文档库 最新最全的文档下载
当前位置:文档库 › 高考数学复习第九章平面解析几何第7节抛物线学案理新人教B版

高考数学复习第九章平面解析几何第7节抛物线学案理新人教B版

高考数学复习第九章平面解析几何第7节抛物线学案理新人教B版
高考数学复习第九章平面解析几何第7节抛物线学案理新人教B版

第7节 抛物线

最新考纲 1.了解抛物线的实际背景,了解抛物线在刻画现实世界和解决实际问题中的作用;2.掌握抛物线的定义、几何图形、标准方程及简单几何性质

.

知 识 梳 理

1.抛物线的定义

(1)平面内与一个定点F 和一条定直线l (F ?l )的距离相等的点的轨迹叫做抛物线.定点F 叫做抛物线的焦点,定直线l 叫做抛物线的准线.

(2)其数学表达式:{M ||MF |=d }(d 为点M 到准线l 的距离). 2.抛物线的标准方程与几何性质

[常用结论与微点提醒]

1.通径:过焦点垂直于对称轴的弦长等于2p ,通径是过焦点最短的弦.

2.抛物线y 2

=2px (p >0)上一点P (x 0,y 0)到焦点F ? ??

??p 2,0的距离|PF |=x 0+p

2,也称为抛物线

的焦半径.

诊 断 自 测

1.思考辨析(在括号内打“√”或“×”)

(1)平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹一定是抛物线.( )

(2)方程y =ax 2

(a ≠0)表示的曲线是焦点在x 轴上的抛物线,且其焦点坐标是? ??

??a

4,0,准线

方程是x =-a

4

.( )

(3)抛物线既是中心对称图形,又是轴对称图形.( )

(4)AB 为抛物线y 2

=2px (p >0)的过焦点F ? ??

??p 2,0的弦,若A (x 1,y 1),B (x 2,y 2),则x 1x 2=p 2

4,y 1y 2=-p 2,弦长|AB |=x 1+x 2+p .( )

解析 (1)当定点在定直线上时,轨迹为过定点F 与定直线l 垂直的一条直线,而非抛物线. (2)方程y =ax 2

(a ≠0)可化为x 2

=1a y ,是焦点在y 轴上的抛物线,且其焦点坐标是? ??

??0,14a ,

准线方程是y =-1

4a

.

(3)抛物线是只有一条对称轴的轴对称图形. 答案 (1)× (2)× (3)× (4)√

2.以x =1为准线的抛物线的标准方程为( ) A.y 2

=2x

B.y 2

=-2x

C.y 2

=4x

D.y 2

=-4x

解析 由准线x =1知,抛物线方程为:

y 2=-2px (p >0)且p

2

=1,p =2,

∴抛物线的方程为y 2

=-4x . 答案 D

3.(2018·黄冈联考)已知方程y 2

=4x 表示抛物线,且该抛物线的焦点到直线x =m 的距离为4,则m 的值为( ) A.5 B.-3或5 C.-2或6

D.6

解析 抛物线y 2

=4x 的焦点为F (1,0),它与直线x =m 的距离为d =|m -1|=4,∴m =-3或5,故选B. 答案 B

4.(教材练习改编)已知抛物线的顶点是原点,对称轴为坐标轴,并且经过点P (-2,-4),

则该抛物线的标准方程为________.

解析 很明显点P 在第三象限,所以抛物线的焦点可能在x 轴负半轴上或y 轴负半轴上. 当焦点在x 轴负半轴上时,设方程为y 2

=-2px (p >0),把点P (-2,-4)的坐标代入得(-4)2

=-2p ×(-2),

解得p =4,此时抛物线的标准方程为y 2

=-8x ;

当焦点在y 轴负半轴上时,设方程为x 2=-2py (p >0),把点P (-2,-4)的坐标代入得(-2)2=-2p ×(-4),解得p =12,此时抛物线的标准方程为x 2

=-y .

综上可知,抛物线的标准方程为y 2

=-8x 或x 2

=-y . 答案 y 2

=-8x 或x 2

=-y

5.已知抛物线方程为y 2

=8x ,若过点Q (-2,0)的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是________.

解析 设直线l 的方程为y =k (x +2),代入抛物线方程,消去y 整理得k 2x 2

+(4k 2

-8)x +4k 2

=0,当k =0时,显然满足题意;当k ≠0时,Δ=(4k 2

-8)2

-4k 2

·4k 2

=64(1-k 2

)≥0,解得-1≤k <0或0<k ≤1,因此k 的取值范围是[-1,1]. 答案 [-1,1]

考点一 抛物线的定义及应用

【例1】 (1)已知F 是抛物线y 2

=x 的焦点,A ,B 是该抛物线上的两点,|AF |+|BF |=3,则线段AB 的中点D 到y 轴的距离为( ) A.34

B.1

C.54

D.74

(2)若抛物线y 2

=2x 的焦点是F ,点P 是抛物线上的动点,又有点A (3,2),则|PA |+|PF |取最小值时点P 的坐标为________.

解析 (1)因为抛物线y 2

=x 的准线方程为x =-1

4

.

如图所示,过点A ,B ,D 分别作直线x =-1

4

的垂线,垂足分别为G ,

E ,M ,因为|A

F |+|BF |=3,根据抛物线的定义,|A

G |=|AF |,|BE |

=|BF |,所以|AG |+|BE |=3,所以|MD |=|BE |+|AG |2=3

2,即线段AB 的中点D 到y 轴的距

离为32-14=5

4

.

(2)将x =3代入抛物线方程

y 2=2x ,得y =± 6.

∵6>2,∴A 在抛物线内部,如图.

设抛物线上点P 到准线l :x =-1

2

的距离为d ,由定义知|PA |+|PF |=

|PA |+d ,当PA ⊥l 时,|PA |+d 最小,最小值为72

,此时P 点纵坐标为2,代入y 2

=2x ,得

x =2,∴点P 的坐标为(2,2).

答案 (1)C (2)(2,2)

规律方法 应用抛物线定义的两个关键点

(1)由抛物线定义,把抛物线上点到焦点距离与到准线距离相互转化.

(2)注意灵活运用抛物线上一点P (x 0,y 0)到焦点F 的距离|PF |=|x 0|+p 2或|PF |=|y 0|+p

2.

【训练1】 (1)动圆过点(1,0),且与直线x =-1相切,则动圆的圆心的轨迹方程为__________.

(2)(2017·全国Ⅱ卷)已知F 是抛物线C :y 2

=8x 的焦点,M 是C 上一点,FM 的延长线交y 轴于点N .若M 为FN 的中点,则|FN |=________.

解析 (1)设动圆的圆心坐标为(x ,y ),则圆心到点(1,0)的距离与到直线x =-1的距离相等,根据抛物线的定义易知动圆的圆心的轨迹方程为y 2

=4x .

(2)如图,不妨设点M 位于第一象限内,抛物线C 的准线交x 轴于点A ,过点M 作准线的垂线,垂足为点B ,交y 轴于点P ,∴PM ∥OF . 由题意知,F (2,0),|FO |=|AO |=2. ∵点M 为FN 的中点,PM ∥OF , ∴|MP |=1

2|FO |=1.

又|BP |=|AO |=2, ∴|MB |=|MP |+|BP |=3.

由抛物线的定义知|MF |=|MB |=3,故|FN |=2|MF |=6. 答案 (1)y 2

=4x (2)6

考点二 抛物线的标准方程及其性质

【例2】 (1)已知双曲线C 1:x 2a 2-y 2b

2=1(a >0,b >0)的离心率为2.若抛物线C 2:x 2

=2py (p >0)

的焦点到双曲线C 1的渐近线的距离为2,则抛物线C 2的方程为( ) A.x 2

=833y B.x 2=1633y

C.x 2

=8y D.x 2

=16y

(2)(2016·全国Ⅰ卷)以抛物线C 的顶点为圆心的圆交C 于A ,B 两点,交C 的准线于D ,E 两点.已知|AB |=42,|DE |=25,则C 的焦点到准线的距离为( ) A.2 B.4 C.6 D.8

解析 (1)∵x 2a 2-y 2

b 2=1(a >0,b >0)的离心率为2,

∴c a =2,即c 2a 2=a 2+b 2a 2=4,∴b

a

= 3. x 2

=2py (p >0)的焦点坐标为? ????0,p 2,x 2a 2-y

2

b

2=1(a >0,b >0)的渐近线方程为y =

±b a

x ,即y =±3x .由题意得

p

21+(3)

2

=2,解得p =8.故C 2的方程为x 2

=16y . (2)不妨设抛物线C :y 2

=2px (p >0),圆的方程为x 2

+y 2

=r 2

(r >0), ∵|AB |=42,|DE |=25, 抛物线的准线方程为x =-p

2

∴不妨设A ? ????4p ,22,D ? ??

??-p 2,5, ∵点A ? ????4p ,22,D ? ??

??-p 2,5在圆x 2+y 2=r 2

上,

∴16p 2+8=p

2

4+5,解得p =4(负值舍去), 故C 的焦点到准线的距离为4. 答案 (1)D (2)B

规律方法 1.求抛物线标准方程的常用方法是待定系数法,其关键是判断焦点位置、开口方向,在方程的类型已经确定的前提下,由于标准方程只有一个参数p ,只需一个条件就可以确定抛物线的标准方程.

2.在解决与抛物线的性质有关的问题时,要注意利用几何图形的形象、直观的特点来解题,特别是涉及焦点、顶点、准线的问题更是如此.

【训练2】

(1)如图,过抛物线y 2

=2px (p >0)的焦点F 的直线交抛物线

于点A ,B ,交其准线l 于点C ,若|BC |=2|BF |,且|AF |=3,则此抛物线的方程为________. (2)过抛物线y 2

=4x 的焦点F 的直线交该抛物线于A ,B 两点,O 为坐标原点.若|AF |=3,则△AOB 的面积为________.

(1)解析 设A ,B 在准线上的射影分别为A 1,B 1, 由于|BC |=2|BF |=2|BB 1|,则直线的斜率为3, 故|AC |=2|AA 1|=6,从而|BF |=1,|AB |=4, 故

p |AA 1|=|CF ||AC |=12,即p =32

,从而抛物线的方程为y 2

=3x .

(2)如图,由题意知,抛物线的焦点F 的坐标为(1,0),又|AF |=3,由抛物线定义知,点A 到准线x =-1的距离为3,所以点A 的横坐标为2,将

x =2代入y 2=4x 得y 2=8,由图知点A 的纵坐标为y =22,所以A (2,

22),所以直线AF 的方程为y =22(x -1), 联立直线与抛物线的方程??

?y =22(x -1),

y 2

=4x ,

解得?????x =12,y =-2或???x =2,y =22,由图知B ? ????12,-2,

所以S △AOB =12×1×|y A -y B |=32

2.

答案 (1)y 2

=3x (2)322

考点三 直线与抛物线的位置关系(多维探究) 命题角度1 直线与抛物线的公共点(交点)问题

【例3-1】 (2016·全国Ⅰ卷)在直角坐标系xOy 中,直线l :y =t (t ≠0)交y 轴于点M ,交抛物线C :y 2

=2px (p >0)于点P ,M 关于点P 的对称点为N ,连接ON 并延长交C 于点H . (1)求|OH ||ON |

(2)除H 以外,直线MH 与C 是否有其它公共点?说明理由.

解 (1)如图,由已知得M (0,t ),P ? ????t 2

2p ,t , 又N 为M 关于点P 的对称点,故N ? ??

??t 2

p ,t ,

故直线ON 的方程为y =p

t

x ,

将其代入y 2

=2px 整理得px 2

-2t 2

x =0, 解得x 1=0,x 2=2t 2

p

,因此H ? ??

??2t 2

p ,2t .

所以N 为OH 的中点,即|OH |

|ON |

=2.

(2)直线MH 与C 除H 以外没有其它公共点,理由如下:

直线MH 的方程为y -t =p 2t x ,即x =2t

p

(y -t ).

代入y 2

=2px 得y 2

-4ty +4t 2

=0, 解得y 1=y 2=2t ,

即直线MH 与C 只有一个公共点,

所以除H 以外,直线MH 与C 没有其它公共点. 命题角度2 与抛物线弦长(中点)有关的问题

【例3-2】 (2017·北京卷)已知抛物线C :y 2

=2px 过点P (1,1),过点? ??

??0,12作直线l 与

抛物线C 交于不同的两点M ,N ,过点M 作x 轴的垂线分别与直线OP ,ON 交于点A ,B ,其中

O 为原点.

(1)求抛物线C 的方程,并求其焦点坐标和准线方程; (2)求证:A 为线段BM 的中点.

(1)解 把P (1,1)代入y 2

=2px ,得p =12,

所以抛物线C 的方程为y 2

=x ,

焦点坐标为? ??

??14,0,准线方程为x =-14. (2)证明 当直线MN 斜率不存在或斜率为零时,显然与抛物线只有一个交点不满足题意,所以直线MN (也就是直线l )斜率存在且不为零.

由题意,设直线l 的方程为y =kx +1

2(k ≠0),l 与抛物线C 的交点为M (x 1,y 1),N (x 2,y 2).

由???

??y =kx +12,

y 2=x ,

消去y 得4k 2x 2+(4k -4)x +1=0. 考虑Δ=(4k -4)2

-4×4k 2=16(1-2k ),

由题可知有两交点,所以判别式大于零,所以k <12

.

则x 1+x 2=1-k k 2,x 1x 2=1

4k

2.

因为点P 的坐标为(1,1),所以直线OP 的方程为y =x ,点A 的坐标为(x 1,x 1). 直线ON 的方程为y =y 2

x 2

x ,点B 的坐标为?

??

??

x 1,y 2x 1x 2. 因为y 1+

y 2x 1x 2-2x 1=y 1x 2+y 2x 1-2x 1x 2

x 2

? ????kx 1+12x 2+?

????kx 2+12x 1-2x 1x

2

x 2

=(2k -2)x 1x 2+1

2

(x 2+x 1)

x 2

=(2k -2)×14k 2+1-k 2k

2

x 2

=0.

所以y 1+

y 2x 1

x 2

=2x 1. 故A 为线段BM 的中点.

规律方法 1.直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系.

2.有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点.若过抛物线的焦点,可直接使用公式|AB |=x 1+x 2+p ,若不过焦点,则必须用一般弦长公式.

3.涉及抛物线的弦长、中点、距离等相关问题时,一般利用根与系数的关系采用“设而不求”、“整体代入”等解法.

提醒:涉及弦的中点、斜率时一般用“点差法”求解.

【训练3】 (2017·全国Ⅰ卷)已知F 为抛物线C :y 2

=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A ,B 两点,直线l 2与C 交于D ,E 两点,则|AB |+|DE |的最小值为( ) A.16

B.14

C.12

D.10

解析 抛物线C :y 2

=4x 的焦点为F (1,0),由题意可知l 1,l 2的斜率存在且不为0.不妨设直线l 1的斜率为k ,则l 2直线的斜率为-1

k

,故l 1:y =k (x -1),l 2:y =

-1

k

(x -1).

由?????y 2

=4x ,y =k (x -1),消去y 得k 2x 2-(2k 2+4)x +k 2=0.

设A (x 1,y 1),B (x 2,y 2),∴x 1+x 2=2k 2

+4k 2=2+4

k

2,

由抛物线定义可知,|AB |=x 1+x 2+2=4+4

k

2.

同理得|DE |=4+4k 2

∴|AB |+|DE |=8+4k 2

+4k

2≥8+216=16.

当且仅当1k

2=k 2

,即k =±1时取等号.

故|AB |+|DE |的最小值为16. 答案 A

基础巩固题组 (建议用时:40分钟)

一、选择题

1.(2018·济南月考)若抛物线y =ax 2

的焦点坐标是(0,1),则a 等于( ) A.1

B.12

C.2

D.14

解析 因为抛物线的标准方程为x 2

=1a

y ,

所以其焦点坐标为? ????0,14a , 则有14a =1,解得a =14.

答案 D

2.(2016·全国Ⅱ卷)设F 为抛物线C :y 2

=4x 的焦点,曲线y =k x

(k >0)与C 交于点P ,PF ⊥x 轴,则k =( ) A.12 B.1 C.32

D.2

解析 由题可知抛物线的焦点坐标为(1,0),由PF ⊥x 轴知,|PF |=2,所以P 点的坐标为(1,2),代入曲线y =k x

(k >0)得k =2. 答案 D

3.(2018·张掖诊断)过抛物线y 2

=4x 的焦点的直线l 交抛物线于P (x 1,y 1),Q (x 2,y 2)两点,

如果x 1+x 2=6,则|PQ |=( ) A.9 B.8 C.7

D.6

解析 抛物线y 2

=4x 的焦点为F (1,0),准线方程为x =-1.根据题意可得,|PQ |=|PF |+|QF |=x 1+1+x 2+1=x 1+x 2+2=8. 答案 B

4.(2018·铁岭质检)设抛物线C :y 2

=3x 的焦点为F ,点A 为C 上一点,若|FA |=3,则直线

FA 的倾斜角为( )

A.π3

B.π

4 C.π3或2π3

D.π4或3π4

解析 如图,作AH ⊥l 于H ,则|AH |=|FA |=3,作FE ⊥AH 于E ,则|AE |=3-32=32,在Rt △AEF 中,cos ∠EAF =|AE ||AF |=1

2

∴∠EAF =π3,即直线FA 的倾斜角为π

3,同理点A 在x 轴下方时,直

线FA 的倾斜角为2π

3.

答案 C

5.(2018·衡水调研)已知抛物线y 2

=4x ,过点P (4,0)的直线与抛物线相交于A (x 1,y 1),B (x 2,

y 2)两点,则y 21+y 22的最小值为( )

A.12

B.24

C.16

D.32

解析 当直线的斜率不存在时,其方程为x =4,由?

??

?

?x =4,y 2

=4x ,得y 1=-4,y 2=4,∴y 21+y 2

2=

32.当直线的斜率存在时,设其方程为y =k (x -4),由?

????y 2

=4x ,y =k (x -4),得ky 2

-4y -16k =0,

∴y 1+y 2=4k ,y 1y 2=-16,∴y 21+y 22=(y 1+y 2)2-2y 1y 2=16k

2+32>32,综上可知,y 21+y 2

2≥32.

∴y 21+y 2

2的最小值为32. 答案 D 二、填空题

6.(2018·广东省际名校联考)圆(x +1)2

+y 2

=1的圆心是抛物线y 2

=px (p <0)的焦点,则p

=________.

解析 由题意知圆心为(-1,0),则p

4=-1,解得p =-4.

答案 -4

7.(2018·黄山模拟)已知抛物线C :y 2

=8x ,焦点为F ,点P (0,4),点A 在抛物线上,当点

A 到抛物线准线l 的距离与点A 到点P 的距离之和最小时,延长AF 交抛物线于点

B ,则△AOB

的面积为________.

解析 F (2,0),设A 在抛物线准线上的投影为A ′, 由抛物线的定义知,|AA ′|=|AF |,

则点A 到点P (0,4)的距离与A 到该抛物线准线的距离之和d =|AP |+|AF |≥|PF |=25,当F ,A ,P 三点共线时d 取得最小值,

此时直线AB 的斜率为-2,方程为y =-2(x -2),即x =-y

2+2,

代入抛物线C :y 2

=8x ,可得y 2

+4y -16=0, 解得y =-2-25或-2+2 5.

∴△AOB 的面积为1

2×2×|(-2-25)-(-2+25)|=4 5.

答案 4 5

8.如图是抛物线形拱桥,当水面在l 时,拱顶离水面2米,水面宽4米.水位下降1米后,水面宽________米.

解析 建立如图平面直角坐标系,设抛物方程为x 2

=-2py (p >0). 由题意将点A (2,-2)代入x 2

=-2py ,得p =1,故x 2=-2y .设B (x ,-3),代入x 2

=-2y 中,得x =6,故水面宽为26米. 答案 2 6 三、解答题

9.已知抛物线C :y 2

=2px (p >0)的焦点为F ,抛物线C 与直线l 1:y =-x 的一个交点的横坐标为8.

(1)求抛物线C 的方程;

(2)不过原点的直线l 2与l 1垂直,且与抛物线交于不同的两点A ,B ,若线段AB 的中点为P ,且|OP |=|PB |,求△FAB 的面积.

解 (1)易知直线与抛物线的交点坐标为(8,-8), ∴(-8)2

=2p ×8,∴2p =8,∴抛物线方程为y 2

=8x .

(2)直线l 2与l 1垂直,故可设直线l 2:x =y +m ,A (x 1,y 1),B (x 2,y 2),且直线l 2与x 轴的交点为M .

由?

????y 2

=8x ,x =y +m ,得y 2-8y -8m =0, Δ=64+32m >0,∴m >-2.

y 1+y 2=8,y 1y 2=-8m ,

∴x 1x 2=

y 21y 2

2

64

=m 2

.

由题意可知OA ⊥OB ,即x 1x 2+y 1y 2=m 2

-8m =0, ∴m =8或m =0(舍),∴直线l 2:x =y +8,M (8,0). 故S △FAB =S △FMB +S △FMA =1

2·|FM |·|y 1-y 2|

=3(y 1+y 2)2

-4y 1y 2=24 5.

10.(2017·全国Ⅰ卷)设A ,B 为曲线C :y =x 2

4上两点,A 与B 的横坐标之和为4.

(1)求直线AB 的斜率;

(2)设M 为曲线C 上一点,C 在M 处的切线与直线AB 平行,且AM ⊥BM ,求直线AB 的方程. 解 (1)设A (x 1,y 1),B (x 2,y 2), 则x 1≠x 2,y 1=x 214,y 2=x 22

4,x 1+x 2=4.

于是直线AB 的斜率k =

y 1-y 2x 1-x 2=x 1+x 2

4

=1. (2)由y =x 24,得y ′=x

2

.

设M (x 3,y 3),由题设知x 3

2=1,解得x 3=2,于是M (2,1).

设直线AB 的方程为y =x +m ,

故线段AB 的中点为N (2,2+m ),|MN |=|m +1|. 将y =x +m 代入y =x 2

4

得x 2

-4x -4m =0.

当Δ=16(m +1)>0,即m >-1时,x 1,2=2±2m +1.

从而|AB |=2|x 1-x 2|=42(m +1).

由题设知|AB |=2|MN |,即42(m +1)=2(m +1), 解得m =7.

所以直线AB 的方程为x -y +7=0.

能力提升题组 (建议用时:20分钟)

11.(2018·南昌模拟)已知抛物线C 1:y =12p x 2(p >0)的焦点与双曲线C 2:x 2

3-y 2

=1的右焦点

的连线交C 1于点M (M 在第一象限),若C 1在点M 处的切线平行于C 2的一条渐近线,则p =( ) A.3

16

B.38

C.233

D.43

3

解析 由抛物线C 1:y =12p x 2(p >0)得x 2

=2py (p >0),

所以抛物线的焦点坐标为? ?

???

0,p 2.

由x 2

3-y 2

=1得a =3,b =1,c =2. 所以双曲线的右焦点为(2,0).

则抛物线的焦点与双曲线的右焦点的连线所在直线方程为

y -0p 2-0

=x -2

0-2

.即px +4y -2p =0.①

设M ?

????x 0,x 2

02p (x 0>0),则C 1在点M 处的切线的斜率为x 0p .

由题意可知x 0

p =33,解得x 0=3

3

p , 所以M ?

????33

p ,p 6, 把M 点的坐标代入①得3p 2

3+2

3p -2p =0.

解得p =43

3.

答案 D

12.已知抛物线方程为y 2

=-4x ,直线l 的方程为2x +y -4=0,在抛物线上有一动点A ,点

A到y轴的距离为m,到直线l的距离为n,则m+n的最小值为________.

解析如图,过A作AH⊥l,AN垂直于抛物线的准线,则|AH|+|AN|=m+n+1,连接AF,则|AF|+|AH|=m+n+1,由平面几何知识,知当A,F,H三点共线时,|AF|+|AH|=m+n

+1取得最小值,最小值为F到直线l的距离,即6

5

65

5

,即m+n的最小值为

65

5

-1. 答案

65

5

-1

13.已知抛物线y2=2px(p>0)的焦点为F,A(x1,y1),B(x2,y2)是过F的直线与抛物线的两个交点,求证:

(1)y1y2=-p2,x1x2=

p2

4

(2)

1

|AF|

1

|BF|

为定值;

(3)以AB为直径的圆与抛物线的准线相切.

证明(1)由已知得抛物线焦点坐标为

?

?

??

?

p

2

,0.

由题意可设直线方程为x=my+

p

2

,代入y2=2px,

得y2=2p?

?

??

?

my+

p

2

,即y2-2pmy-p2=0.(*)

则y1,y2是方程(*)的两个实数根,

所以y1y2=-p2.

因为y21=2px1,y22=2px2,所以y21y22=4p2x1x2,

所以x1x2=

y21y22

4p2

p4

4p2

p2

4

.

(2)

1

|AF|

1

|BF|

1

x1+

p

2

1

x2+

p

2

x1+x2+p

x1x2+

p

2

(x1+x2)+

p2

4

.

因为x1x2=

p2

4

,x1+x2=|AB|-p,代入上式,

1

|AF |+1|BF |=|AB |p 24+p 2(|AB |-p )+p 24=2p

(定值). (3)设AB 的中点为M (x 0,y 0),分别过A ,B 作准线的垂线,垂足为C ,D ,过M 作准线的垂线,垂足为N , 则|MN |=1

2(|AC |+|BD |)=

12(|AF |+|BF |)=1

2

|AB |. 所以以AB 为直径的圆与抛物线的准线相切

.

高考数学抛物线大题专练30题(含详解)经典收藏版

目录 目录-------------------------------------------------------------------------------------------------1抛物线大题专练(一)--------------------------------------------------------------------------------2抛物线大题专练(二)--------------------------------------------------------------------------------5抛物线大题专练(三)--------------------------------------------------------------------------------8抛物线大题专练---------------------------------------------------------------------------------------11参考答案与试题解析---------------------------------------------------------------------------------11

抛物线大题专练(一) 1.已知抛物线C的方程为x2=2py,设点M(x0,1)(x0>0)在抛物线C上,且它到抛物线C的准线距离为; (1)求抛物线C的方程; (2)过点M作倾斜角互补的两条直线分别交抛物线C于A(x1,y1),B(x2,y2)两点(M、A、B三点互不相同), 求当∠MAB为钝角时,点A的纵坐标y1的取值范围. 2.在平面直角坐标系xOy中,已知抛物线y2=2px(p>0)的准线方程为x=﹣,过点M(0,﹣2)作抛物线的切 线MA,切点为A(异于点O).直线l过点M与抛物线交于两点B,C,与直线OA交于点N. (1)求抛物线的方程; (2)试问:的值是否为定值?若是,求出定值;若不是,说明理由.

(整理)届高三数学总复习平面解析几何练习题目汇总

第8章 第1节 一、选择题 1.(2010·崇文区)“m =-2”是“直线(m +1)x +y -2=0与直线mx +(2m +2)y +1=0相互垂直”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 [答案] A [解析] m =-2时,两直线-x +y -2=0、-2x -2y +1=0相互垂直;两直线相互垂直时,m(m +1)+2m +2=0,∴m =-1或-2,故选A. 2.(文)(2010·安徽文)过点(1,0)且与直线x -2y -2=0平行的直线方程是( ) A .x -2y -1=0 B .x -2y +1=0 C .2x +y -2=0 D .x +2y -1=0 [答案] A [解析] 解法1:所求直线斜率为12,过点(1,0),由点斜式得,y =12(x -1),即x -2y -1=0. 解法2:设所求直线方程为x -2y +b =0, ∵过点(1,0),∴b =-1,故选A. (理)设曲线y =ax2在点(1,a)处的切线与直线2x -y -6=0平行,则a =( ) A .1 B.12 C .-12 D .-1 [答案] A [解析] y′=2ax ,在(1,a)处切线的斜率为k =2a , 因为与直线2x -y -6=0平行,所以2a =2,解得a =1. 3.点(-1,1)关于直线x -y -1=0的对称点是( ) A .(-1,1) B .(1,-1) C .(-2,2) D .(2,-2) [答案] D [解析] 一般解法:设对称点为(x ,y),则

????? x -12-y +12-1=0 y -1x +1=-1,解之得????? x =2y =-2, 特殊解法:当直线l :Ax +By +C =0的系数满足|A|=|B|=1时,点A(x0,y0)关于l 的对称 点B(x ,y)的坐标,x =-By0-C A ,y =-Ax0-C B . 4.(2010·惠州市模考)在平面直角坐标系中,矩形OABC ,O(0,0),A(2,0),C(0,1),将矩形折叠,使O 点落在线段BC 上,设折痕所在直线的斜率为k ,则k 的取值范围为( ) A .[0,1] B .[0,2] C .[-1,0] D .[-2,0] [答案] D [解析] 如图,要想使折叠后点O 落在线段BC 上,可取BC 上任一点D 作线段OD 的垂直平分线l ,以l 为折痕可使O 与D 重合,故问题转化为在线段CB 上任取一点D ,求直线OD 的斜率的取值范围问题, ∵kOD≥kOB =12,∴k =-1kOD ≥-2,且k<0, 又当折叠后O 与C 重合时,k =0,∴-2≤k≤0. 5.(文)已知点(3,1)和点(1,3)在直线3x -ay +1=0的两侧,则实数a 的取值范围是( ) A .(-∞,10) B .(10,+∞) C.??? ?-∞,43∪(10,+∞) D.??? ?43,10 [答案] D [解析] 将点的坐标分别代入直线方程左边,所得两值异号,∴(9-a +1)(3-3a +1)<0,∴43

高三数学一轮复习学案概率统计

高三数学一轮复习学案概率统计 【命题趋向】概率与统计是高中数学的重要学习内容,它是一种处理或然咨询题的方法, 在工农业生产和社会生活中有着广泛的应用,渗透到社会的方方面面,概率与统计的基础知识成为每个公民的必备常识.概率与统计的引入,拓广了应用咨询题取材的范畴,概率的运算、离散型随机变量的分布列和数学期望的运算及应用差不多上考查应用意识的良好素材.在高考试卷中,概率与统计的内容每年都有所涉及,以解答题形式显现的试题常常设计成包含离散型随机变量的分布列与期望、统计图表的识不等知识为主的综合题,以考生比较熟悉的实际应用咨询题为载体,以排列组合和概率统计等基础知识为工具,考查对概率事件的识不及概率运算.解答概率统计试题时要注意分类与整合、化归与转化、或然与必定思想的运用. 由于中学数学中所学习的概率与统计内容是最基础的,高考对这一部分内容的考查注重考查基础知识和差不多方法.该部分在高考试卷中,一样是2—3个小题和一个解答题.【考点透析】概率统计的考点要紧有:概率与统计包括随机事件,等可能性事件的概率,互斥事件有一个发生的概率,古典概型,几何概型,条件概率,独立重复试验与二项分布,超几何分布,离散型随机变量的分布列,离散型随机变量的期望和方差,抽样方法,总体分布的估量,正态分布,线性回来等.【例题解析】 题型1 抽样方法 【例1】在1000个有机会中奖的号码〔编号为000999-〕中,在公证部门监督下按照 随机抽取的方法确定后两位数为的号码为中奖号码,该抽样运用的抽样方法是 〔 〕A .简单随机抽样 B .系统抽样 C . 分层抽样 D .以上均不对 分析:实际〝间隔距离相等〞的抽取,属于系统抽样. 解析:题中运用了系统抽样的方法采确定中奖号码,中奖号码依次为:088,188,288, 388,488,588,688,788,888,988.答案B . 点评:关于系统抽样要注意如下几个咨询题:〔1〕系统抽样是将总体分成均衡几个部 分,然按照预先定出的规那么从每一部分抽取一个个体,得到所需要的样本的一种抽样 方法.〔2〕 系统抽样的步骤:①将总体中的个体随机编号;②将编号分段;③在第一 段中用简单随机抽样确定起始的个体编号;④按事先研究的规那么抽取样本.〔3〕适用范畴:个体数较多的总体. 例2〔2018年高考广东卷理3〕某校共有学生2000名,各年级男、女生人数如表.在 全校学生中随机抽取1名,抽到二年级女生的概率是0.19.现用分层抽样的方法在全校 抽取64名学生,那么应在三年级抽取的学生人数为〔 〕 A .24 B .18 C .16 D .12 分析:依照给出的概领先求出x 的值,如此就能够明白三年级的学生人数,咨询题就解决了.占全校学生总数的19%, 解析:C 二年级女生即20000.19380x =?=,如此一年级和二年级学生的总数是 3733773803701500+++=,三年级学生有500人,用分层抽样抽取的三年级学生 一年级 二年级 三年级 女 生 373 x y 男生 377 370 z

高中数学平面解析几何知识点总结

平面解析几何 一、直线与圆 1.斜率公式 2121 y y k x x -=-(111(,)P x y 、222(,)P x y ). 2.直线的五种方程 (1)点斜式 11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ). (2)斜截式 y kx b =+(b 为直线l 在y 轴上的截距). (3)两点式 112121 y y x x y y x x --=--(12y y ≠)(111(,)P x y 、222(,)P x y (12x x ≠)). < (4)截距式 1x y a b +=(a b 、分别为直线的横、纵截距,0a b ≠、). (5)一般式 0Ax By C ++=(其中A 、B 不同时为0). 3.两条直线的平行和垂直 (1)若111:l y k x b =+,222:l y k x b =+ ①121212||,l l k k b b ?=≠; ②12121l l k k ⊥?=-. (2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,且A 1、A 2、B 1、B 2都不为零, ①11112222 ||A B C l l A B C ? =≠; < ②1212120l l A A B B ⊥?+=; 4.点到直线的距离 d =(点00(,)P x y ,直线l :0Ax By C ++=). 5.圆的四种方程 (1)圆的标准方程 222()()x a y b r -+-=. (2)圆的一般方程 220x y Dx Ey F ++++=(224D E F +->0).圆心??? ??--2,2E D ,半径r=2 422F E D -+. 6.点与圆的位置关系 点00(,)P x y 与圆2 22)()(r b y a x =-+-的位置关系有三种: . 若d =d r >?点P 在圆外;d r =?点P 在圆上;d r 相离r d ; 0=???=相切r d ; 0>???<相交r d . 其中22B A C Bb Aa d +++=. 8.两圆位置关系的判定方法 # 设两圆圆心分别为O 1,O 2,半径分别为r 1,r 2,d O O =21 条公切线外离421??+>r r d ; 条公切线外切321??+=r r d ;

高三数学-抛物线专题复习

抛物线 平面内与一个定点F 和一条定直线l(F ?l)的距离相等的点的轨迹叫做抛物线.点F 叫做抛物线的焦点,直线l 叫做抛物线的准线. 2.抛物线的标准方程与几何性质 标准方程 y 2=2px (p>0) y 2=-2px(p>0) x 2=2py(p>0) x 2=-2py(p>0) p 的几何意义:焦点F 到准线l 的距离 & 图形 顶点 O(0,0) 对称轴 y =0 x =0 $ 焦点 F ????p 2,0 F ??? ?-p 2,0 F ? ???0,p 2 F ??? ?0,-p 2 离心率 e =1 准线方程 x =-p 2 x =p 2 。 y =-p 2 y =p 2 范围 x ≥0,y ∈R x ≤0,y ∈R y ≥0,x ∈R y ≤0,x ∈R 开口方向 向右 向左 - 向上 向下 题型一 抛物线的定义及应用 例1 已知抛物线y 2=2x 的焦点是F ,点P 是抛物线上的动点,又有点A(3,2),求|PA|+|PF|的最小值,并求出取最小值时点P 的坐标. 》

变式练习 1.已知点P是抛物线y2=2x上的一个动点,则点P到点(0,2)的距离与点P到该抛物线准线的距离之和的最小值为() 题型二抛物线的标准方程和几何性质 例2抛物线的顶点在原点,对称轴为y轴,它与圆x2+y2=9相交,公共弦MN的长为25,求该抛物线的方程,并写出它的焦点坐标与准线方程. * 变式练习 2.设斜率为2的直线l过抛物线y2=ax(a≠0)的焦点F,且和y轴交于点A.若△OAF(O为坐标原点)的面积为4,则抛物线方程为() =±4x =±8x =4x =8x 变式练习 3.已知点A(2,0),抛物线C:x2=4y的焦点为F,射线FA与抛物线C相交于点M,与其准线相交于点N,则|FM|∶|MN|等于() ∶ 5 ∶2 ∶ 5 ∶3 题型三抛物线焦点弦的性质 … 例3设抛物线y2=2px(p>0)的焦点为F,经过点F的直线交抛物线于A、B两点,点C在抛物线的准线上,且BC∥x轴.证明:直线AC经过原点O. :

《三维设计》2014届高考数学一轮复习教学案(基础知识+高频考点+解题训练)古典概型

古_典_概_型 [知识能否忆起] 一、基本事件的特点 1.任何两个基本事件是互斥的. 2.任何事件(除不可能事件)都可以表示成基本事件的和. 二、古典概型的两个特点 1.试验中所有可能出现的基本事件只有有限个,即有限性. 2.每个基本事件出现的可能性相等,即等可能性. [提示] 确定一个试验为古典概型应抓住两个特征:有限性和等可能性. 三、古典概型的概率公式 P (A )=A 包含的基本事件的个数基本事件的总数 . [小题能否全取] 1.(教材习题改编)从甲、乙、丙三人中任选两名代表,甲被选中的概率为( ) A.12 B.13 C.23 D .1 解析:选C 基本事件总数为(甲、乙)、(甲、丙)、(乙、丙)共三种,甲被选中共2种.则P =23 . 2.(教材习题改编)从1,2,3,4,5,6六个数中任取2个数,则取出的两个数不是连续自然数的概率是( ) A.35 B.25 C.13 D.23 解析:选D 从六个数中任取2个数有15种方法,取出的两个数是连续自然数有5种情况,则取出的两个数不是连续自然数的概率P =1- 515=23 . 3.甲、乙两同学每人有两本书,把四本书混放在一起,每人随机拿回两本,则甲同学拿到一本自己书一本乙同学书的概率是( ) A.13 B.23

C.12 D.14 解析:选B 记甲同学的两本书为A ,B ,乙同学的两本书为C ,D ,则甲同学取书的情况有AB ,AC ,AD ,BC ,BD ,CD 共6种,有一本自己的书,一本乙同学的书的取法有AC ,AD ,BC ,BD 共4种,所求概率P =2 3 . 4.(2012·南通一调)将甲、乙两球随机放入编号为1,2,3的3个盒子中,每个盒子的放球数量不限,则在1,2号盒子中各有一个球的概率为________. 解析:依题意得,甲、乙两球各有3种不同的放法,共9种放法,其中有1,2号盒子中各有一个球的放法有2种,故有1,2号盒子中各有一个球的概率为29 . 答案:29 5.(教材习题改编)从3台甲型彩电和2台乙型彩电中任选两台,其中两种品牌的彩电齐全的概率是________. 解析:P =3×210=3 5. 答案:35 1.古典概型的判断: 一个试验是否为古典概型,在于这个试验是否具有古典概型的两个特征——有限性和等可能性,只有同时具备这两个特点的概率模型才是古典概型. 2.对于复杂的古典概型问题要注意转化为几个互斥事件的概率问题去求. 典题导入 [例1] (2012·安徽高考)袋中共有6个除了颜色外完全相同的球,其中有1个红球、2个白球和3个黑球.从袋中任取两球,两球颜色为一白一黑的概率等于( ) A.15 B.25 C.35 D.45 [自主解答] (文)设袋中红球用a 表示,2个白球分别用b 1,b 2表示,3个黑球分别用c 1,c 2,c 3表示,则从袋中任取两球所含基本事件为(a ,b 1),(a ,b 2),(a ,c 1),(a ,c 2),(a ,

高中平面解析几何知识点总结

高中平面解析几何知识点总结 一.直线部分 1.直线的倾斜角与斜率: (1)直线的倾斜角:在平面直角坐标系中,对于一条与x 轴相交的直线,如果把x 轴绕着交点按逆时针方向旋转到和直线重合时所转的最小正角记为α叫做直线的倾斜角. 倾斜角)180,0[?∈α,?=90α斜率不存在. (2)直线的斜率: αtan ),(21121 2=≠--= k x x x x y y k .两点坐标为111(,)P x y 、222(,)P x y . 2.直线方程的五种形式: (1)点斜式:)(11x x k y y -=- (直线l 过点),(111y x P ,且斜率为k ). 注:当直线斜率不存在时,不能用点斜式表示,此时方程为0x x =. (2)斜截式:b kx y += (b 为直线l 在y 轴上的截距). (3)两点式:121121x x x x y y y y --= -- (12y y ≠,12x x ≠). 注:① 不能表示与x 轴和y 轴垂直的直线; ② 方程形式为:0))(())((112112=-----x x y y y y x x 时,方程可以表示任意直线. (4)截距式:1 =+b y a x (b a ,分别为x 轴y 轴上的截距,且0,0≠≠b a ). 注:不能表示与x 轴垂直的直线,也不能表示与y 轴垂直的直线,特别是不能表示过原点的直线. (5)一般式:0=++C By Ax (其中A 、B 不同时为0). 一般式化为斜截式: B C x B A y - - =,即,直线的斜率: B A k -=. 注:(1)已知直线纵截距b ,常设其方程为y kx b =+或0x =. 已知直线横截距0x ,常设其方程为0x my x =+(直线斜率k 存在时,m 为k 的倒数)或0y =. 已知直线过点00(,)x y ,常设其方程为00()y k x x y =-+或0x x =. (2)解析几何中研究两条直线位置关系时,两条直线有可能重合;立体几何中两条直 线一般不重合.

艺术生高考数学复习学案

§1集合(1) 【考点及要求】了解集合含义,体会“属于”和“包含于”的关系,全集与空集的含义 【基础知识】 集合中元素与集合之间的关系:文字描述为 和 符号表示为 和 常见集合的符号表示:自然数集 正整数集 整数集 有理数集 实数集 集合的表示方法1 2 3 集合间的基本关系:1相等关系:_________A B B A ???且 2子集:A 是B 的子集,符号表示为______或 B A ? 3 真子集:A 是B 的真子集,符号表示为_____或____ 不含任何元素的集合叫做 ,记作 ,并规定空集是任何集合的子集,是任何非空集合的 【基本训练】 1.下列各种对象的全体,可以构成集合的是 (1) 某班身高超过1.8m 的女学生;(2)某班比较聪明的学生;(3)本书中的难题 (4)使232x x -+最小的 x 的值 2. 用适当的符号(,,,,)∈?=??填空: ___;Q π {}3.14____Q ; *___;N N {}{}21,____21,x x k k Z x x k k z =+∈=-∈ 3.用描述法表示下列集合: 由直线1y x =+上所有点的坐标组成的集合; 4.若A B B ?=,则____A B ;若A B B ?=则_____;_____A B A B A B ?? 5.集合{}{} 35,A x x B x x a =-<=<,且A B ?,则a 的范围是 【典型例题讲练】 例1 设集合11,,,2442k k M x x k Z N x x k Z ? ??? ==+∈==+∈???????? ,则_______M N

练习: 设集合11,,,3663k k P x x k Z Q x x k Z ? ??? ==+∈==+∈???????? ,则______P Q 例2已知集合{} 2210,,A x ax x x R a =++=∈为实数。 (1) 若A 是空集,求a 的取值范围; (2) 若A 是单元素集,求a 的取值范围; (3) 若A 中至多只有一个元素,求a 的取值范围; 练习:已知数集1,,a P b b ?? =???? ,数集{} 20,,Q a b b =+,且P Q =,求,a b 的值 【【课堂小结】集合的概念及集合元素的三个特性 【课堂检测】 1. 设全集,U R =集合{} 1M x x =>,{} 21P x x =>,则______M P 2. 集合{}{} 2320,10,P x x x Q x mx =-+==-=若P Q ?,则实数m 的值是 3.已知集合A 有n 个元素,则集合A 的子集个数有 个,真子集个数有 个 4.已知集合A ={-1,3,2m -1},集合B={3,2 m }.若B A ?,则实数m = . 5.已知含有三个元素的集合2{,,1}{,,0},b a a a b a =+求20042005a b +的值.

抛物线-高考理科数学试题

(四十五) 抛 物 线 [小题对点练——点点落实] 对点练(一) 抛物线的定义及其应用 1.已知AB 是抛物线y 2=8x 的一条焦点弦,|AB |=16,则AB 中点C 的横坐标是( ) A .3 B .4 C .6 D .8 解析:选C 设A (x 1,y 1),B (x 2,y 2),则|AB |=x 1+x 2+p =16,又p =4,所以x 1+x 2 =12,所以点C 的横坐标是 x 1+x 2 2 =6. 2.设抛物线y 2=-12x 上一点P 到y 轴的距离是1,则点P 到该抛物线焦点的距离是( ) A .3 B .4 C .7 D .13 解析:选B 依题意,点P 到该抛物线的焦点的距离等于点P 到其准线x =3的距离,即等于3+1=4. 3.若抛物线y 2=2x 上一点P 到准线的距离等于它到顶点的距离,则点P 的坐标为( ) A.????1 4,±22 B.????1 4,±1 C.????1 2 ,±22 D.??? ?12,±1 解析:选A 设抛物线的顶点为O ,焦点为F ,P (x P ,y P ),由抛物线的定义知,点P 到准线的距离即为点P 到焦点的距离,所以|PO |=|PF |,过点P 作PM ⊥OF 于点M (图略),则M 为OF 的中点,所以x P =14,代入y 2=2x ,得y P =±22,所以P ????1 4 ,±22. 4.已知抛物线y 2 =2px 的焦点F 与双曲线x 27-y 2 9 =1的右焦点重合,抛物线的准线与x 轴的交点为K ,点A 在抛物线上,且|AK |=2|AF |,则△AFK 的面积为( ) A .4 B .8 C .16 D .32 解析:选D 由题可知抛物线焦点坐标为F (4,0).过点A 作直线AA ′垂直于抛物线的准线,垂足为A ′,根据抛物线定义知,|AA ′|=|AF |,在△AA ′K 中,|AK |=2|AA ′|,故∠KAA ′=45°,所以直线AK 的倾斜角为45°,直线AK 的方程为y =x +4,代入抛物

高考数学平面解析几何的复习方法总结

2019年高考数学平面解析几何的复习方法 总结 在高中数学知识体系中,平面解析几何是其中很大的一块,涉及到直线及其方程、线性规划、圆及其方程、椭圆及其方程、抛物线及其方程、双曲线及其方程以及曲线与方程的关系及其图像等具体的知识点。在高考的考查中,又可以将上述的7个知识点进行综合考查,更是增加了考查的难度。要想学好这部分知识,在高考总不丢分,以下几点是很关键的。 突破第一点,夯实基础知识。 对于基础知识,不仅一个知识点都要熟稔于心,还要有能力将这些零散的知识点串联起来。只有这样,才能形成属于自己的知识框架,才能更从容的应对考试。 (一)对于直线及其方程部分,首先我们要从总体上把握住两突破点:①明确基本的概念。在直线部分,最主要的概念就是直线的斜率、倾斜角以及斜率和倾斜角之间的关系。倾斜角α的取值范围是突破[0,π),当倾斜角不等于90°的时候,斜率k=tanα;当倾斜角=90°的时候,斜率不存在。②直线的方程有不同的形式,同学们应该从不同的角度去归类总结。角度一:以直线的斜率是否存在进行归类,可以将直线的方程分为两类。角度二:从倾斜角α分别在[0,π/2)、α=π/2和(π/2,π)的范围内,认识直线的特点。以此为基础突破,将直线方程的五种不同的形式套入其中。直线方程的不同形式突破需要满足的条件以及局限性是不同的,我们也要加以总结。

(二)对于线性规划部分,首先我们要看得懂线性规划方程组所表示的区域。在这里我们可以采用原点法,如果满足条件,那么区域包含原点;如果原点带入不满足条件,那么代表的区域不包含原点。 (三)对于圆及其方程,我们要熟记圆的标准方程和一般方程分别代表的含义。对于圆部分的学习,我们要拓展初中学过的一切与圆有关的知识,包括三角形的内切圆、外切圆、圆周角、圆心角等概念以及点与圆的位置关系、圆与圆的位置关系、圆的内切正多边形的特征等。只有这样,才能更加完整的掌握与圆有关的所有的知识。 (四)对于椭圆、抛物线、双曲线,我们要分别从其两个定义出发,明白焦点的来源、准线方程以及相关的焦距、顶点、突破离心率、通径的概念。每种圆锥曲线存在焦点在X轴和Y轴上的情况,要分别进行掌握。 突破第二点,学习基本解题思想。 对于平面几何部分的学习,最基本的解题思想就是数形结合,还包括函数思想、方程思想、转化思想等。要想掌握数形结合这种思想方法,首先同学们心中要有坐标轴,要掌握好学过的各种平面几何的概念。其次,要掌握解决不同问题的方法。对于不同的题型,同学们要掌握不同的解题方法,并将这种解题方法及其例题记录在笔记本上。对于向量方法,最长用的地方就解决与斜率有关的问题;对于“设而不求”的方法,最常用到的地方就是两种不同的平面几何图形相交的情况下求弦长的问题;设点法,最长用到的地方就是两种曲线相切以及求最值得问题等。同学们要分门别类的进行总结,才能达到事半功倍的效

2017艺术生高考数学复习学案(一)

§1集合(1) 【考点及要求】了解集合含义,体会“属于”和“包含于”的关系,全集与空集的含义 【基础知识】 集合中元素与集合之间的关系:文字描述为 和 符号表示为 和 常见集合的符号表示:自然数集 正整数集 整数集 有理数集 实数集 集合的表示方法1 2 3 集合间的基本关系:1相等关系:_________A B B A ???且 2子集:A 是B 的子集,符号表示为______或B A ? 3 真子集:A 是B 的真子集,符号表示为_____或____ 不含任何元素的集合叫做 ,记作 ,并规定空集是任何集合的子集,是任何非空集合的 【基本训练】 1.下列各种对象的全体,可以构成集合的是 (1) 某班身高超过1.8m 的女学生;(2)某班比较聪明的学生;(3)本书中 的难题 (4)使232x x -+最小的x 的值 2. 用适当的符号(,,,,)∈?=??填空: ___;Q π {}3.14____Q ; *___;N N {}{}21,____21,x x k k Z x x k k z =+∈=-∈ 3.用描述法表示下列集合: 由直线1y x =+上所有点的坐标组成的集合; 4.若A B B ?=,则____A B ;若A B B ?=则_____;_____A B A B A B ?? 5.集合{}{}35,A x x B x x a =-<=<,且A B ?,则a 的范围是 【典型例题讲练】 例1 设集合11,,,2 4 4 2 k k M x x k Z N x x k Z ????==+∈==+∈????? ? ? ? ,则_______M N 练习: 设集合11,,,3 6 6 3 k k P x x k Z Q x x k Z ???? ==+∈==+∈????? ? ? ? ,则______P Q 例2已知集合{}2210,,A x ax x x R a =++=∈为实数。 (1) 若A 是空集,求a 的取值范围; (2) 若A 是单元素集,求a 的取值范围; (3) 若A 中至多只有一个元素,求a 的取值范围;

高考数学试题汇编抛物线

第三节 抛物线 高考试题 考点一 抛物线的定义和标准方程 1.(2010年陕西卷,理8)已知抛物线y 2 =2px(p>0)的准线与圆x 2 +y 2 -6x-7=0相切,则p 的值为( ) (A) 12 (B)1 (C)2 (D)4 解析:圆x 2 +y 2 -6x-7=0化为标准方程为(x-3)2 +y 2 =16,∴圆心为(3,0),半径是4, 抛物线y 2 =2px(p>0)的准线是x=-2 p , ∴3+ 2 p =4, 又p>0,解得p=2.故选C. 答案:C 2.(2011年辽宁卷,理3)已知F 是抛物线y 2 =x 的焦点,A,B 是该抛物线上的两点,|AF|+|BF|=3,则线段AB 的中点到y 轴的距离为( ) (A) 34 (B)1 (C) 54 (D) 74 解析:∵|AF|+|BF|=x A +x B +12 =3, ∴x A +x B = 52 . ∴线段AB 的中点到y 轴的距离为2 A B x x += 54 .故选C. 故选C. 答案:C 3.(2012年四川卷,理8)已知抛物线关于x 轴对称,它的顶点在坐标原点O,并且经过点M(2,y 0).若点M 到该抛物线焦点的距离为3,则|OM|等于( ) (C)4 解析:由题意设抛物线方程为y 2 =2px(p>0),则M 到焦点的距离为x M + 2p =2+2 p =3,∴p=2,∴y 2 =4x.∴ 2 y =4×2,∴故选B. 答案:B 4.(2010年上海卷,理3)动点P 到点F(2,0)的距离与它到直线x+2=0的距离相等,则点P 的轨迹方程是 . 解析:由抛物线的定义知,点P 的轨迹是以F 为焦点,定直线x+2=0为准线的抛物线,故其标准方程为y 2 =8x. 答案:y 2 =8x 5.(2012年陕西卷,理13)如图所示是抛物线形拱桥,当水面在l 时,拱顶离水面2 m,水面宽4 m.水位下降 1 m 后,水面宽 m.

高考数学总复习教学案

第五节 两角和与差的正弦、余弦和正切公式 [知识能否忆起] 1.两角和与差的正弦、余弦、正切公式 (1)C (α-β):cos(α-β)=cos_αcos_β+sin_αsin_β; (2)C (α+β):cos(α+β)=cos_αcos_β-sin_αsin_β; (3)S (α+β):sin(α+β)=sin_αcos_β+cos_αsin_β; (4)S (α-β):sin(α-β)=sin_αcos_β-cos_αsin_β; (5)T (α+β):tan(α+β)=tan α+tan β 1-tan αtan β; (6)T (α-β):tan(α-β)=tan α-tan β 1+tan αtan β. 2.二倍角的正弦、余弦、正切公式 (1)S 2α:sin 2α=2sin_αcos_α; (2)C 2α:cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α; (3)T 2α:tan 2α=2tan α 1-tan α. 3.常用的公式变形 (1)tan α±tan β=tan(α±β)(1?tan αtan β); (2)cos 2α=1+cos 2α2,sin 2α=1-cos 2α2; (3)1+sin 2α=(sin α+cos α)2, 1-sin 2α=(sin α-cos α)2, sin α±cos α=2sin ??? ?α±π 4. [小题能否全取] 1.(2011·福建高考)若tan α=3,则sin 2α cos 2α的值等于( ) A .2 B .3 C .4 D .6 解析:选D sin 2αcos 2α=2sin αcos α cos 2α =2tan α=2×3=6. 2.sin 68°sin 67°-sin 23°cos 68°的值为( )

高考数学抛物线

2021年新高考数学总复习第九章《平面解析几何》 抛物线 1.抛物线的概念 平面内与一个定点F 和一条定直线l (l 不经过点F )的距离相等的点的轨迹叫做抛物线.点F 叫做抛物线的焦点,直线l 叫做抛物线的准线. 2.抛物线的标准方程与几何性质 标准方程 y 2=2px (p >0) y 2=-2px (p >0) x 2=2py (p >0) x 2=-2py (p >0) p 的几何意义:焦点F 到准线l 的距离 图形 顶点坐标 O (0,0) 对称轴 x 轴 y 轴 焦点坐标 F ????p 2,0 F ??? ?-p 2,0 F ????0,p 2 F ????0,-p 2 离心率 e =1 准线方程 x =-p 2 x =p 2 y =-p 2 y =p 2 范围 x ≥0,y ∈R x ≤0,y ∈R y ≥0,x ∈R y ≤0,x ∈R 开口方向 向右 向左 向上 向下

概念方法微思考 1.若抛物线定义中定点F 在定直线l 上时,动点的轨迹是什么图形? 提示 过点F 且与l 垂直的直线. 2.直线与抛物线只有一个交点是直线与抛物线相切的什么条件? 提示 直线与抛物线的对称轴平行时,只有一个交点,但不是相切,所以直线与抛物线只有一个交点是直线与抛物线相切的必要不充分条件. 题组一 思考辨析 1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹一定是抛物线.( × ) (2)方程y =ax 2(a ≠0)表示的曲线是焦点在x 轴上的抛物线,且其焦点坐标是???? a 4,0,准线方程是x =-a 4 .( × ) (3)抛物线既是中心对称图形,又是轴对称图形.( × ) (4)AB 为抛物线 y 2=2px (p >0)的过焦点 F ????p 2,0的弦,若A (x 1,y 1),B (x 2,y 2),则x 1x 2=p 2 4 ,y 1y 2=-p 2,弦长|AB |=x 1+x 2+p .( √ ) (5)过抛物线的焦点与抛物线对称轴垂直的直线被抛物线截得的线段叫做抛物线的通径,那么抛物线x 2=-2ay (a >0)的通径长为2a .( √ ) 题组二 教材改编 2.过抛物线y 2=4x 的焦点的直线l 交抛物线于P (x 1,y 1),Q (x 2,y 2)两点,如果x 1+x 2=6,则|PQ |等于( ) A .9 B .8 C .7 D .6 答案 B 解析 抛物线y 2=4x 的焦点为F (1,0),准线方程为x =-1.根据题意可得,|PQ |=|PF |+|QF |=x 1+1+x 2+1=x 1+x 2+2=8. 3.已知抛物线的顶点是原点,对称轴为坐标轴,并且经过点P (-2,-4),则该抛物线的标准方程为____________________. 答案 y 2=-8x 或x 2=-y 解析 设抛物线方程为y 2=mx (m ≠0)或x 2=my (m ≠0). 将P (-2,-4)代入,分别得方程为y 2=-8x 或x 2=-y . 4.若抛物线y 2=4x 的准线为l ,P 是抛物线上任意一点,则P 到准线l 的距离与P 到直线3x +4y +7=0的距离之和的最小值是( )

高考数学:平面解析几何知识点

高考数学:平面解析几何知识点 1.数量积表示两个向量的夹角 【知识点的知识】 我们知道向量是有方向的,也知道向量是可以平行的或者共线的,那么,当两条向量与不平行时,那么它们就会有一个夹角θ,并且还有这样的公式:cosθ=.通过这公式,我们就可以求出两向量之间的夹角了. 【典型例题分析】 例:复数z=+i与它的共轭复数对应的两个向量的夹角为60°. 解:=====cos60°+i sin60°. ∴复数z=+i与它的共轭复数对应的两个向量的夹角为60°. 故答案为:60°. 点评:这是个向量与复数相结合的题,本题其实可以换成是用向量(,1)与向量(,﹣1)的夹角. 【考点点评】 这是向量里面非常重要的一个公式,也是一个常考点,出题方式一般喜欢与其他的考点结合起来,比方说复数、三角函数等,希望大家认真掌握. 2.直线的一般式方程与直线的性质 【直线的一般式方程】 直线方程表示的是只有一个自变量,自变量的次数为一次,且因变量随着自变量的变化而变化.直线的一般方程的表达式是ay+bx+c=0. 【知识点的知识】 1、两条直线平行与垂直的判定 对于两条不重合的直线l1、l2,其斜率分别为k1、k2,有: (1)l1∥l2?k1=k2;(2)l1⊥l2?k1?k2=﹣1. 2、直线的一般式方程: (1)一般式:Ax+By+C=0,注意A、B不同时为0.直线一般式方程Ax+By+C=0(B≠0)

化为斜截式方程y=﹣x﹣,表示斜率为﹣,y轴上截距为﹣的直线. (2)与直线l:Ax+By+C=0平行的直线,可设所求方程为Ax+By+C1=0;与直线Ax+By+C =0垂直的直线,可设所求方程为Bx﹣Ay+C1=0. (3)已知直线l1,l2的方程分别是:l1:A1x+B1y+C1=0(A1,B1不同时为0),l2:A2x+B2y+C2=0(A2,B2不同时为0),则两条直线的位置关系可以如下判别: ①l1⊥l2?A1A2+B1B2=0; ②l1∥l2?A1B2﹣A2B1=0,A1C2﹣A2B1≠0; ③l1与l2重合?A1B2﹣A2B1=0,A1C2﹣A2B1=0; ④l1与l2相交?A1B2﹣A2B1≠0. 如果A2B2C2≠0时,则l1∥l2?;l1与l2重合?;l1与l2相交?. 3.圆的标准方程 【知识点的认识】 1.圆的定义:平面内与定点距离等于定长的点的集合(轨迹)叫做圆.定点叫做圆心,定长就是半径. 2.圆的标准方程: (x﹣a)2+(y﹣b)2=r2(r>0), 其中圆心C(a,b),半径为r. 特别地,当圆心为坐标原点时,半径为r的圆的方程为: x2+y2=r2. 其中,圆心(a,b)是圆的定位条件,半径r是圆的定形条件. 【解题思路点拨】 已知圆心坐标和半径,可以直接带入方程写出,在所给条件不是特别直接的情况下,关键是求出a,b,r的值再代入.一般求圆的标准方程主要使用待定系数法.步骤如下: (1)根据题意设出圆的标准方程为(x﹣a)2+(y﹣b)2=r2; (2)根据已知条件,列出关于a,b,r的方程组; (3)求出a,b,r的值,代入所设方程中即可.

高中数学平面解析几何知识点

平面解析几何 1.直线的倾斜角与斜率: (1)直线的倾斜角:在平面直角坐标系中,对于一条与x 轴相交的直线,如果把x 轴绕着交点按逆时针 方向旋转到和直线重合时所转的最小正角记为α叫做直线的倾斜角. 倾斜角)180,0[?∈α,?=90α斜率不存在. (2)直线的斜率:αtan ),(211 212=≠--=k x x x x y y k .(111(,)P x y 、222(,)P x y ). 2.直线方程的五种形式: (1)点斜式:)(11x x k y y -=- (直线l 过点),(111y x P ,且斜率为k ). 注:当直线斜率不存在时,不能用点斜式表示,此时方程为0x x =. (2)斜截式:b kx y += (b 为直线l 在y 轴上的截距). (3)两点式:1 21121x x x x y y y y --=-- (12y y ≠,12x x ≠). 注:① 不能表示与x 轴和y 轴垂直的直线; ② 方程形式为:0))(())((112112=-----x x y y y y x x 时,方程可以表示任意直线. (4)截距式:1=+b y a x (b a ,分别为x 轴y 轴上的截距,且0,0≠≠b a ). 注:不能表示与x 轴垂直的直线,也不能表示与y 轴垂直的直线,特别是不能表示过原点的直线. (5)一般式:0=++C By Ax (其中A 、B 不同时为0). 一般式化为斜截式:B C x B A y -- =,即,直线的斜率:B A k -=. 注:(1)已知直线纵截距b ,常设其方程为y kx b =+或0x =. 已知直线横截距0x ,常设其方程为0x my x =+(直线斜率k 存在时,m 为k 的倒数)或0y =. 已知直线过点00(,)x y ,常设其方程为00()y k x x y =-+或0x x =. (2)解析几何中研究两条直线位置关系时,两条直线有可能重合;立体几何中两条直线一般不重合. 3.直线在坐标轴上的截矩可正,可负,也可为0. (1)直线在两坐标轴上的截距相等....?直线的斜率为1-或直线过原点. (2)直线两截距互为相反数.......?直线的斜率为1或直线过原点. (3)直线两截距绝对值相等.......?直线的斜率为1±或直线过原点. 4.两条直线的平行和垂直: (1)若111:l y k x b =+,222:l y k x b =+ ① 212121,//b b k k l l ≠=?; ② 12121l l k k ⊥?=-. (2)若0:1111=++C y B x A l ,0:2222=++C y B x A l ,有 ① 1221122121//C A C A B A B A l l ≠=?且.② 0212121=+?⊥B B A A l l . 5.平面两点距离公式: (111(,)P x y 、222(,)P x y ),22122121)()(y y x x P P -+-=.x 轴上两点间距离:A B x x AB -=. 线段21P P 的中点是),(00y x M ,则??? ????+=+=2221 0210y y y x x x .

高考数学-抛物线知识点

高考数学-抛物线 抛 物 线 ) 0(22>=p px y )0(22>-=p px y ) 0(22>=p py x )0(22>-=p py x 定义 平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹叫做抛物线,点F 叫做抛物线的焦点,直线l 叫做抛物线的准线。 {MF M =点M 到直线l 的距离} 范围 0,x y R ≥∈ 0,x y R ≤∈ ,0x R y ∈≥ ,0x R y ∈≤ 对称性 关于x 轴对称 关于y 轴对称 焦点 (2 p ,0) (2 p - ,0) (0, 2 p ) (0,2 p - ) 焦点在对称轴上 顶点 (0,0)O 离心率 e =1 准线 方程 2 p x - = 2 p x = 2 p y - = 2 p y = 准线与焦点位于顶点两侧且到顶点的距离相等。 顶点到准线的距离 2 p 焦点到准线的距离 p 焦半径 11(,)A x y 12 p AF x =+ 12 p AF x =-+ 12 p AF y =+ 12 p AF y =-+ 1. 直线 ,抛物线 , ,消y 得: (1)当k=0时,直线l 与抛物线的对称轴平行,有一个交点; (2)当k ≠0时, Δ>0,直线l 与抛物线相交,有两不同交点; Δ=0, 直线l 与抛物线相切,有一个切点; Δ<0,直线l 与抛物线相离,无公共点。 x y O l F x y O l F l F x y O x y O l F

(3)若直线与抛物线只有一个公共点,则直线与抛物线必相切吗?(不一定) 2. 关于直线与抛物线的位置关系问题常用处理方法 直线l :b kx y += 抛物线 ,)0(φp ① 联立方程法: ???=+=px y b kx y 22 ?0)(2222=+-+b x p kb x k 设交点坐标为),(11y x A ,),(22y x B ,则有0φ?,以及2121,x x x x +,还可进一步求出 b x x k b kx b kx y y 2)(212121++=+++=+,2212122121)())((b x x kb x x k b kx b kx y y +++=++= 在涉及弦长,中点,对称,面积等问题时,常用此法,比如 a. 相交弦AB 的弦长 2 12 212 212 4)(11x x x x k x x k AB -++=-+=a k ? +=2 1 或 212 2122124)(1111y y y y k y y k AB -++=-+ =a k ?+=2 1 b. 中点坐标 ),(00y x M , 2210x x x += , 2 2 10y y y += ② 点差法: 设交点坐标为),(11y x A ,),(22y x B ,代入抛物线方程,得 12 12px y = 22 22px y = 将两式相减,可得 )(2))((212121x x p y y y y -=+- 2 121212y y p x x y y += -- a. 在涉及斜率问题时,2 12y y p k AB += b. 在涉及中点轨迹问题时,设线段AB 的中点 为),(00y x M , 021*******y p y p y y p x x y y ==+=--, 即0 y p k AB = , 同理,对于抛物线)0(22≠=p py x ,若直线l 与抛物线相交于B A 、两点,点),(00y x M 是弦AB 的中点,则有p x p x p x x k AB 0 021222==+= (注意能用这个公式的条件:1)直线与抛物线有两个不同的交点,2)直线的斜率存在,且不等于零)

相关文档
相关文档 最新文档