力(数显类)为0.01和0.02 mm通用卡尺,测量范围上限至500mm通用卡尺的后续检定。 2 参考文献 本标准参考文献:JJG 30—2012《通用卡尺》 3 计量器具控制 3.1 校准条件 3.1.1 检定室内温度(20±5)℃,湿度不超过80%RH。 3.1.2 被校卡尺和量块等校准设备应同时置于木桌上恒温2小时后校准。 4 校准方法 4.1 外观 4.1.1 目力观察。卡尺表面镀层应均匀,标尺标记应清晰,表蒙透明清洁。不应有影响测量的锈锈蚀、碰伤、毛刺、镀层脱落以及明显划痕,无目力可见的断线或粗细不匀。(外观缺陷只要 不影响使用准确度) 4.1.2 卡尺上必须有制造厂名或商标、分度值和出厂编号。 4.2 各部分相互作用 拉动尺框手感应平稳,不应有阻滞或松动现象。数字显示应清晰、完整,无黑斑和闪 跳现象。各按钮功能稳定、可靠。紧固螺钉作用可靠。 4.3 各部分相对位置 目力观察。圆标尺的指针尖端应盖住短标记长度的30%~80%。指针末端与标尺标记 表面之间的间隙应不超过0.7mm(指分度值为0.01和0.02mm的)。 4.4 圆弧内量爪的基本尺寸和平行度表 1 基本尺寸用外径千分尺沿卡尺内量爪在平行于尺身方向校准。圆弧内量爪的尺寸偏差为±0.01mm。 平行度用外径千分尺在内量爪距外端2mm处开始检定,以全长范围内最大与最小尺寸之差确定。不能超出0.01mm。 4.5 刀口内量爪的基本尺寸和平行度 先将1块尺寸为10mm的3级或6等量块的长边夹持于两外量爪测量面之间,紧固螺钉后量块能滑动而不脱落。用测力为(6~7)N的外径千分尺沿刀口内量爪在平行于尺身方向检定。 平行度用外径千分尺沿量爪在平行于尺身方向测量。以刀口内量爪全长范围内最大与最 小尺寸之差确定。 表1 刀口内量爪的尺寸和平行度 mm

CRC校验码的原理

CRC 校验码的原理 在通信与数字信号处理等领域中循环冗余校验码(Cyclic Redundancy Check,CRC )是一种很常用的设计。一般来说数据通信中的编码可以分为信源编码和信道编码两大类,其中,为了提高数据通信的可靠性而采取的编码称为信道编码,即抗干扰编码。在通信系统中,要求数据传输过程中的误码率足够低,而为了降低数据传输过程中的误码率,经常采用的一种方法是差错检测控制。 在实际的通信系统中,差错检测控制的主要方法又3种:前向纠错(FEC ),自动重发(ARQ )和反馈检验法。FEC 指接收端不仅能够在收到的信码中发现错码,而且还能够纠正错码。一般来说,这种方法不需要反向信道,实时性很好,不过设备较复杂。ARQ 是指接收端在收到的信码中检测出错码时,即设法通知发送端重新发送信号,直到能够正确接收为止。通常,这种方法只用来检测误码,而且只能在双向信道中使用。反馈检验法是指接收端将收到的信码一字不差地转发回发送端,同时与原发送信码进行比较,如果有错,则发端重发。这种方法的原理和设备都比较简单,但需要双向信道的支持,而且传输效率低下; 通过实践检验,在这三中方法中,如果传输过程中的误码率较低,那么采用前向纠错法比较理想,但如果误码率较高时,这种方法又会出现“乱纠”的现象;在网络通信中,广泛的采用差错检测方法时自动请求重发,这种方法只要检错功能即可;反馈检验法时前向纠错法和自动请求重发的结合。 在实现差错检测控制的众多方法中,循环冗余校验就是一类重要的线性分组码。它时一种高效的差错控制方法,它广泛应用于测控及数据通信领域,同时具有编码和解码方法简单,检错能力强,误判概率很低和具有纠错能力等优点。 循环冗余校验码实现的方法 CRC 的基本原理就是在一个P 位二进制数据序列之后附加一个R 位二进制检验码序列,从而构成一个总长位N=P+R 位的二进制序列。例如,P 位二进制数据序列D=[d 1-p d 2-p …d 1d 0],R 位二进制检验码R = [r 1-r r 2-r …r 1r 0],那么所得到的这个N 位二进制序列就是M=[d 1-p d 2-p …d 1d 0 r 1-r r 2-r …r 1r 0],这里附加在数据序列之后的CRC 码与数据序列的内容之间存在着某种特定的关系。如果在数据传输过程中,由于噪声或传输特性不理想而使数据序列中的某一位或某些位发生错误,这种特定关系就会被破坏。可见在数据的接收端通过检查这种特定关系,可以很容易地实现对数据传输正确性的检验。 在CRC 中,检验码R 使通过对数据序列D 进行二进制除法取余式运算得到的,他被一个称为生成多项式的(r+1)位二进制序列G=[g r g 1-r …g 1g 0]来除,具体的多项式除法形式如下: ) ()(x G x D x r =Q(x)+ ) ()(x G x R 其中,)(x D x r 表示将数据序列D 左移r 位,即在D 的末尾再增加r 个0位;Q (x )代表这一除法所得的商,R (x )就是所需的余式。此外,这一运算关系还可以表示为 ?? ? ???=)()(Re )(x G x D x x R r ?? ? ? ??=)()(Re )(x G x M x R 通过上面CRC 基本原理的介绍,可以发现生成多项式使一个非常重要的概念,它决定了CRC 的具体算法。目前,生成多项式具有一下一些通用标准,其中CRC -12,CRC -16,

相关文档