文档库 最新最全的文档下载
当前位置:文档库 › 塔机吊臂拉绳断脱事故

塔机吊臂拉绳断脱事故

塔机吊臂拉绳断脱事故
塔机吊臂拉绳断脱事故

塔机吊臂拉绳断脱事故集团公司文件内部编码:(TTT-UUTT-MMYB-URTTY-ITTLTY-

塔机吊臂拉绳断脱事故事故经过及概况

某年5月31日下午3时20分,某市建筑机械厂内发生一起机械伤人事故,死亡一人。死者,李某,男,47岁,建机厂装卸工,泰东乡老东河村人。5月31日,李与王某、栾某、杨某(后二人为电焊工)在厂内用自制小型塔机吊装塔吊部件。下午3时20分左右,李稳住正在起吊的一节起重臂架(重约300kg)往卡车上装卸时,小塔机拉臂钢丝绳(φ11)突然扯断,同时崩断两根同样型号的保险丝绳,致使已吊起的起重臂架坠落地面且向北侧倾翻,将李某砸倒,臂架横压在李的头部及胸部,小塔机起重臂紧跟下坠砸在已坠落的起重臂架上,在场人员立即采取措施,将李送往医院抢救,至下午6时,经抢救无效死亡。直接经济损失12万元,间接经济损失4万元。

事故原因分析

事故发生后,经事故调查组现场勘查,造成这起事故的原因是:小塔机起重臂升降过程中,由于拉臂滑轮组无防钢丝绳滑脱装置,钢丝绳从滑轮槽中滑脱,卡死在滑轮与挡板之间,致使拉臂四走钢丝绳仅有单根钢丝绳偏心受拉,被强行扯断,两根保险钢丝绳直径较小(仅φ11)且拉点位置部署不当(应设置在端部),未起保险作用,在吊臂冲击力下,同时

被崩断,造成起重臂坠落,导致了这起事故的发生。另外该小塔机本身也存在着诸多不安全因素:小塔机拉臂卷扬机滚筒上的钢丝绳末端被缠绕在滚筒内,使得拉臂钢丝绳局部超强、受压、受挤、变形、扁股、露芯、断丝,且钢丝绳锈蚀严重,未进行更换;该机为自制产品,无生产许可证,无生产合格证,无任何技术资料,1987年已投入使用,无专人管理,缺少保养,小塔机钢结构锈蚀严重,年久失修,已超过报废年限,仍在带病运转,给事故的发生埋下了严重隐患。

事故教训

这起事故是由于该企业对安全生产工作疏于管理及违章作业、违章指挥、冒险蛮干造成的一起事故。应通过此次事故吸取的教训:一是要建立健全安全生产责任制并且要真正落实到位,各类使用设备需定人、定岗,杜绝无证上岗现象。二是要狠刹违章指挥,违章操作,冒险蛮干等现象。三是对自制设备必须坚持通过一定程序组织鉴定、验收,对一些淘汰、失修的设备需采取措施强制报废。四是要加强设备管理工作,对在用设备必须按照设备管理要求勤检查、勤保养,发现问题及时处理,把事故隐患消灭在萌芽状态。

塔机吊臂坠落事故

塔机吊臂坠落事故集团公司文件内部编码:(TTT-UUTT-MMYB-URTTY-ITTLTY-

塔机吊臂坠落事故事故经过及概况 某医院门诊楼为四层框架结构,建筑面积5000m2。 某年8月3日下午17时15分左右,该工地卸运用拖拉机从预制构件厂拉来的楼板。因场地狭小,又受长江高水位的影响,现场积水25— 45cm,人工抬卸十分困难,所以工地采用塔吊(未检测)卸运楼板(长 3.2m,宽0.5m,每两块为一吊,重约600kg)。由冒XX和丁XX二人负责楼板挂钩。当起吊的第二吊楼板在降落至第一吊楼板堆上面0.6m左右时,因旋转吊臂第一节和第二节之间的右下部连接轴销在旋转时突然脱落,导致吊臂向顺时针方向扭曲坠落。当时受害者唐XX正在四层屋面D轴线上的3—10轴与3—11轴线间凿混凝土,当听到施工员黄XX“快跑”的喊叫声后,唐头朝上望了一下,准备避让时被塔吊悬臂击中其前胸肩部。在巨大惯性的撞击下,唐向后仰倒,头部撞在圈梁模板的钢筋及对穿螺栓上,头后脑颅被击破;塔吊悬臂坠落时又压在受害者的大腿上。事故发生后,在屋面一起施工的袁XX、冒XX和唐XX的弟弟首先向处于昏迷状态的唐XX奔来,并叫来10多人把悬臂一边向上拉起,由袁XX托住头部,冒XX和受害者的弟弟抱起唐XX迅速送往医院(距现场仅40m远)抢救,终因伤势过重,于当天下午17时50分死亡。经济损失9.7万元。

事故原因分析 塔吊安装和投入使用前,安全员及机操人员检查不负责,不仔细,月牙板脱落没有发现,连接轴销未按规定使用开口销钉,在吊装预制板时,销钉脱落,吊臂弯曲变形,击中正在楼面施工的唐XX是造成这起事故的直接原因。 该公司未按规定及时报验塔吊,塔吊在未经检测的情况下,盲目投入使用。公司对该工地的安全生产工作抓得不细,尽管多次检查,但未发现塔吊悬臂存在的隐患,对大型机械设备的管理不到位。工地对机械的检查、维修和保养工作重视不够,特别是塔吊安装把关不够,检查不严,措施不力是造成这起事故的间接原因。 事故教训 这起事故的发生,暴露出企业领导安全工作重视不够,施工现场的塔吊,在投入使用前,没有申报有关部门检测合格后就投入使用,塔吊安装各项工序的检查工作不够,不能严格遵守安全操作规程,操作人员缺乏责任心。 事故的预防措施与对策

动臂系列塔吊性能

Luffing

載荷表 Load Chart

主要性能參數 Main Specifications kVA 380V (±5%) 50 Hz / 60 Hz 200 * ※ 與製造商聯繫 Contact with us, please . 塔身節 Mast 臂長 Jib length A (m) B (m) C (m) H (m) H205B L1-2-3 30/48 24/36 32 160 >160* L4-5 30/42 24/30 30 L6 30/42 24/30 28 L69B1 L1 41 35 42 153 >153* L2 35 29 36 L3 32 26 33 L4-5 29 23 30 L6 26 20 27 塔身節Mast 臂長 Jib length H1 (m) A (m) P (t) R (t) X (m)Y (m)H205B L1 60 18 124 ※ 3.28 2.40L2-3 54 121 ※ 3.28 2.40L4-5-6 48 116 ※ 3.28 2.40L1-2-3 42 12 112 ※ 3.28 2.40L4-5 36 107 ※ 3.28 2.40L6 30 103 ※ 3.28 2.40L69B1 L1 49.512-15 99 41.5 2.58 2.17L2-3 43.512-15 97 41.5 2.58 2.17L4-5 40.512-15 96 41.5 2.58 2.17L6 37.5 12-15 94 41.5 2.58 2.17

Luffing

載荷表 Load Chart 2.4t 10.0t 3040506019.69m 17.31m 12 18(m) (t)IV II Luffing STL330-12t 工作狀態支反力 Ho(m)

门式起重机结构优化设计

门式起重机结构优化设计 发表时间:2018-10-25T16:51:42.843Z 来源:《防护工程》2018年第15期作者:叶恭宇[导读] 在工作过程中能够承受和传递各种载荷,其整体性能决定着起重机的使用寿命。为了提高起重机的设计质量,对结构形式进行一定的优化设计,在确保其整体性能符合要求的前提下,尽可能减轻重量,节省材料,提高企业的经济效益。 叶恭宇 浙江省特种设备检验研究院浙江省杭州市 310020摘要:门式起重机是一种常用的物料搬运机械,广泛应用于工业生产中,具有货场利用率高、运行成本低以及装卸效率高等优点。金属结构是门式起重机的骨架,在工作过程中能够承受和传递各种载荷,其整体性能决定着起重机的使用寿命。为了提高起重机的设计质量,对结构形式进行一定的优化设计,在确保其整体性能符合要求的前提下,尽可能减轻重量,节省材料,提高企业的经济效益。 关键词:门式起重机;结构设计;设计要点 1结构优化的基本概念 1.1 设计变量 每项设计方案需要通过一组基本的参数表示,这些基本参数主要包括:构件长度、截面尺寸、某些位置的坐标值、重量、惯性矩、应力、变形、固有频率以及效率等。在对某个结构进行优化设计过程中,工艺和结构布置等方面的参数可以根据设计经验进行取值,其他参数可以在优化过程中进行调整,这些一直处于变化状态中的参数,被称为设计变量。设计变量主要有连续和离散两种不同的类型,在机械优化设计中涉及到的变量大多数都是连续变量,可以通过常规的优化方法进行求解。 1.2 目标函数 判定不同机械设计方案的优劣主要通过对设计指标进行系统全面的分析,设计指标通过一定的转化能够转变为相应的设计变量函数,该函数即为目标函数。不同的优化方案具有不同的目标函数,目标函数的范围非常广泛,可以是重量、体积,可以是功耗、产量等。建立目标函数是优化设计中的关键过程,目标函数根据目标数量的不同可以分为单目标函数和多目标函数,其中单目标函数是指在优化设计过程中,只对某一问题进行优化;多目标函数是指在优化设计过程中,同时对多个目标进行优化。在实际的优化过程中,目标函数越多,越有利于提高设计的水平,能够取得较好的设计效果,但是其优化难度也较高。 2门式起重机结构优化设计的基本方法与步骤本项目开发的 800 t 吊钩门式起重机是国内较大起重量的门式起重机,具有结构复杂、制造难度大等特点,具体体现为结构轻量化、可靠性、配套件选型以及安装调试 4 个方面,其主要采用的结构优化设计的基本方法与步骤如下 2.1采用有限元分析,实现结构最优化 主结构设计时,为减轻结构自重,实现轻量化设计,采用 Midas/civil 有限元分析技术对整机结构件进行强度、刚度校核。通过有限元分析,在钢结构满足强度、刚度要求的前提下,减小主梁、支腿截面尺寸、最优筋板布置。为减小局部应力,提高焊接质量,主梁采用 T 型钢结构,以控制焊接变形,使结构设计更加合理。 2.2 欧式小车设计结构,实现起重机轻量化,并重视门式起重机结构有限元静态计算结果 常规传统起重机小车结构见图 1,采用 8 轮结构,机构布置尺寸较大,自重达 84.4 t,增加了起重机主梁的负担。因此该起重机小车采用欧式结构,如图2 所示,定滑轮放置在小车架之上,较大地提高了上极限尺寸;车轮采用 6 轮结构,合理分布轮压,起升机构布置采用了单电机、单标准减速机 + 开式齿轮、单卷筒设计的结构型式,减小了起升减速机型号,降低了配套件成本,同时也大幅地减小了小车尺寸;小车结构自重。 同时,通过静载试验可知,小车在主梁跨中时产生的应力最大,上主弦应力比下主弦要小,而小车在支腿侧时产生的应力较小,主要为腹杆受力模式;通过动载试验可知,小车在主梁跨中时产生的应力最大,上主弦应力比下主弦要小,而小车在支腿侧时产生的应力较大,其中柔性支腿侧的应力达到最大值,此时腹杆受力较小,且小于材料的许用应力。最后,跨中和悬臂端下挠值均满足国家标准的要求,位移较小,刚度满足规范要求。

塔式起重机传动机构设计

1.塔式起重机概述 在建筑安装工程中,能同时完成重物的垂直升降和水平移动的起重机很多,其中应用最广泛的是塔式起重机。塔式起重机具有其他起重机械难以相比的优点,如塔身高,起重臂长,有效作业面广,能同时进行起升,回转行走,变幅等动作,生产效率高;采用电力操纵,动作平衡,安全可靠;结构相对较为简单,运转可靠,保养维修业较为容易。因此,他是起重机已成为现代工业与民用建筑不可缺少的主要施工机械。 塔式起重机工作高度大,一般自升式塔机工作高度可在100m左右,特殊用途的可在300m以上。因此塔机的起升机构必须要有较大的容绳量。塔机起升起升机构的卷筒都采用多层缠绕的方式。塔机分为上回转塔机(本次设计题目)和下回转塔机两大类。其中前者的承载力要高于后者,在许多的施工现场我们所见到的就是上回转式上顶升加节接高的塔机。按能否移动又分为:行走式和固定式。固定式塔机塔身固定不转,安装在整块混凝土基础上,或装设在条形式X形混凝土基础上。在房屋的施工中一般采用的是固定式的。 塔机机械通常结构庞大,机构复杂。塔机的工作机构有五种:起升机构(本次设计题目)、变幅机构、小车牵引机构、回转机构和大车走行机构(行走式的塔机)。 2.专业课程设计的题目 上回转自升式塔式起重机起身机构设计 型号:QTZ200 起重力矩(Kn·m):2000 最大幅度/起重载荷(m/KN):40/35 最小幅度/起重载荷(m/KN):10/200 起升高度(m):162(附着式)55(固定式) 工作速度(m/min):6~80(2绳)3~40(4绳) 起重臂长(m):40 平衡臂长(m):20 3.塔式起重机起升机构设计 起重机起升机构用来实现物品的上升与下降。起升机构是任何起重机必须具备的,使物品获得升降运动的基本组成。起升机构工作的好坏将直接影响整台起重机的工作性能。塔式起重机起升机构具有一般起重机起升机构的组成特点。起升机构应具备起升高度大、制动平稳、慢速就位、就位准确、起升速度可调等特点。 起升机构的组成和工作原理 起身机构主要由驱动装置(原动机)、传动装置(减速器)、卷筒、滑轮组、取

动臂式塔机说明书

目录 摘要--------------------------------------------------------- IV ABSTRAC --------------------------------------------------------- V 1 绪论--------------------------------------------------------- 1 1.1动臂塔式起重机概论------------------------------------------------------- 1 1.1.1动臂塔式起重机发展状况----------------------------------------------- 1 1.1.2 塔式起重机的应用与发展趋势------------------------------------------ 2 1.2 课题任务---------------------------------------------------------------- 2 1. 2.1 课题背景和研究意义-------------------------------------------------- 3 1.2.2 课题论述------------------------------------------------------------ 3 2 整机方案设计-------------------------------------------------- 4 2.1起重臂的臂根铰接点后置回转中心2m ----------------------------------------- 4 2.2起重臂架截面形式及材料--------------------------------------------------- 4 2. 3 A形架及防倾覆装置------------------------------------------------------- 4 2.3.1防后倾装置----------------------------------------------------------- 5 2.4固定平衡重--------------------------------------------------------------- 5 2.5上转台与平衡臂的布置(简称回转平台)------------------------------------- 5 2.6塔身标准节的连接采用销轴连接--------------------------------------------- 6

汽车起重机总体及吊臂结构设计开题报告

长安大学毕业设计(设计)开题报告表 课题名称汽车起重机总体及吊臂结构设计 课题来源自选项目课题类型工程设计指导教师温素英 机械设计制造及学生姓名郑冰学号2504080530 专业 其自动化

一、选题的意义 此次以汽车起重机的吊臂机构为设计重点,以及电动机、联轴器、缓冲器、制动器的选用,零件的校核计算及结构设计,使起重设备运行平稳,定位准确,安全可靠,技术性能先进。其主要目的是汽车起重机的结构和工作原理,掌握汽车起重机的设计方法,通过学习起重机的设计方法和步骤,提高学生分析问题和解决问题的能力,将自己所学的理论知识应用到实际工作生产中,培养实际动手能力。同时让我们了解制造业的发展,为以后工作做准备。另外这对我们顺利完成从学校到社会的过渡将会起到很大的作用。 二、汽车起重机在国内外的研究现状和发展趋势 2.1国内起重机的发展状况及趋势 在中国移动起重机领域,汽车起重机占据了80%以上的市场份额。从2000年到2009年,中国汽车起重机市场年增长率已经超过20%;2008年更是历史性地突破了2万台的销售成绩;这使得2009年中国汽车起重机引发大规模投资风潮,中国汽车起重机不但抵抗了金融危机负面影响,而且在销售以及市场份额中取得实质性增长。 依托强大的需求,中国是世界上最大的起重机生产和消费国家;徐工成为世界上最大的起重机制造商,在中国起重机市场,徐工的市场份额已接近60%;在国际市场上,它拥有超过30%的市场份额。中联重科则是另一个领先的起重机企业,受益于庞大的(中国)国内市场,它在全球起重机企业中排名前七。 当前中国新一代汽车起重机产品,起重作业的操作方式,大面积应用先导比例控制,具有良好的微调性能和精控性能,操作力小,不易疲劳。通过先导比例手柄实现比例输送多种负荷的无级调速,有效防止起重作业时的二次下滑现象,极大的提高了起重作业的安全性、可靠性和作业效率。

起重机伸缩臂的结构原理

起重机伸缩臂的结构原理 起重机是利用吊臂顶端的滑轮组支承卷扬钢丝绳悬挂重物,利用吊臂的长度和倾角的变化改变起升高度和工作半径,汽车起重机的吊臂是起重机最重要的部分。虽然吊臂的作用都是悬挂和搬运物体,但是不同的吊臂结构和技术,使起重机的性能和效率有很大的不同。 汽车起重机的吊臂一般包括主臂和副臂两部分。主吊臂主要有两种类型,一种是由型材和管材焊接而成的桁架结构吊臂,一种是有各种断面的箱型结构吊臂。随着汽车起重机的发展,现在大部分的汽车起重机主吊臂都是箱型结构,只有少部分是桁架结构。副臂的作用是,当主臂的高度不能满足需要时,可以在主臂的末端连接副臂,达到往高处提升物体的目的。副臂只能提升较轻的物体。副臂一般只有一节臂,也有两节以上的折叠式副臂或伸缩式副臂,其中以折叠式的桁架结构副臂最为常见。 汽车起重机的吊臂伸缩形式有以下几种: 1、顺序伸缩机构–伸缩臂的各节臂以一定的先后次序逐节伸缩。 2、同步伸缩机构–伸缩臂的各节臂以相同的相对速度进行伸缩。 3、独立伸缩机构–各节臂能独立进行伸缩的机构。 4、组合伸缩机构–当伸缩臂超过三节时,可以同时采用上列的任意两种伸缩方式进行伸缩的机构。 无销全液压伸缩机构的优点是臂长变化容易,工作臂长种类多,实用性很强。缺点是自重大,对整机稳定性的影响较大。 无销全液压伸缩机构有不同的组合形式,可以是多液压缸加一级绳排,可以是单液压缸或多液压缸加两级绳排。 多液压缸加一级绳排的特点是最末一节伸缩臂采用钢丝绳伸缩,其它伸缩臂采用多级缸或多个单级缸或多级缸和单级缸套用等方式直接用油缸伸缩。因而最末伸缩臂的截面变化较大,其它臂节截面的变化较小。 1.绳排系统 绳排系统在中国已经应用的比较成熟,也是一种历史比较悠久的技术。此技术的优点是臂长变化容易、工作臂长种类多、可以带载伸缩、实用性很强,缺点是自重重、对整机稳定性的影响较大。现在在100吨以下的起重机上应用的比较广泛,其原理如图,就是简单的滑轮原理。对于四节臂以上起重臂的伸缩机构又分为以下两种:多缸或多级缸加一级绳排、单缸或多缸加两级绳排。DEMAG和TADANO部分产品采用第一种伸缩机构,这种伸缩机构的特点是最末一节伸缩臂采用钢丝绳伸缩,其它伸缩臂采用多级缸或多个单级缸或多级缸和单级缸套用等方式直接用液压缸伸缩。因而最末伸缩臂的截面变化较大,其它臂节截面的变化较小。在过去,徐重、浦沅、长起跟随LIEBHERR技术多年,普遍使用第二种伸缩机构,使用单缸或双缸加绳排实现四节或五节臂的伸缩。这种伸缩方式在国内最先进,但解决五节臂以上起重臂的伸缩难度很大。北起、泰起、锦重等厂家采用第一种伸缩机构(多个单级缸加一级绳排),但由于技术落后,第二缸、第三缸的进回油依靠软管卷筒输送。现在,大多数5节臂的起重机使用的是双缸双绳排的技术,一般为第2节臂独立伸缩,第3.4.5节臂同步伸缩;4节臂的一般单缸双绳排为2.3.4节同步伸缩。其局限性在于最末一、二节伸缩臂采用钢丝绳伸缩,其它伸缩臂用油缸伸缩,因而最末伸缩臂的截面变化较大,大大降低了起重机在大幅度下的起重性能;同时,对于大吨位的起重机,对钢丝绳的要求也非常高,符合要求钢丝绳非常难加工。虽然有些日本企业有将绳排技术发展到6节甚至更多,但是对于中大吨位起重机,一般企业还是优先考虑单缸插销技术。 2.单缸插销系统 单缸插销式伸缩臂技术是典型的机、电、液一体化系统.以较典型的德国利勃海尔为例,作为伸缩臂伸缩的执行机构,主要由(见图)1.伸缩缸、2.拔销机构、3.缸销等组成,为保证伸缩臂伸缩过程的安全性、可靠性,该机构采用内置式互锁系统即在伸缩油缸上装的弹簧驱动缸销销定伸缩臂后,才机械释放该节臂和其他节臂的连接。该方式确保某一节伸缩臂和伸缩油缸互相锁定后才能释放该节臂和其它节臂的联接。利勃海尔将拔销装置置于伸缩机构上方,其优点是结构简单,自锁性强,便于实现;格鲁夫GROVE、德马格(DEMAG)、多田野(TADANO&FAUN)将拔销装置置于伸缩机构两侧,结构布置上比较困难,对加工、装配精度要求高,插拔销难度相对较大。缸销则都布置在伸缩机构的侧方。单缸伸缩机构要求动作灵活、可靠性高、响应速度快、互锁性好,否则,很难实现吊臂的可靠伸缩。此技术采用单缸、互锁的缸销和臂销、精确测长电子技术,优点是重量最轻,对整机稳定性的影响最小,但技术难度大、成本较高、臂长种类少、伸缩时间长、臂长变化时麻烦。现在,徐重和浦沅等国内企业也成功研制出了此项技术,采用的是和LIEBHERR相似的拔销装置置于伸缩机构上方的形式。由于此技术对于电液的要求较高,尤其是在自动伸缩的PLC控制和伸缩系统的液压回路的设计上,国内企业的技术还不是太成熟,可靠性还不是太高,还有较长的路去走。 这里有个单缸插销系统的动画演示,是TADANO的,可以看一看,

塔式起重机抗倾覆计算及基础设计

塔式起重机抗倾覆计算 及基础设计 公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

塔式起重机抗倾覆计算及基础设计 一、基础的设置:根据塔式起重机说明书基础设置要求的技术参数及对地基的要求 选用基础设计图,基础尺寸采用××,基础砼标号为C35(7天和28天期龄各一组), 要有砼检测报告,基础表面砼平整度要求≤1/1000,塔式起重机预埋螺栓材料选用40Cr 钢,承重板高出基础砼面5~8㎜左右,要有排水设施。 二、塔式起重机抗倾覆计算 ①、塔式起重机的地基为天然地基,必须稳妥可靠,在表面上平整夯实,夯实后的 基础的承压能力不小于200kPa,基础的总重量不得小于80T,砼标号不得小于 C35,砼的捣 制应密实,塔式起重机采用预埋螺栓固定式。 ②、参数信息:塔吊型号:QTZ5510,塔吊起升高度H:,塔身宽度B:,自重F K :453kN,基础承台厚度h:,最大起重荷载Q:60kN,基础承台宽度b:,混凝土强度等级:C35。 ③、塔式起重机在安装附着前,处于非工作状况时为最不利工况,按此工况进行设计计算。塔式起重机受力分析图如下: 根据《塔式起重机说明书》,作用在塔吊底座荷载标准值为:M K =1654kn·m, F K = 530KN,Fv K =,砼基础重量G K = 835KN ④、塔式起重机抗倾覆稳定性验算: 为防止塔机倾覆需满足下列条件: 式中e----- 偏心距,即地基反力的合力至基础中心的距离; M K ------ 相应于荷载效应标准组合时,作用于矩形基础顶面短边方向的力矩值; Fv K ------相应于荷载效应标准组合时,作用于矩形基础顶面短边方向的水平荷载; F K -------塔机作用于基础顶面的竖向荷载标准值; h ---------基础的高度(h=); G K ----------基础自重; b---------矩形基础底面的短边长度。(b= 将上述塔式起重机各项数值M K 、Fv K 、F K 、h、G K 、b代入式①得: e =< b/3= 偏心距满足要求,抗倾覆满足要求。 三、塔式起重机地基承载力验算:根据岩土工程详细勘察报告资料,1#塔吊基础底板处承载力特征值为372Kpa。取塔式起重机基础底土层的承载力标准值为372Kpa,根据《TCT5613塔式起重机使用说明书》,采用塔式起重机基础:长×

塔式起重机设计毕业设计

塔式起重机设计毕业设计 目录 第一章关于塔式起重机…………………………………… 1.1 设备特点与安全装置 (1) 1.2 塔式起重机的安全使用与管理…………………(1-4) 1.3 塔式起重机的检验要点 (5) 第二章塔机小车吊臂设计………………………………… 2.1吊臂的主要结构形式及主要寸 (5) 2.2 吊臂的主要材料 (5) 2.3 吊臂的机构形式 (5) 2.4 吊臂的尺寸…………………………………………(5-6) 2.5 吊点位置的确定 (6) 2.6 吊臂运输单元划分…………………………………(6-7) 2.7 吊臂计算简图、载荷、内力计算及在和组合 (7) 2.8 吊臂自重小车及变幅机构引起的内力………… (7-8) 2.9 吊重引起的内力……………………………………(8-10) 2.9.1 水平反力HA(HB)产生的偏心弯矩…………… (10-11) 2.9.2 风载引起的内力…………………………… (11-12) 2.9.3 回转水平惯性力……………………………… (12-13) 2.9.4 起升绳牵引力产生的轴心压力 (13) 2.9.5 小车轮压产生下弦局部弯矩 (14) 第三章吊臂截面的选择计算………………………

3.0 吊臂的几何特征尺寸计算…………………… (14-19)

3.1 整体稳定性的计算……………………………(19-23) 3.2 单肢(上、下弦杆)验算………………………(23-26) 3.3 缀条的计算……………………………………(26-28) 3.4 整体强度计算…………………………………(28-29) 参考文献……………………………………………………… 致谢……………………………………………………………

塔机吊臂

关于吊臂组实习小结 塔式起重机的吊臂是塔式起重机关键零件之一,它是由数节臂架通过臂架接头用销轴连接在一起的结构式焊接件;其制造质量直接影响塔式起重机使用安全和寿命,特别是吊臂下弦杆,它既是受力杆件又是小车的轨道。为使小车运行平稳,两下弦杆必须满足直线度、平面度、平行度和垂直度等技术要求。因此,吊臂下弦杆接头的制造质量直接影响整个吊臂的制造质量。 十五天的吊臂车间实习,总结经验与参数如下:(本文以QTZ63 5510为例)【其中63代表塔机额定起重力矩为630KN/m 最大起重量为6t 最大幅度额定起重量为1.0t 吊臂最大工作幅度为55m】 一.吊臂的加工工艺路线(概述) Ⅰ.对吊臂各结构零部件进行下料加工 例如腹杆通过冲压机床采用20钢进行成形加工 方钢管采用20钢 耳板采用Q235 下接头采用Q345 以及包括对吊杆的焊接加工 …… Ⅱ.通过模具对吊臂进行成形加工 通过对比图纸尺寸以及技术要求,在专用模具上对吊臂进行成形加工,通过初步焊接进行定位并完成成形加工。 其中腹杆臂架各节点间弦杆的直线度为1/750 Ⅲ.进行成形焊接 在这个过程中,全部重要部位都采用二氧化碳气体保护焊,其特点是溶深大,变形小。 焊接过程中,应保证两构件之间无缝连接,保证图纸中关于对焊接部位的要求,使之能满足工作中所需的工作拉力的要求。 Ⅳ.对吊臂进行连接校准 通过航机使每一节吊臂通过轴套进行连接,判断吊臂是否满足直线度,平面度,平行度与水平度的要求。若吊臂出现一定的弯曲情况,则应采用热处理的方法对吊臂进行校直。 连接完成后,对于合格吊臂应进行编号,然后送至喷漆车间进行处理。 二.吊臂结构的变化 5510吊臂在制造过程中,其下弦杆的宽度是具有一定的变化量的。其中一节臂为100*100mm,而二,三,四节臂则为90*90mm,五,六,七,八,九,十节臂为80*80mm。而上下弦杆之间的高度一节臂为1102mm,二,三,四,五,六节臂则为1097mm,七,八,九,十节臂为1092mm。其目的是通过对吊臂末端材料尺寸的变化来减轻吊臂末端的质量,减小其所受的重力以及各种其他分力的影响。

动臂式塔吊

动臂式塔吊 我国90年代以来,特别是近年超级摩天建筑的崛起势不可挡。深圳地王大厦位于城市金三角地段,主楼采用钢、混凝土组合结构,用钢2.5万吨。大厦于1993年4月开工,历时三年,耗资40亿港元,完成总计69层、建筑面积26.6万平方米、高384米的建筑,成为当时亚洲第一高楼。工程施工总承包商日本熊谷组引进2台起重量达50t的法福克大型自升式动臂塔机m440d,创造了9天4层楼的钢结构安装新速度,开创了大型动臂塔机在我国超高层钢结构施工的新纪元。从此,伴随着城市建设的迅猛发展,大型自升式动臂塔机已经和中国城市标志性建筑越来越紧密的联系在了一起。 特别是预计2009年封顶的东莞台商会馆,使用了湖南江麓机电科技有限公司生产的qtd480动臂塔机,该机于2007年按照国家和行业标准,参照国际标准设计并于2008年初制造投产,第一台已经于08年4月份安装在东莞第一高楼工程。该机各项技术性能先进:起升高度(独立高度)45米,固定附着安装高度达399米、最大起重量32吨。是目前国内性能突出的大型动臂塔机。 此外,湖南中联08年5月推出了tcr6055动臂塔机,起重力矩达到640t.m,抚顺永茂也将推出stl720 同类塔机。 这里说的大型动臂式塔机,已经不是传统意义上的下回转、非自升式动臂式塔机,而是代表着大起重量、大起升高度、大起升速度的当代重型建筑起重机。就上述典型工程施工来说,大型动臂式塔机是其首选,甚至是唯一选择。能够创造如此多“第一”的大型动臂塔机必然有其在性能、结构、应用技术等方面 的特殊性,必然有其在安全使用方面的特殊要求。 1性能参数 大型动臂塔机除具备外爬、内爬、行走功能外,特殊功能 (1)大起重量 现代大型建筑工程采用了钢或钢、混凝土组合结构,吊装单元的重量大大提高,异型、组合结构通常达到32吨,最大达到80余吨。因此,大型动臂塔机配置重型主起升系统,最大起重量通常在32至100吨。 (2)大起升高度 由于采用了特殊的爬升体系,起重机可随建筑结构整体爬高,起升高度大幅度提高。 (3)大起升速度 起升结构大功率,特别是采用了自备的内燃机拖动方案,带负荷起升速度超过100m/min。 2结构特性 (1)吊臂起伏角度大,尾部回转半径小 大型动臂式塔机吊臂起伏角度在17至83度之间,大大拓宽了设备的能力和工作范围。相对于水平臂塔机,吊臂的大仰角相当于增加了塔身的高度,有效扩展的工作范围几乎是以吊臂长度为半径的半球体空间。这对于结构主体施工以及主体结构上高耸构件吊装具有重要意义。尾部回转半径在8至11米之间,这在群塔作业、城市狭小作业空间施工提供了更多的选择,在城市中心区、超高层建筑工程施工甚至是唯一选择。但另一方面,由于吊臂起伏引起两个方面的问题。其一,吊臂自重弯距变化大。如m440d安装55米吊臂,当由最小幅度变化到最大幅度时,其自重弯距变化超过300t.m(安装82米臂的m1280d塔机自重弯距变化甚至超过1000t.m),吊臂自重弯距变化对整机平衡影响很大。因此大型动臂式塔机吊臂设计采用高强度结构钢,最大限度地减轻臂架重量而增加吊重,提高吊重与机重的比例系数。其二,吊臂迎风面积增加大。由最大幅度变化到最小幅度时,相对于臂根铰点,其吊臂迎风面积增加3.4倍。因此无论大型动臂式塔机处于工作状态或非工作状态,风载荷对塔机安全影响更大,并且这种影响是变化的、动态的,容易为操作及管理者忽视而造成重大事故。这一点在“安全预警”中进一步讨论。 (2)吊臂稳定性好,安装幅度范围大 大型动臂式塔机吊臂设计采用“杆”结构,相对于水平臂塔机“梁”结构稳定性能更好,吊臂结构占整机结构重的比例更小,而最大起重量则更大。因此,常规大型动臂式塔机起重能力都能够达到30至100吨,有效的解决了超高钢结构工程对起重机大起重能力的要求。另外,由于塔机吊臂设计采用“杆”结构,吊臂安装幅度范围更大。为使用提供更多灵活选择,可以供不同工程选择,也可以在同一工程的不同阶段

汽车起重机吊臂结构与伸缩原理

汽车起重机吊臂结构与伸缩原理 发布日期:2012-05-03 来源:网络我要评论(0) 核心提示:汽车起重机的吊臂是起重机最重要的部分,起重机是利用吊臂顶端的滑轮组支承卷扬钢丝绳悬挂重物,利用吊臂的长度和倾角的变化改变起升高度和工作半径。虽然吊臂的作用都是悬挂和搬运物体,但是不同的吊臂结构和技术,使起重机的性能和效率有很大的不同。 汽车起重机的吊臂是起重机最重要的部分,起重机是利用吊臂顶端的滑轮组支承卷扬钢丝绳悬挂重物,利用吊臂的长度和倾角的变化改变起升高度和工作半径。虽然吊臂的作用都是悬挂和搬运物体,但是不同的吊臂结构和技术,使起重机的性能和效率有很大的不同。 一、汽车起重机的吊臂结构 汽车起重机的吊臂一般包括主臂和副臂两部分。汽车起重机主吊臂主要有两种类型,一种是由型材和管材焊接而成的桁架结构吊臂,一种是有各种断面的箱型结构吊臂。随着汽车起重机的发展,现在大部分的汽车起重机主吊臂都是箱型结构,只有少部分是桁架结构。 汽车起重机副臂的作用是,当主臂的高度不能满足需要时,可以在主臂的末端连接副臂,达到往高处提升物体的目的。副臂只能提升较轻的物体。副臂一般只有一节臂,也有两节以上的折叠式副臂或伸缩式副臂,其中以折叠式的桁架结构副臂最为常见。 二、汽车起重机的吊臂伸缩原理 (一)汽车起重机的吊臂伸缩形式有以下几种: 1、顺序伸缩机构--伸缩臂的各节臂以一定的先后次序逐节伸缩。 2、同步伸缩机构--伸缩臂的各节臂以相同的相对速度进行伸缩。 3、独立伸缩机构--各节臂能独立进行伸缩的机构。 4、组合伸缩机构--当伸缩臂超过三节时,可以同时采用上列的任意两种伸缩方式进行伸缩的机构。 (二)汽车起重机按伸缩机构的技术分,可以分为无销全液压伸缩机构和自动插销式伸缩机构。

塔式起重机设计说明书讲解

设计题目:QTZ40塔式起重机总体及塔身的优化设计设计人: 设计项目计算与说明结果 前言 塔式起重机概述 塔式起重机发展情况 第1章前言 1.1 塔式起重机概述 塔式起重机是一种塔身竖立起重臂回转的起重机械。在工业与民用建筑施工中塔式起重机是完成预制构件及其他建筑材料与工具等吊装工作的主要设备。在高层建筑施工中其幅度利用率比其他类型起重机高。由于塔式起重机能靠近建筑物,其幅度利用率可达全幅度的80%,普通履带式、轮胎式起重机幅度利用率不超过50%,而且随着建筑物高度的增加还会急剧地减小。因此,塔式起重机在高层工业和民用建筑施工的使用中一直处于领先地位。应用塔式起重机对于加快施工进度、缩短工期、降低工程造价起着重要的作用。同时,为了适应建筑物结构件的预制装配化、工厂化等新工艺、新技术应用的不断扩大,现在的塔式起重机必须具备下列特点: 1.起升高度和工作幅度较大,起重力矩大。 2.工作速度高,具有安装微动性能及良好的调速性能。 3.要求装拆、运输方便迅速,以适应频繁转移工地的需要。 QTZ40型自升式塔式起重机,其吊臂长40米,最大起重量4吨,额定起重力矩40吨米。是一种结构合理、性能比较优异的产品,比较目前国内外同规格同类型的塔机具有更多的优点,能满足高层建筑施工的需要,可用于建筑材料和构件的调运和安装,并能在市内狭窄地区和丘陵地带建筑施工。整机结构不算太大,可满足中小型施工的要求。 本机以基本高度(独立式)30米。用户需高层附着施工,只需提出另行订货要求,即可增加某些部件实现本机的最大设计高度100米,也就是附着高层施工可建高楼32层以上。 1.2 塔式起重机发展情况 塔式起重机是在二次世界大战后才真正获得发展的。战后各国面临着重建家园的艰巨任务,浩大的建筑工程量迫切需要大量性能良好的塔式起重机。欧洲率先成功,1923年成

塔式起重机常见的八种安全隐患(正式版)

文件编号:TP-AR-L3383 In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives. (示范文本) 编订:_______________ 审核:_______________ 单位:_______________ 塔式起重机常见的八种 安全隐患(正式版)

塔式起重机常见的八种安全隐患(正 式版) 使用注意:该安全管理资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 塔式起重机是一种可以实现重物全方位运送的起 重机械,作业高度一般几十米到几百米,作业半径可 达数十米。目前建筑工地广泛使用,主要用于房屋建 筑施工中物料的垂直和水平输送及建筑构件的安装。 根据最近几年国家质检总局统计的事故数字来 看,起重机械的事故发生率和发生事故导致人员伤亡 的绝对数字一直高居八大类特种设备榜首。面对塔式 起重机数量的不断增加,分布区域广而杂给监管带来 了不便,且塔机使用方为图快图多图省,对塔式的安 全装置有意或无意识地予以忽视,给日常生产带来了

诸多的安全隐患。下面笔者对建筑工地塔式起重机使用过程中常见的八种安全隐患分析如下: 1、力矩限制器的失效 力矩限制器的失效主要有弓型架弹性变形的失效和力矩限制器电气触动开关的失效。 弓型架弹性的变形失效引起塔机超载而弓型架变形接触不到该电气触动开关,以至超载不报警。形式有弓型架用铁丝绑牢和弓型架永久性变形。 力矩限制器触动开关的失效为电器元件的损坏,由于无防雨罩壳的保护,长时间暴露于外,引起锈蚀、老化失效。 另外一种失效形式为调节螺杆反装,即调节螺杆螺帽方向与电气触动开关相反方向安装。 2、起重量限制器的失效 有的施工人员是将起重量限制器传感器销轴与吊

动臂塔式起重机及其发展趋势

动臂塔式起重机及其发展趋势 Present situation and the development trend of luffing jib to wer crane 林贵瑜1,史勇2 LIN Gui-yu, SHI Yong (1.东北大学机械工程与自动化学院,辽宁沈阳110004; 2.沈阳三洋建筑机械有限公司,辽宁沈阳110044) [摘要]简述了动臂塔式起重机的发展历史与现状,着重从结构、设计方法、应用及自动控制方面叙述了动臂塔式起重机的未来发展,提出应加强设计原理方面的研究,站在设计哲学的高度,审视未来的设计。 [关键词]起重机;动臂塔式起重机;发展趋势;人性化设计 1动臂式塔机的发展与应用 动臂式塔机(即俯仰臂架塔机)是历史上最早出现的塔机型式,其经历过一段辉煌的历史。从工业建筑到民用建筑,从造船厂到港口码头,从钢结构建筑到电站建设,动臂式塔机都发挥了巨大的作用。回顾动臂式塔机的发展历程,不仅受一个国家工业水平的限制,同时又和一个国家的经济发展、文化及整体的科学技术水平相关。二次世界大战之后,战后重建带动了塔机的发展,此时的建筑物高度不高,轨行式、下回转的动臂式塔机占有统治地位。20世纪50年代,随着高层建筑的增多,出现了上回转自升式动臂塔机。20世纪60年代,大中型塔机中,动臂式塔机的市场份额占近70%左右。但是从20世纪70年代开始,小车变幅塔机取代了动臂式塔机的地位。 为了适应市场的需求,要求塔机具有更大的灵活性,澳托·凯赛尔(Otto Kaiser)在20世纪60年代提出了一种不同寻常的塔机概念—HBK系列折曲臂架式塔机,即可实现小车变幅/动臂变幅的混合体,大大提高了设备的利用率,使塔机设计向人性化设计迈出了坚实可靠的一步。其好处是:当塔机处于小车变幅臂架位置时,其工作幅度最大;当仰起臂架时,在不额外增加塔身节的情况下,其臂架在几分钟内就可以转变为增加塔身的高度,大大拓宽了设备的功能和工作范围,适用于冷却塔、电视塔及摩天大楼等建筑物的施工。折曲臂架式塔机的出现,使小车变幅式和动臂变幅式塔机的界限不再分明,但其制造成本较普通塔机要高。 随着经济的发展,建筑楼群的密集,使塔机的工作空间受限。基于高层建筑的发展,新制定的领空权许可制度及跨占邻居领地产生的纠纷等因素,迫使人们改变已有的传统观念,从小车变幅改变为臂架俯仰,为塔机作业创造有利空间,推动了各种类型动臂塔机的改造和发展,全世界塔机生产厂家在设计时都考虑了这些因素,研制出了相应的改进型塔机。对动臂塔机而言,当动臂变幅时,由此会产生附加的静载力矩,想办法平衡这一力矩会大大提高塔机的起重能力,这显然是非常重要的。在机械上解决方法是移动配重,并与动臂仰俯时所需配重相适应。所采取的方法有以下3种:①钢丝绳移动配重方法;②利用连杆的作用,

起重机滑轮组补偿臂架的优化设计

文章编号:1001-3997(2000)01-0027-02 起重机滑轮组补偿臂架的优化设计 陈贤(珠海市东区恒升建材公司,珠海 519000)Optim al Design for the Compensation Arm of A crane CHE N XI AN [摘要]提出了在滑轮组补偿臂架起重机变幅机构设计中确定补偿点的最优化数值解法。这种方法基于优化设计的思想,利用电子计算机,选定必要的设计参量就可以得到最优化的设计结果。 关键词:起重机;补偿点;优化设计 [Abstract ]This paper puts for ward an optimal numerical method o f determining the compensation point in the design o f a crane with compensation arm o f pulley block .This method is based on the concept o f optimal design .With the help o f computer ,food design results can be obtained provided necessary design parameter s are selected . K ey w ord :crane ;compensation point ;optim al design 中国分类号:TH12 文献标识码:A 在滑轮组补偿臂架起重机设计中确定补偿点是非常重要的一项工作,因为补偿点的位置直接影响到起重机在变幅过程中驱动功率的大小及工作性能。目前,确定补偿点有两种方法:一种是图解法,反复次数多、工作量大、结果误差大。另一种是解析法,这种方法是控制变幅过程中绕臂铰轴的力矩,并给出了一定范围内的有关参数。作者分析研究了对补偿点的设计要求及两种解法的优缺点,为了提高设计质量和设计速度,研究了一种用于确定补偿点的最优数值解法。 1 补偿点位置的确定方法 1.1 确定补偿点位置简述 确定补偿点位置的设计如图1所示。当根据工作需要和 结构布置选定臂架长度L ,最大幅度R max ,最小幅度R min ,,臂架铰点O ,起升滑轮组的倍率m 1和补偿滑轮组倍率m 2后,为使起升物品在变幅过程中沿着近似水平的轨迹运动,就需适当选择补偿点A 的位置,使l 1的长度在变幅过程中得到补偿。 1.2 推导确定补偿点的数学表达式 变幅机构的运动可以看成平面问题,用于计算的坐标系 及计算简图如图1所示。 起重机钢丝绳总长(略弹性变形)应为常数,即 D =m 1l 1+m 2l 2=con st (1)式中:l 1———起升滑轮到臂架端点的距离; l 2— ——臂架端点到补偿点的距离;m 1— ——起升滑轮组倍率;m 2— ——补偿滑轮组倍率。起升滑轮组的中心高度为 s =L sin φ-l 1 (2) 把(1)式代入(2)式得 s =L sin φ-D -m 2l 2 m 1 (3) 从△OAB 中应用余弦定理得边长l 2= L 2 +x 12 +x 12 -2L x 12+x 12 sin (φ+θ )(4) 把(4)式代入(3)式得 s =L sin φ-D m 1+m 2m 1 L 2+x 12+x 22 -2L x 12+x 22 sin (φ+θ )因为 sin θ=x 1Π x 12 +x 2 2 所以 s =L sin -φ D m 1+m 2m 1 L 2+x 12+x 22-2L x 12+x 22sin[φ+arcsin (x 1Π x 12+x 22)] 图1 计算简图 — 72—《机械设计与制造》 Feb.2000 №1 M achinery Design & M anu facture 3来稿日期:1999-08-09

塔式起重机基础设计方案

塔式起重机基础施工方案 一、工程概况 1、财富天地·澜湾3#楼,位于哈尔滨市呼兰区通河路与沿河路交汇处,建筑面积为14476m2,地下1层,地上30层,总高度为90m,宽14.6m,长36.4m;地下室底板顶标高为-6m;框架-剪力墙结构,基坑深度4.706m,塔吊QTZ-800型基础形式为b×h=1300×900mm十字梁。 2、根据施工现场情况,设1台QTZ-800型塔吊可以满足施工要求。 二、编制依据 1、起重机使用说明书 2、施工图纸 3、《钻孔压灌超流态混凝土桩技术规程》 DB23/T1389-2010 4、《混凝土结构工程施工质量验收规范》 GB50204-2011

三、塔吊平面位置图 四、基础施工技术措施 本工程地处呼兰区,呼兰河边,根据2014年9月18日哈尔滨新中建岩土工程勘察有限公公司《岩土工程勘察报告(详勘)》,地下水位为自然地面下3.7~4.7m,塔吊基础位于第2层粉质粘土,地基承载力100kpa,不满足塔吊地基承载力要求。为了确保塔吊安装及正常使用,本工程塔吊基础采用四根超流态灌注砼桩,桩长为22m,桩径为600mm,桩端进入持力层900㎜,持力层为第7层粗砂,桩顶标高为-6.9m,钢筋为8根C14通长布置,螺旋箍筋为ф6@100/200,箍筋加密区长度为3m, 加强箍筋C12@2000,桩身钢筋保护层为75mm,桩伸入梁50mm。钢筋笼伸入梁500mm。单桩承载力设计值为1500KN。桩位置见下图:

塔吊基础挖土至-7m(高程114.45m),放坡系数1:1.5。塔吊基础位于地下室内,与地下室底板浇筑在一起,并与地下室底板顶标高一平,底板与塔吊基础梁外边缘一齐为方形。为了施工方便,塔吊基础先施工,将底板钢筋及基础梁钢筋先预埋在塔吊基础内,并甩出搭接长度。为了保证防水要求,在塔吊基础四周均做3mm厚SBS改性沥青防水卷材,与地下室底板防水层搭接;施工缝处设置3mm厚200mm宽止水钢板。具体做法见下图: 根据塔吊安装基础图,塔吊梁b×h=1300×900mm,下设100mm 厚C15混凝土垫层,梁顶标高为-6m。配筋为上下各配10根C25,箍筋采用ф8@150mm,混凝土强度等级为C35,抗渗等级P6,模板采用120mm厚砖墙、M10水泥砂浆砌筑。

相关文档
相关文档 最新文档