文档库 最新最全的文档下载
当前位置:文档库 › MATLAB数学建模大作业

MATLAB数学建模大作业

MATLAB数学建模大作业
MATLAB数学建模大作业

******大学

本科实验报告

课程名称:****建模与仿真

设计专题:单服务员的排队模型学生姓名:***

学号:**********

2012年04月30日

一、实验题目和要求

实验题目:

在某商店有一个售货员,顾客陆续来到,售货员

逐个地接待顾客。当到来的顾客较多时,一部分

顾客便须排队等待,被接待后的顾客便离开商店。

设:a.顾客到来间隔时间服从参数为5分钟的指

数分布;b.对顾客的服务时间服从[3,12]上的均

匀分布;c.排队按先到先服务规则,队长无限制,

并假定一个工作日为8小时,时间以分钟为单位。

要求:

1)模拟1个工作日内完成服务的个数及顾客平均

等待时间t。

2)模拟10个工作日,求出平均每日完成服务的个

数及每日顾客的平均等待时间

3)用柱状图画出10个工作日的平均每日完成的

服务个数及每日顾客的平均等待时间。

二、程序结构图(或功能说明)

文件夹中的m文件在j取1时模拟单工作日的服务

情况,j取1到10时模拟10个工作日的服务情况。

三、程序流程图

NO

YES NO

i=i+1

计算第i 个顾客离开时的时刻t 计算第i+1个顾客的等待时间s 记录i 值,跳出循环 计算第i+1个顾客的等待时间s 计算第i 个顾客离开时的时刻t 构造顾客间隔时间序列(TjM )

构造顾客所需服务时间序列(TfM )

t>480 j=1

YES

NO

YES

NO

j=j+1 i=i+1

计算第i 个顾客离开时的时刻t

计算第i+1个顾客的等待时间s 记录i 值,跳出循环

计算第i+1个顾客的等待时间s 计算第i 个顾客离开时的时刻t 构造顾客间隔时间序列(TjM ) 构造顾客所需服务时间序列(TfM ) t>480 j=1 j<10

四、程序运行结果及说明

1.j=1到10,即10个工作日的服务情况:

2.j=1,即单工作日的服务情况:

五、源程序清单

clear,clc;

sMeanM=[];sIM=[];

%模拟10个工作日(for j=1:10)

for j=1:10 %求一天的话令j=1

TjM=[];TfM=[];sTj=0;

%构造单个工作日的排队系列while (sTj<=480)

while (sTj<=480)

Tjp=exprnd(0.2);

Tfp=unifrnd(3,12);

TjM=[TjM;Tjp];%通过指数分布随机数发生器构造顾客间隔时间序列(TjM)

TfM=[TfM;Tfp];%通过均匀分布随机数发生器构造顾客所需服务时间序列(TfM)

sTj=sTj+Tjp;

end

n=length(TjM);

s=0;sM=[];T=[];

%模拟该工作日内服务员接待顾客(for i=1:n-1)

for i=1:n-1

t=sum(TjM(1:i,1))+s+TfM(i);%计算第i个顾客离开时的时刻t

s=(t-sum(TjM(1:(i+1),1)))*((t-sum(TjM(1:(i+1),1)) )>0);%计算第i+1个顾客的等待时间s

%如果时刻t>480,记录i值,跳出循环

if t>480

sI=i;break

else

%记录第i+1个顾客等待时间s值,和第i个顾客离开时刻t

T=[T;t];

sM=[sM;s];

end

end

%记算该工作日顾客平均等待时间sMean值

sMean=mean([0;sM]);

%记录每个工作日顾客平均等待时间序列sMeanM

sMeanM=[sMeanM;sMean]

%记录服务员接待顾客数目序列sIM

sIM=[sIM;sI]

end

%记算平均每天完成服务的个数和每日顾客的平均等待时间

j=1:1:10;

bar(sIM);

title('平均每天完成服务人数');

figure;

bar(sMeanM);

title('平均每天等待时间')

六、对本课程的几点建议

1.希望老师能够多提供一些MATLAB的典型例题让

同学进行尝试,增强同学们的动手操作能力。例如本题就很具有代表性,以前我学习数学建模时这道例题做过好多遍,尤其是流程图的画法,它能够清楚地告诉同学们具体的运算流程与结构,使自己的做题思维有着很强的先后顺序,编代码时自然得心应手。同时,我记得自己在以前老师

的指导下不停地进行完善这一题的结构与思路,从中也获得了很多知识与能力,这就是典型例题的作用。

2.希望老师多重视同学们的上机实践机会与能力,

有时心里想的与实际操作时差距很大,眼高手低也是我当时学习数学建模时的一大弊病,总感觉代码在自己的心里已经很清楚了,无须再进行上机亲自去编,但是这样就无法让我了解到一些小的毛病,例如函数明编错等等不起眼的错误,但是他们的存在毕竟是自己一种错误的表现形式。

3.还很清楚的记得在自己刚开始学习数学建模时手

里就准备了一个小的笔记本,上面大大小小有很多例题,也有很多MATLAB的具体知识点,因为MATLAB有些知识过于零碎,自然在学习时就应当不停地进行复习与回顾,这就要求同学们有自己的一个储存知识的本子,时刻进行回忆学习。所以我建议老师让同学们都准备一个笔记本来收录自己所学到的知识。

4.建议老师能够不停地提醒同学们学习建模不能不

懂装懂,不会的及时去问指导老师,建模的知识就在那里,如果我们因为没有接触过或者接触很少而不懂,这是很正常的,我们要做的就是不断

数学建模(Matlab)

数学规划作业(MatLab) 1、某厂向用户提供发动机,合同规定,第一、二、三季度末分别交货40台、60台、80台.每季度的生产费用为()2 =+ f x ax bx (单位:元), 其中x是该季度生产的台数.若交货后有剩余,可用于下季度交货,但需支付存储费,每台每季度c元.已知工厂每季度最大生产能力为100台,第一季度开始时无存货,设a=50、b=0.2、c=4,问:工厂应如何安排生产计划,才能既满足合同又使总费用最低.讨论a、b、c变化对计划的影响,并作出合理的解释. 解: 问题的分析和假设: 分析: 问题的关键在于由于工厂的生产能力足以满足每个季度用户的需求,但是为了使总费用最少,那么利用每个季度生产费用的不同,可用利用上个生产费用低的季度多生产来为下个季度进行准备,前提是本月节省下的费用减去总的发动机存储费用还有剩余,这样生产才有价值,才可能满足合同的同时又能使总费用最低。基本假设:1工厂的生产能力不受外界环境因素影响。2为使总费用最低,又能满足合同要求,各个季度之间的生产数量之间是有联系的。3第一季度开始时无存货。4工厂每季度的生关费用与本季度生产的发动机台数有关。5生产要按定单的数量来进行,生产的数量应和订单的数量相同,以避免生产出无用的机器。 符号规定:X1―――第一季度生产发动机的数量 X2―――第二季度生产发动机的数量

X3―――第三季度生产发动机的数量 建模: 1.三个季度发动机的总的生产量为180台。 2.每个季度的生产量和库存机器的数量之和要大于等于本季度的交货数量。 3.每个月的生产数量要符合工厂的生产能力。 4.将实际问题转化为非线性规划问题,建立非线性规划模型 目标函数 min f(x)=50(x1+x2+x3)+0.2(x12+x22+x32)+4(x1-40)+4(x1+x2-100) 整理,得 min f(x)=50(x1+x2+x3)+0.2(x12+x22+x32)+4(2x1+x2-140) 约束函数s.t x1+x2≥100; x1+x2+x3=180; 40≤x1≤100; 0≤x2≤100; 0≤x3≤100; 求解的Matlab程序代码: M-文件 fun.m: function f=fun (x); f=50*(x(1)+x(2)+x(3))+0.2*(x(1)^2+x(2)^2+x(3)^2)+4*(2*x(1) +x(2)-140)主程序fxxgh.m:

2015研究生数学建模MATLAB程序(完整版)

′ú??ò?£o % ?a?ü1y3ì?°??ò??ü??í3?? clear clc fid1=fopen('mingwen1.txt','r'); str1=fgets(fid1); fclose(fid1); fid2=fopen('jiemihou1.txt','r'); str2=fgets(fid2); fclose(fid2); % é?è¥μ¥′ê????μ?????oí±êμ?·?o? ad=find(str2==',');str2(ad)='';ad=find(str2=='.');str2(ad)='';ad=find(str2==';') ;str2(ad)=''; ad=find(str2=='''');str2(ad)='';ad=find(str2=='?');str2(ad)='';ad=find(str2=='£o');str2(ad)=''; ad=find(str2=='"');str2(ad)='';ad=find(str2=='-');str2(ad)='';ad=find(str2= ='/');str2(ad)=''; ad=find(str2==' ');str2(ad)=''; for i=0:25; ad=find(str1=='A'+i);str1(ad)='a'+i; end for i=0:25; ad=find(str2=='A'+i);str2(ad)='a'+i; end n1(1,26)=0; n2(1,26)=0; n1(1)=sum(str1=='a');n2(1)=sum(str2=='a'); n1(2)=sum(str1=='b');n2(2)=sum(str2=='b'); n1(3)=sum(str1=='c');n2(3)=sum(str2=='c'); n1(4)=sum(str1=='d');n2(4)=sum(str2=='d'); n1(5)=sum(str1=='e');n2(5)=sum(str2=='e'); n1(6)=sum(str1=='f');n2(6)=sum(str2=='f'); n1(7)=sum(str1=='g');n2(7)=sum(str2=='g'); n1(8)=sum(str1=='h');n2(8)=sum(str2=='h'); n1(9)=sum(str1=='i');n2(9)=sum(str2=='i'); n1(10)=sum(str1=='j');n2(10)=sum(str2=='j'); n1(11)=sum(str1=='k');n2(11)=sum(str2=='k'); n1(12)=sum(str1=='l');n2(12)=sum(str2=='l'); n1(13)=sum(str1=='m');n2(13)=sum(str2=='m'); n1(14)=sum(str1=='n');n2(14)=sum(str2=='n'); n1(15)=sum(str1=='o');n2(15)=sum(str2=='o');

数学建模大作业

兰州交通大学 数学建模大作业 学院:机电工程学院 班级:车辆093 学号:200903812 姓名:刘键学号:200903813 姓名:杨海斌学号:200903814 姓名:彭福泰学号:200903815 姓名:程二永学号:200903816 姓名:屈辉

高速公路问题 1 实验案例 (2) 1.1 高速公路问题(简化) (2) 1.1.1 问题分析 (3) 1.1.2 变量说明 (3) 1.1.3 模型假设 (3) 1.1.4 模型建立 (3) 1.1.5 模型求解 (4) 1.1.6 求解模型的程序 (4) 1实验案例 1.1 高速公路问题(简化) A城和B城之间准备建一条高速公路,B城位于A城正南20公里和正东30公里交汇处,它们之间有东西走向连绵起伏的山脉。公路造价与地形特点有关,图4.2.4给出了整个地区的大致地貌情况,显示可分为三条沿东西方向的地形带。 你的任务是建立一个数学模型,在给定三种地形上每公里的建造费用的情况下,确定最便宜的路线。图中直线AB显然是路径最短的,但不一定最便宜。而路径ARSB过山地的路段最短,但是否是最好的路径呢? A B 图8.2 高速公路修建地段

1.1.1 问题分析 在建设高速公路时,总是希望建造费用最小。如果要建造的起点、终点在同一地貌 中,那么最佳路线则是两点间连接的线段,这样费用则最省。因此本问题是一个典型的最优化问题,以建造费用最小为目标,需要做出的决策则是确定在各个地貌交界处的汇合点。 1.1.2 变量说明 i x :在第i 个汇合点上的横坐标(以左下角为直角坐标原点),i =1,2,…,4;x 5=30(指目的地B 点的横坐标) x=[x 1,x 2,x 3,x 4]T l i :第i 段南北方向的长度(i =1,2, (5) S i :在第i 段上地所建公路的长度(i =1,2, (5) 由问题分析可知, () ()() () 2 542552 432442 322332212 222 1211x x l S x x l S x x l S x x l S x l S -+=-+=-+=-+=+= C 1:平原每公里的造价(单位:万元/公里) C 2:高地每公里的造价(单位:万元/公里) C 3:高山每公里的造价(单位:万元/公里) 1.1.3 模型假设 1、 假设在相同地貌中修建高速公路,建造费用与公路长度成正比; 2、 假设在相同地貌中修建高速公路在一条直线上。在理论上,可以使得建造费用最少, 当然实际中一般达不到。 1.1.4 模型建立 在A 城与B 城之间建造一条高速公路的问题可以转化为下面的非线性规划模型。优化目标是在A 城与B 城之间建造高速公路的费用。 () 4,3,2,1300. .)(min 5142332211=≤≤++++=i x t s S C S C S C S C S C x f i

MATLAB及在数学建模中的应用

第1讲MATLAB及 在数学建模中的应用 ? MatLab简介及基本运算?常用计算方法 ?应用实例

一、 MatLab简介及基本运算 1.1 MatLab简介 1.2 MatLab界面 1.3 MatLab基本数学运算 1.4 MatLab绘图

1.1 MatLab简介?MATLAB名字由MATrix和 LABoratory 两词组成。20世纪七十年代后期, 美国新墨西哥大学计算机科学系主任Cleve Moler教授为减轻学生编程负担,为学生设计了一组调用LINPACK和EISPACK库程序的“通俗易用”的接口,此即用FORTRAN编写的萌芽状态的MATLAB。

?经几年的校际流传,在Little的推动下,由Little、Moler、Steve Bangert合作,于1984年成立了MathWorks公司,并把MATLAB正式推向市场。从这时起,MATLAB的内核采用C语言编写,而且除原有的数值计算能力外,还新增了数据图视功能。

?1997年春,MATLAB5.0版问世,紧接着是5.1、5.2、5.3、6.0、6.1、6.5、7.0版。现今的MATLAB拥有更丰富的数据类型和结构、更友善的面向对象、更加快速精良的图形可视、更广博的数学和数据分析资源、更多的应用开发工具。 ?20世纪九十年代的时候,MATLAB已经成为国际控制界公认的标准计算软件。

?MATLAB具有用法简易、可灵活运用、程式结构强又兼具延展性。以下为其几个特色: ①可靠的数值运算和符号计算。在MATLAB环境中,有超过500种数学、统计、科学及工程方面的函 数可使用。 ②强大的绘图功能。 MATLAB可以绘制各种图形,包括二维和三维图形。 ③简单易学的语言体系。 ④为数众多的应用工具箱。

数学建模期末试卷A及答案

2009《数学建模》期末试卷A 考试形式:开卷 考试时间:120分钟 姓名: 学号: 成绩: ___ 1.(10分)叙述数学建模的基本步骤,并简要说明每一步的基本要求。 2.(10分)试建立不允许缺货的生产销售存贮模型。 设生产速率为常数k ,销售速率为常数r ,k r <。 在每个生产周期T 内,开始一段时间(00T t ≤≤) 边生产边销售,后一段时间(T t T ≤≤0)只销售不 生产,存贮量)(t q 的变化如图所示。设每次生产开工 费为1c ,每件产品单位时间的存贮费为2c ,以总费用最小为准则确定最优周期T ,并讨论k r <<和k r ≈的情况。 3.(10分)设)(t x 表示时刻t 的人口,试解释阻滞增长(Logistic )模型 ?????=-=0)0()1(x x x x x r dt dx m 中涉及的所有变量、参数,并用尽可能简洁的语言表述清楚该模型的建模思想。 4.(25分)已知8个城市v 0,v 1,…,v 7之间有一个公路网(如图所示), 每条公路为图中的边,边上的权数表示通过该公路所需的时间. (1)设你处在城市v 0,那么从v 0到其他各城市,应选择什么路径使所需的时间最短? (2)求出该图的一棵最小生成树。 5.(15分)求解如下非线性规划: 20 s.t.2 122 2 121≤≤≤+-=x x x x x z Max 6.(20分)某种合金的主要成分使金属甲与金属乙.经试验与分析, 发现这两种金属成分所占的百分比之和x 与合金的膨胀系数y 之间有一定的相关关系.先测试了12次, 得数据如下表:

的模型。 7.(10分)有12个苹果,其中有一个与其它的11个不同,或者比它们轻,或者比它们重,试用没有砝码的天平称量三次,找出这个苹果,并说明它的轻重情况。 《数学建模》模拟试卷(三)参考解答 1. 数学模型是对于现实世界的某一特定对象,为了某个特定目的,作出一些必要的简化和假设,运用适当的数学工具得到的一个数学结构。它或者能解释特定现象的现实状态,或者能预测对象的未来状态,或者能提供处理对象的最优决策或控制。 数学建模方法 一般来说数学建模方法大体上可分为机理分析和测试分析两种。 机理分析是根据客观事物特征的认识,找出反应内部机理的数量规律,建立的数学模型常有明确的物理意义。 测试分析是将研究对象看作一个"黑箱"(意即内部机理看不清楚),通过对测量数据的统计分析,找出与数据拟合得最好的模型。 数学建模的一般步骤 (1)模型准备:首先要了解问题的实际背景,明确题目的要求,收集各种必要的信息。 (2)模型假设:为了利用数学方法,通常要对问题做出必要的、合理的假设,使问题的主要特征凸现出来,忽略问题的次要方面。 (3)模型构成:根据所做的假设以及事物之间的联系,构造各种量之间的关系,把问题化为数学问题,注意要尽量采用简单的数学工具。 4)模型求解:利用已知的数学方法来求解上一步所得到的数学问题,此时往往还要作出进一步的简化或假设。 (5)模型分析:对所得到的解答进行分析,特别要注意当数据变化时所得结果是否稳定。 (6)模型检验:分析所得结果的实际意义,与实际情况进行比较,看是否符合实际,如果不够理想,应该修改、补充假设,或重新建模,不断完善。 (7)模型应用:所建立的模型必须在实际应用中才能产生效益,在应用中不断改进和完善。 2. 单位时间总费用 k T r k r c T c T c 2)()(21-+= ,使)(T c 达到最小的最优周期 )(2T 21*r k r c k c -= 。当k r <<时,r c c 21*2T = ,相当于不考虑生产的情况;当k r ≈时,∞→*T ,因为产量被售量抵消,无法形成贮存量。 3. t ——时刻; )(t x ——t 时刻的人口数量; r ——人口的固有增长率; m x ——自然资源和环境条件所能容纳的最大人口数量;

数学建模期末考试2018A试的题目与答案

华南农业大学期末考试试卷(A卷) 2012-2013学年第二学期考试科目:数学建模 考试类型:(闭卷)考试考试时间:120 分钟 学号姓名年级专业 一、(满分12分)一人摆渡希望用一条船将一只狼.一只羊.一篮白菜从河岸一边带到河岸对面.由于船的限制.一次只能带一样东西过河.绝不能在无人看守的情况下将狼和羊放在一起;羊和白菜放在一起.怎样才能将它们安全的带到河对岸去? 建立多步决策模型,将人、狼、羊、白菜分别记为i = 1.2.3.4.当i在此岸时记x i = 1.否则为0;此岸的状态下用s = (x1.x2.x3.x4)表示。该问题中决策为乘船方案.记为d = (u1, u2, u3, u4).当i 在船上时记u i = 1.否则记u i = 0。 (1) 写出该问题的所有允许状态集合;(3分) (2) 写出该问题的所有允许决策集合;(3分) (3) 写出该问题的状态转移率。(3分) (4) 利用图解法给出渡河方案. (3分) 解:(1) S={(1,1,1,1), (1,1,1,0), (1,1,0,1), (1,0,1,1), (1,0,1,0)} 及他们的5个反状(3分) (2) D = {(1,1,0,0), (1,0,1,0), (1,0,0,1), (1,0,0,0)} (6分) (3) s k+1 = s k + (-1) k d k (9分) (4)方法:人先带羊.然后回来.带狼过河.然后把羊带回来.放下羊.带白菜过去.然后再回来把羊带过去。 或: 人先带羊过河.然后自己回来.带白菜过去.放下白菜.带着羊回来.然后放下羊.把狼带过去.最后再回转来.带羊过去。(12分) . .

数学建模matlab例题参考及练习

数学实验与数学建模 实验报告 学院: 专业班级: 姓名: 学号: 完成时间:年月日

承 诺 书 本人承诺所呈交的数学实验与数学建模作业都是本人通过学习自行进行编程独立完成,所有结果都通过上机验证,无转载或抄袭他人,也未经他人转载或抄袭。若承诺不实,本人愿意承担一切责任。 承诺人: 年 月 日 数学实验学习体会 (每个人必须要写字数1200字以上,占总成绩的20%) 练习1 一元函数的图形 1. 画出x y arcsin =的图象. 2. 画出x y sec =在],0[π之间的图象. 3. 在同一坐标系中画出x y =,2x y =,3 x y = ,3x y =,x y =的图象. 4. 画出3 2 3 2)1()1()(x x x f + +-=的图象,并根据图象特点指出函数)(x f 的奇偶性. 5. 画出)2ln(1++=x y 及其反函数的图象. 6. 画出3 21+=x y 及其反函数的图象.

练习2 函数极限 1.计算下列函数的极限. (1) x x x 4 cos 1 2 sin 1 lim 4 - + π → . 程序: sym x; f=(1+sin(2*x))/(1-cos(4*x)); limit(f,x,pi/4) 运行结果: lx21 ans = 1 (2). 程序: sym x; f=(1+cos(x))^(3*sec(x)); limit(f,x,pi/2) 运行结果: lx22 ans = exp(3) (3) 2 2 ) 2 ( sin ln lim x x x - π π → . 程序: sym x; f=log(sin(x))/(pi-2*x)^2; limit(f,x,pi/2) 运行结果: lx23 ans = -1/8 (4) 2 1 2 lim x x e x →. 程序: x x x sec 3 2 ) cos 1( lim+ π →

数学建模章绍辉版第四章作业

第四章作业 第二题: 针对严重的交通情况,国家质量监督检验检疫局发布的国家标准,车辆驾驶人员血液中的酒精含量大于或等于20mg/100ml,小于80mg/100ml 为饮酒驾车,血液中的酒精含量大于或等于80mg/100ml 的为醉酒驾车。 下面分别考虑大李在很短时间内和较长时间内(如2个小时)喝了三瓶啤酒,多长时间内驾车就会违反新的国家标准。 1、 问题假设 大李在短时间内喝下三瓶啤酒后,酒精先从吸收室(肠胃)吸收进中心室(血液和体液),然后从中心室向体外排除,忽略喝酒的时间,根据生理学知识,假设 (1) 吸收室在初始时刻t=0时,酒精量立即为 32 D ;在任意时刻,酒精从吸收室吸收进中心室的速率(吸收室在单位时间内酒精含量的减少量)与吸收室的酒精含量成正比,比例系数为1k ; (2) 中心室的容积V 保持不变;在初始时刻t=0时,中心室的酒精含量为0;在任意时 刻,酒精从中心室向体外排除的速率(中心室在单位时间内酒精含量的减少量)与 中心室的酒精含量成正比,比例系数为2k ; (3) 在大李适度饮酒没有酒精中毒的前提下,假设1k 和2k 都是常量,与饮酒量无关。 2、 符号说明 酒精量是指纯酒精的质量,单位是毫克; 酒精含量是指纯酒精的浓度,单位是毫克/百毫升; ~t 时刻(小时) ; ()~x t 在时刻t 吸收室(肠胃)内的酒精量(毫克) ; 0~D 两瓶酒的酒精量(毫克); (t)~c 在时刻t 吸收室(血液和体液)的酒精含量(毫克/百毫升) ; 2()~c t 在时刻t 中心室(血液和体液)的酒精含量(毫克/百毫升); ~V 中心室的容积(百毫升) ; 1~k 酒精从吸收室吸收进中心室的速率系数(假设其为常数2.0079); 2~k 酒精从中心室向体外排除的速率系数(假设其为常数0.1855); 3~k 在短时间喝下三瓶酒的假设下是指短时间喝下的三瓶酒的酒精总量除以中心室体积, 即03/2D V ;而在较长时间内(2小时内)喝下三瓶酒的假设下就特指03/4D V .

数学模型期末考试试题及答案

试卷学期《数学模型》期末考试A山东轻工业学院08/09学年II 页)本试卷共4< 题说明总号考次开试分考卷试,参加考试的同学可以携带任何资料,可以 使用计算器,但上述物品严禁相互借用。16分,每小题8分)一、简答题<本题满分得分)式,写出与§2.2录像机计数器的用途中,仔细推算一下<11、在阅卷人<2)式的差别,并解释这个差别;中不允许缺货的存储模型中为什么没有考虑生产 费用,在什么条件下可2、试说明在§3.1 以不考虑它;8分)二、简答题<本题满分16分,每小题得分1阅卷人?s)(ti的变化情时、对于1§5.1传染病的SIR 模型,叙述当0?况并加以证明。 E 2、在§6.1捕鱼业的持续收获的效益模型中,若单位捕捞强度的费用为捕捞强度的减函数,)0?0,b?c?a?bE,(a即,请问如何达到最大经济效益?本题满分16分,每小题8分)三、 简答题<得分s程是法图解说明为什么方策、1在§9.3 随机存储略中,请用)S?(x)?cI(I的最小正根。阅卷人0、请结合自身特点谈一下如何培养数学建模 的能力?2 分)四、<本题满分20得分219人,二年级有某中学有三个年级共1000名学生,一年级有人。现要选20名校级优秀学生,请用下列办316人,三年级有465 阅卷人Q ;<2))按比例加惯例的方法法分配各年级的优秀学生名额:<1值法。另外如果校级优秀学个,重新进行分配,并按照席位分配的理想生名额增加 到21化准则分析分配结果。得分分)16五、<本题满分阅

卷人大学生毕业生小李为选择就业岗位建立了层次分析模型,影响就业的因素考虑了收入情况、发展空间、社会声誉三个方面,有三个层次结构图如图,已知准则层。 选可业就岗位供择对目标层的成对比较矩阵1 / 4 选择就业岗位 71/1/43511????????23111/2/AB??41,比较矩阵分别为成,方案层对准则层的对 ????1????22171/51/1????117463????????3112/B?3B?1/41。,JhYEQB29bj ????32????1/21/6111/71/3????请根据层次分析方法为小李确定最佳的工作岗位。 16分)六、<本题满分得分某保险公司欲开发一种人寿保险,投保人需要每年缴纳一定数的阅卷人<额保险费,如果投保人某年未按时缴纳保费则视为保险合同终止保险公司需要对投保人的健康、疾病、死亡和退保的情况作出评估,从而制退保)。 定合适的投保金额和理赔金额。各种状态间相互转移的情况和概率如图。试建立马氏链模型分析在投保人投保时分别为健康或疾病状态下,平均需要经过多少年投保人就会出现退保或死亡的情况,以及出现每种情况的概率各是多少?5Y944Acbad 退保死亡II 学期《数学模型》期末考试A试卷解答山东轻工业 学院08/09学年0.05 0.03 分)分,每小题8一、简答题<本题满分160.15 0.07 m(m?1)???2mr?vt2?)得4分1、答:由<1,。。。。。。。。。。。。。。。。。。。。20.1 健康疾病2???knk2?)t?2r?n?(knm?代入得。。。。。。。。。。。。。。。。。。。。,6分将 vv0.6 ???2r?r2??r,则得<2因为)。所以。。。。。。。。。。。。。。。。。。。。8分 crc,每天的平均费用是,则平均每天的生产费用为2、答:假设每件产品的生产费用为 33ccrT112??crC(T)?4分,。。。。。。。。。。。。。。。。。。。。 1132T1)TdC()TdC(11)T(TC?下面求最小,发现使,所以111dTdT12c1??TT,与生产费用无关,所以不考虑。。。。。。。。。。。。。。。。。。。。。81cr2分 二、简答题<本题满分16分,每小题8分) 1di??s?),(1s??i,1、答:由<14若)0?dtdi1s)(t??s,?0i时,4增 加; 。。。。。。。。。。。。。。。。。。。。分当0?dtdi1?i(ts),?0i时,达到最大值当;

数学建模期末大作业

数学建模期末大作业论文 题目:A题美好的一天 组长:何曦(2014112739) 组员:李颖(2014112747)张楚良(2014112740) 班级:交通工程三班 指导老师:陈崇双

美好的一天 摘要 关键字:Dijkstra算法多目标规划有向赋权图 MATLAB SPSS

1 问题的重述 Hello!大家好,我是没头脑,住在西南宇宙大学巨偏远的新校区(节点22)。明天我一个外地同学来找我玩,TA叫不高兴,是个镁铝\帅锅,期待ing。我想陪TA在城里转转,当然是去些不怎么花钱的地方啦~~。目前想到的有林湾步行街(节点76)、郫郫公园(节点91),大川博物院(节点72)。交通嘛,只坐公交车好了,反正公交比较发达,你能想出来的路线都有车啊。另外,进城顺便办两件事,去老校区财务处一趟(节点50),还要去新东方(节点34)找我们宿舍老三,他抽奖中了两张电影票,我要霸占过来明晚吃了饭跟TA一起看。电影院嘛,TASHIWODE电影院(节点54)不错,比较便宜哈。我攒了很久的钱,订了明晚开心面馆(节点63)的烛光晚餐,额哈哈,为了TA,破费一下也是可以的哈。哦,对了,老三说了,他明天一整天都上课,只有中午休息的时候能接见我给我票。 我主要是想请教一下各位大神: 1)明天我应该怎么安排路线才能够让花在坐车上的时间最少? 2)考虑到可能堵车啊,TA比较没耐心啊,因为TA叫不高兴嘛。尤其是堵车啊,等车啊,这种事,万一影响了气氛就悲剧了。我感觉路口越密的地方越容易堵,如果考虑这个,又应该怎么安排路线呢? 3)我们城比较挫啊,连地图也没有,Z老师搞地图测绘的,他有地图,跟他要他不给,只给了我一个破表格(见附件,一个文件有两页啊),说“你自己画吧”。帮我画一张地图吧,最好能标明我们要去的那几个地方和比较省时的路线啊,拜托了~ 2 问题的分析 2.1 对问题一的分析 问题一要求安排路线使得坐车花费的时间最少。 对于问题一,假设公交车的速度维持不变,要使花费的时间最少,则将问题转化为对最短路径的求解。求解最短路径使用Dijkstra算法很容易进行求解,在运用MATLAB编程,得到最优的一条路径,则这条路径所对应的时间即为最少用时。 2.2 对问题二的分析 问题二要求在考虑堵车的情况下,路口越密越容易发生拥堵,安排路线是乘车时间最短。 对于问题二,在问题的基础上增加了附加因素,即公交车的速度会因道路的密集程度而发生改变,从而问题一建立的基本Dijkstra算法对于问题二就不再适用了,因此对问题一的基本Dijkstra算法进行改进,并结合蚁群算法的机理与特点,运用MATLAB求解出最短路径,保证了花费时间的最少性。 2.3 对问题三的分析 问题三要求根据提供的附件,画出一张地图,标明要去的那几个地方和比较省时的路线。 对于问题三,在问题一和问题二的基础上,根据求解的结果,运用SPSS软件画出地图。

matlab在数学建模中的应用

Matlab在数学建模中的应用 数学建模是通过对实际问题的抽象和简化,引入一些数学符号、变量和参数,用数学语言和方法建立变量参数间的内在关系,得出一个可以近似刻画实际问题的数学模型,进而对其进行求解、模拟、分析检验的过程。它大致分为模型准备、模型假设、模型构成、模型求解、模型分析、模型检验及应用等步骤。这一过程往往需要对大量的数据进行分析、处理、加工,建立和求解复杂的数学模型,这些都是手工计算难以完成的,往往在计算机上实现。在目前用于数学建模的软件中,matlab 强大的数值计算、绘图以及多样化的工具箱功能,能够快捷、高效地解决数学建模所涉及的众多领域的问题,倍受数学建模者的青睐。 1 Matlab在数学建模中的应用 下面将联系数学建模的几个环节,结合部分实例,介绍matlab 在数学建模中的应用。 1.1 模型准备阶段 模型准备阶段往往需要对问题中的给出的大量数据或图表等进行分析,此时matlab的数据处理功能以及绘图功能都能得到很好的应用。 1.1.1 确定变量间关系 例1 已知某地连续20年的实际投资额、国民生产总值、物价指数的统计数据(见表),由这些数据建立一个投资额模型,根据对未来国民生产总值及物价指数的估计,预测未来的投资额。

表1 实际投资额、国民生产总值、物价指数的统计表 记该地区第t年的投资为z(t),国民生产总值为x(t),物价指数为y(t)。 赋值: z=[90.9 97.4 113.5 125.7 122.8 133.3 149.3 144.2 166.4 195 229.8 228.7 206.1 257.9 324.1 386.6 423 401.9 474.9 424.5]' x=[596.7 637.7 691.1 756 799 873.4 944 992.7 1077.6 1185.9 1326.4 1434.2 1549.2 1718 1918.3 2163.9 2417.8 2631.6 2954.7 3073]' y=[0.7167 0.7277 0.7436 0.7676 0.7906 0.8254 0.8679 0.9145 0.9601 1 1.0575 1.1508 1.2579 1.3234 1.4005 1.5042 1.6342 1.7842 1.9514 2.0688]' 先观察x与z之间,y与z之间的散点图 plot(x,z,'*') plot(y,z,'*') 由散点图可以看出,投资额和国民生产总值与物价指数都近似呈

matlab数学建模实例

第四周 3. 中的三个根。 ,在求8] [0,041.76938.7911.1-)(2 3=-+=x x x x f function y=mj() for x0=0:0.01:8 x1=x0^3-11.1*x0^2+38.79*x0-41.769; if (abs(x1)<1.0e-8) x0 end end 4.分别用简单迭代法、埃特金法、牛顿法求解方程,并比较收敛性与收敛速度(ε分别取10-3、10-5、10-8)。 简单迭代法: function y=jddd(x0) x1=(20+10*x0-2*x0^2-x0^3)/20; k=1; while (abs(x1-x0)>=1.0e-3) x0=x1; x1=(20+10*x0-2*x0^2-x0^3)/20;k=k+1; end x1 k 埃特金法: function y=etj(x0) x1=(20-2*x0^2-x0^3)/10; x2=(20-2*x1^2-x1^3)/10; x3=x2-(x2-x1)^2/(x2-2*x1+x0); k=1; while (abs(x3-x0)>=1.0e-3) x0=x3; x1=(20-2*x0^2-x0^3)/10; x2=(20-2*x1^2-x1^3)/10; x3=x2-(x2-x1)^2/(x2-2*x1+x0);k=k+1; end 2 ,020102)(023==-++=x x x x x f

x3 k 牛顿法: function y=newton(x0) x1=x0-fc(x0)/df(x0); k=1; while (abs(x1-x0)>=1.0e-3) x0=x1; x1=x0-fc(x0)/df(x0);k=k+1; end x1 k function y=fc(x) y=x^3+2*x^2+10*x-20; function y=df(x) y=3*x^2+4*x+10; 第六周 1.解例6-4(p77)的方程组,分别采用消去法(矩阵分解)、Jacobi迭代法、Seidel迭代法、松弛法求解,并比较收敛速度。 消去法: x=a\d 或 [L,U]=lu(a); x=inv(U)inv(L)d Jacobi迭代法: function s=jacobi(a,d,x0) D=diag(diag(a)); U=-triu(a,1); L=-tril(a,-1); C=inv(D); B=C*(L+U); G=C*d; s=B*x0+G; n=1; while norm(s-x0)>=1.0e-8 x0=s; s=B*x0+G;

基于MATLAB的光伏电池通用数学模型

本文由qpadm贡献 pdf文档可能在WAP端浏览体验不佳。建议您优先选择TXT,或下载源文件到本机查看。 第 25 卷第 4 期 2009 年 4 月 电 力 For personal use only in study and research; not for commercial use 科 学 与 For personal use only in study and research; not for commercial use 工 程 Vol.25, No.4 Apr., 2009 11 For personal use only in study and research; not for commercial use Electric Power Science and Engineering 基于 MATLAB 的光伏电池通用数学模型 王长江 For personal use only in study and research; not for commercial use (华北电力大学电气与电子工程学院,北京 102206)摘要:针对光伏电池输出特性具有强烈的非线性,根据太阳能电池的直流物理模型,利用 MATLAB 建立了太阳能光伏阵列通用的仿真模型。利用此模型,模拟任意环境、太阳辐射强度、电池板参数、电池板串并联方式下的光伏阵列 I-V 特性。模型内部参数经过优化,较好地反应了电池实际特性。模型带有最大功率点跟踪功能,能很好地实现光伏发电系统最佳工作点的跟踪。关键词:光伏电池;MPPT;I-V 特性中图分类号:TM615 文献标识码:A 引 言 1 光伏电池特性 随着化石能源的消耗,全球都在面临能源危机,太阳能依靠其清洁、分布广泛等特点成为当今发展速度居第二位的能源 [1] 。光伏阵列由多个单体太阳能电池进行串并联封装而成,是光伏发电的能源供给中心,其 I V 特性曲线随日照强度和太阳能电池温度变化,即 I=f ( V, S, T ) 。目前而厂家通常仅为用户提供标准测试的短路电流 I sc 、开路电压 Voc、最大功率点电流 I m 、最大功率点电压 V m 值,所以如何根据已有的标准测试数据来仿真光伏阵列在不同日照、温度下的 I V,P V 特性曲线,在光伏发电系统分析研究中显得至关重要 [2] 。文献 [ 3~4 ] 介绍了一些光伏发电相关的仿真模型,但这些模型都需要已知一些特定参数,使得分析研究有一些困难。文献 [ 5 ] 介绍了经优化的光伏电池模型,但不能任意改变原始参数。文献 [ 6 ] 给出了光伏电池的原理模型,但参数选用典型值,会造成较大的误差。本文考虑工程应用因素,基于太阳能电池的物理模型,建立了适用于任何条件下的工程用光伏电池仿真模型。

数学建模作业43950

题目: 某种电子系统由三种元件组成,为了使系统正常运转,每个元件都必须工作良好,如果一个或多个元件安装备用件将会提高系统的可靠性,已知系统运转的可靠性为各元件可靠性的乘积,而每一个元件的可靠性是备用元件函数,具体数值见下表。 若全部备用件费用限制为150元,重量限制为20公斤,问每个元件安装多少备用件可使系统可靠性达到极大值? 要求:①作出全局最优解 ②列出这个问题的整数规划模型

假设:系统在运转过程中相互间没有影响,并且系统在增加备用件后 可靠性可以相互叠加。 建模: 设原件1,2,3需要的备用件各为x,y,z,可靠性为p分别为xp,yp,zp,整 个设备的可靠性为p,则由题意可得到: p=xp*yp*zp; 2x+4y+6z<=20; 20x+30y+40z<=150; x,y,z均为整数; 求出适当的x,y,z使p的值最大。 运用穷举法,编写C++程序如下: #include void main() { using namespace std; int x=0,y=0,z=0;//备à?用??零¢?件t数oy目? double xp[6]={0.5,0.6,0.7,0.8,0.9,1},yp[4]={0.6,0.75,0.95,1},zp[3]={0.7,0.9,1}; double p=0,temp=0;//可¨|靠?性? int i=0,j=0,k=0; cout<<"x\ty\tz\tp\n"; for(i=0;i<6;i++) { y=0; for(j=0;j<4;j++) { z=0; for(k=0;k<3;k++) {if((x+2*y+3*z<=10)&&(2*x+3*y+4*z<=15)) {temp=p; p=xp[x]*yp[y]*zp[z]; cout<

数学建模期末考查作业

数学建模期末考查作业 一、某化工厂生产A,B,C,D 四种化工产品,每种产品生产1吨消耗的工时,能 该厂明年的总利润最高的数学模型,并利用MATLAB 写出简单的求解程序。 解:设该厂明年生产1A ,2A ,3A ,四种产品的数量分别为1x ,2x ,3x ,4x (单位:t ),总利润为z 。 约束条件 :工时限额:18480753802501004321≤+++x x x x 能耗限额:1001.05.03.02.04321≤+++x x x x 确定目标函数:4321852x x x x Z +++= 4321852max x x x x Z +++= ()?? ? ??=∈≥≤+++≤+++4,3,2,1,01001.05.03.02.018480 75380250100..43214321i N x x x x x x x x x x t s i i 且 求解: model: max=2*x1+5*x2+8*x3+x4; 100*x1+250*x2+380*x3+75*x4<=18480; 0.2*x1+0.3*x2+0.5*x3+0.1*x4<=100; @gin(x1); @gin(x2); @gin(x3); @gin(x4); end Global optimal solution found. Objective value: 388.0000 Objective bound: 388.0000 Infeasibilities: 0.000000 Extended solver steps: 0 Total solver iterations: 0

MATLAB及其在数学建模中的应用

Modeling and Simulation 建模与仿真, 2015, 4(3), 61-71 Published Online August 2015 in Hans. https://www.wendangku.net/doc/729277834.html,/journal/mos https://www.wendangku.net/doc/729277834.html,/10.12677/mos.2015.43008 Study of MATLAB and Its Application in Mathematical Modeling Chuanqi Qin, Ting Wang, Yuanfeng Jin School of Science, Yanbian University, Yanji Jilin Email: yfkim@https://www.wendangku.net/doc/729277834.html, Received: Jul. 22nd, 2015; accepted: Aug. 11th, 2015; published: Aug. 18th, 2015 Copyright ? 2015 by authors and Hans Publishers Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). https://www.wendangku.net/doc/729277834.html,/licenses/by/4.0/ Abstract This article firstly introduces the development and the features of MATLAB software. And then the concept and the process of mathematical modeling are explained. After, the article briefly intro-duces some MATLAB solution methods of mathematical modeling problems, giving several in-stances of some methods. At the last of this article, through a relatively complete example, it fo-cuses on the application of MATLAB in mathematical modeling. It has been found that the applica-tion of MATLAB in mathematical modeling can improve the efficiency and quality of mathematical modeling, enrich the means and methods of mathematical modeling, and play a very important role in the teaching of mathematical modeling course. Keywords MATLAB, Mathematical Modeling, Mathematic Model MATLAB及其在数学建模中的应用 秦川棋,王亭,金元峰 延边大学理学院,吉林延吉 Email: yfkim@https://www.wendangku.net/doc/729277834.html, 收稿日期:2015年7月22日;录用日期:2015年8月11日;发布日期:2015年8月18日

MATLAB数学建模大作业

******大学 本科实验报告 课程名称:****建模与仿真 设计专题:单服务员的排队模型学生姓名:*** 学号:********** 2012年04月30日

一、实验题目和要求 实验题目: 在某商店有一个售货员,顾客陆续来到,售货员 逐个地接待顾客。当到来的顾客较多时,一部分 顾客便须排队等待,被接待后的顾客便离开商店。 设:a.顾客到来间隔时间服从参数为5分钟的指 数分布;b.对顾客的服务时间服从[3,12]上的均 匀分布;c.排队按先到先服务规则,队长无限制, 并假定一个工作日为8小时,时间以分钟为单位。 要求: 1)模拟1个工作日内完成服务的个数及顾客平均 等待时间t。 2)模拟10个工作日,求出平均每日完成服务的个 数及每日顾客的平均等待时间 3)用柱状图画出10个工作日的平均每日完成的 服务个数及每日顾客的平均等待时间。 二、程序结构图(或功能说明) 文件夹中的m文件在j取1时模拟单工作日的服务 情况,j取1到10时模拟10个工作日的服务情况。 三、程序流程图

NO YES NO i=i+1 计算第i 个顾客离开时的时刻t 计算第i+1个顾客的等待时间s 记录i 值,跳出循环 计算第i+1个顾客的等待时间s 计算第i 个顾客离开时的时刻t 构造顾客间隔时间序列(TjM ) 构造顾客所需服务时间序列(TfM ) t>480 j=1

YES NO YES NO j=j+1 i=i+1 计算第i 个顾客离开时的时刻t 计算第i+1个顾客的等待时间s 记录i 值,跳出循环 计算第i+1个顾客的等待时间s 计算第i 个顾客离开时的时刻t 构造顾客间隔时间序列(TjM ) 构造顾客所需服务时间序列(TfM ) t>480 j=1 j<10

相关文档
相关文档 最新文档