文档库 最新最全的文档下载
当前位置:文档库 › Origin校正基线

Origin校正基线

Origin校正基线
Origin校正基线

Origin校正基线

用origin8.0里面Raman谱去基线处理

2010-03-24 21:41:05| 分类:边学边用|举报|字号订阅

首先声明一下,本人菜鸟一只。首次遭遇Raman谱去基线处理,可是费了不少周折。总算会简单操作了,先写下来,备用。因为笨,而且健忘,只能这样咯。

Analysis(分析)-peaks and baseline---peak analyzer---open dialogue---打开对话窗口,见图1。其中选manual,subtrac baseline。

Next—-打开对话窗口,见图2。其中选user defined。

Next—-打开对话窗口,见图3。其中有line,spline,bspline,根据需要选。

“点add”,在想要的地方双击,可以添加点,“modify/del”修改或删除点。点“modify/del”方可调整点的位置。或修改或删除点

调整完,点“done”。 next –subtract---finish

Analysis(分析)-peaks and baseline---peak analyzer---open dialogue---打开对话窗口,见图1。其中选manual,subtrac baseline。

Next—-打开对话窗口,见图2。其中选user defined。

Next—-打开对话窗口,见图3。其中有line,spline,bspline,根据需要选。

―点add‖,在想要的地方双击,可以添加点,―modify/del‖修改或删除点。点―modify/del‖方可调整点的位置。或修改或删除点

调整完,点―done‖。next –subtract---finish

点击Analysis — Peaks and Baseline — Peak Analyzer — Open Dialog,在新的对话框中选择下方的Substract Baseline(减掉基线),点击Next 下一步,在Baseline Mode 中,根据你自己的谱线情况,选择Constant 常数,或者User Defined 用户自定义,点击Next,如果刚才是选择的Constant 就直接点击Substract 就可以了。如果刚才点击的是User

Defined 用户自定义,那么先在光谱图中双击几个点,自己确定一个基线,然后点Next下一步,再点Substract 就可以了。

怎样将几张红外光谱放入一张图

标签:一张图红外光谱2007-10-17 10:33 星期三

有dat文件时可采用以下办法:

1 将谱图打开后copy到word文档里,设置图片格式为一样的尺寸,然后打印出来直接重叠比较

2 做红外时,仪器软件有自带的这项功能呀,collect完后打开图谱,点右键在properties里找到overlaid就可把你打开的几张图合并在一起.你实在不会,可问管理红外仪器的老师.

3 用origin 或excel软件可以,一列横坐标数值,多列纵坐标数值。作图,重叠时,双击其中的曲线,使用analysis-translate-vertical, 当鼠标变为箭头时,移动曲线,可将重叠的曲线分开!

4 直接用OMNIC软件叠加

ERP基线校正

52Brain独家发布 王一峰 西南大学 ERP数据分析中的基线校正就是一个线性平移。说来简单,内中却有很深的学问。下面从几个方面简单谈一下个人经验: 1 分析时程: 一般而言基线选取不短于分析时长的1/5,由于ERP分析时程多在1000ms之内,基线则多选为100-200ms。分析时程的延长对整个分析过程中参数的选取都产生影响,其中,基线延长也是必须的。就个人经验来看,基线一般没有超过500ms的。除基线选取外,其他参数如滤波、去除伪迹等也要选取适当的参数。由于分析时程增加,受到慢电位漂移及其他伪迹干扰的可能性也增大;此时可以增加伪迹的范围,比如将去伪标准从±80调到±100. 基线的长度也不宜过短,10ms的基线不能保证锁时之前是平稳的。即使是简单的视听觉任务,基线的长度原则上也不应短于50ms。 2 基线位置: 通常基线选取位于刺激呈现前100-200ms。 如果从反应开始分析就比较复杂:做出反应时与动作相关的ERP成分还存在,此时波形还是有一定斜率的,因此单纯选取反应后的200ms或其他时长作为基线有时效果并不好。如果不同条件的反应没有差异,或者说反应后的波形可以重叠到一起,采用反应后基线是可以的。如果不同条件的反应过程存在差异,如混有决策信心等因素,反应阶段的波形就可能不一致。此时,选取反应后基线不是最佳选择。此时,可以在反应后较长时间内(如500ms)检查波形是否恢复平稳。原则上,反应锁定时也是可以用刺激锁定的基线的。由于刺激诱发的心理反应不同,可能在较长时间段内都存在差异,此时,只能假定刺激呈现前的心理过程是一致的,其后的过程就不适宜作为基线了。 还有一种就是灵活基线,说白了就是峰峰检验对应的取基线方法。最近几年ERP分析中用峰峰检验并不多,一个重要原因就是它的使用有很大的局限性。严格地说,前后两个峰值应该具有同样的地形分布,这样才能确定二者确实是相互影响的。宽松一点,前后两个峰值的地形分布应该相似,或者说,所分析的电极点都在两个峰值的主要效应区域内。如果用头皮前中部的N2和中后部的P3做峰峰检验是不合适的。一旦确定了可以做峰峰检验,则前一个峰值就可以作为后一个峰值的基线。在此基线基础上,可以观察到后一个峰值的差异波分布在哪些位置。而如果应该进行峰峰检验时没有用前一个峰值去校正,则后一个峰值处的差异波就会有误差。以前中部的P2和N2为例,如果P2波幅很大,我们往往看到N2的电压值是正的。见过很多人纠结于这个具有正值的负向偏转应该叫什么名字,其实,只要用P2作一下基线校正,N2自然就是负值了。这里要补充一个重要问题:ERP分析中没有绝对电压值,所有值都是减去基线后的相对值。因此,ERP的主要任务是检验差异,而不可建立一个绝对刻度。 3 基线平稳问题: 很多人会纠结于实验的基线不稳,这可能由很多原因造成。 其一,叠加次数过少,噪音过大。此时基线往往产生较大波动,直观感觉就是很乱。这个在可能的范围内增加每个条件的叠加次数就可以解决。

分光光度计基线校正的原理和方法

【原创】关于分光光度计基线校正的原理和方法 对于双光束 分光光度计 而言在使用前必须要做基线校正(也称为基线记忆),对于此项工作的原理和 操作方法许多使用者的认识不尽相同;为此谈谈我的认识。 (一)为何要做基线校正? 众所周知、光度计的光学系统基本是由光源(氘灯、钨灯) 一单色器(光栅、狭缝) 一检测器(光敏 二极管、光电倍增管)等三部分组成的。在我们使用的波长区域中(一般紫外可见仪器均在 190 nm 110Onm 范围里,)上述部件在不同的波长下的响应值(光源的发射强度、单色器的色散强度、检测 器的放大倍数)均不相同;通俗地说、即使没有样品,仪器如果不做基线校正,那么在 190nm 至110 Onm 的范围中,吸光值或透过率不会是一条直线,这是 尽管上图反映的是单光束的能量图,但在基线未校正状态下,即使改用双光束测量方式来扫描一个样 品,其所得到的图谱或吸光值也是不可信的。 (二)被校正的基线种类和用途 (1)系统基线: 所谓系统基线就是仪器固有的波长范围的总基线;例如一台仪器出厂设计的波长全程范围是 190nm 至 110Onm ,那么它的系统基线就是这个范围。一般来讲,作为分析人员对一台仪器做全程扫描测试是比45.000 -a.2oo eoo.oo 种客观的物理现象,如下图; 4C.000 30.000 20.000 10.000 190.00 细 DOO SOOOO

较少见的;之所以要做系统基线的目的一般是将仪器的光学系统的响应值校正到基本一致;这就类似马拉松赛跑一样,只要大家在同一起跑处(注意:不是起跑线)比赛,前后差几米出发无所谓。 (2)用户基线: 所谓用户基线就是分析者自己设定的测量波长区域的一段基线;由于这是分析所需要的区域,为了保证测试的准确性,故用户基线的校正是非常重要和必要的;这就类似百米赛跑一样,运动员要在同一个起跑线上比赛而不能抢跑,否则无法准确计算成绩。 (三)基线校正的方法 (1)系统基线: 系统基线的校正较为简单,一般情况下样品室内不放样品,仅做光学系统的校正;如果一定要使用全波段的测量那另当别论。同时需要注意的是:系统基线无需经常校正,一般半个月或一个月校正校正一次即可。对有的仪器来说,系统基线校正过于频繁反而会造成基线漂移严重。 (2 )用户基线校正: 正确的校正方法是:两只比色杯盛有空白溶液分别放置在样品及参比光路中,校正波长范围要大于分 析波长范围;例如、分析设定范围为220nm?500nm,那么校正波长就要设定为210nm?510nm ;等 待校正结束后再将波长设定回到原来的220nm?500nm范围。这种校正方法的优点是:如果校正波长 与分析波长完全吻合一致,有可能在校正后的基线两端出现大的噪声;如果校正范围大于实际分析范围并掐头去尾后可以提高分析精度。我将这种校正方法起名为豆芽菜原理”,目的是便于记牢;(因为 我们吃豆芽菜时均要掐头去根,仅吃中间部分,故以前的饭馆将炒豆芽这道菜称为炒掐菜”;对不起、跑题了)。关于这种校正方法,许多使用者往往不知晓或忽略掉了,在此顺便介绍给版友。 值得注意的是,有的仪器操作者在做基线校正时,参比一侧不放参比溶液,也就是用空气来做参比对照。这种方法在可见区对有的样品也许有时影响不大,但在紫外区影响就会很明显了。严格的说,用空气做参比所测得的结果不是真正意义上的校正光谱。 (四)基线校正的注意事项 (1)基线校正时要保证仪器有一定的预热时间 (2 )每更换一种参比溶液后均要重新做基线校正 (3)如果参比溶液的吸光度大于样品的吸光度值时测试结果会出现负值,此时要考虑使用何种溶液做基线校正了。 (4)做基线校正时要考虑试剂的使用波长范围问题,因为有的试齐恠某个波长以下的吸光度值会无限大,这时去做校正会超出仪器的有效量程范围,无法得到真正的结果。关于试剂的使用波长范围,目前一般在试剂瓶的标签上会有标注。我有个简单资料表供大家参考如下:

拉曼光谱基线校正解读

2 Spectroscopy 29(2) February https://www.wendangku.net/doc/783381297.html,Baseline Correction for Raman Spectra Based on Piecewise Linear Fitting The correction of baseline drift is an import part for data preprocessing. An interval linear fitting method based on automatic critical-point-seeking was improved, which made it possible for the baseline to drift automatically. Experimental data were acquired from the sulfamic acid catalytic reaction of the aspirin system, which consisted of different proportions of aspirin. A simulated base-line with different interval values of moving average smoothing determined setting parameters in this method. After baseline drifts caused by fluorescence are removed, the differences of character-istic aspirin peaks proved the efficiency of this method. Kuo Sun, Hui Su, Zhixiang Yao, and Peixian Huang Rcharacterization for its ability to obtain information on vibrations from samples. It can also be used for on-line monitoring using a fiber-optic Raman probe (1,2). The Raman spectra show the characteristics for species in sharp and dense peaks. However, during the application of Raman spectroscopy, fluorescence of organic compounds in the samples, which are sometimes several orders of magnitude more intense than the weak Raman scatter, can interfere with the Raman signals (3). A phenomenon of baseline drift shows up, making the resolution and analysis of Raman spectra impractical.Both instrumental (4) and mathematical methods have been developed to reduce the drifted baseline caused by fluorescence. The use of an excitation wavelength such as 785–1064 nm lasers, which does not eliminate fluorescence (5), is the most traditional instrumental method. Raman scattering is directly proportional to the fourth power of frequency; as the excitation wavelength increases, the sen-sitivity of the Raman becomes severely reduced. The use of anti-Stokes Raman spectroscopy is another method, based on theory (6). Mathematical methods (7–10) include the first and second order derivatives, wavelet transform, me-dian filter, and manual polynomial fitting. These methods are useful in certain situations, but still have some limita-tions. For example, derivatives are effective, but as a result the shape of the Raman spectrum is changed; wavelet trans-form can be differentiable in the high- and low-frequency components of the signals; however, it is difficult to choose a decomposition method. Manual polynomial fittings re-quire the user to identify the “non-Raman” locations manu-ally (11), and afterwards the baseline curve is formed by fitting these locations. Consequently, the result involves the inevitable subjective factors and, in addition, the

拉曼光谱解读

激光拉曼光谱 [实验目的] 1、学习使用光谱测量中常用的仪器设备; 2、测量4CCl (液体)的拉曼光谱; 3、学习简单而常用的光谱处理方法,并对4CCl 的拉曼光谱进行处理,求出4CCl 的主要拉曼线的拉曼位移。 [拉曼光谱基本原理] 1、 现象 频率0v 的单色辐射入射到透明气体、液体或光学上完整透明的固体上时,大部分辐射无改变地透过,还有一部分受到散射。其中将出现频率为0m v v ±的辐射对。这种辐射频率发生改变的散射成为拉曼(Raman )散射;还有辐射频率不发生改变的散射称为瑞利散射。一般把瑞利散射和拉曼散射合起来所形成的光谱称为拉曼光谱,即0v 和0m v v ±合起来构成拉曼光谱。0v 称为瑞利线,0m v v ±称为拉曼线,m v 称为拉曼位移。且频率为0m v v -的拉曼线称为斯托克斯线,频率为0m v v +的拉曼线称为反斯托克斯线。瑞利散射的强度通常约为入射辐射强度的310-,强的拉曼散射的强度一般约为瑞利散射强度的310-, 2、 解释 对拉曼散射的完整理论解释是非常复杂的,限于篇幅这里不作介绍,请大家参看附后的有关参考书。下面用一个简单模型——散射系统与入射辐射之间的能量交换模型对其加以解释。 设散射系统有两个能级1E 、2E ,且有21E E >,210E E hv ->。由于入射辐射的相互作用,系统可以从低能级1E 跃迁到高能级2E ,这是必须要从入射辐射中获得所需能量21E E E ?=-。这个过程可以认为是系统吸收一个能量为0hv 的入射光子,从1E 能级跃迁到某一更高能级(通常散射系统并没有这样一个能级,所

以称其为虚能级),然后,放出一个能量为0hv E -?的散射光子而跃迁到2E 能级。此时,散射光子的频率可表述为: 000m hv E E v v v v h h -??= =-=- 另一方面,如果散射系统处于激发能级2E ,由于相互作用的存在,它可以从高能级2E 跃迁到低能级1E 。此时系统必须把能量21E E E ?=-交给入射辐射。同样这一过程可认为是系统吸收一个能量为0hv 的入射光子。从2E 能级跃迁到某一高的虚能级,然后以放出一个能量为0hv E +?的散射光子而跃迁到1E 能级。此时,散射光子的频率可表述为: 000m hv E E v v v v h h +??==+=+ 以上的描述可用图1来直观表示。 拉曼散射所涉及到得能级1E 、2E ,一般为散射系统的振动、转动能级(对于分子系统而言),或为晶格振动能级(对于晶体而言)。即拉曼位移m v 通常对应系统的振动、转动频率或晶体振动频率。

分光光度计基线校正的原理和方法

【原创】关于分光光度计基线校正的原理和方法 对于双光束分光光度计而言在使用前必须要做基线校正(也称为基线记忆),对于此项工作的原理和操作方法许多使用者的认识不尽相同;为此谈谈我的认识。 (一)为何要做基线校正? 众所周知、光度计的光学系统基本是由光源(氘灯、钨灯)—单色器(光栅、狭缝)—检测器(光敏二极管、光电倍增管)等三部分组成的。在我们使用的波长区域中(一般紫外可见仪器均在190nm~1100nm范围里,)上述部件在不同的波长下的响应值(光源的发射强度、单色器的色散强度、检测器的放大倍数)均不相同;通俗地说、即使没有样品,仪器如果不做基线校正,那么在190nm至110 0nm的范围中,吸光值或透过率不会是一条直线,这是一种客观的物理现象,如下图; 尽管上图反映的是单光束的能量图,但在基线未校正状态下,即使改用双光束测量方式来扫描一个样品,其所得到的图谱或吸光值也是不可信的。 (二)被校正的基线种类和用途 (1)系统基线: 所谓系统基线就是仪器固有的波长范围的总基线;例如一台仪器出厂设计的波长全程范围是190nm至1100nm,那么它的系统基线就是这个范围。一般来讲,作为分析人员对一台仪器做全程扫描测试是比

较少见的;之所以要做系统基线的目的一般是将仪器的光学系统的响应值校正到基本一致;这就类似马拉松赛跑一样,只要大家在同一起跑处(注意:不是起跑线)比赛,前后差几米出发无所谓。(2)用户基线: 所谓用户基线就是分析者自己设定的测量波长区域的一段基线;由于这是分析所需要的区域,为了保证测试的准确性,故用户基线的校正是非常重要和必要的;这就类似百米赛跑一样,运动员要在同一个起跑线上比赛而不能抢跑,否则无法准确计算成绩。 (三)基线校正的方法 (1)系统基线: 系统基线的校正较为简单,一般情况下样品室内不放样品,仅做光学系统的校正;如果一定要使用全波段的测量那另当别论。同时需要注意的是:系统基线无需经常校正,一般半个月或一个月校正校正一次即可。对有的仪器来说,系统基线校正过于频繁反而会造成基线漂移严重。 (2)用户基线校正: 正确的校正方法是:两只比色杯盛有空白溶液分别放置在样品及参比光路中,校正波长范围要大于分析波长范围;例如、分析设定范围为220nm~500nm,那么校正波长就要设定为210nm~510nm;等待校正结束后再将波长设定回到原来的220nm~500nm范围。这种校正方法的优点是:如果校正波长与分析波长完全吻合一致,有可能在校正后的基线两端出现大的噪声;如果校正范围大于实际分析范围并掐头去尾后可以提高分析精度。我将这种校正方法起名为“豆芽菜原理”,目的是便于记牢;(因为我们吃豆芽菜时均要掐头去根,仅吃中间部分,故以前的饭馆将炒豆芽这道菜称为“炒掐菜”;对不起、跑题了)。关于这种校正方法,许多使用者往往不知晓或忽略掉了,在此顺便介绍给版友。 值得注意的是,有的仪器操作者在做基线校正时,参比一侧不放参比溶液,也就是用空气来做参比对照。这种方法在可见区对有的样品也许有时影响不大,但在紫外区影响就会很明显了。严格的说,用空气做参比所测得的结果不是真正意义上的校正光谱。 (四)基线校正的注意事项 (1)基线校正时要保证仪器有一定的预热时间 (2)每更换一种参比溶液后均要重新做基线校正 (3)如果参比溶液的吸光度大于样品的吸光度值时测试结果会出现负值,此时要考虑使用何种溶液做基线校正了。 (4)做基线校正时要考虑试剂的使用波长范围问题,因为有的试剂在某个波长以下的吸光度值会无限大,这时去做校正会超出仪器的有效量程范围,无法得到真正的结果。关于试剂的使用波长范围,目前一般在试剂瓶的标签上会有标注。我有个简单资料表供大家参考如下:

关于分光光度计基线校正的原理和方法

关于分光光度计基线校正的原理和方法 对于双光束分光光度计而言在使用前必须要做基线校正(也称为基线记忆), 对于此项工作的原理和操作方法许多使用者的认识不尽相同;为此谈谈我的认 识。 (一)为何要做基线校正? 众所周知、光度计的光学系统基本是由光源(氘灯、钨灯)—单色器(光栅、狭 缝)—检测器(光敏二极管、光电倍增管)等三部分组成的。在我们使用的波长 区域中(一般紫外可见仪器均在 190nm~1100nm范围里,)上述部件在不同的 波长下的响应值(光源的发射强度、单色器的色散强度、检测器的放大倍数)均 不相同;通俗地说、即使没有样品,仪器如果不做基线校正,那么在 190nm至 1100nm的范围中, 吸光值或透过率不会是一条直线, 这是一种客观的物理现象, 如下图; 尽管上图反映的是单光束的能量图,但在基线未校正状态下,即使改用双光束测 量方式来扫描一个样品,其所得到的图谱或吸光值也是不可信的。 (二)被校正的基线种类和用途 (1)系统基线:

所谓系统基线就是仪器固有的波长范围的总基线; 例如一台仪器出厂设计的波长 全程范围是 190nm 至 1100nm,那么它的系统基线就是这个范围。一般来讲, 作为分析人员对一台仪器做全程扫描测试是比较少见的; 之所以要做系统基线的 目的一般是将仪器的光学系统的响应值校正到基本一致; 这就类似马拉松赛跑一 样,只要大家在同一起跑处(注意:不是起跑线)比赛,前后差几米出发无所谓。 (2)用户基线: 所谓用户基线就是分析者自己设定的测量波长区域的一段基线; 由于这是分析所 需要的区域,为了保证测试的准确性,故用户基线的校正是非常重要和必要的; 这就类似百米赛跑一样,运动员要在同一个起跑线上比赛而不能抢跑,否则无法 准确计算成绩。 (三)基线校正的方法 (1)系统基线: 系统基线的校正较为简单, 一般情况下样品室内不放样品, 仅做光学系统的校正; 如果一定要使用全波段的测量那另当别论。同时需要注意的是:系统基线无需经 常校正,一般半个月或一个月校正校正一次即可。对有的仪器来说,系统基线校 正过于频繁反而会造成基线漂移严重。 (2)用户基线校正: 正确的校正方法是:两只比色杯盛有空白溶液分别放置在样品及参比光路中,校 正波长范围要大于分析波长范围;例如、分析设定范围为 220nm~500nm,那 么校正波长就要设定为 210nm~510nm;等待校正结束后再将波长设定回到原 来的220nm~500nm范围。这种校正方法的优点是:如果校正波长与分析波长 完全吻合一致,有可能在校正后的基线两端出现大的噪声;如果校正范围大于实 际分析范围并掐头去尾后可以提高分析精度。我将这种校正方法起名为“豆芽菜 原理”,目的是便于记牢;(因为我们吃豆芽菜时均要掐头去根,仅吃中间部分, 故以前的饭馆将炒豆芽这道菜称为“炒掐菜”;对不起、跑题了)。关于这种校正 方法,许多使用者往往不知晓或忽略掉了,在此顺便介绍给版友。 值得注意的是,有的仪器操作者在做基线校正时,参比一侧不放参比溶液,也就 是用空气来做参比对照。这种方法在可见区对有的样品也许有时影响不大,但在 紫外区影响就会很明显了。严格的说,用空气做参比所测得的结果不是真正意义

拉曼光谱仪助力药品检测R1解读

拉曼光谱仪助力药品检测 拉曼光谱技术作为一个新兴的检测技术,在药品检测应用方面有着一些得天独厚的优点。与红外光谱相比,其样品制备简单甚至不需要制备,并可在密封的透明容器中进行检测,同时还可以直接测试水溶液; 与近红外光谱相比,其数据具有高度特异性,不需要复杂的建模,便于定性或定量;同时与液相色谱相比,其检测速度大大加快,检测时间可缩短到几分钟甚至几秒钟。由于其具有的这些优点,使其非常适合于药品检测的应用。尤其随着近几年来Raman技术的不断发展和成熟,越来越多的轻巧便携、功能强大、低维护成本的便携式拉曼光谱仪不断面世,使得拉曼光谱仪的应用场合可从实验室内扩展到了仓储和生产现场,大大扩展了拉曼的应用领域。另外,随着美国FDA过程分析技术(PAT)的启动,拉曼光谱技术也被认为是一种非常有希望的在线、实时监测制药全过程的技术。 B&W TEK公司是世界知名的便携式拉曼光谱仪生产商,拥有多种轻巧便携、功能强大的便携式拉曼光谱仪。同时公司还针对制药行业中对药品生产原材料的监测及药品真伪的鉴定应用需要,专门开发了符合21 CFR Part 11标准的BWID TM快速鉴定软件。该软件能快速的分析可疑物质,并立刻给出鉴定结果(匹配/不匹配)或检验结果(通过/不通过)。并具有直观的用户界面和规范化的工作流程,从而使得用户造成的人为误差最小化,保证即使是新手也能很快上手。同时该软件还支持用户对样品鉴定方法进行自定义,并自建光谱数据库。而预定义的方法允许所有的仪器操作者能够通过一键点击就完成样品的鉴定过程。另外该软件还支持FDA 21 CFR Part 11关于电子记录与电子签名规则。可提供增强的系统存取安全性,数据活动记录的审核追踪以及包括IQ和OQ流程的系统校验。完全符合现行药品生产管理规范的要求。 图1. BWID TM用户界面 实验与结果: 采用B&W TEK 公司的MiniRamII便携式拉曼光谱仪和BWID TM软件,对四种常见药品:复方磺胺甲恶唑、泰诺、阿司匹林和安乃近的标准样片进行拉曼检测(对有包衣的药品刮除其包衣后进行检测),并利用得到的拉曼光谱仪建立数据库。然后每种药品再各选取4个样品对建立的数据库进行检验,其结果如下:

加速度基线校正问题探讨

加速度时程积分中的基线校正问题探讨 1引言 目前,地震反应分析中所采用的地震波源于真实地震动的数据采集和地震动的人工合成。地震动采集的数据大都以加速度时程的形式给出,而速度和位移时程通常由加速度积分得到。但强震仪记录的不仅是地震时纯粹的地面运动信息,还包含复杂的噪音,其中的低频噪音会导致加速度时程出现基线漂移[1]。基线漂移对加速度时程本身的影响很小(一般不超过峰值加速度的2%),但通过积分求速度、位移时程时,基线的漂移被逐步放大,从而对速度、位移时程产生很大的影响[2]。因此,在使用加速度记录时,一般需要对其进行基线校正。 2加速度基线漂移的原因及其影响 对于数字强震仪而言,导致加速度基线漂移的原因主要有传感器的磁滞现象、传感器的背景噪声以及传感器的倾斜等[3]。 传感器的磁滞效应主要源于传感器的物质疲劳。Iwan等人通过对美国凯尼公司生产的PDR-1和FBA-13型强震仪的性能研究发现,当加速度超过一定界限时,相应记录的基线会发生跳跃现象。尽管这种现象对加速度本身影响很小,但通过积分放大,会对速度时程和位移时程产生较大影响。Iwan等人认为,这种现象可能是由于传感器系统机械或电路的微小磁滞作用引起的。对于PDR-1和FBA-13型强震仪,这种磁滞效应在加速度≥50gal时开始出现。 背景噪音与记录场地条件密切相关,主要特征是频率丰富的随机波形。背景噪音导致加速度记录的初始值不为零,从而对加速度基线产生影响。 传感器的倾斜主要发生在近场区强震观测台。在地震中,近场区域可能伴随强烈的地表变形(地表破裂、垂直抬升、水平位移等),从而导致传感器发生倾斜。传感器的倾斜可能导致加速度记录的基线漂移。 强震地面运动反应谱以及峰值加速度(PGA)、峰值速度(PGV)、峰值位移(PGD)、地面永久位移(D-last)在理论研究和工程实践中应用十分广泛,因此研究基线漂移对上述参数产生的影响很有必要。相关研究表明,基线漂移对峰值加速度时程影响很小,但通过积分求速度,基线漂移被放大;当通过积分求位移时程时,基线漂移被进一步放大,往往与真实的位移时程相差甚远。下面以Elcentro波(EW)原始记录为例来简要说明这个问题。为了简便起见,本节假定Elcentro波基线漂移是加速度记录中包含的线性趋势造成的,在此基础之上采用最小二乘拟合进行基线校正。需要注意的是通过去这种方法进行基线校正得到的结果未必是真实可信的,此处只是为了简要说明基线漂移在积分过程中被逐步放大的问题。此处积分采用线性加速度法。作出加速度、速度、位移校正前后比较图,分别见图2.1~2.3。具体matlab程序见附录。

拉曼光谱的数据初步处理

摘要 欧阳学文 本文主要目的是熟悉拉曼光谱仪原理,并掌握拉曼光谱仪的实验测量技术以及拉曼光谱的数据初步处理。 文章首先论述了拉曼光谱仪开发设计、安装调试中所应用的基本理论、设计原理与关键技术,介绍了激光拉曼光谱仪的发展动态、研究方向和国内外总体概况。其次阐述了拉曼散射的经典理论及其量子解释。并说明了分析拉曼光谱数据的各种可行的方法,包括平滑,滤波等。再次根据光谱仪器设计原理详细论述了分光光学系统的结构设计和激光拉曼光谱仪的总体设计,并且对各个部件的选择作用及原理做了详细的描述。最后,测量了几种样品的拉曼光谱,并利用文中阐述的光谱处理方法进行初步处理,并且进行了合理的分析对比。 总之,本文主要从两个方面来分析拉曼光谱仪的实验测量和光谱数据处理研究:一、拉曼光谱仪的结构,详细了解拉曼光谱仪的工作原理。二、拉曼光谱数据处理分析,用合理的方法处理拉曼光谱可以有效便捷的得到较为理想的实验结果。通过对四氯化碳、乙醇、正丁醇的光谱测量以及光谱数据分析,得到了较为理想实验效果,证明本文所论述方法的可行性和正确性。 关键词: 拉曼光谱仪光栅光谱分析 Abstract

Purpose of this paperisfamiliar withRamanSpectrometer, and mastery of experimental measurements ofRaman spectroscopyandRaman spectroscopytechniquespreliminarydataprocessing. The article firstdiscusses theRaman spectrometerdevelopment, design,installation and commissioningin theapplication of the basictheory, designprinciples andkey technologies,laserRaman spectrometerdevelopments,research direction andoverall profileat home and abroad. The second section describesthe classical theoryof Ramanscatteringandquantumexplanation.And showsthe Ramanspectraofthe variouspossible ways, includingsmoothingand filtering.Againaccording tospectrometerdesign principlesdiscussed in detail thespectroscopicoptical systemdesignand laserRaman spectrometeroveralldesign, andthe choiceforthe role ofthe various componentsand the principle ofa detaileddescription. Finally, themeasuredRaman spectraof severalsamples, and use paper describesmethodsforspectralprocessinginitial treatment, and for a reasonableanalysis and comparison. In summary, this paper mainly fromtwoaspects to analyzeexperimental measurementsof Ramanspectroscopyand spectral dataprocessing research: First, the structure ofRaman spectroscopy, Raman spectroscopydetailed understanding ofthe working principle. Second,Raman spectroscopydata processing and analysis, a reasonableapproach toeffectiveand convenientRaman spectroscopycanbemore idealresults. Throughcarbon tetrachloride, ethanol, nbutanolandspectraldata analysisspectral

拉曼光谱的数据初步处理34577

摘要 本文主要目的是熟悉拉曼光谱仪原理,并掌握拉曼光谱仪的实验测量技术以及拉曼光谱的数据初步处理。 文章首先论述了拉曼光谱仪开发设计、安装调试中所应用的基本理论、设计原理与关键技术,介绍了激光拉曼光谱仪的发展动态、研究方向和国外总体概况。其次阐述了拉曼散射的经典理论及其量子解释。并说明了分析拉曼光谱数据的各种可行的方法,包括平滑,滤波等。再次根据光谱仪器设计原理详细论述了分光光学系统的结构设计和激光拉曼光谱仪的总体设计,并且对各个部件的选择作用及原理做了详细的描述。最后,测量了几种样品的拉曼光谱,并利用文中阐述的光谱处理方法进行初步处理,并且进行了合理的分析对比。 总之,本文主要从两个方面来分析拉曼光谱仪的实验测量和光谱数据处理研究:一、拉曼光谱仪的结构,详细了解拉曼光谱仪的工作原理。二、拉曼光谱数据处理分析,用合理的方法处理拉曼光谱可以有效便捷的得到较为理想的实验结果。通过对四氯化碳、乙醇、正丁醇的光谱测量以及光谱数据分析,得到了较为理想实验效果,证明本文所论述方法的可行性和正确性。 关键词: 拉曼光谱仪光栅光谱分析 目录 第1章引言 (1) 1.1 拉曼光谱分析技术 (1)

1.2 现代拉曼光谱技术与特点 (1) 1.3研究拉曼光谱仪的意义 (2) 1.4 本文的主要容 (2) 第2章基本理论 (3) 2.1拉曼散射经典解释[8] (3) 2.2拉曼散射的量子解释 (5) 2.2.1散射过程的量子跃迁 (5) 2.2.2量子力学结果 (5) 2.2.3 Placzek近似 (10) 2.3拉曼光谱数据分析方法 (13) 2.3.1数据平滑处理 (13) 2.3.2基线校正 (14) 2.3.3数据求导处理 (14) 2.3.4数据增强算法 (15) 2.3.5傅里叶变换 (15) 2.3.6小波变换 (16) 2.3.7 数字滤波 (16) 第3章常规拉曼检测系统 (17) 3.1 光源 (18) 3.2 滤光片 (19) 3.3 拉曼光谱仪及计算机软件 (20) 3.3.1光栅 (20) 3.3.2光电倍增管 (22) 第4章拉曼光谱测量及数据处理和结论 (23) 4.1 物质的拉曼光谱测量 (23) 4.2拉曼光谱数据处理与分析 (26) 4.2.1平滑处理 (26) 4.2.2 低通滤波处理 (29) 4.3结论 (30) 第5章论文总结与展望 (31) 致: (31) 参考文献:............................................... 错误!未定义书签。

拉曼光谱法

0421
拉曼光谱法1
拉曼光谱法是研究化合物分子受光照射后所产生的散射, 散射光与入射光能级差及化合 物振动频率、转动频率间关系的分析方法。 与红外光谱类似,拉曼光谱是一种振动光谱技术。所不同的是,前者与分子振动时偶极 矩变化相关,而拉曼效应则是分子极化率改变的结果,被测量的是非弹性的散射辐射。 拉曼光谱采用激光作为单色光源, 将样品分子激发到某一虚态, 随后受激分子弛豫跃迁 到一个与基态不同的振动能级,此时,散射辐射的频率将与入射频率不同。这种“非弹性散 射”光被称之为拉曼散射,频率之差即为拉曼位移(以 cm-1 为单位),实际上等于激发光的 波数减去散射辐射的波数, 与基态和终态的振动能级差相当。 频率不变的散射称为弹性散射, 即所谓瑞利散射。如果产生的拉曼散射频率低于入射频率,则称之为斯托克散射。反之,则 称之为反斯托克散射。实际上,几乎所有的拉曼分析都是测量斯托克散射。 用散射强度对拉曼位移作图得到拉曼光谱图。 由于功能团或化学键的拉曼位移与它们在 红外光谱中的吸收波数相一致,所以谱图的解析也与红外吸收光谱相同。然而,通常在拉曼 光谱中出现的强谱带在红外光谱中却成为弱谱带甚至不出现,反之亦然。所以,这两种光谱 技术常互为补充。 拉曼光谱的优点在于它的快速,准确,测量时通常不破坏样品(固体,半固体,液体或 气体),样品制备简单甚至不需样品制备。谱带信号通常处在可见或近红外光范围,可以有 效地和光纤联用;这也意味着谱带信号可以从包封在任何对激光透明的介质(如玻璃,塑料 内)或将样品溶于水中获得。现代拉曼光谱仪使用简单,分析速度快(几秒到几分钟),性 能可靠。 因此, 拉曼光谱与其他分析技术联用比其他光谱联用技术从某种意义上说更加简便 (可以使用单变量和多变量方法以及校准)。 除常规的拉曼光谱外,还有一些较为特殊的拉曼技术。它们是共振拉曼光谱,表面增强 拉曼光谱,拉曼旋光,相关-反斯托克拉曼光谱,拉曼增益或减失光谱以及超拉曼光谱等。 其中,在药物分析应用相对较多的是共振拉曼和表面增强拉曼光谱法。 ⑴ 共振拉曼光谱法 当激光频率接近或等于分子的电子跃迁频率时, 可引起强列的吸收或共振, 导致分子的 某些拉曼谱带强度急剧增强数百万倍,这就是共振拉曼效应。 许多药物在紫外-可见光区有强的电子跃迁。某些含发色团化合物的拉曼光谱因共振而 增强, 而其基体物质的光谱却不会增强。 共振拉曼技术与常规拉曼光谱技术不同之处在于要 求光源可变,可调谐染料激光器是获得共振拉曼光谱的必要条件。 有些化合物可通过化学反应改变其结构, 使之最大吸收峰接近激发光频率, 如生成有色 化合物,然后再进行共振拉曼光谱测定也是一个提高灵敏度的有效方法。 共振拉曼技术由于灵敏度高而特别适用于药物和生物大分子的研究。 但伴随样品本身或 由杂质引起的荧光,以及对仪器如激光光源的更高要求,限制了共振拉曼光谱的应用。 ⑵ 表面增强拉曼光谱法(SERS) 吸附在极微小金属颗粒表面或其附近的化合物 (或离子) 的拉曼散射要比该化合物的常 3 6 规拉曼散射增加 10 ~10 倍。这种表面增强拉曼散射(SERS)在银表面上最强,在金或铜的 表面上也可观察到。 SERS 现象主要由金属表面基质受激而使局部电磁场增强所引起,效应的强弱取决于与 光波长相对应的表面粗糙度大小,以及和波长相关的复杂的金属电介质作用的程度。许多 SERS 基质可以用于药物分析,最常用的包括溶胶,电极,电介质表面金属膜等。
1
本法由原指导原则改为测定方法收载,并对个别处的文字进行修改。

相关文档