文档库 最新最全的文档下载
当前位置:文档库 › 电容器投切对无功补偿的影响

电容器投切对无功补偿的影响

电容器投切对无功补偿的影响
电容器投切对无功补偿的影响

电容器投切对无功补偿的影响

【摘要】电容器在原理上相当于产生容性无功电流的发电机。其无功补偿的原理是把具有容性功率负荷的装置和感性功率负荷并联在同一电容器上,能量在两种负荷间相互转换。因此,电容器作为电力系统的无功补偿势在必行。当前,利用投切并联电容器来调节无功补偿已经非常普遍。

【关键词】电容器;无功补偿;投切

在电路中接入电容可以为设备提供无功功率,提高功率因数。由于我们的设备不可能是纯容性或纯感性的,且设备运行的状态也是不可预知的,如开、关机,或开机时不同工作状态所需要的无功功率都不相同。当补偿器提供的无功功率大于设备所需时,也会对电网造成极大影响。所以我们需要适时的调整无功功率的补偿来匹配设备所需的无功功率,即电容组投切方式。

1 无功在供电系统中的影响

1)接在电网中的许多用电设备是根据电磁感应原理工作的,我们最常见的变压器就是通过磁场才能改变电压并且将能量送出去,电动机才能转动并带动机械负荷。电容器在交流电网中接通时,在一个周期内的,上半周期的充电功率和下半周期的放电功率相等,不消耗能量,这种充放电功率叫做容性无功功率。

2)无功功率增大,即供电系统的功率因数降低将会引起:

(1)增加电力网中输电线路上的有功功率损耗和电能损耗。若设备的功率因数降低,在保证输送同样的有功功率时,无功功率就要增加,这样势必就要在输电线路中传输更大的电流,使得此输电线路上有功功率损耗和电能损耗增大。

(2)系统中输送的总电流增加,使得供电系统中的电气元件,如变压器、电气设备、导线等容量增大,从而使用户的起动控制设备、测量仪表等规格尺寸增大,因而增大了初投资费用。

(3)功率因数过低还将使线路的电压损耗增大,结果负荷端的电压就要下降,甚至会低于允许偏移值,从而严重影响异步电动机及其它用电设备的正常运行。特别在用电高峰季节,功率因数太低会出现大面积地区的电压偏低,将给油田的生产造成很大的损失。

(4)使电力系统内的电气设备容量不能充分利用,因为发电机或变压器都有一定的额定电压、额定电流和额定容量,在正常情况下,这些参数是不容许超过的,若功率因数降低,则有功出力也将随之降低,使设备容量不能得到充分利用。

2 减少无功,提高功率因数的方法

并联电容器无功补偿方案

课程设计 并联电容器无功补偿方案设计 指导老师:江宁强 1010190456 尹兆京

目录 1绪论 (2) 1.1引言 (2) 1.2无功补偿的提出 (3) 1.3本文所做的工作 (3) 2无功补偿的认识 (3) 2.1无功补偿装置 (3) 2.2无功补偿方式 (4) 2.3无功补偿装置的选择 (4) 2.4投切开关的选取 (4) 2.5无功补偿的意义 (5) 3电容器无功补偿方式 (5) 3.1串联无功补偿 (5) 3.2并联无功补偿 (6) 3.3确定电容器补偿容量 (6) 4案例分析 (6) 4.1利用并联电容器进行无功功率补偿,对变电站调压 (6) 4.2利用串联电容器,改变线路参数进行调压 (13) 4.3利用并联电容器进行无功功率补偿,提高功率因素 (15) 5总结 (21) 1绪论 1.1引言 随着现代科学技术的发展和国民经济的增长,电力系统发展迅猛,负荷日益增多,供电容量扩大,出现了大规模的联合电力系统。用电负荷的增加,必然要

求电网系统利用率的提高。但由于接入电网的用电设备绝大多数是电感性负荷,自然功率因素低,影响发电机的输出功率; 降低有功功率的输出; 影响变电、输电的供电能力; 降低有功功率的容量; 增加电力系统的电能损耗; 增加输电线路的电压降等。因此,连接到电网中的大多数电器不仅需要有功功率,还需要一定的无功功率。 1.2无功补偿的提出 电网输出的功率包括两部分:一是有功功率;二是无功功率。无功,简单的说就是用于电路内电场与磁场的交换,并用来在电气设备中建立和维持磁场的电功率。电机和变压器中的磁场靠无功电流维持,输电线中的电感也消耗无功,电抗器、荧光灯等所有感性电路全部需要一定的无功功率。为减少电力输送中的损耗,提高电力输送的容量和质量,必须进行无功功率的补偿。 1.3本文所做的工作 主要对变电站并联电容器无功补偿作了简单的分析计算,提出了目前在变电站无功补偿实际应用中计算总容量与分组的方法,本文主要作了以下几个方面的工作: 对无功补偿作了简单的介绍,尤其是电容器无功补偿,选取了相关的案例进行了简单的计算和分析。 2无功补偿的认识 2.1无功补偿装置 变电站中传统的无功补偿装置主要是调相机和静电电容器。随着电力电子技术的发展及其在电力系统中的应用,交流无触点开关SCR、GTR、GTO等相继出现,将其作为投切开关无功补偿都可以在一个周波内完成,而且可以进行单相调节。如今所指的静止无功补偿装置一般专指使用晶闸管投切的无功补偿设备,主要有以下三大类型: 1、具有饱和电抗器的静止无功补偿装置; 2、晶闸管控制电抗器、晶闸管投切电容器,这两种装置统称为SVC 3、采用自换相变流技术的静止无功补偿装置——高级静止无功发生器。

电力电容器及无功补偿技术手册

电力电容器及无功补偿 技术手册 沙舟编著

目录 前言 第一章基本概念 (1) §1-1 交流电的能量转换 (1) §1-2 有功功率与无功功率 (2) §1-3 电容器的串联与并联 (3) §1-4 并联电容器的容量与损耗 (3) §1-5 并联电容器的无功补偿作用 (4) 第二章并联电容器无功补偿的技术经济效益 (5) §2-1 无功补偿经济当量 (5) §2-2 最佳功率因数的确定 (7) §2-3 安装并联电容器改善电网电压质量 (8) §2-4 安装并联电容器降低线损 (11) §2-5 安装并联电容器释放发电和供电设备容量 (13) §2-6 安装并联电容器减少电费支出 (15)

前言 众所周知,供电质量主要决定于电压、频率和波形三个方面。电网频率稳定决定于电网有功平衡,波形主要决定于网络和负荷的谐波,电压稳定则决定于无功平衡。当然三者之间也具有一定的内在关系。无功平衡决定于网络中无功的产生和消耗。在系统中无功电源有同步发电机、同步调相机、电容器、电缆、输电线路电容、静止无功补偿装置和用户同步电动机,无功负荷则有电力变压器,输电线路电感和用户的感应电动机,各种感应式加热炉、电弧炉等。为了满足系统中无功电力的需求,单靠发电机、调相机、电缆和输电线路电容是不够的,静补装置中也是采用电容器等。因此电容器在系统的无功电源中占有相当比重,加之调相机为旋转设备。建设投资大,运行维护费用高。近年来世界各国都积极装设电容器,满足系统无功电力要求,维持电压稳定。但各国主要是装设并联电容器,装串联电容器者较少,因此编者主要介绍并联电容器无功补偿技术,它还广泛应用于谐波滤波装置,动态无功补偿设备和电气化铁道无功补偿装置之中,因与电力系统谐波有关。限于篇幅,准备在“谐波技术”中详述。这里主要介绍一些无功补偿技术基础。限于编者水平,加上时间仓促,不当之处难免,请读者批评指正。

电容补偿柜在配电系统中的作用

一. 电容补偿柜之作用: 用于补偿发电机无功电流、减轻发电机工作负荷,增加发电机可使用容量,可减少工厂一定的用电量、节省工业电力,提高发供电设备的供电质量和供电能力。 二 . 电容柜工作原理 用电设备除电阻性负载外,大部分用电设备均属感性用电负载(如日光灯、变压器、马达等用电设备)这些感应负载,使供电电源电压相位发生改变(即电流滞后于电压),因此电压波动大,无功功率增大,浪费大量电能。当功率因数过低时,以致供电电源输出电流过大而出现超负载现象。电容补偿柜内的电脑电容控制系统可解决以上弊端,它可根据用电负荷的变化,而自动设置。电容组数的投入,进行电流补偿,从而减低大量无功电流,使线路电能损耗降到最低程度,提供一个高素质的电力源。 三 . 电容补偿技术: 在工业生产中广泛使用的交流异步电动机,电焊机、电磁铁工频加热器导用点设备都是感性负载。这些感性负载在进行能量转换过程中,使加在其上的电压超前电流一个角度。这个角度的余弦,叫做功率因数,这个电流(既有电阻又有电感的线圈中流过的电流)可分解为与电压相同相位的有功分量和落后于电压90 度的无功分量。这个无功分量叫做电感无功电流。与电感无功电流相应的功率叫做电感无功功率。当功率因数很低时,也就是无功功率很大时会有以下危害:? 增长线路电流使线路损耗增大,浪费电能。 ? 因线路电流增大,可使电压降低影响设备使用。 ? 对变压器而言,无功功率越大,则供电局所收的每度电电费越贵,当功率因数低于0.7 时,供电局可拒绝供电。 ? 对发电机而言,以310KW 发电机为例。 310KW 发电机的额定功率为280KW ,额定电流为530A ,当负载功率因数0.6 时功率= 380 x 530 x 1.732 x 0.6 = 210KW 从上可看出,在负载为530A 时,机组的柴油机部分很轻松,而电球以不堪重负,如负荷再增加则需再开一台发电机。加接入电容补偿柜,让功率因数达到0.96 ,同样210KW 的负荷。字串5 电流=210000/ (380x1.732x0.96 )=332A 补偿后电流降低了近200A ,柴油机和电球部分都相当轻松,再增加部分负荷也能承受,不需再加开一台发电机,可节约大量柴油。也让其他机组充分休息。从以上可看出,电容补偿的经济效益可观,是低压配电系统中不可缺少的重要成员。 此文例子是按理论上的计算选择需要加入电容自动补偿柜, 但是一般实际工程中柴油发电机很少再加入电容自动补偿柜, 原因: 1、电容自动补偿柜价格高,不太经济; 2、柴油发电机一般接的是应急负荷的多,不经常使用;

配电变压器损坏原因分析及对策(标准版)

Safety is the goal, prevention is the means, and achieving or realizing the goal of safety is the basic connotation of safety prevention. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 配电变压器损坏原因分析及对策 (标准版)

配电变压器损坏原因分析及对策(标准版)导语:做好准备和保护,以应付攻击或者避免受害,从而使被保护对象处于没有危险、不受侵害、不出现事故的安全状态。显而易见,安全是目的,防范是手段,通过防范的手段达到或实现安全的目的,就是安全防范的基本内涵。 1原因分析 在广大农村,配电变压器时常损坏,特别是在农村用电高峰期和雷雨季节更是时有发生,笔者通过长期跟踪调查发现导致配电变压器损坏的主要原因有以下几个方面。 1.1过载 一是随着人们生活的提高,用电量普遍迅速增加,原来的配电变压器容量小,小马拉大车,不能满足用户的需要,造成变压器过负载运行。二是由于季节性和特殊天气等原因造成用电高峰,使配电变压器过载运行。由于变压器长期过载运行,造成变压器内部各部件、线圈、油绝缘老化而使变压器烧毁。 1.2绕组绝缘受潮 一是配电变压器的负荷大部分随季节性和时间性分配,特别是在农村农忙季节配电变压器将在过负荷或满负荷下使用,在夜晚又是轻负荷使用,负荷曲线差值很大,运行温度最高达80℃以上,而最低温

度在10℃。而且农村变压器因容量小没有安装专门的呼吸装置,多在油枕加油盖上进行呼吸,所以空气中的水分在绝缘油中会逐渐增加,从运行八年以上的配电变压器的检修情况来看,每台变压器底部水分平均达100g以上,这些水分都是通过变压器油热胀冷缩的呼吸空气从油中沉淀下来的。二是变压器内部缺油使油面降低造成绝缘油与空气接触面增大,加速了空气中水分进入油面,降低了变压器内部绝缘强度,当绝缘降低到一定值时变压器内部就发生了击穿短路故障。 1.3对配电变压器违章加油 某电工对正在运行的配电变压器加油,时隔1h后,该变压器高压跌落开关保险熔丝熔断两相,并有轻微喷油,经现场检查,需要大修。造成该变压器烧毁的主要原因:一是新加的变压器油与该变压器箱体内的油型号不一致,变压器油有几种油基,不同型号的油基原则上不能混用;二是在对该配电变压器加油时没有停电,造成变压器内部冷热油相混后,循环油流加速,将器身底部的水分带起循环到高低压线圈内部使绝缘下降造成击穿短路;三是加入了不合格变压器油。 1.4无功补偿不当引起谐振过电压 为了降低线损,提高设备的利用率,在《农村低压电力技术规程》中规定配电变压器容量在100kVA以上的宜采用无功补偿装置。如果补

无功补偿电容器串联电抗器的选用

无功补偿电容器串联电抗器的选用 在高压无功补偿装置中,一般都装有串联电抗器,它的作用主要有两点:1)限制合闸涌流,使其不超过20倍;2)抑制供电系统的高次谐波,用来保护电容器。因此,电抗器在无功补偿装置中的作用非常重要。 然而,串抗与电容器不能随意组合,若不考虑电容装置接入处电网的实际情况,采用“一刀切”的配置方式(如电容器一律配用电抗率为5%~6%的串抗),往往适得其反,招致某次谐波的严重放大甚至发生谐振,危及装置与系统的安全。由于电力谐波存在的普遍性,复杂性和随机性,以及电容装置所在电网结构与特性的差异,使得电容装置的谐波响应及其串抗电抗率的选择成为疑难的问题,也是人们着力研究的课题。电容器组投入串抗后改变了电路的特性,串抗既有其抑制涌流和谐波的优点,又有其额外增加的电能损耗和建设投资与运行费用的缺点。所以对于新扩建的电容装置,或者已经投运的电容装置中的串抗选用方案,进行技术经济比较是很有必要的。虽然现有的成果尚不足为电容装置工程设计中串抗的选用作出量化的规定,但是随着研究工作的深入,实际运行经验的积累,业已提出许多为人共识的见解,或行之有效的措施,或可供借鉴的教训。 下面总结电容器串联电抗器时,电抗率选择的一般规律。 1. 电网谐波中以3次为主 根据《并联电容器装置设计规范》,当电网谐波以3次及以上为主时,一般为12%;也可根据实际情况采用4.5%~6%与12%两种电抗器:(1)3次谐波含量较小,可选择0.5%~1%的串联电抗器,但应验算电容器投入后3次谐波放大量是否超过或接近限值,并有一定裕度。(2)3次谐波含量较大,已经超过或接近限值,可以选用12%或4.5%~6%串联电抗器混合装设。 2. 电网谐波中以3、5次为主 (1)3次谐波含量较小,5次谐波含量较大,选择4.5%~6%的串联电抗器,尽量不使用0.1%~1%的串联电抗器;(2)3次谐波含量略大,5次谐波含量较小,选择0.1%~1%的串联电抗器,但应验算电容器投入后3次谐波放大是否超过或接近限值,并有一定裕度。 3. 电网谐波以5次及以上为主 (1)5次谐波含量较小,应选择4.5%~6%的串联电抗器;(2)5次谐波含量较大,应选择4.5%的串联电抗器。对于采用0.1%~1%的串两电抗器,要防止对5次、7次谐波的严重放大伙谐振。对于采用4.5%~6%的串联电抗器,要防止怼次谐波的严重放大或谐振。当系统中无谐波源时,为防止电容器组投切时产生的过电压和对电容器组正常运行时的静态过电压、无功过补时电容器端的电压升高的情况分析计算,可选用0.5%~1%的电抗器。 根据以上的选择原则,对无功补偿装置中的串联电抗器有以下建议: (1)新建变电所的电容器装置中串联电抗器的选择必须慎重,不能与电容器任意组合,必须考虑电容器装置接入处的谐波背景。 (2)对于已经投运的电容器装置,其串联电抗器选择是否合理须进一步验算,并组织现场实测,了解电网谐波背景的变化。对于电抗率选择合理的电容器装置不得随意增大或减小电容器组的容量。 (3)电容器组容量变化很大时,可选用于电容器同步调整分接头的电抗器或选择电抗

电容补偿柜的日常维护

3 电容补偿柜的日常维护 日常维护中,应按时巡视观察,注意电容补偿柜的工作指示灯就是否正常,功率因数表就是否等于1,三相电流表指示就是否平衡,来判断其补偿效果及电容 器组的工作状态。如功率因数表指示0、95以上,且某一相电流表指示偏差大于10%,则该相中有电容损坏。此时,应注意观察电容器外壳有无膨胀、漏油痕迹,有无异常声响及火花,及时找出损坏的电容并更换。 我们在工作中还发现有的电容补偿柜工作指示灯亮,显示正常,但电容器组工作不一定正常,这就要定期测试每组中的三相电流。例如,由12只298μF/0、4kV 15kvar电容器组成的电容组,每相的补偿电流为21A左右,且总电流为投入工作的电容器组的电流之与,如I总=176 A,则有8组电容器组投入运行。如有的电流值偏差超过21A±5%,则该组有的电容器老化,对偏差严重的电容器要及时 更换。 电容补偿柜每季进行一次全面的停电检查,重点就是各螺丝接点松紧及接触情况,馈线及断路器有无烧焦,触点有无接触不良等异常现象。 经及时维护,各电容器柜都性能良好,工作正常,保证了稳定的供电。 电力电容器的接通与断开 (1)电力电容器组在接通前应用兆欧表检查放电网络。 (2)接通与断开电容器组时,必须考虑以下几点: ①当汇流排(母线)上的电压超过1、1倍额定电压最大允许值时,禁止将电容器组接入电网。 ②在电容器组自电网断开后1min内不得重新接入,但自动重复接入情况除外。 ③在接通与断开电容器组时,要选用不能产生危险过电压的断路器,并且断路器的额定电流不应低于1、3倍电容器组的额定电流。 3电力电容器的放电 (1)电容器每次从电网中断开后,应该自动进行放电。其端电压迅速降低,不论电容器额定电压就是多少,在电容器从电网上断开30s后,其端电压应不超过65V。 (2)为了保护电容器组,自动放电装置应装在电容器断路器的负荷侧,并经常与电容器直接并联(中间不准装设断路器、隔离开关与熔断器等)。具有非专用放电装置的电容器组,例如:对于高压电容器用的电压互感器,对于低压电容器用的白炽灯泡,以及与电动机直接联接的电容器组,可以不另装放电装置。使用灯泡时,为了延长灯泡的使用寿命,应适当地增加灯泡串联数。 (3)在接触自电网断开的电容器的导电部分前,即使电容器已经自动放电,还必须用绝缘的接

浅谈变压器低压侧无功补偿容量的选择分析

浅谈变压器低压侧无功补偿容量的选择分析[摘要]为了提高功率因数,减少电能损耗,应对某些配电变压器在低压侧安 装补偿电容器进行无功补偿。采取配变低压侧补偿和用户端就地补偿相结合的补偿方式,可以在提高功率因数的同时,减少低压线路损耗,取得最佳的经济效益。本文中,就从无功补偿的节电原理入手,对变压器低压侧无功补偿容量的选择进行分析探讨。 【关键词】无功补偿;变压器;容量选择分析 引言 电网改造中,在配电变压器的低压侧可以安装一个一定容量的补偿电容器,这个电容器可以起到无功补偿的作用,不仅可以提高电网的功率因数,减少电网中电能的损耗,还可以增强供电能力,起到了无功补偿的作用。 就目前的观点来看,有人认为安装的配电变压器容量的补偿容量比较小,不能完全补偿低压侧所有的无功负荷。笔者以为,这种观点是一种误解。因为配变低压侧无功补偿,仅仅是用来减少变压器自身或者配电网方面的功率损耗的,它并不能减少向负荷输送的无功功率,这是因为向负荷输送的无功功率要经过低压线路的电抗或电阻,因此,配电线路上的功率损耗并不能减少。根据以上分析,配电低压侧的无功补偿容量的选择是无用过大的,过大反而是一种浪费。并起不到多大作用。采取用户端就地补偿和配变低压侧补偿组合的方式无疑是最佳的结合方式。 1、节电原理分析 在电网中,发电机、变压器等电力负荷基本都属于感性负荷,这些设备在运行的时候是需要无功功率的。如果在电网中安装无功补偿设备,就等于给这些感性负荷提供了它们所消耗的无功功率,减少了电网向这些感性负荷提供无功功率,降低了线路和变压器等设备在输送电能过程中的损耗。 2、无功补偿的意义及具体实现方式 2.1就无功补偿的意义而言,笔者以为可以从以下几个方面阐述: ⑴对无功功率进行补偿后,电网中的有功功率的比例常数无疑得到了提高; ⑵电网中,进行无功补偿后,减少了相关的投资成本,减少了发电、供电设备的设计容量。特别是对改建或者新建的工程项目,可以考虑采用无功补偿的办法,减少其设计容量,达到投资成本的控制问题;

低压无功补偿回路保护熔断器选择

低压无功补偿回路保护熔断器选择 低压无功补偿柜中补偿回路的熔断器作用,是为了保证整个回路安全可靠的运行,以达到无功补偿的目的,那么电容器(和串联电抗器)作为补偿回路的核心元件,熔断器对它提供可靠的保护性能是非常必要的。由于现行相关标准里对补偿回路保护熔断器的选择没有特别详细的要求,所以在实际应用中大家的选择也不尽一致,有时差别甚至相当悬殊。 在低压配电系统中的负载类型变得越来越复杂的情况下,补偿回路熔断器的选择不能一概而论,要视低压无功补偿的具体类型进行科学的分析和选择。 下面我们根据相关的国家标准和低压无功补偿类型两方面来分析如何合理正确的选择补偿回路的熔断器。 一、相关的国家标准 1、在低压并联电容器标准GB/T12747.1-2004中,对有关电容器最大电流和保护的相关要求和说明如下: 21 最大允许电流 电容器单元应适用于在线路电流方均根值为1.3倍该单元在额定正弦电压和额定频率下产

生的电流下连续运行,过渡过程除外。考虑到电容偏差,最大电容可达1.10CN,故其最大电流可达1.43IN。 这些过电流因素是考虑到谐波、过电流和电压偏差共同作用的结果。 33 过电流 电容器决不可在电流超过第21章中规定的最大值下运行。 34 开关、保护装置及连接件 开关、保护装置及连接件均应设计成能连续承受在额定频率和方均根值等于额定电压的正弦电压下得到的电流的1.3倍的电流。因为电容器的电容可能为额定值的 1.10倍,故这一电流最大值为 1.3×1.10倍额定电流,即为1.43IN 2、在中低压电容器及其成套装置标准GB7251中,有关电容保护熔断器的选择要求如下: 5.3.5 b) 熔断器额定工作电流(方均根值)应按2~3倍单组电容器额定电流选取。 3、在并联电容器装置设计规范GB50227-2008中,有关电容保护熔断器是这样要求的: 5.4 熔断器 5.4.2 用于单台电容器保护的外熔断器的熔丝额

电容补偿柜作业指导书

电容补偿柜作业指导书 一、目的。 为提高电网功率因数、减少线路损耗,提高电压质量,全面提升电网设备效率,规范电容补偿柜,特编写此指导书。 二、安全注意事项。 1.在处理故障电容器前,应先拉开断路器及断路器两侧的隔离开关,然后验电、装设接地线。 2.由于故障电容器可能发生引线接触不良,内部断线或熔丝熔断等,因此有一部分电荷有可能未放出来,所以在接触故障电容器前,还应戴上绝缘手套,用短路线将故障电容器的两极短接并接地,方可动手拆卸。 3.对双星形接线电容器组的中性线及多个电容器的串联线,还应单独放电 三、工作原理。 在实际电力系统中,大部分负载为异步电动机。其等效电路可看作电阻和电感的串联电路,其电压与电流的相位差较大,功率因数较低。并联电容器后,电容器的电流将抵消一部分电感电流,从而使电感电流减小,总电流随之减小,电压与电流的相位差变小,使功率因数提高。 四、基本操作。

操作电容柜的投切顺序: 1.手动投入:投隔离开关→将二次控制开关至手动位臵依次投入各组电容器。 2.手动切除:将二次控制开关至手动位臵依次切除各组

电容→切出隔离开关。自动投切:投隔离开关→将二次控制开关至自动位臵,功补仪将自动投切电容器。 3.手动或自动投切时,应注意电容器组在短时间内反复投切,投切延时时间不少于30秒,最好为60秒以上,让电容器有足够的放电时间。 4.每天巡查电容器,如电容器外壳膨胀且无电流,则应退出运行,避免事故发生。 5.电容器投入运行,电网电压上升,如果电压超过1.1Un,部分电容器或全部电容器应退出运行。为了确保电容器可靠运行,延长使用寿命,电容器应维持在额定电压界定电流下工作。 6.电容器是否损坏的初步鉴别,首先观察外观是否正常,有无变形,其次用电容表测量电容值是否正常。 7.使用过的电容器其电容值均匀下降是正常现象 注:电容柜运行时如需退出运行,可在功补仪上按清零键或将二次控制开关调至零位档退出电容器。不可用隔离开关直接退出运行运行中的电容器! 五、日常维护及保养。 1.运行到一定时间内,要对所有母线联接紧固件都需重新紧固一遍。 2.对有粉尘、纤维环境应定期检查维护。至少每三个月对开关柜停电检查、清理、维护一次。

配电变压器低压侧无功补偿容量选择

配电变压器低压侧无功补偿容量选择 为了提高功率因数,减少电能损耗,增强供电能力,在农网改造中,应对100kVA及以上配电变压器在低压侧安装 容量为配变额定容量8%左右的补偿电容器进行无功补偿。但许多人认为按配电变压器容量的8%配置补偿容量太 小,不足以补偿低压侧所有的无功负荷,配变高压侧功率因数提高不大。其实,这是一种误解,因为配变低压侧无 功补偿,作用仅限于减少变压器本身及以上配电网的功率损耗,凡是向负荷输送的无功功率,由于仍然要经过低压 线路的电阻和电抗,配电线路上产生的功率损耗并未减少。所以,配变低压侧无功补偿容量选择过大是无益的。而 只有采取配变低压侧补偿和用户端就地补偿相结合的补偿方式才可以在提高功率因数的同时,减少低压线路损耗, 取得最佳的经济效益。 配变低压侧补偿容量过大不但不经济,而且在变压器空载运行时,或者负荷较轻时,还会造成过补偿,使功率 因数角超前、无功功率向电力系统倒送和电源电压升高。 功率因数角超前的坏处是: (1)电容器与电源仍有无功功率交换,同样减少电源的有功出力。 (2)网络因传输容性无功功率,仍会造成有功损耗。 (3)白白耗费了电容器的设备投资。 另外,如补偿电容过大,当电源缺相时有可能发生铁磁谐振过电压,烧毁电容器和变压器。 所以,配变低压侧补偿容量过大不但不经济,而且还会影响设备的安全运行。 根据以上分析,配变低压侧集中无功补偿根据功率因数的需求选择不科学,补偿容量不应过大。为了防止发生 过补偿现象,配变低压侧无功补偿原则为:其补偿容量不应超过配变的无功功率。 变压器总的无功功率:Qb=Qb0+QbH·(S/Se)2 Qb=[I0%/100+Ud%/100·(S/Se)2]·Se(1) 式中Qb0-变压器空载无功功率,kvar QbH-变压器满载无功功率,kvar I0%-变压器空载电流百分数

电力电容器及无功补偿技术手册

1 电力电容器及无功补偿 技术手册 沙舟编著

目录 前言 第一章基本概念 (1) §1-1 交流电的能量转换 (1) §1-2 有功功率与无功功率 (2) §1-3 电容器的串联与并联 (3) §1-4 并联电容器的容量与损耗 (3) §1-5 并联电容器的无功补偿作用 (4) 第二章并联电容器无功补偿的技术经济效益 (5) §2-1 无功补偿经济当量 (5) §2-2 最佳功率因数的确定 (7) §2-3 安装并联电容器改善电网电压质量 (8) §2-4 安装并联电容器降低线损 (11) §2-5 安装并联电容器释放发电和供电设备容量 (13) §2-6 安装并联电容器减少电费支出 (15)

前言 众所周知,供电质量主要决定于电压、频率和波形三个方面。电网频率稳定决定于电网有功平衡,波形主要决定于网络和负荷的谐波,电压稳定则决定于无功平衡。当然三者之间也具有一定的内在关系。无功平衡决定于网络中无功的产生和消耗。在系统中无功电源有同步发电机、同步调相机、电容器、电缆、输电线路电容、静止无功补偿装置和用户同步电动机,无功负荷则有电力变压器,输电线路电感和用户的感应电动机,各种感应式加热炉、电弧炉等。为了满足系统中无功电力的需求,单靠发电机、调相机、电缆和输电线路电容是不够的,静补装置中也是采用电容器等。因此电容器在系统的无功电源中占有相当比重,加之调相机为旋转设备。建设投资大,运行维护费用高。近年来世界各国都积极装设电容器,满足系统无功电力要求,维持电压稳定。但各国主要是装设并联电容器,装串联电容器者较少,因此编者主要介绍并联电容器无功补偿技术,它还广泛应用于谐波滤波装置,动态无功补偿设备和电气化铁道无功补偿装置之中,因与电力系统谐波有关。限于篇幅,准备在“谐波技术”中详述。这里主要介绍一些无功补偿技术基础。限于编者水平,加上时间仓促,不当之处难免,请读者批评指正。

电力电容器的补偿原理精编版

电力电容器的补偿原理公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

1电力电容器的补偿原理 电容器在原理上相当于产生容性无功电流的发电机。其无功补偿的原理是把具有容性功率负荷的装置和感性功率负荷并联在同一电容器上,能量在两种负荷间相互转换。这样,电网中的变压器和输电线路的负荷降低,从而输出有功能力增加。在输出一定有功功率的情况下,供电系统的损耗降低。比较起来电容器是减轻变压器、供电系统和工业配电负荷的最简便、最经济的方法。因此,电容器作为电力系统的无功补偿势在必行。当前,采用并联电容器作为无功补偿装置已经非常普遍。 2电力电容器补偿的特点 优点 电力电容器无功补偿装置具有安装方便,安装地点增减方便;有功损耗小(仅为额定容量的 %左右);建设周期短;投资小;无旋转部件,运行维护简便;个别电容器组损坏,不影响整个电容器组运行等优点。 缺点 电力电容器无功补偿装置的缺点有:只能进行有级调节,不能进行平滑调节;通风不良,一旦电容器运行温度高于70 ℃时,易发生膨胀爆炸;电压特性不好,对短路稳定性差,切除后有残余电荷;无功补偿精度低,易影响补偿效果;补偿电容器的运行管理困难及电容器安全运行的问题未受到重视等。 3无功补偿方式 高压分散补偿 高压分散补偿实际就是在单台变压器高压侧安装的,用以改善电源电压质量的无功补偿电容器。其主要用于城市高压配电中。 高压集中补偿

高压集中补偿是指将电容器装于变电站或用户降压变电站6 kV~10 kV高压母线的补偿方式;电容器也可装设于用户总配电室低压母线,适用于负荷较集中、离配电母线较近、补偿容量较大的场所,用户本身又有一定的高压负荷时,可减少对电力系统无功的消耗并起到一定的补偿作用。其优点是易于实行自动投切,可合理地提高用户的功率因素,利用率高,投资较少,便于维护,调节方便可避免过补,改善电压质量。但这种补偿方式的补偿经济效益较差。 低压分散补偿 低压分散补偿就是根据个别用电设备对无功的需要量将单台或多台低压电容器组分散地安装在用电设备附近,以补偿安装部位前边的所有高低压线路和变压器的无功功率。其优点是用电设备运行时,无功补偿投入,用电设备停运时,补偿设备也退出,可减少配电网和变压器中的无功流动从而减少有功损耗;可减少线路的导线截面及变压器的容量,占位小。缺点是利用率低、投资大,对变速运行,正反向运行,点动、堵转、反接制动的电机则不适应。 低压集中补偿 低压集中补偿是指将低压电容器通过低压开关接在配电变压器低压母线侧,以无功补偿投切装置作为控制保护装置,根据低压母线上的无功符合而直接控制电容器的投切。电容器的投切是整组进行,做不到平滑的调节。低压补偿的优点:接线简单、运行维护工作量小,使无功就地平衡,从而提高配变利用率,降低网损,具有较高的经济性,是目前无功补偿中常用的手段之一。 4电容器补偿容量的计算 无功补偿容量宜按无功功率曲线或无功补偿计算方法确定,其计算公式如下: QC=p(tgφ1-tgφ2)或是QC=pqc(1) 式中:Qc:补偿电容器容量; P:负荷有功功率; COSφ1:补偿前负荷功率因数; COSφ2:补偿后负荷功率因数; qc:无功功率补偿率,kvar/kw。 5电力电容器的安全运行

电容器组规程

高压电容补偿装置运行维护规程 一、高压补偿装置的运行维护 1、补偿装置投运前的检查内容 1)新装的补偿装置投入前应按接交试验项目试验,并合格。(注意:对金属氧化物避雷器进行检收试验时,不得进行耐电压试验。保护装置试验时,进行保护装置试验时,应在主电路上并接或撤出1~2 台电容器以模拟电容器内部故障,或在二次回路上设定等价故障信号。保护装置在整定范围内应能正常动作。试验次数不少于3 次。) 2)电容器外观良好,无渗漏油现象;电抗器无变形,起包,受潮现象。 3)电容器组的接线应正确,电压应与电网额定电压相符合。 4)电容器组三相间的容量应平衡,其误差不应超过一相总容量的5%。 5)各触点应接触良好,外壳及电容器组与接地网的连接应牢固可靠。 6)放电电阻的阻值和容量应符合规程要求,并经试验合格。 7)与电容器组连接的电缆、断路器(真空接触器)、熔断器等元件应经试验合格。 8)电容器组的继电保护装置应经检验合格,定值正确,并置于投入运行位置。 9)装有专用接地刀闸者,其刀闸应在断开位置。 10)此外还应检查电容器安装处所的建筑结构,通风设施是否合乎规程要求。 11)自动投切装置应经试验合格。 12)新投入运行的电容器组第一次充电时,应在额定电压下冲击合闸三次。 2、补偿装置运行时的巡视检查 对运行中的补偿装置应进行正常巡视检查、定期停电检查以及在发生跳闸、熔丝熔断等现象后进行额外的特殊巡视检查。补偿装置的正常巡视检查应与变(配)电所配电装置巡视检查同时进行。补偿装置在运行期间每天不得少于一次的检查,投运初期,可考虑安排早、中、晚三次。 补偿装置正常巡视检查的内容如下: 1)观察电容器外壳有无膨胀(鼓肚现象),箱体无锈蚀、油漆脱漆起壳现象。 2)电容器油箱是否渗漏油。 3)观察各相电流是否正常,有无不稳定及激增现象。电容器运行电压和运行电流不应超过厂家的规定,三相电流表指示应平衡。 4)观察放电指示灯,以鉴别放电回路电阻是否完好(放电指示灯不参加运行者除外)。 5)装置有无异常的震动、声响和放电声。 6)检查各台电容器上套管(或支持绝缘子)无裂纹及放电闪络痕迹,无破损现象,外观清洁。 7)检查各连接点无烘黑、变色、烤红、冒水汽等过热现象;连接引线铜(铝)排无松动、脱落、断线、扭曲等损伤;螺栓、螺母连接应紧固,无松脱现象。 8)电容器外壳接地良好。 9)对电容器回路附属设备(串联电抗器、放电线圈、避雷器等)检查,按相应类型设备的巡视检查项目进行。 10)环境温度不应超过+40℃。运行中电容器芯子最热点温度不超过60℃,电容器外壳温度不得超过55℃。故电容器组较长时间运行后,需用红外测温仪测量每台电容器外壳与接头处温度。 11)母线电压的变化情况。 12)电容器组电流值的情况(当每投入一组电容器时,原运行电容器组的电流变化幅值不应大于电容器组额定电流的5%)

城区供电公司关于规范柱上配电变压器无功补偿箱施工安装的实施细则

附件 城区供电公司关于规范柱上配电变压器无功补偿箱施工安装的实施细则 第一章总则 第一条为进一步规范城区供电公司低压无功补偿箱的施工工艺,确保新投运无功补偿箱的施工质量,全面降低无功补偿箱及其接线的故障率,特制定本实施细则。 第二条本实施细则适用于城区公司范围内的所有工程,有关无功补偿箱及其连接线缆的施工应严格执行本规定。 第二章无功补偿箱箱体安装 第三条柱上变压器低压无功自动补偿装置的设备规范、主要元部件、组装应满足《低压无功补偿装置及运行监测系统通用订货技术条件》(—)。 第四条补偿箱安装托架宜紧贴变台槽担上端、担头向上翘起,角铁背板固定应牢固。无安装托架的补偿箱应使用横担以及角戗作为补偿箱托架,横担安装位置应高于变压器槽钢。 第五条补偿箱接地引线应采用截面不小于的黑色绝缘线,接地引线与补偿箱连接用螺栓应紧固,接地引线与变

台接地引线连接采用绑扎法,绑扎应整齐紧密,绑扎长度不应小于; 第三章补偿箱用及二次线施工 第六条补偿箱用电流互感器(以下简称补偿箱)应配套选用户外穿芯式电流互感器。 第七条补偿箱应安装于变台低压刀闸负荷侧的担上,变比应根据变压器二次额定电流确定,二次侧接线端子应向下且必须采取防水措施。 第八条补偿箱二次线应选用芯铜芯内层聚氯乙稀绝缘、黑色外护套具有耐气候耐日光性能的电缆,接线前线芯两端应做好相别、极性标记,连接牢固,经检查无误后,装好接线端子防水盖; 第九条补偿箱二次电缆应沿担引至电杆,再沿电杆向下引入补偿箱内。电缆缆身端头处、转弯处及直线段每隔应采用直径铁线与电杆绑扎一圈,缆身应横平竖直,不应沿杆扭斜,电缆与端子连接处应预留返水弯。 第十条伸入补偿箱内的二次电缆应加以固定,芯线接于端子排对应的接线端子上,接线前应进行核相,确保接线正确。 第四章补偿箱电源电缆施工 第十一条补偿箱电源电缆应选用铜芯内层聚氯乙稀绝缘、黑色外护套具有耐气候耐日光性能的四芯统包电缆,

无功补偿电容器运行特性参数选取

无功补偿电容器运行特性参数选取 1 电力电容器及其主要特性参数 电力电容器是无功补偿装置的主要部件。随着技术进步和工艺更新,纸介质电容器已被 自愈式电容器所取代,自愈式电容器采用在电介质中两面蒸镀金属体为电极,其最大的改进是电容器在电介质局部击穿时其绝缘具有自然恢复性能,即电介质局部击穿时,击穿处附近的金属涂层将熔化和气化并形成空洞,由此虽然会造成极板面积减少使电容C 及相应无功功率有所下降,但不影响电容器正常运行。 自愈式电容器主要特性参数有额定电压、电容、无功功率。 1. 1 额定电压 《自愈式低电压并联电容器》第3. 2 条规定“电容器额定电压优先值如 下0. 23 ,0. 4 ,0. 525 及0. 69 kV。”电容器额定电压选取一般比电气设备额定运行电压高5 %。 1. 2 电容 电容器的电容是极板上的电荷相对于极板间电压的比值,该值与极板面积、极板间绝缘 厚度和绝缘介质的介电系数有关, 其计算式为C = 1 4πε× S D 式中ε为极板间绝缘介质的介电系数; S 为电容器极板面积; D 为电容器绝缘层厚度。 在上式中,电容C 数值与电压无直接关系, C 值似乎仅取决于电容器极板面积和绝缘介质,但这只是电容器未接网投运时的静态状况;接网投运后,由于电介质局部击穿造成极板面积减少从而会影响到电容C 数值降低,因此运行过程中, 电容C 是个逐年衰减下降的变量,其衰减速度取决于运行电压状况和自身稳态过电压能力。出厂电容器的电容值定义为静态电 容。一般,投运后第一年电容值下降率应在2 %以内,第二年至第五年电容值下降率应在1 %~ 2 % ,第五年后因电介质老化,电容值将加速下降,当电容值下降至出厂时的85 %以下,可认为该电容器寿命期结束。 1. 3 无功功率 在交流电路中,无功功率QC = UI sinφ由于电容器电介质损耗角极小,φ= 90°,所以sin φ= 1 ,则无功功率QC = UI =ωCU2 ×10 - 3 = 2πf CU2 ×10 - 3 (μF) ,从该式可见,电容器无功功率不仅取决于电容C ,而且还与电源频率f 、端电压U 直接相关,电容器额定无功功率的准确定义应是标准频率下外接额定电压时静态电容C 所对应的无功率。接网投运后电容器所输出实际无功功率能否达到标定容量,则需视运行电压状况。当电网电压低于电容器额定电压时,电容器所输出的无功功率将小于标定值。因此如果电容器额定电压选择偏高,电容器实际运行电压长期低于额定值,很可能因电容器无功出力低于设计值造成电网无功短 缺。 2 无功补偿电容装置参数的选取误区 无功补偿装置在进行设计选型及设备订货时,提供给厂家的参数往往仅是电容补偿柜型 号和无功功率数值,而电容器额定电压及静态电容值这两个重要参数常被忽略。由于电容器 生产厂家对产品安装处电压状况不甚了解,在产品设计时往往侧重于降低产品生产成本和减 少电介质局部击穿,所选取的电容器额定电压往往高于国家标准推荐值,这样做对电网运行的无功补偿效果会造成什么影响对电网建设投资又会引起什么变化呢可通过以下案例进行 分析。 例如某台10 0. 4 kV 变压器,按照功率因数0. 9 的运行要求,需在变压器低压侧进行集中 无功补偿,经计算需补偿无功功率100 kvar ,如果按额定电压U = 450 V 配置电容器,根据QC=ωCU2 ×10 - 3 计算,电容器组的静态电容值C 为1 572μF ,接入电网后在运行电压U =400 V 的状态下,该电容器实际向电网提供的无功功率QC 为79 kvar ,补偿效果仅达预期的79 %。反之,在上述条件下,要想保证实际补偿效果为100 kvar ,则至少需配置电容器无功功率为127 kvar ,也就意味着设备投资需要增加27 %。中山市2004 年变压器增加898 台,合计容量近60 万kvar ,按30 %补偿率计需补偿无功功率近18 万kvar 。

电力电容器的补偿原理

1电力电容器的补偿原理 电容器在原理上相当于产生容性无功电流的发电机。其无功补偿的原理是把具有容性功率负荷的装置和感性功率负荷并联在同一电容器上,能量在两种负荷间相互转换。这样,电网中的变压器和输电线路的负荷降低,从而输出有功能力增加。在输出一定有功功率的情况下,供电系统的损耗降低。比较起来电容器是减轻变压器、供电系统和工业配电负荷的最简便、最经济的方法。因此,电容器作为电力系统的无功补偿势在必行。当前,采用并联电容器作为无功补偿装置已经非常普遍。 2电力电容器补偿的特点 2.1优点 电力电容器无功补偿装置具有安装方便,安装地点增减方便;有功损耗小(仅为额定容量的0.4 %左右);建设周期短;投资小;无旋转部件,运行维护简便;个别电容器组损坏,不影响整个电容器组运行等优点。 2.2缺点 电力电容器无功补偿装置的缺点有:只能进行有级调节,不能进行平滑调节;通风不良,一旦电容器运行温度高于70 ℃时,易发生膨胀爆炸;电压特性不好,对短路稳定性差,切除后有残余电荷;无功补偿精度低,易影响补偿效果;补偿电容器的运行管理困难及电容器安全运行的问题未受到重视等。 3无功补偿方式 3.1高压分散补偿 高压分散补偿实际就是在单台变压器高压侧安装的,用以改善电源电压质量的无功补偿电容器。其主要用于城市高压配电中。 3.2高压集中补偿

高压集中补偿是指将电容器装于变电站或用户降压变电站6 kV~10 kV高压母线的补偿方式;电容器也可装设于用户总配电室低压母线,适用于负荷较集中、离配电母线较近、补偿容量较大的场所,用户本身又有一定的高压负荷时,可减少对电力系统无功的消耗并起到一定的补偿作用。其优点是易于实行自动投切,可合理地提高用户的功率因素,利用率高,投资较少,便于维护,调节方便可避免过补,改善电压质量。但这种补偿方式的补偿经济效益较差。 3.3低压分散补偿 低压分散补偿就是根据个别用电设备对无功的需要量将单台或多台低压电容器组分散地安装在用电设备附近,以补偿安装部位前边的所有高低压线路和变压器的无功功率。其优点是用电设备运行时,无功补偿投入,用电设备停运时,补偿设备也退出,可减少配电网和变压器中的无功流动从而减少有功损耗;可减少线路的导线截面及变压器的容量,占位小。缺点是利用率低、投资大,对变速运行,正反向运行,点动、堵转、反接制动的电机则不适应。 3.4低压集中补偿 低压集中补偿是指将低压电容器通过低压开关接在配电变压器低压母线侧,以无功补偿投切装置作为控制保护装置,根据低压母线上的无功符合而直接控制电容器的投切。电容器的投切是整组进行,做不到平滑的调节。低压补偿的优点:接线简单、运行维护工作量小,使无功就地平衡,从而提高配变利用率,降低网损,具有较高的经济性,是目前无功补偿中常用的手段之一。 4电容器补偿容量的计算 无功补偿容量宜按无功功率曲线或无功补偿计算方法确定,其计算公式如下: QC=p(tgφ1-tgφ2)或是QC=pqc(1) 式中:Qc:补偿电容器容量; P:负荷有功功率; COSφ1:补偿前负荷功率因数; COSφ2:补偿后负荷功率因数; qc:无功功率补偿率,kvar/kw。 5电力电容器的安全运行

无功补偿考试试题 (1)

一单项选择(共10道) 1 《并联电容器装置设计规范》GB50227-2008适用于(A )kV及以下电压等级的变电站、配电站中无功补偿用三相交流高压、低压并联电容器装置的新建、扩建工程设计。 (A)750(B)220 (C)110(D)35 2电抗率是指并联电容器装置的( C )之比,以百分数表示。 (A)串联电抗器的额定容抗与串联连接的电容器的额定感抗 (B)串联连接的电容器的额定容抗与串联电抗器的额定感抗 (C)串联电抗器的额定感抗与串联连接的电容器的额定容抗 (D)串联连接的电容器的额定感抗与串联电抗器的额定容抗 3每个串联段的电容器并联总容量不应超过( B )kvar。 (A)4200(B)3900 (C)2300 (D)1200 4 并联电容器装置总回路和分组回路的电器导体选择时,回路工作电流应按稳态过电流最大值确定,过电流倍数应为回路额定电流的(C )倍。 (A)1.1 (B)1.2 (C)1.3(D)1.5 5用于单台电容器保护的外熔断器的熔丝额定电流,应按电容器额定电流的(C )倍选择。 (A)0.83--0.95 (B)0.95--1.12 (C)1.37--1.50(D)2--5 6 并联电容器装置的放电器件应满足电容器断电后,在5s内将电容器的剩余电压降至(C )V及以下。(A)380(B)220 (C)50(D)36 7动态无功补偿装置SVC自身产生的3、5、7、11次谐波,采用角型接线,其中( C )次谐波不会流入系统。 (A)5(B)7 (C)3 (D)11 8、计算电容器额定电压是,需要考虑哪些因素(A B C) (A)系统额定电压(B)串联电抗器引起的电压抬升 (C)谐波引起的电压抬升(D)电容器内部元件额定电压 9、110kV系统允许的电压总畸变率为(C) (A)1.6% (B)2.0% (C)2.4% (D)3.0% 10、电能质量对频率指标有严格的要求,系统频率主要取决于(B) (A)有功(B)无功(C)电压(D)电流 二填空题(共10道) 1、电力系统无功电源主要有同步调相机、同步发电机、电力电容器、静止无功发生器。 2、电容器成套装置一般由高压并联电容器、串联电抗器、隔离开关、电流互感器、避雷器以及其余附件组成。 3、并联电容器成套装置回路中串联电抗器的作用是抑制谐波和限制合闸涌流。 4、TCR型静止动态无功补偿装置一般具有热管自冷、水冷两种冷却方式。 5、电力电子元器件串联使用要解决均压问题,并联使用要解决均流问题,目前最常用的均压方式为在元器件两端并联RC均压回路。 6、静止无功发生器SVG一般具有空载、感性、容性三种运行方式。 2U。三相半波可控整流电路中,晶闸管承受7、单相全波可控整流电路中,晶闸管承受的最大反向电压为2 6U。(电源相电压为U2) 的最大反向电压为2 8、磁控型动态无功补偿装置其励磁方式一般分为内励磁和外励磁两种方式。 9、电能质量指标主要包括电压、电流、波形和畸变率。

相关文档
相关文档 最新文档