文档库 最新最全的文档下载
当前位置:文档库 › 北科 经管 大物 课件(3)牛顿力学

北科 经管 大物 课件(3)牛顿力学

牛顿对经典力学的贡献

课题:牛顿对经典力学的贡献 组长:马啸 组员:邢硕张森淇宋迪刘梦圆刘倩指导教师:车卫红

在天文学方面,牛顿可以称为近代伟大天文学家。他的杰出贡献是制作了反射式望远镜,反射式望远镜的制造成功,是天文学史上的一项重大革新。自伽利略发明第一架天文望远镜以来,人们对于宇宙的认识范围迅速扩展,但是当时流行的伽利略、开普勒等人发明和制造的折射望远镜,口径有限,制造大型望远镜不但困难,而且太庞大,同时折射望远镜的折射色差和球差都很大,这些大大限制了天文观测的范围。牛顿由于了解了白光的组成,因而于1668年设计制成了第一架反射式望远镜。这种望远镜能反射较广光谱范围的光而无色差,容易获得较大的口径,同时对球差也有校正。这样牛顿为现代大型天文望远镜的制造奠定了基础。 牛顿在天文学上的另一重要贡献是对行星的运动规律进行了全面考察,特别是对开普勒等人的学说进行过系统的研究。1686年他在给哈雷的信中说明了天体可以按照质点处理并证明了开普勒的行星运动的椭圆形轨道以及彗星的抛物线轨道。牛顿还进一步发展了自己的理论,认为行星都由于自转而使两极扁平赤道突出,还预言地球也是这样的球体。由于地球不是正球体,牛顿就指出,太阳和月球的引力摄动将不会通过地球中心,因此地轴将作一缓慢的圆锥运动,这便出现了二分点的岁差现象。对于潮汐现象,牛顿也作出了解释,他认为这是太阳和月球引力造成的。 在物理学方面,牛顿取得了力学、热学、光学等多方面的巨大成就。牛顿是经典力学理论的开创者。他在伽利略等人工作的基础上,进行了深入研究,经过大量的实验,总结出了运动三定律,创立了经典力学体系。牛顿所研究的机械运动规律,首先是建立在绝对时空观基础之上的。绝对化的时间和绝对化的空间是指不受物体运动状态影响的时间和空间。在两个匀速运动状态下的观察者,对机械运动具有相同的测量结果。在高速运动状态下,这种时空观已不能采用,这时(运动速度与光速可以比拟),牛顿力学将被相对论力学所代替。在微观情况下,由于粒子的波动性已明显表现出来,牛顿力学将被量子力学所代替。牛顿在力学方面另一巨大贡献是在开普勒等人工作的基础上,发现了万有引力定律。牛顿认为:太阳吸引行星,行星吸引卫星,以及吸引地面上一切物体的力都是具有相同性质的力。牛顿用微积分证明了,任何一曲线运动的质点,如果半径指向静止或匀速直线运动的点,且绕次点扫过与时间成正比的面积,则此质点必受指向该点的向心力的作用,如果环绕的周期之平方与半径的立方成正比,则向心力与半径的平方成反比。牛顿还在力学发展中,首先确定了一系列的基本概念,如质量、动量、惯性和力等。经过牛顿的工作,力学已形成了严密、完整、系统的科学体系。

“力学”简介、含义、起源、历史与发展

力学 力学是研究物质机械运动规律的科学。自然界物质有多种层次,从宇观的宇宙体系,宏观的天体和常规物体,细观的颗粒、纤维、晶体,到微观的分子、原子、基本粒子。通常理解的力学以研究天然的或人工的宏观对象为主。但由于学科的互相渗透,有时也涉及宇观或细观甚至微观各层次中的对象以及有关的规律。机械运动亦即力学运动是物质在时间、空间中的位置变化,包括移动、转动、流动、变形、振动、波动、扩散等,而平衡或静止,则是其中的一种特殊情况。机械运动是物质运动的最基本的形式。物质运动的其他形式还有热运动、电磁运动、原子及其内部的运动和化学运动等。机械运动并不能脱离其他运动形式独立存在,只是在研究力学问题时突出地考虑机械运动这种形式罢了;如果其他运动形式对机械运动有较大影响,或者需要考虑它们之间的相互作用,便会在力学同其他学科之间形成交叉学科或边缘学科。力是物质间的一种相互作用,机械运动状态的变化是由这种相互作用引起的。静止和运动状态不变,都意味着各作用力在某种意义上的平衡。力学,可以说是力和(机械)运动的科学。 力学在汉语中的意思是力的科学。汉语“力”字最初表示的是手臂使劲,后来虽又含有他义,但都同机械或运动没有直接联系。“力学”一词译自英语mechanics(源于希腊语μηχανη──机械)。在英语中,mechanics是一个多义词,既可释作“力学”,也可释作“机械学”、“结构”等。在欧洲其他语种中,此词的语源和语义都与英语相同。汉语中没有同它对等的多义词。mechanics在19世纪50年代作为研究力的作用的学科名词传入中国时,译作“重学”,后来改译作“力学”,一直使用至今。“力学的”和“机械的” 在英语中同为mechanical,而现代汉语中“机械的”又可理解为“刻板的”。这种不同语种中词义包容范围的差异,有时引起国际学术交流中的周折。例如机械的(mechanical)自然观,其实指用力学解释自然的观点,而英语mechanist是指机械师,不是指力学家。 发展简史 力学知识最早起源于对自然现象的观察和在生产劳动中的 经验。人们在建筑、灌溉等劳动中使用杠杆、斜面、汲水器具,逐渐积累起对平衡物体受力情况的认识。古希腊的阿基米德对杠杆平衡、物体重心位置、物体在水中受到的浮力等作了系统研究,确定它们的基本规律,初步奠定了静力学即平衡理论的基础。古

关于牛顿力学的论文报告

关于牛顿力学的论文报告 (一)对自然观念的影响 牛顿经典力学的成就之大使得它得以广泛传播,深深地改变了人们的自然观。人们往往用力学的尺度去衡量一切,用力学的原理去解释一切自然现象,将一切运动都归结为机械运动,一切运动的原因都归结为力,自然界是一架按照力学规律运动着的机器。这种机械唯物主义自然观在当时是有进步作用的。由于它把自然界中起作用的原因都归结为自然界本身规律的作用,有利于促使科学家去探索自然界的规律。它能刺激人们运用分析和解剖的方式,从观察和实验中取得更多的经验材料,这对科学的发展来说也是必要的。但这种思维方式在一定程度上忽视了理论思维的作用,忽视了事物之间的联系和发展,因而又有着严重的缺陷。 (二)对自然科学的影响 牛顿经典力学的内容和研究方法对自然科学,特别是物理学起了重大的推动作用,但也存在着消极影响。 牛顿建立的经典力学体系以及他的力学研究纲领所获得的成功,在当时使科学家们以为牛顿经典力学就是整个物理学,甚至是全部自然科学的可靠的最终的基础。在相当长的历史时期内,牛顿经典力学名著《自然哲学的数学原理》一书成为了科学家们共同遵循的规范,它支配了当时整个自然科学发展的进程。他研究问题的科学方法和原理也普遍得到赞赏和采用。牛顿研究经典力学的科学方法论和认识论,如运用分析和综合相结合的方法与公理化方法及科学的简单性原则、寻求因果关系中相似性统一性原则、以实验为基础发现物体的普遍性原则和正确对待归纳结论的原则,对后世科学的发展也影响深远。 (三)对社会科学的影响 经典力学不但对自然科学产生了很大影响,在社会科学方面,特别是对哲学和人类思想发展,也产生了重大影响。 在经典力学的直接影响下,英国的霍布斯和洛克建立和发展了机械唯物主义哲学,并由于其强大的影响力,使得唯物论从宗教神学那里争得了发言权,并在随后形成了人类历史上唯物主义和唯心主义斗争最为激烈的一段时期。经过康德和黑格尔对辩证法和机械唯物主义的研究和发展,以及马克思和恩格斯对哲学已有研究成果的吸收,结合当时科学发展成果,最终建立了唯物主义辩证法。唯物主义辩证法的建立,在很大程度上得益于牛顿经典力学体系的建立。 近现代科学和哲学是发轫于经典力学的,正是从牛顿建立经典力学开始,人类在思想观念上才开始真正走向科学化合现代化,而它对人类思想领域的影响也是极其广泛而深刻的。事物总是辩证统一、一分为二的。虽然科学家在运用牛顿经典力学方法及成果时使自然科学得到了长足发展,但当时人们在接受和运用牛顿的科学成果之时,没有搞清它的适用范围,也作出了不适当的夸大。例如,当初有科学家认为所有涉及到的物理学问题都可以归结为不变的引力和斥力,因而只要把自然现象转化为力就行了。结果到后来,“力”成了对现象和规律缺乏认识的避难所,把当时无法解释的各种现象都冠以各种不同力的名称。因此,牛顿经典力学的内容及其研究方法在推动自然科学发展的同时,也产生了很大的消极影响。对经典力学,我们要辩证地看待其得与失。

牛顿力学对当时代人的思想的影响和思考 (完整版)

牛顿力学对当时代人的思想的影响和思考 xx 力学对当时代人的思想的影响和思考 牛顿( IsaacNewton1643.1.4--1727.3.20 )是英国物理学家、数学家和天文学家,经典物理学理论体系的建立者。爱因斯坦于1927年在纪念牛顿逝世200周年时曾赞扬牛顿说“ 在他以前和以后都还没有人能像他那样地决定着西方的思想、研究和实践的方向。” 在他诞生360年之际,人们仍在歌颂他、赞美他,其原因正如爱因斯坦在上一世纪初所说的一样。 牛顿创立了力学,被称为“ 力学之父” 。是世界史上对人类文明作出划时代贡献的少数科学家之一。牛顿在伽利略等人工作的基础上进行深入研究,总结出了物体运动的三个基本定律(牛顿三定律): ① 任何物体在不受外力或所受外力的合力为零时,保持原有的运动状态不变,即原来静止的继续静止,原来运动的继续作匀速直线运动。 ② 任何物体在外力作用下,运动状态发生改变,其动量随时间的变化率与所受的合外力成正比。 通常可表述为: 物体的加速度与所受的合外力成正比,与物体的质量成反比,加速度的方向与合外力的方向一致。③ 当物体甲给物体乙一个作用力时,物体乙必然同时给物体甲一个反作用力,作用力和反作用力大小相等,方向相反,而且在同一直线上。这三个非常简单的物体运动定律,为力学奠定了坚实的基础,并对其他学科的发展产生了巨大影响。第一定律的内容伽利略曾提出过,后来 R. 笛卡儿作过形式上的改进,伽利略也曾非正式地提到第二定律的内容。第三定律的内容则是牛顿在总结 C·雷恩、 J·沃利斯和 C·惠更斯等人的结果之后得出的。 伽利略通过对自由落体的研究,已经发现了惯性运动和在重力作用下的匀加速运动,奠定了牛顿第一定律和第二定律的基本思想。伽利略

自然科学简史论文——论牛顿力学体系及其科学方法对近代科学的影响

论牛顿力学体系及其科学方法对近代科 学的影响

牛顿(Isaac Newton.1643.1.4—1727.3.20),英国物理学家、数学家和天文学家,经典物理学理论体系的建立者1。牛顿的一生是传奇而伟大的,他建立起来的牛顿力学体系完成了人类文明史上第一次自然科学的大综合。牛顿力学体系的建立不仅达到了十六、十七世纪科学革命的顶点,也是人类社会划时代进步的标志,对近代科学乃至整个人类文明进程,都有着深远影响和不可估量的的历史意义。 一.牛顿力学体系对近代科学发展的影响 牛顿所处的时代,是一个科学思想大爆炸的时代。哥白尼提出了日心说,开普勒从第谷的观测资料中总结了经验的行星运动三定律,伽利略又描绘出了力、加速度等概念并发现了惯性定律和自由落体定律。但是,直到牛顿之前,这些物理概念和物理规律还是孤立的、没有体现本质联系的、逻辑上各自独立的东西。也正是在这个时候,牛顿对行星及地面上的物体运动作了整体的考察,他把归纳演绎、分析综合等数学方法与物理学发现完美的结合在了一起,使物理学成为能够表述因果性的一个完整体系。这就是我们今天所说的经典力学体系。按照牛顿力学体系的原理,人们利用描写物体运动的坐标及速度的初始值和受力情况,就可以确定地知道该物体运动的过去与将来。牛顿建立的经典物理学具有因果关系的完整体系一经发表便在近代科学的海洋里引起了渲染大波并得到了广泛的实际应用。他所建立的力学体系不仅能说明已有的理论已经说明的现象,如充分地解释伽利略发现的惯性定律和自由落体定律而且能说明并解释已有的理论不能说明的现象,如完满地解释了开普勒的行星运动三定律。更重要的是,牛顿的力学理论能预见到新的物理现象和物理事实,并能以天文观测或实验证实它们的正确性。在万有引力理论的基础上,人们后来发现并证实海王星和冥王星的存在,这是牛顿力学理论的有力佐证。牛顿力学既可以用予说明地面上的物质运动,又可以用予解释太阳系中的行星运动,充分证明了该理论具有的自然规律的普遍性法则。也正是由于牛顿力学原来广泛的适应性,使其在之后数百年间成为引导科学发展的纲领。 同时,值得一提的是,牛顿的力学为十八世纪的工业革命及其之后的机器化大生产准备了科学理论。马克思曾经认为,在十八世纪臻于完善的力学是“大工业的真正科学的基础。”2毫无疑问,当时这个“科学的基础”的最主要而且也是最重要的部分是牛顿的力学。牛顿的经典力学体系和他的方法论使物理学在十八、十九世纪期间得以迅速发展,并成为那时理论物理学的规范。所有物质运动都要追溯或探究其是否符合牛顿的运动定律,从而把牛顿的质点运动定律推广到刚体及连续体的物质运动上。直到十九世纪下半叶,电磁场概念的产生也可以看作是牛顿引力场理论的一次重大飞跃。迄至今日,人们关于宏观自然过程的宏观低速状态下的物理认识都可以看作是牛顿力学思想的一种系统的发展。 二.牛顿力学体系的科学方法对近代科学的影响 牛顿由于“发明了万有引力定律而创立了科学的天文学,由于进行了光的分解而创立了科学的光学.由于创立了二项式定律和无限理论而创立了科学的数学。由于认识了力的性而创立了科学的力学”3。更重要的是,牛顿在科学方法论上的贡献也是十分杰出的。著名科学家爱因斯坦在评价牛顿对世人的影响时特别指出了他在研究方法上的创造,“在他以前和以后,都还没有人能像他那样决定着西方的思想、研究和实践的方向。他不仅作为某些关键性方法的发明者来说是杰出的,而且他在善于运用他那时的经验材料上也是独特的,同时他还对于教学和物理学的详细证明方法有惊人的创造才能。”著名科学家拉普拉斯在谈到牛顿的贡献时,也曾着重强调过认识这位天才的研究方法对于科学进步的重要性。可见,牛顿力 1钱临照“牛顿”中国大百科全书(物理学I) ,1987 2马克思恩格斯全集.北京:人民出版社,l965 3牛顿自然哲学著作选.北京:商务印书馆,l962

论牛顿力学在当今是否仍然适用

论牛顿力学在当今是否仍然适用 Newton mechanics in nowadays are still applicable? 易林杰,201113922 物流管理 摘要:爱因斯坦的相对论的提出,他认为引力是多余的概念, 根本没有什么“万有引力”.实际真有的事,是行星的质量(或任何质量)使挨近他的空间弯曲了,改变了空间的几何形态.伽利略在比萨斜塔实验, 铅毛试验,已经不能成为牛顿力学的经典实验.随之而来的是相对论,现已有水星近日点提前等无数实验验证了相对论在当今的适用性. Abstract: Einstein's theory of relativity is put forward, he believed that gravity is redundant concepts, there is no" gravitation". Actually really happens, is the mass of the planet ( or any quality ) to near his space bend, changing the spatial geometric forms. In Leaning Tower of Pisa experiment, lead wool test, has not become the classic experiments of Newtonian mechanics . Following is the theory of relativity, there is Mercury's perihelion advance of numerous experimental verification of relativity in today's applicability. 关键词:牛顿力学万有引力相对论伽利略爱因斯坦 Key words: Newtonian gravitation relativity Galileo Einstein 一、引力定律不再是定律,只是一个经验公式。 1992年12月,在“先驱者10 ”上发现它的飞行轨道发生了一个极其微小的方向变化,随后在1998年,科学家又意识到该探测器减速的速度要比预期快,虽然这一额外加速度非常小,只约相当于地面重力加速度的一百亿分之一。 科学家们本以为这只是探测器内部设备问题,但随着在“先驱者11”、“伽利略”以及“尤利西斯”等探测器上也出现了同样问题,这一原因被排除了,而且也不会是未发现星体产生的引力,因为“先驱者10”和“先驱者11”相距220亿公里,不会存在一个如此大的未发现星体。因此,科学家们产生了怀疑,认为在宇宙尺度水平上,牛顿的“万有引力定律”就不再有效,也就是说“万有引力定律”存在局限性,只在一定条件下成立。 不过,对于此质疑,中国科学院的有关天文专家并不认同,“飞行轨道是依据最好的数据参数计算得出的,整个计算的过程非常精细,由于我们对宇宙的了解还不彻底,有不少参数并不知道,所以轨道的测算都存在误差,而类似…先驱者10?这种情况,很可能是对星体质量估计不准确造成的,当然还存在其他未知因素,所以怀疑基本定律为时过早。”[1] 现实上美国与中国的科学家都把引力定律看成了“基本定律”,如果不把它看成“基本定律”,美国科学家也就不质疑它了;既然是确定的“基本定律”,中国科学产业然以为不容质疑了,而要探求其他的评释。题目在于引力定律是不是基本定律,如果不是,那我们为什么把它看成基本定律来运用。基本定律即是理论体系的“正义”定律,是思考的出发点,是逻辑的原始出发点——原始大条件,不是由其他定律推导出来的定律。而我以为引力定律不是基本定律。 其一,牛顿力学理论体系的基本定律是其三定律。而其三定律没有包罗“重力”方面的内容,作为“重力”方面内容的增补,不得不把引力定律看成基本定律来运用了。现实上,引力定律是牛顿三定律的“导出”定律,由于由于自由落体是加快活动,从其第一第二定律为出发点,从而以为自由落体活动的缘故原由也是由于外力造成的,于是,就“发明”了万有引力。所以,引力定律不是基本定律。 其二,仅从引力定律公式孕育发生的历程角度来看,在此前其他许多人已经得出了“太阳系”行星公转的向心加快度依间隔太阳平方反比散布规律(真正的经验公式,不是基本

牛顿对经典力学贡献

牛顿对经典力学的贡献 一、认识牛顿 艾萨克·牛顿 艾萨克·牛顿爵士是人类历史上出现过的最伟大、最有影响的科学家,同时也是物理学家、数学家和哲学家,晚年醉心于炼金术和神学。他在1687 年7月5日发表的不朽著作《自然哲学的数学原理》里用数学 方法阐明了宇宙中最基本的法则——万有引力定律和三大运 动定律。这四条定律构成了一个统一的体系,被认为是“人类 智慧史上最伟大的一个成就”,由此奠定了之后三个世纪中物 理界的科学观点,并成为现代工程学的基础。牛顿为人类建立 起“理性主义”的旗帜,开启工业革命的大门。牛顿逝世后被 安葬于威斯敏斯特大教堂,成为在此长眠的第一个科学家。 二、牛顿力学 1679年,牛顿重新回到力学的研究中:引力及其对行星轨道的作用、开普勒的行星运动定律、与胡克和弗拉姆斯蒂德在力学上的讨论。他将自己的成果归结在《物体在轨道中之运动》(1684年)一书中,该书中包含有初步的、后来在《原理》中形成的运动定律。 《自然哲学的数学原理》(现常简称作《原理》)在埃德蒙·哈雷的鼓励和支持下出版于1687年7月5日。该书中牛顿阐述了其后两百年间都被视作真理的三大运动定律。牛顿使用拉丁单词“gravitas”(沉重)来为现今的引力(gravity)命名,并定义了万有引力定律。在这本书中,他还基于波义耳定律提出了首个分析测定空气中音速的方法。 三、牛顿对经典力学的贡献

所谓经典力学,是指研究在低速情况下宏观物体的机械运动所遵循的规律的力学。经典力学的基本定律是牛顿运动定律或与牛顿定律有关且等价的其他力学原理。 牛顿在前人积累的大量动力学知识的基础上,又通过自己反复观察和实验,提出了“力”、“质量”和“动量”的明确定义,并将它们与伽利略提出的“加速度”联系起来,总结出了物体机械运动的三个基本定律。牛顿的这三个定律是人类对自然界认识的一个大飞跃,它为经典力学奠定了坚实的基础,决定了300多年来力学发展的方向,并且对其他学科的发展产生了巨大的影响,至今仍是自然科学的基础理论之一。牛顿的一生不仅为经典力学奠定了基础,而且在热学、光学、天文和数学等方面也都作出了卓越的贡献。 牛顿(1642—1727)是一位伟大的物理学家、数学家和天文学家。他在自然科学史上占有独特的地位。他的科学巨著《自然哲学的数学原理》的出版,标志着经典力学体系的建立。经典力学理论体系的科学成就和科学的方法论启迪了人类征服自然的无穷智慧,对现代化科学技术发展和社会进步产生了极其深远的影响。 牛顿经典力学认为质量和能量各自独立存在,且各自守恒,它只适用于物体运动速度远小于光速的范围。牛顿力学较多采用直观的几何方法,在解决简单的力学问题时,比分析力学方便简单。 经典力学的基本定律是牛顿运动定律或与牛顿定律有关且等价的其他力学原理,它是20世纪以前的力学,有两个基本假定:其一是假定时间和空间是绝对的,长度和时间间隔的测量与观测者的运动无关,物质间相互作用的传递是瞬时到达的;其二是一切可观测的物理量在原则上可以无限精确地加以测定。20世纪以来,由于物理学的发展,经典力学的局限性暴露出来。如第一个假定,实际上只适用于与光速相比低速运动的情况。在高速运动情况下,时间和长度不能再认为与观测者的运动无关。第二个假定只适用于宏观物体。在微观系统中,所有物理量在原则上不可能同时被精确测定。因此经典力学的定律一般只是宏观物体低速运动时的近似定律。 因为牛顿的力学与现代力学(以量子力学和相对论为主导)有很大差别,牛顿的力学虽然在高速和微观领域不正确(由于受当时认识水平的局限),但其在一般情况下(低速、宏观),可以很容易地处理问题(也就是说牛顿力学虽然错误但还是有用的),所以就打算把它们分别起个名字。起什么名字呢?最后,一个叫经典力学,一个叫现代力学。 牛顿三大定律

力学发展简史

力学发展简史 力学是物理学中发展最早的一个分枝,它和人类的生活与生产联系最为密切。早在遥远的古代,人们就在生产劳动中应用了杠杆、螺旋、滑轮、斜面等简单机械,从而促进了静力学的发展。古希腊时代,就已形成比重和重心的概念,出现杠杆原理;阿基米德(Archimedes,约公元前287~212)的浮力原理提出于公元前二百多年。虽然这些知识尚属力学科学的萌芽,但在力学发展史中应有一定的地位。16世纪以后,由于航海、战争和工业生产的需要,力学的研究得到了真正的发展。钟表业促进了匀速运动的理论;水磨机械促进了摩擦和齿轮传动的研究;火炮的运用推动了拋射体的研究。天体运行的规律提供了机械运动最单纯、最直接、最精确的数据资料,使得人们有可能排除摩擦和空气阻力的干扰,得到规律运动的认识。天文学的发展为力学找到了一个最理想的"实验室"-天体。但是,天文学的发展又和航海事业分不开,只有等到16、17世纪,这时资本主义生产方式开始兴起,海外贸易和对外扩张刺激了航海的发展,这才提出对天文作系统观测的迫切要求。第谷(Tycho Brahe,1546~1601)顺应了这一要求,以毕生精力收集了大量观测数据,为克卜勒 (Johannes Kepler,1571~1630)的研究作了准备。克卜勒于1609年和1619年先后提出了行星运动的三条规律,即克卜勒三大行星运动定律。与此同时,以伽利略 (Galileo Galilei,1564~1642)为代表的物理学家对力学开展了广泛研究,得到了自由落体定律。伽利略的两部著作:《关于托勒密和哥白尼两大世界体系的对话》(1632年)和《关于力学和运动两种新科学的

经典力学的 适 用 范 围

牛顿运动定律的适用范围 牟长元 (重庆市铝城中学,重庆401326 ) 经典力学的大厦是以牛顿定律为基础建立起来的。所以,牛顿运动定的适用范围(或条件)就是经典力学的适用范围。高中物理教材关于经典力学适用范围的描述是:经典力学只适用于解决宏观物体的低速运动问题,不能用来处理高速运动问题;经典力学只适用于宏观物体,一般不适用于微观粒子。这种界定经典力学适用范围的描述是否完全正确,有值得探讨的地方:经典力学果真不能用来处理高速成运动问题吗?但事实上,高中物理教材在处理微观粒子(如质子、电子或α粒子等)在电场中的加速、偏转或在匀强磁场中做匀速圆周运动等类型问题时,即使粒子的速率高达到104—106 m/s,仍然应用的是经典力学的观点和规律;显然,“高速”应该是有条件的高速。其二是“一般不适用于微观粒子”中的“一般”两个字,也并没有将问题的描述绝对化。它表明,在一定条件下经典力学也适用于微观粒子。那么,在什么条件下经典力学对微观粒子的描述才是有效的呢? 从上述两方面的疑问出发思考,我们应该如何比较具体而全面地界定经典力学的适用范围呢? 一、从研究对象上界定经典力学的适用范围 经典力学研究的是宏观物体的机械运动,不涉及热运动和电磁场运动。 ⑴“物体”——指实“场”这类物质。 在进行理论研究时,对实物的结构还有要求:①物体整体可视为质点;②物体是几种特殊的质点组。 牛顿定律是以质点模型为基础的,从原则上讲,以质点的动力学方程为基础可处理一切质点问题。但由于实际问题的复杂性和理论计算的复杂性,目前也只能处理几种特殊的质点组:极简单的自由质点组(二体问题、三体问题的部分解),及质点组的各种理想模型(如刚体、完全弹性体、理想流体、理想无穷大介质、……)。所以,“质点组”是经典力学的原则上的适用范围,而实际范围还要缩小。

经典力学发展简史

经典力学发展简史 姓名:周玉全班级:物理学151班学号:5502115018 力学是物理学中最早发展的分支,它和人类的生活与生产关系最为密切。经典力学是力学的一个分支。经典力学是以牛顿运动定律为基础,研究宏观、低速状态下物体运动的一门学科。 力学的发展可谓与人类生活与生产息息相关。早在遥远的古代,人们就在劳动生产中应用杠杆、螺旋、滑轮、斜面等简单机械,促进了静力学的发展。公元前二百多年,古希腊的阿基米德提出了杠杆原理以及浮力定律。而我国古代的春秋战国时期,以《墨经》为代表作的墨家,总结了大量力学知识。虽然这些知识尚属于力学的萌芽,但不妨它在力学发展史中占有一席之地。 在古代,由于人们缺乏经验以及生产水平低下,没有适当科学仪器,导致力学的发展受到抑制。古希腊时代的亚里士多德主张物体速度与外力成正比、重物下落比轻物快、自然界惧怕真空等,看起来的确与经验没有明显矛盾,因此这些理论长期没人怀疑。当然力学长期得不到较大发展还与西方教会利用所谓“科学”奴役人们思想有关。这点最为人所熟知便属“地心说”了。托勒密的“地心说”因与《圣经》内容相符,再加上按地心说预报的行星位置在当时目测精度下与实际位置相差不多,故被人广泛接受。 首先揭开科学革命序幕、反对一直被奉若圭臬的“地心说”的是天文学领域。公元1543年,哥白尼发表了《天体运行理论》来具体论述日心体系。但这一新思想一开始并未能得到世人的广泛认识,因为当时教会仍然占有统治地位,而日心说与《圣经》内容相悖。科学发展越快,教会越趋极端,凡是不符合教会思想而另有主张的人,都会遭到迫害。意大利思想家布鲁诺就是一位信仰和宣扬哥白尼体系而英勇献身的科学殉道士。他认为宇宙是无限的,在太阳系之外还有无数的世界,这比日心说更为有力的冲击了教会的教义,因此被处以火刑。但科学并不会因惧怕火刑而驻足不前。德国天文学家开普勒在基于天文学家第谷毕生积累的天文观测资料的基础上,经过计算,得出了开普勒第一和第二定律,并在1609年出版的《新天文学》一书中,公布了这两条行星运动定律。开普勒的这两条定律打破了两千年来认为天体只能作匀速圆周运动的观念,使日心说与观测结果更为符合。开普勒继续利用第谷的观测数据进行深入研究,并于九年后找到了二分之三次方定律,即开普勒第三定律。开普勒三定律对推动天文学和力学有重要作用。伽利略是又一位献身于哥白尼学说的伟人。他是第一个将望远镜对准天体的科学家。1610年出版的《星界信使》一书,是对哥白尼学说的一极大支持。

高一物理 动力学中的图象问题、临界问题牛顿运动定律的适用范围 典型例题解析

高一物理动力学中的图象问题、临界问题牛顿运动定律的 适用范围典型例题解析 【例1】如图25-1所示,木块A、B静止叠放在光滑水平面上,A的质量为m,B的质量为2m.现施水平力F拉B,A、B刚好不发生相对滑动,一起沿水平面运动.若改用水平力F′拉A,使A、B也保持相对静止,一起沿水平面运动,则F′不得超过 [ ] A.2F B.F/2 C.3F D.F/3 解析:水平力F拉B时,A、B刚好不发生相对滑动,这实际上是将要滑动,但尚未滑动的一种临界状态,从而可知此时的A、B间的摩擦力即为最大静摩擦力.先用整体法考虑,对A、B整体:F=(m+2m)a: 再将A隔离可得A、B间最大静摩擦力:f m=ma=F/3; 若将F′作用在A上,隔离B可得:B能与A一起运动,而A、B不发生相对滑动的最大加速度:a′=f m/2m;再用整体法考虑,对A、B整体:F′=(m+2m)a′=F/2因而正确选项为B. 点拨:“刚好不发生相对滑动”是摩擦力发生突变(由静摩擦力突变为滑动摩擦力)的临界状态.由此求得的最大静摩擦力正是求解此题的突破口. 【例2】在光滑的水平面上,一个质量为0.2kg的物体在1.0N的水平力作用下由静止开始做匀加速直线运动,2.0s后将此力换为方向相反、大小仍为1.0N的力,再过2.0s将力的方向再换过来……,这样,物体受到的力的大小虽然不变,方向却每过2.0s变换一次,求经过半分钟物体的位移及半分钟末的速度分别为多大? 解析:在最初2s内物体的加速度为a=F/m=1/0.2m/s2=5m/s2,物体做初速度为零的匀加速直线运动,这2s内的位移为s=at2/2=1/2×5×22m=10m 2s末物体的速度为v=at=5×2m/s=10m/s 2s末力的方向改变了,但大小没变,加速度大小仍是5m/s2,但方向也改变了,物体做匀减速直线运动.到4s末,物体的速度为v t=v0-at=10m/s-5×2m/s=0 故在第二个内的位移为==+·= 2s s vt(v v)/2t10m 20t 所以,物体在前4s内的位移为s1+s2=20m.

力学的发展历程

力学的发展历程 古代力学的发展 古代最早的物理学体系是亚里士多德系,物理学者这门学科的名称就是由亚里士多德创立的。在亚里士多德的《物理学》中,主要讨论运动(及产生和消灭)、空间和时间以及事物变化的原因等物理世界的根本原理,应该说,亚里士多德是比较系统和深入研究运动及有关的时间、空间的第一人。 关于运动,亚里士多德认为,物体永远在运动变化,“运动是永恒的,不能在一个时候曾经存在,在另一个时候不存在”,这种运动永恒的观点具有唯物主义思想,包含辩证法的因素,至今仍是积极而有价值的。 对物理学的发展来说,亚里士多德初步提出以物质运动及其与时间、空间、周围物体的关系为研究对象,以形成一门独立的自然学科,重视对近身事物的具体观察,强调思维逻辑的作用,首先引用数学方法来考虑具体物理定律,从而引起众多的讨论与研究等。 阿基米德是古希腊继亚里士多德之后又一科学巨匠,他从生产实践出发,运用数学的方法建立起静力学,被誉为“力学之父”。阿基米德在力学上的贡献主要是严格地证明了杠杆定理和浮力定律。这是从经验知识走向定律建立的重大飞跃。 阿基米德不仅是个理论家,也是个实践家,他一生热衷于将其科学发现应用于实践,一生创造发明了许多机构和机器。 经典力学的发展 伽利略对亚里士多德的运动理论进行检验和批判,成为经典力学的先驱,是近代实验物理学的奠基人,被推崇为“近代科学之父”。 伽利略在力学研究中做出的重要贡献 1.关于运动的描述 伽利略抛弃了亚里士多把运动分为自然运动和强迫运动的观点,采用数学方法来定量地分析运动,对位移、距离和时间的概念给予确切的数学表达形式,运用笛卡儿创立的坐标系来定量的描述运动,认为应该依据运动的基本特征量速度对运动进行分类,由此,把运动分为匀速运动和变速运动两种,并引入加速度的概念。 2.自由落体运动 伽利略首先运用从一个理想实验得出的佯缪入手,对亚里士多德落体学说提出了反驳。根据亚里士多德的论断,一块大石头的下落速度要比一块小石头的下落速度大。假定大石头的下落速度为8,小石头的下落速度为4,当我们把两块石头拴在一起时,下落快的会被下落慢的拖着而减慢,下落慢的会被下落快的拖着而加快,结果整个系统的下落速度应该小于8。但是两块石头拴在一起,加起来比大石头还要重,因此重物体比轻物体都小。这样,就从重物体比轻物体下落得快的假设,推出了重物体比轻物体下落得慢的结论,从而在逻辑上证明了亚里士多德的学说是错误的。再通过著名的斜面实验检验自由落体运动符合他所提出的匀加速运动的定义。自由落体下落的时间太短,当时用实验直接验证自由落体是匀加速运动仍有困难,伽利略采用了间接验证的方法,他让一个铜球从阻力很小的斜面上滚下,做了上百次的实验,小球在斜面上运动的加速度要比它竖直下落时的加速度小得多,所以时间容易测量些。实验结果表明,光滑斜面的倾角保

论牛顿力学与拉格朗日方程的优缺点

论牛顿力学与拉格朗日方程的优缺点 拉格朗日力与牛顿力学学并非是在力学中的两大体系,也不是在力学里建立的新的理论,反而拉格朗日力学是在力学中引入广义坐标和虚功原理将牛顿力学的进一步拓展,它们在力学范畴内所包含的内容完全等价,但不过是解决问题的出发点不一样. 1、从牛顿力学出发来看这个问题,而牛顿力学的核心在于牛顿第二定律,牛顿力学为求解力学问题提供可靠而有效的方法,但在实际生活中,用牛顿力学研究质点系统的运动却不尽人意。其一,在它表达方式上有时显得十分复杂。其二,力学方程组包含大量的微分方程,在处理约束问题时,虽然独立变量减少了,可相关约束方程又增加了,加大了解决问题的难度。比如:对于有n个质点所组成的受到K个约束条件限制的力学体系,用牛顿力学求解则需3N+K个方程联立求解,而采用拉格朗日方程则只需3N-K个方程,然而,粗看感觉没多大优越之处,但约束越多,则拉格朗日越显其锋芒。 2、拉格朗日力学是牛顿力学的拓展形式,但在处理问题时的着 眼点不同。牛顿力学的方法是以质点为对象,着眼点放在作用在物体上的外在因素(受力情况),在处理问题是,先考虑各个质点的受力,然后类似推断怎个系统的运动,然而拉格朗日力学是以整个力学系统为对象,通过广义坐标来描述质点的位形,着眼于对整个系统的能量概念。因此,在用拉格朗日力学处理力学问题时,撇开了牛顿力学是矢量,解决问题是既要注意其大小再要注意其方向,所以采用能量(标量)来解决问题,这就降低问题

的难度。但拉格朗日方程得到的各种表达式的物理图像,又不如牛顿力学那样简单直观。 3、牛顿力学与拉格朗日力学相互联系,但其基本观念并不相同。牛顿力学的基本观念:时间的绝对性欲时空分离的观念,使它只适用于物体运动速度远小于光速的范围。拉格朗日是以达朗伯原理为基础,而达朗伯原理出发点是牛顿方程,其推导只是改变形式。比如引入广义坐标使变量独立,利用虚功原理去掉约束力的贡献。 总之:拉格朗日力学只是选择从另外角度来研究力学,其与牛顿力学等价,在处理问题时各有优缺,只有在适当的地方合适选择才使问题变得简单!!

经典力学_王其申_动量和牛顿定律

第二章 动量和牛顿定律 2.1.1 一质量为m 的质点在XOY 平面上运动,其运动方程为 j t B i t A r sin cos ,其中A 、B 和 均为正常数,则该质点在任意位置r 处 所受合外力F 为多少? 2.1.2 一汽艇质量为m ,关闭发动机后由于惯性继续前进,前进时受到与速度成 正比的河水阻力,比例常数为k )0( k 。若该汽艇先以恒定的速度0v 向岸边靠拢,问它应当在离岸多远处关闭发动机,才能在到达岸边时恰好停下来(速度无限接近于零)。 2.1.3 一辆装煤车以s m /3的速度从煤斗下面通过,煤粉通过煤斗以每秒5t 的速率注入车厢。如果车厢的速率保持不变,车厢与钢轨间摩擦忽略不计,求牵引力的大小。 2.1.4 质量为m 的小球在水平面内作速率为 v 的匀速圆周运动,试求小球在经 过:(1)41圆周,(2)21圆周,(3)43 圆周,(4)整个圆周的过程中的动量 改变。试从冲量的计算得出结果。 2.1.5 某物体上有一变力F 作用,它随时间的变化关系如下:在s 1.0内, F 均 匀地由0增加到20N ;又在以后s 2.0内,F 保持不变;再经s 1.0,F 又从20N 均匀地减少到0。(1)画出F-t 图;(2)求这段时间内力的冲量及力的平均值;(3)如果物体的质量为3kg ,开始速度为s m /1,与力的方向一致,问在力刚变为0时,物体速度多大?

2.1.6 如图所示,一个质量为1m 的物体拴在长为1L 的轻绳 上,绳的另一端固定在一个水平光滑桌面的钉子上。另一物体质量为2m ,用长为2L 的绳与1m 连接。二者均在桌面上做匀速圆周运动,假设1m 、2m 的角速度为 ,求各段绳子上的张力。 2.2.1 美丽的土星环在土星周围从离土星中心是73000km 延伸到距土星中心136000km 。它由大小从6 10 m 到10m 的粒子组成。若环的外缘粒子的运行周期是14.2h ,那么由此可求得土星的质量是多大? 2.2.2 如果在土星的赤道上放置一颗同步卫星,这卫星应在土星表面以上多高处?它发射的雷达波(沿直线传播)能覆盖土星表面多大面积?已知土星质量为 km 271089.1 ,半径为kg 4 1014.7 ,自转周期为10h 。 2.2.3 证明:一个密度均匀的星体由于自身引力在其中心处产生的压强为: 2 232 R G P ,其中R , 分别是星体的密度和半径。 2.2.4 以绳沿水平方向用为F 牵引质量为m 的物体,不计绳质量和摩擦,求绳内A 、B 两点处张力。若计绳质量呢?

高中历史 比较牛顿经典力学和爱因斯坦的相对论3

比较牛顿经典力学和爱因斯坦的相对论 (2018—2019学年河南省豫西名校高二上学期第一次联考)1846年9月23日,德国柏林天文台的天文学家发现了太阳系中第八颗行星海王星,它是唯一利用数学预测而非有计划的观测发现的行星。这一成果的取得主要得益于 A.哥白尼的日心说 B.伽利略的自由落体定律 C.爱因斯坦的相对论 D.牛顿的万有引力定律 【参考答案】D 【解题必备】牛顿力学与相对论之间的辩证关系 1.牛顿力学反映的是宏观物体低速运动的客观规律,相对论反映的是物体高速运动的客观规律,它否定了牛顿力学的绝对时空观,深刻揭示了时间和空间的本质属性。 2.相对论也发展了牛顿力学,将牛顿力学概括在相对论力学之中,相对论是对牛顿力学的继承和发展。 3.总而言之,相对论只是否定了牛顿的绝对时空观,没有否定整个牛顿力学。牛顿力学是相对论在低速状态下的一个特例,牛顿所创造的理论,至今仍指导着我们的物理学思想。。 18世纪的人类揭开了天体面纱的一个革命性的解释:自然界好像一个巨大的机械装置,按照通过观察、实验、测量和计算可予以确定的某些自然法则进行运转。人类的各门知

识都可分解为有理性的人所能发现的少量简单的、始终如一的定律。这一“解释” A.开创了以实验为基础的近代科学 B.预见了启蒙运动发生的必然性 C.弥补经典力学对时空认识的不足 D.揭示了人类社会的发展规律 “水平伸开的一块布是平坦的,而当你在布上放置一个铅球,布面就变得弯曲了,这时再放置一个小玻璃球在布上,它就会滚向中央的铅球。同理,星球的质量使周围的时空弯曲,‘引力’实际上是一个时空被弯曲的现象。”科普作家直观比喻的是 A.经典力学 B.量子理论 C.相对论 D.自由落体定律 牛顿力学认为时间是绝对的,空间也是绝对的;爱因斯坦相对论则认为“物质告诉时空怎样弯曲,时空告诉物质怎样运动”,时间、空间和物质是一个有机整体。这表明 A.牛顿力学更加能被世人所理解 B.相对论革新了牛顿力学时空观 C.爱因斯坦相对论发展了时空观 D.爱因斯坦否定了牛顿力学理论 1.【答案】A 【解析】材料中的“揭开了天体面纱的一个革命性的解释”“按照通过观察、实验、测量和计算可予以确定的某些自然法则进行运转”等信息是指牛顿的经典力学。它是人类认识史上对自然规律的第一次理论性的概括和综合,形成了一个以实验为基础,以数学为表达形式的近代物理科学体系,标志着近代自然科学的形成。故答案为A项。B项中的“预见”说法错

牛顿运动定律的适用范围

牛顿运动定律的适用范围 一、教学目标: 1、知道牛顿定律的适用范围; 2、了解经典力学在科学研究和生产技术中的广泛应用; 3、知道质量与速度的关系,知道在高速运动中必须考虑速度随时间的变化。 二、教学重点: 牛顿运动定律的适用范围。 三、教学难点: 高速运动的物体,速度和质量之间的变化关系。 四、教学方法: 阅读法、归纳法、讲练法 五、教学用具: 投影仪、投影片 六、教学步骤: 导入新课 自从17世纪以来,以牛顿定律为基础的经典地学不断发展,取得了巨大的成就,经典力学在科学研究和生产技术中有了广泛的应用,从而证明了牛顿运动定律的正确性。 但是,牛顿运动定律也不是万能的,它也有一定适用范围,那么牛顿运动定律在什么范围内适用呢? 新课教学: (一)用投影片出示本节课的学习目标: 1:知道牛顿运动定律的适用范围。 2:了解经典力学在科学研究和生产技术中的广泛应用。 3:了解质量之间的关系。 (二)学习目标完成过程: 1:牛顿运动定律的适用范围: (1)指导学生阅读P67页课文; (2)用投影片出示思考题: a:对于宏观物体,牛顿运动定律在什么情况下适用?在什么情况下不适用? b:牛顿运动定律对微观粒子适用吗? (3)学生回答后,老师归纳总结: a:牛顿运动定律对于处理宏观低速运动问题是完全适用的; b:但对于接近光速时宏观物体的高速运动问题,牛顿运动定律已不再适用。 原因:20世纪初,物理学家爱因斯坦提出了狭义相对论,他指

出物质的质量要随速度的增大而增大,而在经典力学中,认为质量是固定不变的。 c :相对论和量子力学的出现,又说明了人类对自然界的认识是更加深入了,而不表示经典力学失去意义。 d :牛顿运动定律对微观粒子不再适用。 2:对牛顿运动定律一章进行小结: (用复合投影片逐步展示本章的知识要点) ???????? ??????????????→?????→=???==共线反向等值系作用力和反作用力的关牛顿第三定律,与运动方向无关。向的加速度方向决定 超(失)重:由竖直方方向一致与牛顿第二定律性—一物体本身固有的属—惯性(惯性定律)时,牛顿第一定律牛顿运动定律合合合F a ma F a F 00 七:小结: 通过本节课的学习,我们知道了:牛顿运动定律只适用于低速运动的宏观物体,但是这并不意味着牛顿运动定律失去了它的意义。 八、板书设计: ?? ???一般不适于微观粒子不能用来处理高速问题 适于宏观低速问题牛顿运动定律

牛顿力学

牛顿力学 也是因为只有惯三律被大多数人接受后,才会完成它的历史使命,再改变为"惯性"一词.牛顿第一第二定律(以下简称牛二律)是惯三律的物体外部空间在ρ均匀空间情况下的定律,是其推论,不再是惯性力学的核心公设性质的命题. (一)广义惯性使牛顿力学进化 爱因斯坦独具慧眼,从司空见惯的现象中及自由落体运动与质量因素无关的经验事实,总结出了等效原理,且明确与准确地说:物体的同一性质按照不同的处境或表现为"惯性",或表现为"重性".这个同一性就是广义惯性,这个处境就是空间.牛顿第二定律实质是其第一定律涵义的数学表达式.所以,广义惯性的发现,其革命意义是指动摇了牛顿第一定律的核心地位.广义惯性包含了牛顿惯性,所以,又是其进化.同时,也说明了需要建立一个取代牛二律的进化性质的核心命题系统的新力学理论.广义惯性又引出了两种空间及其区别的新问题.这个新问题困扰了爱因斯坦的一生,走了一大圈"弯"路后,在他晚年时,才看到了解决这个问题的曙光--物体具有空间的广延性,由此"广延性"再往前走一步,就是文说的ρ空间及其区别的标志是其梯度值的有否.这说明还需要一个新的涉及空间的基本概念及与其相对应的原来等效原理所没有涉及到的新的经验事实:物体质量部分的压强梯度现象(注:在固态的具体物体内部,此"压强梯度"表现为"胁强"),也就是爱因斯坦的物体的空间广延性的具体体现.同时也引出了物体的非刚性及其具有内部空间结构的抽象性质.于是,"万事俱备",只欠建立一个新的核心命题系统了.可以说,惯三律就是这个系统.广义惯性是由于把"重性"也归于同牛顿惯性一样的物体属性,所以,其革命意义也主要体现在"重力"方面."引力"是对重力本质的错误认识.广义惯性与场概念把原来引力中的两个平权的物体分离开来:一个是仅表现广义惯性的一般(非整体)物体;另一个是具有产生重力场的特殊性的中心物体.一般物体与中心物体之间已经没有"力"的关系了.但通过重力场(原来引力场与自转惯性离心力合成的重力场涵义需要改变)有"能"的关系(见此文的"ρ空间与能"一节).到此为止,广义惯性已经完成了其逻辑任务,即取消了引力及导出了中心物体的特殊性(当然也具有广义

相关文档
相关文档 最新文档