文档库 最新最全的文档下载
当前位置:文档库 › 材料分析方法课后习题

材料分析方法课后习题

材料分析方法课后习题
材料分析方法课后习题

第十四章

1、波谱仪和能谱仪各有什么优缺点?

优点:1)能谱仪探测X射线的效率高。

2)在同一时间对分析点内所有元素X射线光子的能量进行测定和计数,在几分钟内可得到定性分析结果,而波谱仪只能逐个测量每种元素特征波长。

3)结构简单,稳定性和重现性都很好

4)不必聚焦,对样品表面无特殊要求,适于粗糙表面分析。

缺点:1)分辨率低。

2)能谱仪只能分析原子序数大于11的元素;而波谱仪可测定原子序数从4到92间的所有元素。

3)能谱仪的Si(Li)探头必须保持在低温态,因此必须时时用液氮冷却。

分析钢中碳化物成分可用能谱仪;分析基体中碳含量可用波谱仪。

2、举例说明电子探针的三种工作方式(点、线、面)在显微成分分析中的应用。

答:(1)、定点分析:将电子束固定在要分析的微区上用波谱仪分析时,改变分光晶体和探测器的位置,即可得到分析点的X射线谱线;用能谱仪分析时,几分钟内即可直接从荧光屏(或计算机)上得到微区内全部元素的谱线。

(2)、线分析:将谱仪(波、能)固定在所要测量的某一元素特征X射线信号(波长或能量)的位置把电子束沿着指定的方向作直线轨迹扫描,便可得到这一元素沿直线的浓度分布情况。改变位置可得到另一元素的浓度分布情况。

(3)、面分析:电子束在样品表面作光栅扫描,将谱仪(波、能)固定在所要测量的某一元素特征X射线信号(波长或能量)的位置,此时,在荧光屏上得到该元素的面分布图像。改变位

置可得到另一元素的浓度分布情况。也是用X射线调制图像的方法。

3、要在观察断口形貌的同时,分析断口上粒状夹杂物的化学成分,选用什么仪器?用怎样的操作方式进行具体分析?

答:(1)若观察断口形貌,用扫描电子显微镜来观察:而要分析夹杂物的化学成分,得选用能谱仪来分析其化学成分。

(2)A、用扫描电镜的断口分析观察其断口形貌:

a、沿晶断口分析:靠近二次电子检测器的断裂面亮度大,背面则暗,故短裤呈冰糖块状或呈石块状。沿晶断口属于脆性断裂,断口上午塑性变形迹象。

b、韧窝断口分析:韧窝的边缘类似尖棱,故亮度较大,韧窝底部比较平坦,图像亮度较低。韧窝断口是一种韧性断裂断口,无论是从试样的宏观变形行为上,还是从断口的微观区域上都能看出明显的塑性变形。韧窝断口是穿晶韧性断口。

c、解理断口分析:由于相邻晶粒的位相不一样,因此解理断裂纹从一个晶粒扩展到相邻晶粒内部时,在晶界处开始形成河流花样即解理台阶。解理断裂是脆性断裂,是沿着某特定的晶体学晶面产生的穿晶断裂。

d 、纤维增强复合材料断口分析:断口上有很多纤维拔出。由于纤维断裂的位置不都是在基体主裂纹平面上,一些纤维与基体脱粘后断裂位置在基体中,所以断口山更大量露出的拔出纤维,同时还可看到纤维拔出后留下的孔洞。

B 、用能谱仪定性分析方法进行其化学成分的分析。定点分析: 对样品选定区进行定性分析.线分析: 测定某特定元素的直线分布. 面分析: 测定某特定元素的面分布

a 、定点分析方法:电子束照射分析区,波谱仪分析时,改变分光晶体和探测器位置.或用能谱仪,获取 、E —I 谱线,根据谱线中各峰对应的特征波长值或特征能量值,确定照射区的元素组成;

b 、线分析方法:将谱仪固定在要测元素的特征X 射线 波长值或特征能量值,使电子束沿着图像指定直线轨迹扫描.常用于测晶界、相界元素分布.常将元素分布谱与该微区组织形貌结合起来分析;

c 、面分析方法:将谱仪固定在要测元素的特征X 射线波长值或特征能量值, 使电子束在在样品微区作光栅扫描,此时在荧光屏上便得到该元素的微区分布,含量高则亮。

4、扫描电子显微镜是由电子光学系统,信号收集处理、图像显示和记录系统,真空系统三个基本部分组成。

(1)、电子光学系统(镜筒)

1)电子枪:提供稳定的电子束,阴阳极加速电压

2)电磁透镜:第一、二透镜为强磁透镜,第三为弱磁透镜,聚集能力小,目的是增大镜筒空间

3)扫描线圈:使电子束在试样表面作规则扫描,同时控制电子束在样品上扫描与显像管上电子束扫描同步进行。扫描方式有光栅扫描(面扫)和角光栅(线)扫描

4)样品室及信号探测: 放置样品,安装信号探测器;各种信号的收集和相应的探测器的位置有很大关系。样品台本身是复杂而精密的组件,能进行平移、倾斜和转动等运动。

(2)信号收集和图像显示系统

电子束照射试样微区,产生信号量----荧光屏对应区光强度。因试样各点状态不同(形貌、成分差异),在荧光屏上反映图像亮度不同,从而形成光强度差(图像)。

(3)真空系统

防止样品污染,灯丝氧化;气体电离,使电子束散射。真空度1。33×10-2----1。33×10-3 。

由表可看出二次电子和俄歇电子的分辨率高,而特征X 射线调制成显微图像的分辨率最低。

6、二次电子成像原理及应用

(1)成像原理为:二次电子产额对微区表面的几何形状十分敏感。随入射束与试样表面法线夹角增大,二次电子产额增大。因为电子束穿入样品激发二次电子的有效深度增加了,使表面I

--λ

5-10 nm 作用体积内逸出表面的二次电子数量增多。

(2)应用:a 、断口分析 1)沿晶断口; 2)韧窝断口; 3)解理断口;

4)纤维增强复合材料断口。

b 、样品表面形貌特征 1)烧结样品的自然表面分析 2)金相表面

c 、材料形变和断裂过程的动态分析 1) 双相钢 2) 复合材料

7、背散射电子衬度原理及应用

(1).,↑↑b i Z 不同成分---b η不同---电子强度差----衬度----图像。背散射电子像中不同的区域衬度差别,实际上反映了样品相应不同区域平均原子序数的差别,据此可以定性分析样品的化学成分分布。对于光滑样品,原子序数衬度反映了表面组织形貌,同时也定性反映了样品成分分布 ;而对于形貌、成分差样品,则采用双检测器,消除形貌衬度、原子序数衬度的相互干扰。

(2)背散射电子用于:形貌分析——来自样品表层几百nm 范围;成分分析——产额与原子序数有关;晶体结构分析——基于通道花样衬度。

第十三章

1、电子束入射固体样品表面会激发哪些信号?他们有哪些特点和用途?

答:1)背散射电子:能量高;来自样品表面几百nm 深度范围;其产额随原子序数增大而增多。用作形貌分析、成分分析以及结构分析。

2)二次电子:能量较低;来自表层5—10nm 深度范围;对样品表面化状态十分敏感。不能进行成分分析,主要用于分析样品表面形貌。

3)吸收电子:其衬度恰好和SE 或BE 信号调制图像衬度相反;与背散射电子的衬度互补。吸收电子能产生原子序数衬度,即可用来进行定性的微区成分分析。

4)透射电子:透射电子信号由微区的厚度、成分和晶体结构决定。可进行微区成分分析。

5)特征X 射线: 用特征值进行成分分析,来自样品较深的区域

6)俄歇电子:各元素的俄歇电子能量值很低;来自样品表面1—2nm 范围。它适合做表面分析。

2、当电子束入射重元素和轻元素时,其作用体积有何不同?各自产生的信号的分辨率有何特点?

当电子束进入轻元素样品表面后悔造成滴状作用体积。入射电子束进入浅层表面时,尚未向横向扩展开来,因此二次电子和俄歇电子的分辨率就相当于束斑的直径。入射电子束进入样品较深部位时,向横向扩展的范围变大,则背散射电子的分辨率较低,而特征X 射线的分辨率最低。 当电子束射入重元素样品中时,作用体积呈半球状。电子书进入表面后立即向横向扩展,因此在分析重元素时,即使电子束的束斑很细小,也能达到较高的分辨率,此时二次电子的分辨率和背散射电子的分辨率之间的差距明显变小。

第十一章

1、薄膜样品的制备方法(工艺过程)

1)、从实物或大块试样上切割厚度为0。3~0。5mm 厚的薄片。电火花县切割法是目前用得最广泛的方法,它是用一根往返运动的金属丝做切割工具,只能用于导电样品。

设薄膜有A 、B 两晶粒。B 内的某(hkl)晶面严格满足Bragg 条件,或B 晶粒内满足“双光束条件”,则通过(hkl)衍射使入射强度I0分解为I hkl 和IO-I hkl 两部分。A 晶粒内所有晶面与Bragg 角相差较大,不能产生衍射。

在物镜背焦面上的物镜光阑,将衍射束挡掉,只让透射束通过光阑孔进行成像(明场),此时,像平面上A 和B 晶粒的光强度或亮度不同,分别为

I A ≈ I 0 I B ≈ I 0 - I hkl

B 晶粒相对A 晶粒的像衬度为0

)(I I I I I I I hkl A B A B ≈-=? 明场成像: 只让中心透射束穿过物镜光栏形成的衍衬像称为明场镜。

暗场成像: 只让某一衍射束通过物镜光栏形成的衍衬像称为暗场像。

中心暗场像: 入射电子束相对衍射晶面倾斜角,此时衍射斑将移到透镜的中心位置,该衍射束通过物镜光栏形成的衍衬像称为中心暗场成像。

3、什么是消光距离? 影响晶体消光距离的主要物性参数和外界条件是什么?

答:(1)消光距离:由于透射波和衍射波强烈的动力学相互作用结果,使I 0和Ig 在晶体深度方向上发生周期性的振荡,此振荡的深度周期叫消光距离。

(2)影响因素:晶胞体积,结构因子,Bragg 角,电子波长。

4、双光束近似:假定电子束透过薄晶体试样成像时,除了透射束外只存在一束较强的衍射束,而其他衍射束却大大偏离布拉格条件,它们的强度均可视为零。

柱体近似是把成像单元缩小到和一个晶胞相当的尺度。试样下表面某点所产生的衍射束强度近似为以该点为中心的一个小柱体衍射束的强度,柱体与柱体间互不干扰。

等厚条纹:等厚条纹:当 S ≡ C时

显然,当t = n/s(n为整数)时,Ig = 0

当 t = (n + 1/2)/s 时,

用Ig随t周期性振荡这一运动学结果,定性解释以下两种衍衬现象。晶体样品契形边缘处出现的厚度消光条纹,也叫等厚消光条纹。

等倾条纹:当t ≡ c时,

5、什么是缺陷不可见判据? 如何用不可见判据来确定位错的布氏矢量?

答:缺陷不可见判据是指:

=

?R

g

?

?

。确定位错的布氏矢量可按如下步骤:找到两个操作发

射g1和g2,其成像时位错均不可见,则必有g1·b=0,g2·b=0。这就是说,b应该在g1和g2所对应的晶面(h1k1l1)he(h2k2l2)内,即b应该平行于这两个晶面的交线,b=g1×g2,再利用晶面定律可以求出b的指数。至于b的大小,通常可取这个方向上的最小点阵矢量。

6、如果将作为位错消光的有效判据,那么,在进行位错Burgers矢量测定时,只要找到产生该位错消光的两个操作反射g1和g2,即可确定,请分析为什么?

答:这是因为,如果能找到两个操作发射g1和g2,其成像时位错均不可见,则必有g1·b=0,g2·b=0。这就是说,b应该在g1和g2所对应的晶面(h1k1l1)he(h2k2l2)内,即b应该平行于这两个晶面的交线,b=g1×g2,再利用晶面定律可以求出b的指数。至于b的大小,通常可取

这个方向上的最小点阵矢量。

7、位错线像总是出现在它的实际位置的一侧或另一侧,说明其衬度本质上三关和由位错附近的点阵畸变所发生的,叫做“应变场衬度”。而且,由于附加的偏差S`,随离开位错中心的距离而逐渐变化,使位错线的像总是有一定的宽度(一般为3~10mm左右)

第十章

1、分析电子衍射与X 射线衍射有何异同?

(1)电子衍射的原理和X射线衍射相似,是以满足(或基本满足)布拉格方程作为产生衍射的必要条件。而且他们所得到的衍射花样在几何特征上也大致相似。

(2)电子衍射和X 射线衍射相比较时具有下列不同之处:

a、电子波的波长比X射线短得多,在同样满足布拉格条件时,它的衍射角θ很小,约为10-2rad。而X射线产生衍射时,其衍射角最大可接近π/2。

b、物质对电子散射主要是核散射,因此散射强,约为X射线一万倍,曝光时间短。

C、电子衍射能在同一试样上将形貌观察与结构分析结合起来。

D、电子衍射操作时采用薄晶样品,增加了倒易阵点和爱瓦尔德球相交截的机会,结果是略为偏离布拉格条件的电子束也内发生衍射。

<电子衍射与X射线衍射相比具有下列特点:

(1)电子波的波长比X 射线短得多,因此,在同样满足布拉格条件时,它的衍射角度很小,10-2 rad ,而X 射线最大衍射角可达π/2。

(2)电子衍射产生斑点大致分布在一个二维倒易截面内,晶体产生的衍射花样能比较直观地反映晶体内各晶面的位向。因为电子波长短,用Ewald 图解时,反射球半径很大,在衍射角很小时的范围内,反射球的球面可近似为平面。

(3)电子衍射用薄晶体样品,其倒易点沿样品厚度方向扩展为倒易杆,增加了倒易点和Ewald 球相交截面机会,结果使略偏离布拉格条件的电子束也能发生衍射。

(4)电子衍射束的强度较大,拍摄衍射花样时间短。因为原子对电子的散射能力远大于对X 射线的散射能力。>

2、倒易点阵与正点阵之间关系如何?倒易点阵与晶体的电子衍射斑点之间有何对应关系? 答:(1)倒易点阵与正点阵的关系:倒易点阵与正点阵互为倒易。

<1)、两个点阵的基矢之间:

2)、两个点阵的格矢之积是2π的整数倍; 3)、两个电子元宝体积之间的关系是

; 4)、正点阵晶面族(hkl )与倒易点阵格矢Ghkl 相互垂直,

。>

(2)倒易点阵与晶体的电子衍射斑点之间的关系:电子衍射斑点就是与晶体相对应的倒易点

阵中某一截面上阵点排列的像。<在0*附近的低指数倒易阵点附近范围,反射球面十分接近一个

平面,且衍射角度非常小 <10,这样反射球与倒易阵点相截是一个二维倒易平面。这些低指数倒

易阵点落在反射球面上,产生相应的衍射束。因此,电子衍射图是二维倒易截面在平面上的投影。>

3、何谓零层倒易截面和晶带定理?说明同一晶带中各晶面及其倒易矢量与晶带轴之间的关系。

答:晶体中,与某一晶向[uvw]平行的所有晶面(HKL )属于同一晶带,称为[uvw]晶带,该晶向[uvw]称为此晶带的晶带轴,它们之间存在这样的关系:0=++w L v K u H i i i 取某点O*为倒易原点,则该晶带所有晶面对应的倒易矢(倒易点)将处于同一倒易平面中,这个倒易平面与Z 垂直。由正、倒空间的对应关系,与Z 垂直的倒易面为(uvw )*,即 [uvw]⊥(uvw)*,因此,由同晶带的晶面构成的倒易面就可以用(uvw )*表示,且因为过原点O*,则称为0层倒易截面(uvw )*。

4、透射电镜的主要特点是可以进行组织形貌与晶体结构同位分析。使中间镜物平面与物镜向平面重合(成像操作),在观察屏上得到的是反映样品组织形态的形貌图像;而使中间镜的物平面与物镜背焦面重合(衍射操作),在观察屏上得到的则是反映样品晶体结构的衍射斑点。

5、说明多晶、单晶及非晶衍射花样的特征及形成原理。

(1)单晶花样是一个零层二维倒易截面,其倒易点规则排列,具有明显对称性,且处于二维

网络的格点上。因此表达花样对称性的基本单元为平行四边形。单晶电子衍射花样就是(uvw)*0

零层倒易截面的放大像。

(2)多晶面的衍射花样为:各衍射圆锥与垂直入射束方向的荧光屏或照相底片的相交线,为一系列同心圆环。每一族衍射晶面对应的倒易点分布集合而成一半径为1/d 的倒易球面,与Ewald 球的相惯线为园环,因此,样品各晶粒{hkl}晶面族晶面的衍射线轨迹形成以入射电子束为轴、2θ为半锥角的衍射圆锥,不同晶面族衍射圆锥2θ不同,但各衍射圆锥共顶、共轴。

(3)非晶的衍射花样为一个圆斑。

6、薄片晶体的倒易阵点拉长为倒易“杆”,棒状晶体为倒易“盘”,细小颗粒晶体则为倒易“球”。 答:(1)由以下的电子衍射图可见 θ2tg L R ?=

∵ 2θ很小,一般为1~20

∴ θθsin 22=tg (θθθθθθ2cos cos sin 22cos 2sin 2==

tg ) 由 λθ=sin 2d 代入上式

d

l L R λθ=?=sin 2 即 λL Rd = , L 为相机裘度

这就是电子衍射的基本公式。

令 k l =λ 一定义为电子衍射相机常数

kg d k R ==

(2)、在0*附近的低指数倒易阵点附近范围,反射球面十分接近一个平面,且衍射角度非常

小 <10

,这样反射球与倒易阵点相截是一个二维倒易平面。这些低指数倒易阵点落在反射球面上,

产生相应的衍射束。因此,电子衍射图是二维倒易截面在平面上的投影。

(3)这是因为实际的样品晶体都有确定的形状和有限的尺寸,因而,它的倒易点不是一个几何意义上的点,而是沿着晶体尺寸较小的方向发生扩展,扩展量为该方向实际尺寸的倒数的2倍。

8、选区电子衍射

获取衍射花样的方法是光阑选区衍射和微束选区衍射,前者多在5平方微米以上,后者可在0。5平方微米以下,我们这里主要讲述前者。光阑选区衍射是通过物镜象平面上插入选区光阑限制参加成象和衍射的区域来实现的另外,电镜的一个特点就是能够做到选区衍射和选区成像的一致性。

定义: 选择性分析样品不同微区范围内的晶体结构、物相。

选区电子衍射的实验操作:(1)在成像的操作方式下,使物镜精确聚焦,获得清晰的形貌像。(2)插入并选用尺寸合适的选区光栏围住被选择的视场。(3)减小中间镜电流,使其物平面与物镜背焦面重合,转入衍射操作方式。对于近代的电镜,此步操作可按“衍射”按钮自动完成。(4)移出物镜光栏,在荧光屏上显示电子衍射花样可供观察。(5)需要拍照记录时,可适当减小第二聚光镜电流,获得更趋近平行的电子束,使衍射半点尺寸变小。

9、单晶体电子衍射花样的标定见书P158

假定需要衍射分析的区域属于未知相,但根据样品的条件可以分析其为可能的几种结构之一,试根据你的理解给出衍射图标定的一般步骤。

(1)测定低指数斑点的R值。应在几个不同的方位摄取衍射花样,保证能测出最前面的8个R值。

(2)根据R,计算出各个对应得到d值。

(3)查JCPDS(ASTM)卡片和各d值都相符的物相即为待测的晶体。如果电子衍射的精度有限,有可能出现几张卡片上d值均和测定的d值相近,此时,应根据待测晶体的其它信息,例如化学成分等来排除不可能出现的物相。

10、倒易点阵及晶带定理见书P144~147

判别下列哪些晶面属于[11]晶带:(0),(1),(231),(211),(01),(13),(12),(12),(01),(212)。

答:(0)(1)、(211)、(12)、(01)、(01)晶面属于[11]晶带,因为它们符合晶带定律:hu+kv+lw=0。答:(0)(1)、(211)、(12)、(01)、(01)晶面属于[11]晶带,因为它们符合晶带定律:hu+kv+lw=0。

第九章

1、透射电镜主要由几大系统构成?各系统之间关系如何?

答:三大系统:电子光学系统,电源与控制系统及真空系统;

其中电子光学系统是其核心。其他系统为辅助系统。

2、成像系统的主要构成及特点是什么?

答:主要由物镜、中间镜和投影镜组成。

1)物镜(强激磁、短焦距、像差小)

作用:形成第一幅高分辨率的电子显微图像。特点: M=100-300, f=1--3mm。

2)中间镜(弱激磁、长焦距)

作用:调节电镜总放大倍数。特点: M=0-20可调。

3)投影镜(强激磁、短焦距)

作用:放大中间镜像,并投影至荧光屏上特点:景深和焦长都非常大

3、透射电镜中有哪些主要光阑? 分别安装在什么位置? 其作用如何?

答:主要有三种光阑:

①聚光镜光阑。在双聚光镜系统中,该光阑装在第二聚光镜下方。作用:限制照明孔径角。

②物镜光阑。安装在物镜后焦面。作用: 提高像衬度;减小孔径角,从而减小像差;进行暗场成像。

③选区光阑:放在物镜的像平面位置。作用: 对样品进行微区衍射分析。

第八章

1、像差:分几何像差和色差。几何像差是因为透镜磁场几何形状上缺陷造成的,主要指球差和像散。色差是由于电子波的波长或能量发生一定幅度的改变造成的。

1)、球差(球面像差):由于电磁透镜中心区域和边缘区域对电子的折射能力不符合预定规律造成的,只能减小不能消除。

2)、像散:由透镜磁场的非旋转对称使其在不同方向上的聚焦能力不同而引起,可以消除。

3)、色差:由于入射电子波长或能量的非单一性造成,不能完全消除。

2、景深:不影响分辨率条件下,电磁透镜物平面允许的轴向偏差。

焦长:: 不影响透镜分辨率条件下,像平面可沿轴向平移距离。

第五章

1、物相定性分析的原理是什么?对食盐进行化学分析与物相定性分析,所得信息有何不同。

(1)物相定性分析的原理:X射线在某种晶体上的衍射必然反映出带有晶体特征的特定的衍射花样(衍射位置θ,衍射强度I),而没有两种结晶物质会给出完全相同的衍射花样,所以我们才能根据衍射花样与晶体结构一一对应的关系,来确定某一物相。

(2)对食盐进行化学分析,只可得出组成物质的元素种类(Na,Cl等)及其含量,却不能说明其存在状态,亦即不能说明其是何种晶体结构,同种元素虽然成分不发生变化,但可以不同晶

体状态存在,对化合物更是如此。定性分析的任务就是鉴别待测样由哪些物相所组成。

2、物相定量分析的原理是什么试述用K值法进行物相定量分析的过程。

(1)定量分析的基本原理是物质的衍射强度与参与衍射的该物质的体积成正比。根据X射线衍射强度公式,某一物相的相对含量的增加,其衍射线的强度亦随之增加,所以通过衍射线强度的数值可以确定对应物相的相对含量。由于各个物相对X射线的吸收影响不同,X射线衍射强度与该物相的相对含量之间不成线性比例关系,必须加以修正。

(2)K值法是内标法的一种,K值法不须作标准曲线得出而能求得K值,是事先在待测样品中加入纯元素,然后测出定标曲线的斜率即K值。当要进行这类待测材料衍射分析时,已知K值和标准物相质量分数ωs,只要测出a相强度Ia与标准物相的强度Is的比值Ia/Is就可以求出a 相的质量分数ωa。

第四章

1、乘积RC称为积分电路(计数率计)的时间常数。时间常数愈大,计数率计对衍射强度的变化愈不敏感,表现为衍射花样愈显平滑整齐,但滞后也愈严重,即衍射峰的形状位置受到歪曲也愈显著;时间常数过小,由于起伏波动太大将给弱峰的识别造成困难。

2、连续扫描:该法效率高,精度差,用于物相定性分析。采用计数率仪计数,试样与计数管以1:2角速转动,计数管以一定的扫描速度,从起始角向终止角扫描。记录每一瞬时衍射角的衍射强度,绘制衍射图。

3、步进扫描:该法采用定标器计数,速度慢、精度高,常用于精确测定衍射峰的积分强度、衍射角。计数器在较小角度范围内,按预先设定的步进宽度(如此0。020)、步进时间(如5s),从起始角到终止角,测量各角的衍射强度。

4、扫描速度提高扫描速度,可节约测试时间,但却会导致强度和分辨率下降,使衍射峰的位置向扫描方向偏移并引起衍射峰的不对称宽化。

5、时间常数增大时间常数可使衍射峰轮廓及背底变得平滑,但同时将降低强度和分辨率,并使衍射峰向扫描方向偏移,造成峰的不对称宽化。

6、徳拜相的装片方法,各种装片法的主要用途。摄照参数的选择。

德拜相装片:1)、正装法:X-ray 从底片接口处射入,照射试样后从中心孔穿出,低角弧线接近中心孔,高角线条靠近端部,可用于一般物相分析;

2)、反装法:从中心孔穿入,从接口处穿出,高角线条集中于孔眼附近,适用于点阵参数的测定;

3)、偏装法:在底片上开两个孔,X-ray 先后从此两孔通过,衍射线条形成围绕进出光孔的两组弧对,较为常用。可消除底片收缩或相片名义半径不准确引起的误差。

参数选择:X 射线管阳极元素、滤片、管电压、管电流、曝光时间。

7、德拜相的误差来源 见书P44

第三章

1、产生电子衍射的充分条件是F hkl ≠0, 产生电子衍射必要条件是满足或基本满足布拉格方程。

系统消光:由于F HKL =0而使衍射线消失的现象称为系统消光。

2、

几种点阵的结构因数计算 见书P34

3、多晶体衍射的相对积分强度(见书P44):

晶体结构

结构消光(F hkl =0)条件 简单主体

无结构消光 体心立方

h+k+l=奇数 面心立方

h 、k 、l 奇偶混合 体心正方

h+k+l=奇数

第二章

1、晶面指数

干涉面指数:晶面(h k l )的n 级反射面(nh nk nl )用(H K L )表示,称为反射面或干涉面,干涉面的面指数即干涉面指数,有公约数n 。干涉面间距d HKL =a/根号(H^2+K^2+L^2)。

2、X 射线衍射方法:1)、劳埃法 采用连续X 射线照射不动的单晶体,用垂直于入射线的平底片记录衍射线而得到劳埃斑点。劳埃法多用于单晶体取向测定及晶体对称性的研究。2)、周转晶体法 采用单色X 射线照射转动的单晶体,并用一张以旋转轴为轴的圆筒形底片来记录确定晶体的结构。3)、粉末法 采用单色X 射线照射多晶体。有数量众多、取向混乱的微晶体组M HKL e A F P I 222

2)(cos sin 2cos 1-+=θθθθ

成。各微晶体中某种指数的晶面在空间占有各种方位。粉末法主要用于测定晶体结构,进行物相定性、定量分析,精确测定晶体的点阵参数以及材料的应力、织构、晶粒大小的测定等。

3、 布拉格方程 见书P25

布拉格方程 2dsin θ=λ中的d 、θ、λ分别表示什么?布拉格方程式有何用途?

答:d HKL 表示HKL 晶面的面网间距,θ角表示掠过角或布拉格角,即入射X 射线或衍射线与面网间的夹角,λ表示入射X 射线的波长。

该公式有二个方面用途:

(1)已知晶体的d 值。通过测量θ,求特征X 射线的λ,并通过λ判断产生特征X 射线的元素。这主要应用于X 射线荧光光谱仪和电子探针中。

(2)已知入射X 射线的波长, 通过测量θ,求晶面间距。并通过晶面间距,测定晶体结构或进行物相分析。

第一章

1、连续X 射线:从某一短波限λ。开始,直至波长等于无穷大λ∞的一系列波长。

特征X 射线: 具有一定波长的特强X 射线,叠加于连续X 射线谱上。

连续X 射线谱:强度随波长连续变化的谱线。

特征X 射线谱:当管电压达到阳极材料某特征U K 时,在某特定波长范围处,产生的强度特别大的谱线

X 射线管适宜工作电压U ≈(3~5)U k

光电效应:当入射光子的能量等于或大于碰撞体原子某壳层电子的结合能时,光子被电子吸收,获得能量的电子从内层溢出,成为自由电子,即光电子,高能量层电子填补激发态空位,能量差以X 射线形式辐射,该现象称为光电效应。

二次X 射线(荧光辐射):由入射X 射线所激发出来的特征X 射线。

俄歇效应:当原子中K 层的一个电子被打出后,它就处于K 激发状态,其能量为Ek 。如果一个L 层电子来填充这个空位,K 电离就变成了L 电离,其能由Ek 变成El ,此时将释Ek-El 的能量,可能产生荧光χ射线,也可能给予L 层的电子,使其脱离原子产生二次电离。即K 层的一个空位被L 层的两个空位所替代,这种现象称俄歇效应。

滤波材料λk:

相干散射:当入射线与原子内受核束缚较紧的电子相遇,光量子能量不足以使原子电离,但电子可在X 射线交变电场作用下发生受迫振动,这样的电子就成为一个电磁波的发射源,向周围辐射与入射X 射线波长相同的辐射,因为各电子所散射的射线波长相同,有可能相互干涉,故称相干散射。

不相干散射:能量为hv 的光子与自由电子或受核束缚较弱的电子碰撞,将一部分能量给予电子,使其动量提高,成为反冲电子,光子损失了能量,并改变了运动的方向,能量减少hv ,显然v`

2、连续谱受管电压、管电流和阳极靶材的原子序的作用及相互关系 见书P7、9 αβλλλK K K <<

材料科学基础课后作业及答案(分章节)

第一章 8.计算下列晶体的离于键与共价键的相对比例 (1)NaF (2)CaO (3)ZnS 解:1、查表得:X Na =0.93,X F =3.98 根据鲍林公式可得NaF 中离子键比例为:21 (0.93 3.98)4 [1]100%90.2%e ---?= 共价键比例为:1-90.2%=9.8% 2、同理,CaO 中离子键比例为:21 (1.00 3.44)4 [1]100%77.4%e ---?= 共价键比例为:1-77.4%=22.6% 3、ZnS 中离子键比例为:2 1/4(2.581.65)[1]100%19.44%ZnS e --=-?=中离子键含量 共价键比例为:1-19.44%=80.56% 10说明结构转变的热力学条件与动力学条件的意义.说明稳态结构与亚稳态结构之间的关系。 答:结构转变的热力学条件决定转变是否可行,是结构转变的推动力,是转变的必要条件;动力学条件决定转变速度的大小,反映转变过程中阻力的大小。 稳态结构与亚稳态结构之间的关系:两种状态都是物质存在的状态,材料得到的结构是稳态或亚稳态,取决于转交过程的推动力和阻力(即热力学条件和动力学条件),阻力小时得到稳态结构,阻力很大时则得到亚稳态结构。稳态结构能量最低,热力学上最稳定,亚稳态结构能量高,热力学上不稳定,但向稳定结构转变速度慢,能保持相对稳定甚至长期存在。但在一定条件下,亚稳态结构向稳态结构转变。 第二章 1.回答下列问题: (1)在立方晶系的晶胞内画出具有下列密勒指数的晶面和晶向: (001)与[210],(111)与[112],(110)与 [111],(132)与[123],(322)与[236] (2)在立方晶系的一个晶胞中画出(111)和 (112)晶面,并写出两晶面交线的晶向指数。 (3)在立方晶系的一个晶胞中画出同时位于(101). (011)和(112)晶面上的[111]晶向。 解:1、 2.有一正交点阵的 a=b, c=a/2。某晶面在三个晶轴上的截距分别为 6个、2个和4个原子间距,求该晶面的密勒指数。 3.立方晶系的 {111}, 1110}, {123)晶面族各包括多少晶面?写出它们的密勒指数。 4.写出六方晶系的{1012}晶面族中所有晶面的密勒指数,在六方晶胞中画出[1120]、 [1101]晶向和(1012)晶面,并确定(1012)晶面与六方晶胞交线的晶向指数。 5.根据刚性球模型回答下列问题:

材料现代分析方法试题2(参考答案)

材料现代分析方法试题4(参考答案) 一、基本概念题(共10题,每题5分) 1.实验中选择X射线管以及滤波片的原则是什么?已知一个以Fe为主要成分的样品,试选择合适的X射线管和合适的滤波片 答:实验中选择X射线管的原则是为避免或减少产生荧光辐射,应当避免使用比样品中主元素的原子序数大2~6(尤其是2)的材料作靶材的X射线管。 选择滤波片的原则是X射线分析中,在X射线管与样品之间一个滤波片, 以滤掉K β线。滤波片的材料依靶的材料而定,一般采用比靶材的原子序数小1或2的材料。 以分析以铁为主的样品,应该选用Co或Fe靶的X射线管,同时选用Fe和Mn 为滤波片。 2.试述获取衍射花样的三种基本方法及其用途? 答:获取衍射花样的三种基本方法是劳埃法、旋转晶体法和粉末法。劳埃法主要用于分析晶体的对称性和进行晶体定向;旋转晶体法主要用于研究晶体结构;粉末法主要用于物相分析。 3.原子散射因数的物理意义是什么?某元素的原子散射因数与其原子序数有何关系? 答:原子散射因数f 是以一个电子散射波的振幅为度量单位的一个原子散射波的振幅。也称原子散射波振幅。它表示一个原子在某一方向上散射波的振幅是一个电子在相同条件下散射波振幅的f倍。它反映了原子将X射线向某一个方向散射时的散射效率。 原子散射因数与其原子序数有何关系,Z越大,f 越大。因此,重原子对X射线散射的能力比轻原子要强。 4.用单色X射线照射圆柱多晶体试样,其衍射线在空间将形成什么图案?为摄取德拜图相,应当采用什么样的底片去记录? 答:用单色X射线照射圆柱多晶体试样,其衍射线在空间将形成一组锥心角不等的圆锥组成的图案;为摄取德拜图相,应当采用带状的照相底片去记录。

材料分析方法试题(1)

《材料科学研究方法》考试试卷(第一套) 一、 1、基态 2、俄歇电子 3、物相分析 4、 色散 5、振动耦合 6、热重分析 一.填空题(每空1分,选做20空,共20分,多答不加分) 1. 对于X 射线管而言,在各种管电压下的连续X 射线谱都存在着一个最短的波长长值 , 称为 ,当管电压增大时,此值 。 2. 由点阵常数测量精确度与θ角的关系可知,在相同条件下,θ角越大,测量的精确 度 。 3. 对称取代的S=S 、C ≡N 、C=S 等基团在红外光谱中只能产生很弱的吸收带(甚至无吸 收带),而在 光谱中往往产生很强的吸收带。 4. 根据底片圆孔位置和开口位置的不同,德拜照相法的底片安装方法可以分 为: 、 、 。 5. 两组相邻的不同基团上的H 核相互影响,使它们的共振峰产生了裂分,这种现象 叫 。 6. 德拜法测定点阵常数,系统误差主要来源于相机的半径误差、底片的伸缩误差、样品的 偏心误差和 。 7. 激发电压是指产生特征X 射线的最 电压。 8. 凡是与反射球面相交的倒易结点都满足衍射条件而产生衍射,这句话是对是 错? 。 9. 对于电子探针,检测特征X 射线的波长和强度是由X 射线谱仪来完成的。常用的X 射 线谱仪有两种:一种 ,另一种是 。 10. 对于红外吸收光谱,可将中红外区光谱大致分为两个区: 和 。 区域的谱带有比较明确的基团和频率对应关系。 11. 衍射仪的测量方法分哪两种: 和 。 12. DTA 曲线描述了样品与参比物之间的 随温度或时间的变化关系。 13. 在几大透镜中,透射电子显微镜分辨本领的高低主要取决于 。 14. 紫外吸收光谱是由分子中 跃迁引起的。红外吸收光谱是由分子中 跃迁引起的。 15. 有机化合物的价电子主要有三种,即 、 和 。 16. 核磁共振氢谱规定,标准样品四甲基硅δ TMS = 。 17. 红外吸收光谱又称振-转光谱,可以分析晶体的结构,对非晶体却无能为力。此种说法 正确与否? 18. 透射电子显微镜以 为成像信号,扫描电子显微镜主要以 为成像信号。 0λ

材料分析方法习题集

材料结构分析习题集 电子显微分析部分习题 习题一 1.电子波有何特征?与可见光有何异同? 2.分析电磁透镜对电子波的聚焦原理,说明电磁透镜的结构对聚焦能力的影响。 3.电磁透镜的像差是怎样产生的,如何来消除和减少像差?4.说明影响光学显微镜和电磁透镜分辨率的关键因素是什么?如何提高电磁透镜的分辨率? 5.电磁透镜景深和焦长主要受哪些因素影响?说明电磁透镜的景深大、焦长长、是什么因素影响的结果? 6.试比较光学显微镜成像和透射电子显微镜成像的异同点? 电子显微分析部分习题 习题二

1.透射电镜主要由几大系统构成?各系统之间关系如何?2.照明系统的作用是什么?它应满足什么要求? 3.分别说明成像操作与衍射操作时各级透镜(像平面与物平面)之间的相对位置关系,并画出光路图。 4.成像系统的主要构成及其特点是什么? 5.样品台的结构与功能如何?它应满足什么要求? 6.透射电镜中有哪些主要光阑,在什么位置?其作用如何?7.点分辨率和晶格分辨率有何不同?同一电镜的这两种分辨率哪个高?为什么? 8.复型样品在透射电镜下的衬度是如何形成的? 9.说明如何用透射电镜观察超细粉末的尺寸和形态?如何制备 样品? 材料现代分析方法习题集 X射线衍射分析习题 习题一 1.名词解释:相干散射(汤姆逊散射)、不相干散射(康普顿散射)、荧光辐射、俄歇效应、吸收限、俄歇效应。

2.在原子序24(Cr)到74(W)之间选择7种元素,根据它们的特征谱波长(Kα1),用图解法验证莫塞莱定律。 3.若X射线管的额定功率为1.5kW,在管电压为35kV时,容许的最大电流是多少? 4.讨论下列各组概念中二者之间的关系: 1)同一物质的吸收谱和发射谱; 2)X射线管靶材的发射谱与其配用的滤波片的吸收谱。 5.为使Cu靶的Kβ线透射系数是Kα线透射系数的1/6,求滤波片的厚度。 6.画出MoKα辐射的透射系数(I/I0)-铅板厚度(t)的关系曲线(t取0~1mm)。 7.欲用Mo靶X射线管激发Cu的荧光X射线辐射,所需施加的最低管电压是多少?激发出的荧光辐射的波长是多少?8.X射线的本质是什么? 9.如何选用滤波片的材料?如何选用X射线管的材料?10.实验中选择X射线管以及滤波片的原则是什么?已知一个以Fe为主要成分的样品,试选择合适的X射线管和合适的滤波片。

材料现代分析方法试题及答案1

一、单项选择题(每题 2 分,共10 分) 3.表面形貌分析的手段包括【 d 】 (a)X 射线衍射(XRD)和扫描电镜(SEM)(b) SEM 和透射电镜(TEM) (c) 波谱仪(WDS)和X 射线光电子谱仪(XPS)(d) 扫描隧道显微镜(STM)和 SEM 4.透射电镜的两种主要功能:【b 】 (a)表面形貌和晶体结构(b)内部组织和晶体结构 (c)表面形貌和成分价键(d)内部组织和成分价键 二、判断题(正确的打√,错误的打×,每题2 分,共10 分) 1.透射电镜图像的衬度与样品成分无关。(×)2.扫描电镜的二次电子像的分辨率比背散射电子像更高。(√)3.透镜的数值孔径与折射率有关。(√)4.放大倍数是判断显微镜性能的根本指标。(×)5.在样品台转动的工作模式下,X射线衍射仪探头转动的角速度是样品转动角 速度的二倍。(√) 三、简答题(每题5 分,共25 分) 1. 扫描电镜的分辨率和哪些因素有关?为什么? 和所用的信号种类和束斑尺寸有关,因为不同信号的扩展效应不同,例如二次电子产生的区域比背散射电子小。束斑尺寸越小,产生信号的区域也小,分辨率就高。 1.透射电镜中如何获得明场像、暗场像和中心暗场像? 答:如果让透射束进入物镜光阑,而将衍射束挡掉,在成像模式下,就得到明场象。如果把物镜光阑孔套住一个衍射斑,而把透射束挡掉,就得到暗场像,将入射束倾斜,让某一衍射束与透射电镜的中心轴平行,且通过物镜光阑就得到中心暗场像。 2.简述能谱仪和波谱仪的工作原理。 答:能量色散谱仪主要由Si(Li)半导体探测器、在电子束照射下,样品发射所含元素的荧光标识X 射线,这些X 射线被Si(Li)半导体探测器吸收,进入探测器中被吸收的每一个X 射线光子都使硅电离成许多电子—空穴对,构成一个电流脉冲,经放大器转换成电压脉冲,脉冲高度与被吸收的光子能量成正比。最后得到以能量为横坐标、强度为纵坐标的X 射线能量色散谱。 在波谱仪中,在电子束照射下,样品发出所含元素的特征x 射线。若在样品上方水平放置一块具有适当晶面间距 d 的晶体,入射X 射线的波长、入射角和晶面间距三者符合布拉格方程时,这个特征波长的X 射线就会发生强烈衍射。波谱仪利用晶体衍射把不同波长的X 射线分开,即不同波长的X 射线将在各自满足布拉格方程的2θ方向上被检测器接收,最后得到以波长为横坐标、强度为纵坐标的X射线能量色散谱。 3.电子束与试样物质作用产生那些信号?说明其用途。 (1)二次电子。当入射电子和样品中原子的价电子发生非弹性散射作用时会损失其部分能量(约30~50 电子伏特),这部分能量激发核外电子脱离原子,能量大于材料逸出功的价电子可从样品表面逸出,变成真空中的自由电子,即二次电子。二次电子对试样表面状态非常敏感,能有效地显示试样表面的微观形貌。 (2)背散射电子。背散射电子是指被固体样品原子反射回来的一部分入射电子。既包括与样品中原子核作用而形成的弹性背散射电子,又包括与样品中核外电子作用而形成的非弹性散射电子。利用背反射电子作为成像信号不仅能分析形貌特征,也可以用来显示原子序数衬度,进行定性成分分析。 (3)X 射线。当入射电子和原子中内层电子发生非弹性散射作用时也会损失其部分能量(约

材料现代分析方法试题及答案1

《现代材料分析方法》期末试卷1 一、单项选择题(每题 2 分,共10 分) 1.成分和价键分析手段包括【b 】 (a)WDS、能谱仪(EDS)和XRD (b)WDS、EDS 和XPS (c)TEM、WDS 和XPS (d)XRD、FTIR 和Raman 2.分子结构分析手段包括【 a 】 (a)拉曼光谱(Raman)、核磁共振(NMR)和傅立叶变换红外光谱(FTIR)(b)NMR、FTIR 和WDS (c)SEM、TEM 和STEM(扫描透射电镜)(d)XRD、FTIR 和Raman 3.表面形貌分析的手段包括【 d 】 (a)X 射线衍射(XRD)和扫描电镜(SEM)(b) SEM 和透射电镜(TEM) (c) 波谱仪(WDS)和X 射线光电子谱仪(XPS)(d) 扫描隧道显微镜(STM)和 SEM 4.透射电镜的两种主要功能:【b 】 (a)表面形貌和晶体结构(b)内部组织和晶体结构 (c)表面形貌和成分价键(d)内部组织和成分价键 5.下列谱图所代表的化合物中含有的基团包括:【 c 】 (a)–C-H、–OH 和–NH2 (b) –C-H、和–NH2, (c) –C-H、和-C=C- (d) –C-H、和CO 二、判断题(正确的打√,错误的打×,每题2 分,共10 分) 1.透射电镜图像的衬度与样品成分无关。(×)2.扫描电镜的二次电子像的分辨率比背散射电子像更高。(√)3.透镜的数值孔径与折射率有关。(√)

4.放大倍数是判断显微镜性能的根本指标。(×)5.在样品台转动的工作模式下,X射线衍射仪探头转动的角速度是样品转动角 速度的二倍。(√) 三、简答题(每题5 分,共25 分) 1. 扫描电镜的分辨率和哪些因素有关?为什么? 和所用的信号种类和束斑尺寸有关,因为不同信号的扩展效应不同,例如二次电子产生的区域比背散射电子小。束斑尺寸越小,产生信号的区域也小,分辨率就高。 2.原子力显微镜的利用的是哪两种力,又是如何探测形貌的? 范德华力和毛细力。 以上两种力可以作用在探针上,致使悬臂偏转,当针尖在样品上方扫描时,探测器可实时地检测悬臂的状态,并将其对应的表面形貌像显示纪录下来。 3.在核磁共振谱图中出现多重峰的原因是什么? 多重峰的出现是由于分子中相邻氢核自旋互相偶合造成的。在外磁场中,氢核有两种取向,与外磁场同向的起增强外场的作用,与外磁场反向的起减弱外场的作用。根据自选偶合的组合不同,核磁共振谱图中出现多重峰的数目也有不同,满足“n+1”规律 4.什么是化学位移,在哪些分析手段中利用了化学位移? 同种原子处于不同化学环境而引起的电子结合能的变化,在谱线上造成的位移称为化学位移。在XPS、俄歇电子能谱、核磁共振等分析手段中均利用化学位移。 5。拉曼光谱的峰位是由什么因素决定的, 试述拉曼散射的过程。 拉曼光谱的峰位是由分子基态和激发态的能级差决定的。在拉曼散射中,若光子把一部分能量给样品分子,使一部分处于基态的分子跃迁到激发态,则散射光能量减少,在垂直方向测量到的散射光中,可以检测到频率为(ν0 - Δν)的谱线,称为斯托克斯线。相反,若光子从样品激发态分子中获得能量,样品分子从激发态回到基态,则在大于入射光频率处可测得频率为(ν0 + Δν)的散射光线,称为反斯托克斯线 四、问答题(10 分) 说明阿贝成像原理及其在透射电镜中的具体应用方式。 答:阿贝成像原理(5 分):平行入射波受到有周期性特征物体的散射作用在物镜的后焦面上形成衍射谱,各级衍射波通过干涉重新在像平面上形成反映物的特征的像。在透射电镜中的具体应用方式(5 分)。利用阿贝成像原理,样品对电子束起散射作用,在物镜的后焦面上可以获得晶体的衍射谱,在物镜的像面上形成反映样品特征的形貌像。当中间镜的物面取在物镜后焦面时, 则将衍射谱放大,则在荧光屏上得到一幅电子衍射花样;当中间镜物面取在物镜的像面上时,则将图像进一步放大,这就是电子显微镜中的成像操作。 五、计算题(10 分) 用Cu KαX 射线(λ=0.15405nm)的作为入射光时,某种氧化铝的样品的XRD 图谱如下,谱线上标注的是2θ的角度值,根据谱图和PDF 卡片判断该氧化铝的类型,并写出XRD 物相分析的一般步骤。 答:确定氧化铝的类型(5 分) 根据布拉格方程2dsinθ=nλ,d=λ/(2sinθ) 对三强峰进行计算:0.2090nm,0.1604nm,0.2588nm,与卡片10-0173 α-Al2O3 符合,进一步比对其他衍射峰的结果可以确定是α-Al2O3。 XRD 物相分析的一般步骤。(5 分) 测定衍射线的峰位及相对强度I/I1: 再根据2dsinθ=nλ求出对应的面间距 d 值。 (1) 以试样衍射谱中三强线面间距d 值为依据查Hanawalt 索引。

材料科学基础习题与答案

- 第二章 思考题与例题 1. 离子键、共价键、分子键和金属键的特点,并解释金属键结合的固体材料的密度比离子键或共价键固体高的原因 2. 从结构、性能等方面描述晶体与非晶体的区别。 3. 何谓理想晶体何谓单晶、多晶、晶粒及亚晶为什么单晶体成各向异性而多晶体一般情况下不显示各向异性何谓空间点阵、晶体结构及晶胞晶胞有哪些重要的特征参数 4. 比较三种典型晶体结构的特征。(Al 、α-Fe 、Mg 三种材料属何种晶体结构描述它们的晶体结构特征并比较它们塑性的好坏并解释。)何谓配位数何谓致密度金属中常见的三种晶体结构从原子排列紧密程度等方面比较有何异同 5. 固溶体和中间相的类型、特点和性能。何谓间隙固溶体它与间隙相、间隙化合物之间有何区别(以金属为基的)固溶体与中间相的主要差异(如结构、键性、性能)是什么 6. 已知Cu 的原子直径为A ,求Cu 的晶格常数,并计算1mm 3Cu 的原子数。 ( 7. 已知Al 相对原子质量Ar (Al )=,原子半径γ=,求Al 晶体的密度。 8 bcc 铁的单位晶胞体积,在912℃时是;fcc 铁在相同温度时其单位晶胞体积是。当铁由 bcc 转变为fcc 时,其密度改变的百分比为多少 9. 何谓金属化合物常见金属化合物有几类影响它们形成和结构的主要因素是什么其性能如何 10. 在面心立方晶胞中画出[012]和[123]晶向。在面心立方晶胞中画出(012)和(123)晶面。 11. 设晶面(152)和(034)属六方晶系的正交坐标表述,试给出其四轴坐标的表示。反之,求(3121)及(2112)的正交坐标的表示。(练习),上题中均改为相应晶向指数,求相互转换后结果。 12.在一个立方晶胞中确定6个表面面心位置的坐标,6个面心构成一个正八面体,指出这个八面体各个表面的晶面指数,各个棱边和对角线的晶向指数。 13. 写出立方晶系的{110}、{100}、{111}、{112}晶面族包括的等价晶面,请分别画出。

材料现代分析方法练习题及答案

8. 什么是弱束暗场像?与中心暗场像有何不同?试用Ewald图解说明。 答:弱束暗场像是通过入射束倾斜,使偏离布拉格条件较远的一个衍射束通过物镜光阑,透射束和其他衍射束都被挡掉,利用透过物镜光阑的强度较弱的衍射束成像。 与中心暗场像不同的是,中心暗场像是在双光束的条件下用的成像条件成像,即除直射束外只有一个强的衍射束,而弱束暗场像是在双光阑条件下的g/3g的成像条件成像,采用很大的偏离参量s。中心暗场像的成像衍射束严格满足布拉格条件,衍射强度较强,而弱束暗场像利用偏离布拉格条件较远的衍射束成像,衍射束强度很弱。采用弱束暗场像,完整区域的衍射束强度极弱,而在缺陷附近的极小区域内发生较强的反射,形成高分辨率的缺陷图像。图:PPT透射电子显微技术1页 10. 透射电子显微成像中,层错、反相畴界、畴界、孪晶界、晶界等衍衬像有何异同?用什么办法及根据什么特征才能将它们区分开来? 答:由于层错区域衍射波振幅一般与无层错区域衍射波振幅不同,则层错区和与相邻区域形成了不同的衬度,相应地出现均匀的亮线和暗线,由于层错两侧的区域晶体结构和位相相同,故所有亮线和暗线的衬度分别相同。层错衍衬像表现为平行于层错面迹线的明暗相间的等间距条纹。 孪晶界和晶界两侧的晶体由于位向不同,或者还由于点阵类型不同,一边的晶体处于双光束条件时,另一边的衍射条件不可能是完全相同的,也可能是处于无强衍射的情况,就相当于出现等厚条纹,所以他们的衍衬像都是间距不等的明暗相间的条纹,不同的是孪晶界是一条直线,而晶界不是直线。 反相畴界的衍衬像是曲折的带状条纹将晶粒分隔成许多形状不规则的小区域。 层错条纹平行线直线间距相等 反相畴界非平行线非直线间距不等 孪晶界条纹平行线直线间距不等 晶界条纹平行线非直线间距不等 11.什么是透射电子显微像中的质厚衬度、衍射衬度和相位衬度。形成衍射衬度像和相位衬度像时,物镜在聚焦方面有何不同?为什么? 答:质厚衬度:入射电子透过非晶样品时,由于样品不同微区间存在原子序数或厚度的差异,导致透过不同区域落在像平面上的电子数不同,对应各个区域的图像的明暗不同,形成的衬度。 衍射衬度:由于样品中的不同晶体或同一晶体中不同部位的位向差异导致产生衍射程度不同而形成各区域图像亮度的差异,形成的衬度。 相位衬度:电子束透过样品,试样中原子核和核外电子产生的库伦场导致电子波的相位发生变化,样品中不同微区对相位变化作用不同,把相应的相位的变化情况转变为相衬度,称为相位衬度。 物镜聚焦方面的不同:透射电子束和至少一个衍射束同时通过物镜光阑成像时,透射束和衍射束相互干涉形成反应晶体点阵周期的条纹成像或点阵像或结构物象,这种相位衬度图像的形成是透射束和衍射束相干的结果,而衍射衬度成像只用透射束或者衍射束成像。

材料分析方法考试复习题

1)短波限: 连续X 射线谱的X 射线波长从一最小值向长波方向伸展,该波长最小值称为短波限。P7。 2)质量吸收系数 指X 射线通过单位面积上单位质量物质后强度的相对衰减量,这样就摆脱了密度的影响,成为反映物质本身对X 射线吸收性质的物质量。P12。 3)吸收限 吸收限是指对一定的吸收体,X 射线的波长越短,穿透能力越强,表现为质量吸收系数的下降,但随着波长的降低,质量吸收系数并非呈连续的变化,而是在某些波长位置上突然升高,出现了吸收限。每种物质都有它本身确定的一系列吸收限。P12。 4)X 射线标识谱 当加于X 射线管两端的电压增高到与阳极靶材相应的某一特定值k U 时,在连续谱的某些特定的波长位置上,会出现一系列强度很高、波长范围很窄的线状光谱,它们的波长对一定材料的阳极靶有严格恒定的数值,此波长可作为阳极靶材的标志或特征,故称为X 射线标识谱。P9。 5)连续X 射线谱线 强度随波长连续变化的X 射线谱线称连续X 射线谱线。P7。 6)相干散射 当入射线与原子内受核束缚较紧的电子相遇,光量子不足以使原子电离,但电子可在X 射线交变电场作用下发生受迫振动,这样的电子就成为一个电磁波的发射源,向周围辐射与入射X 射线波长相同的辐射,因为各电子所散射的射线波长相同,有可能相互干涉,故称相干散射。P14。 7)闪烁计数器 闪烁计数器利用X 射线激发磷光体发射可见荧光,并通过光电管进行测量。P54。 8)标准投影图 对具有一定点阵结构的单晶体,选择某一个低指数的重要晶面作为投影面,将各晶面向此面所做的极射赤面投影图称为标准投影图。P99。 9)结构因数 在X 射线衍射工作中可测量到的衍射强度HKL I 与结构振幅2 HKL F 的平方成正比,结构振幅的平方2HKL F 称为结构因数。P34。

现代材料分析方法试题及答案

1《现代材料分析方法》期末试卷 一、单项选择题(每题 2 分,共 10 分) 1.成分和价键分析手段包括【 b 】 (a)WDS、能谱仪(EDS)和 XRD (b)WDS、EDS 和 XPS (c)TEM、WDS 和 XPS (d)XRD、FTIR 和 Raman 2.分子结构分析手段包括【 a 】 (a)拉曼光谱(Raman)、核磁共振(NMR)和傅立叶变换红外光谱(FTIR)(b) NMR、FTIR 和 WDS (c)SEM、TEM 和 STEM(扫描透射电镜)(d) XRD、FTIR 和 Raman 3.表面形貌分析的手段包括【 d 】 (a)X 射线衍射(XRD)和扫描电镜(SEM) (b) SEM 和透射电镜(TEM) (c) 波谱仪(WDS)和 X 射线光电子谱仪(XPS) (d) 扫描隧道显微镜(STM)和 SEM 4.透射电镜的两种主要功能:【 b 】 (a)表面形貌和晶体结构(b)内部组织和晶体结构 (c)表面形貌和成分价键(d)内部组织和成分价键 5.下列谱图所代表的化合物中含有的基团包括:【 c 】 (a)–C-H、–OH 和–NH2 (b) –C-H、和–NH2, (c) –C-H、和-C=C- (d) –C-H、和 CO 二、判断题(正确的打√,错误的打×,每题 2 分,共 10 分) 1.透射电镜图像的衬度与样品成分无关。(×)2.扫描电镜的二次电子像的分辨率比背散射电子像更高。(√)3.透镜的数值孔径与折射率有关。(√)4.放大倍数是判断显微镜性能的根本指标。(×)5.在样品台转动的工作模式下,X射线衍射仪探头转动的角速度是样品转动角 速度的二倍。(√) 三、简答题(每题 5 分,共 25 分) 1. 扫描电镜的分辨率和哪些因素有关?为什么? 和所用的信号种类和束斑尺寸有关,因为不同信号的扩展效应不同,例如二次电子产生的区域比背散射电子小。束斑尺寸越小,产生信号的区域也小,分辨率就高。 2.原子力显微镜的利用的是哪两种力,又是如何探测形貌的? 范德华力和毛细力。

材料科学基础课后习题答案第二章

第2章习题 2-1 a )试证明均匀形核时,形成临界晶粒的△ G K 与其临界晶核体积 V K 之间的关系式为 2 G V ; b )当非均匀形核形成球冠形晶核时,其△ 所以 所以 2-2如果临界晶核是边长为 a 的正方体,试求出其厶G K 与a 的关系。为什么形成立方体晶核 的厶G K 比球形晶核要大? 解:形核时的吉布斯自由能变化为 a )证明因为临界晶核半径 r K 临界晶核形成功 G K 16 故临界晶核的体积 V K 4 r ; G V )2 2 G K G V b )当非均匀形核形成球冠形晶核时, 非 r K 2 SL G V 临界晶核形成功 3 3( G ;7(2 3cos 3 cos 故临界晶核的体积 V K 3(r 非)3(2 3 3cos 3 cos V K G V 1 ( 3 卸2 3 3cos cos )G V 3 3(書 (2 3cos cos 3 ) G K % G K 与V K 之间的关系如何? G K

G V G v A a3G v 6a2 3 得临界晶核边长a K G V

临界形核功 将两式相比较 可见形成球形晶核得临界形核功仅为形成立方形晶核的 1/2。 2-3为什么金属结晶时一定要有过冷度?影响过冷度的因素是什么?固态金属熔化时是否 会出现过热?为什么? 答:金属结晶时要有过冷度是相变热力学条件所需求的, 只有△ T>0时,才能造成固相的自 由能低于液相的自由能的条件,液固相间的自由能差便是结晶的驱动力。 金属结晶需在一定的过冷度下进行,是因为结晶时表面能增加造成阻力。固态金属熔 化时是否会出现过热现象,需要看熔化时表面能的变化。如果熔化前后表面能是降低的, 则 不需要过热;反之,则可能出现过热。 如果熔化时,液相与气相接触,当有少量液体金属在固体表面形成时,就会很快覆盖 在整个固体表面(因为液态金属总是润湿其同种固体金属 )。熔化时表面自由能的变化为: G 表面 G 终态 G 始态 A( GL SL SG ) 式中G 始态表示金属熔化前的表面自由能; G 终态表示当在少量液体金属在固体金属表面形成 时的表面自由能;A 表示液态金属润湿固态金属表面的面积;b GL 、CSL 、CSG 分别表示气液相 比表面能、固液相比表面能、固气相比表面能。因为液态金属总是润湿其同种固体金属,根 据润湿时表面张力之间的关系式可写出:b SG 》6GL + (SL 。这说明在熔化时,表面自由能的变 化厶G 表w o ,即不存在表面能障碍,也就不必过热。实际金属多属于这种情况。如果固体 16 3 3( G v )2 1 32 3 6 2 (G v )2 b K t K 4 G V )3 G V 6( 4 G v )2 64 3 96 3 32 r K 2 ~G ?, 球形核胚的临界形核功 (G v )2 (G v )2 (G v )2 G b K 2 G v )3 16 3( G v )2

(完整版)材料现代分析方法第一章习题答案解析

第一章 1.X射线学有几个分支?每个分支的研究对象是什么? 答:X射线学分为三大分支:X射线透射学、X射线衍射学、X射线光谱学。 X射线透射学的研究对象有人体,工件等,用它的强透射性为人体诊断伤病、用于探测工件内部的缺陷等。 X射线衍射学是根据衍射花样,在波长已知的情况下测定晶体结构,研究与结构和结构变化的相关的各种问题。 X射线光谱学是根据衍射花样,在分光晶体结构已知的情况下,测定各种物质发出的X射线的波长和强度,从而研究物质的原子结构和成分。 2. 试计算当管电压为50 kV时,X射线管中电子击靶时的速度与动能,以及所发射的连续谱的短波限和光子的最大能量是多少? 解:已知条件:U=50kV 电子静止质量:m0=9.1×10-31kg 光速:c=2.998×108m/s 电子电量:e=1.602×10-19C 普朗克常数:h=6.626×10-34J.s 电子从阴极飞出到达靶的过程中所获得的总动能为: E=eU=1.602×10-19C×50kV=8.01×10-18kJ 由于E=1/2m0v02 所以电子击靶时的速度为: v0=(2E/m0)1/2=4.2×106m/s 所发射连续谱的短波限λ0的大小仅取决于加速电压: λ0(?)=12400/U(伏) =0.248? 辐射出来的光子的最大动能为: E0=hv=h c/λ0=1.99×10-15J 3. 说明为什么对于同一材料其λK<λKβ<λKα? 答:导致光电效应的X光子能量=将物质K电子移到原子引力范围以外所需作的功hV k = W k 以kα为例: hV kα = E L– E k

h e = W k – W L = hV k – hV L ∴h V k > h V k α∴λk<λk α以k β 为例:h V k β = E M – E k = W k – W M =h V k – h V M ∴ h V k > h V k β∴ λk<λk βE L – E k < E M – E k ∴hV k α < h V k β∴λk β < λk α 4. 如果用Cu 靶X 光管照相,错用了Fe 滤片,会产生什么现象? 答:Cu 的K α1,K α2, K β线都穿过来了,没有起到过滤的作用。 5. 特征X 射线与荧光X 射线的产生机理有何不同?某物质的K 系荧光X 射线波长是否等于它的K 系特征X 射线波长? 答:特征X 射线与荧光X 射线都是由激发态原子中的高能级电子向低能级跃迁时,多余能 量以X 射线的形式放出而形成的。不同的是:高能电子轰击使原子处于激发态,高能级电子回迁释放的是特征X 射线;以 X 射线轰击,使原子处于激发态,高能级电子回迁释放 的是荧光X 射线。某物质的K 系特征X 射线与其K 系荧光X 射线具有相同波长。6. 连续谱是怎样产生的?其短波限 与某物质的吸收限 有何不同(V 和 V K 以kv 为单位)? 答:当X 射线管两极间加高压时,大量电子在高压电场的作用下,以极高的速度向阳极轰 击,由于阳极的阻碍作用,电子将产生极大的负加速度。根据经典物理学的理论,一个带 负电荷的电子作加速运动时,电子周围的电磁场将发生急剧变化,此时必然要产生一个电 磁波,或至少一个电磁脉冲。由于极大数量的电子射到阳极上的时间和条件不可能相同,因而得到的电磁波将具有连续的各种波长,形成连续X 射线谱。 在极限情况下,极少数的电子在一次碰撞中将全部能量一次性转化为一个光量子,这 个光量子便具有最高能量和最短的波长,即短波限。连续谱短波限只与管压有关,当固定

(完整版)材料分析方法期末考试总结

材料分析方法 1.x射线是一种波长很短的电磁波,具有波粒二相性,粒子性往往表现突出,故x射线也可视为一束具有一定能量的光量子流。X射线有可见光无可比拟的穿透能力,可使荧光物质发光,可使气体或其它物质电离等。 2.相干散射:亦称经典散射,物质中的电子在X射线电场的作用下,产生强迫振动。这样每个电子在各方向产生与入射X射线同频率的电磁波。新的散射波之间发生的干涉现象称为相干散射。 3.不相干散射:亦称量子散射,X射线光子与束缚力不大的外层电子,或自由电子碰撞时电子获得一部分动能成为反冲电子,X射线光子离开原来方向,能量减小,波长增加。 4.吸收限:物质原子序数越大,对X射线的吸收能力越强;对一定的吸收体,X射线的波长越短,穿透能力越强,表现为吸收系数的下降,但随着波长的的降低,质量吸收系数并非呈连续的变化,而是在某些波长位置上突然升高,出现了吸收限。 5.荧光辐射:由入射X射线所激发出来的特征X射线称为荧光辐射(荧光X 射线,二次X射线)。 6.俄歇效应:由于光电效应而处于激发态的原子还有一种释放能量的方式,及俄歇效应。原子中一个K层电子被入射光量子击出后,L层一个电子跃入K层填补空位,此时多余的能量不以辐射X光量子放出,而是以另一个L层电子活的能量跃出吸收体,这样的一个K层空位被两个L层空位代替的过程称为俄歇效应,跃出的L层电子称为俄歇电子。 7.光电子:当入射光量子的能量等于或大于吸收体原子某壳体层电子的结合能时,此光量子就很容易被电子吸收,获得能量的电子从内层溢出,成为自由电子,称为光电子。原子则处于激发态,这种原子被入射辐射电离的现象即光电效应。8.滤波片的作用:滤波片是利用吸收限两侧吸收系数差很大的现象制成的,用以吸收不需要的辐射而得到基本单色的光源。 9.布拉格方程只是获得衍射的必要条件而非充分条件。 10.晶面(hkl)的n级反射面(nh nk nl),用符号(HKL)表示,称为反射面或干涉面。 11.掠射角是入射角(或反射角)与晶面的夹角,可表征衍射的方向。 12.衍射极限条件:在晶体中,干涉面的划取是无极限的,但并非所有的干涉面均能参与衍射,因存在关系dsinθ=λ/2,或d>=λ/2,说明只有间距大于或等于X 射线半波长的那些干涉面才能参与反射。 13.劳埃法:采用连续X射线照射不动的单晶体,因为X射线的波长连续可变,故可从中挑选出其波长满足布拉格关系的X射线使产生衍射。 14.周转晶体法:采用单色X射线照射转动的单晶体,并用一张以旋转轴为轴的圆筒形底片来记录。 15.粉末法:采用单色X射线照射多晶体,试样是由数量众多、取向混乱的微晶体组成。 16.吸收因数:由于试样本身对X射线的吸收,使衍射强度的实测值与计算值不符,为了修正这一影响,则在强度公式中乘以吸收因数。 17.温度因数:原子热振动使晶体点阵原子排列的周期性受到破坏,使得原来严格满足布拉格条件的相干散射产生附加的相差,从而使衍射强度减弱。为修正实验温度给衍射强度带来的影响,需要在积分强度公式中乘以温度因数。

材料科学基础课后习题答案

《材料科学基础》课后习题答案 第一章材料结构的基本知识 4. 简述一次键和二次键区别 答:根据结合力的强弱可把结合键分成一次键和二次键两大类。其中一次键的结合力较强,包括离子键、共价键和金属键。一次键的三种结合方式都是依靠外壳层电子转移或共享以形成稳定的电子壳层,从而使原子间相互结合起来。二次键的结合力较弱,包括范德瓦耳斯键和氢键。二次键是一种在原子和分子之间,由诱导或永久电偶相互作用而产生的一种副键。 6. 为什么金属键结合的固体材料的密度比离子键或共价键固体为高? 答:材料的密度与结合键类型有关。一般金属键结合的固体材料的高密度有两个原因:(1)金属元素有较高的相对原子质量;(2)金属键的结合方式没有方向性,因此金属原子总是趋于密集排列。相反,对于离子键或共价键结合的材料,原子排列不可能很致密。共价键结合时,相邻原子的个数要受到共价键数目的限制;离子键结合时,则要满足正、负离子间电荷平衡的要求,它们的相邻原子数都不如金属多,因此离子键或共价键结合的材料密度较低。 9. 什么是单相组织?什么是两相组织?以它们为例说明显微组织的含义以及显微组织对性能的影响。 答:单相组织,顾名思义是具有单一相的组织。即所有晶粒的化学组成相同,晶体结构也相同。两相组织是指具有两相的组织。单相组织特征的主要有晶粒尺寸及形状。晶粒尺寸对材料性能有重要的影响,细化晶粒可以明显地提高材料的强度,改善材料的塑性和韧性。单相组织中,根据各方向生长条件的不同,会生成等轴晶和柱状晶。等轴晶的材料各方向上性能接近,而柱状晶则在各个方向上表现出性能的差异。对于两相组织,如果两个相的晶粒尺度相当,两者均匀地交替分布,此时合金的力学性能取决于两个相或者两种相或两种组织组成物的相对量及各自的性能。如果两个相的晶粒尺度相差甚远,其中尺寸较细的相以球状、点状、片状或针状等形态弥散地分布于另一相晶粒的基体内。如果弥散相的硬度明显高于基体相,则将显著提高材料的强度,同时降低材料的塑韧性。 10. 说明结构转变的热力学条件与动力学条件的意义,说明稳态结构和亚稳态结构之间的关系。 答:同一种材料在不同条件下可以得到不同的结构,其中能量最低的结构称为稳态结构或平衡太结构,而能量相对较高的结构则称为亚稳态结构。所谓的热力学条件是指结构形成时必须沿着能量降低的方向进行,或者说结构转变必须存在一个推动力,过程才能自发进行。热力学条件只预言了过程的可能性,至于过程是否真正实现,还需要考虑动力学条件,即反应速度。动力学条件的实质是考虑阻力。材料最终得到什么结构取决于何者起支配作用。如果热力学推动力起支配作用,则阻力并不大,材料最终得到稳态结构。从原则上讲,亚稳态结构有可能向稳态结构转变,以达到能量的最低状态,但这一转变必须在原子有足够活动能力的前提下才能够实现,而常温下的这种转变很难进行,因此亚稳态结构仍可以保持相对稳定。 第二章材料中的晶体结构 1. 回答下列问题: (1)在立方晶系的晶胞内画出具有下列密勒指数的晶面和晶向: 32)与[236] (001)与[210],(111)与[112],(110)与[111],(132)与[123],(2 (2)在立方晶系的一个晶胞中画出(111)和(112)晶面,并写出两晶面交线的晶向指数。 解:(1)

材料分析方法__试卷2

材料现代分析方法试题2 材料学院材料科学与工程专业年级班级材料现代分析方法课程200—200学年第学期()卷期末考试题( 120 分钟) 考生姓名学号考试时间 主考教师:阅卷教师: 一、基本概念题(共10题,每题5分) 1.实验中选择X射线管以及滤波片的原则是什么?已知一个以Fe为主要成分的样品,试选择合适的X射线管和合适的滤波片? 2.下面是某立方晶系物质的几个晶面,试将它们的面间距从大到小按次序重 新排列:(12),(100),(200),(11),(121),(111),(10),(220),(130),(030),(21),(110)。 3.衍射线在空间的方位取决于什么?而衍射线的强度又取决于什么? 4.罗伦兹因子是表示什么对衍射强度的影响?其表达式是综合了哪几方面考虑而得出的? 5.磁透镜的像差是怎样产生的? 如何来消除和减少像差? 6.别从原理、衍射特点及应用方面比较X射线衍射和透射电镜中的电子衍 射在材料结构分析中的异同点。 7.子束入射固体样品表面会激发哪些信号? 它们有哪些特点和用途? 8.为波谱仪和能谱仪?说明其工作的三种基本方式,并比较波谱仪和能谱 仪的优缺点。 9.如何区分红外谱图中的醇与酚羟基的吸收峰? 10.紫外光谱常用来鉴别哪几类有机物? 二、综合分析题(共5题,每题10分) 1.试比较衍射仪法与德拜法的优缺点? 2.试述X射线衍射单物相定性基本原理及其分析步骤?

3.扫描电镜的分辨率受哪些因素影响? 用不同的信号成像时,其分辨率有何不同? 所谓扫描电镜的分辨率是指用何种信号成像时的分辨率? 4.举例说明电子探针的三种工作方式(点、线、面)在显微成分分析中的应用。5.分别指出谱图中标记的各吸收峰所对应的基团? 材料现代分析方法试题2(参考答案) 一、基本概念题(共10题,每题5分) 1.实验中选择X射线管以及滤波片的原则是什么?已知一个以Fe为主要成分的样品,试选择合适的X射线管和合适的滤波片? 答:实验中选择X射线管的原则是为避免或减少产生荧光辐射,应当避免使用比样品中主元素的原子序数大2~6(尤其是2)的材料作靶材的X射线管。 选择滤波片的原则是X射线分析中,在X射线管与样品之间一个滤波片,以滤掉Kβ线。滤波片的材料依靶的材料而定,一般采用比靶材的原子序数小1或2的材料。 分析以铁为主的样品,应该选用Co或Fe靶的X射线管,它们的分别相应选择Fe和Mn为滤波片。 2.下面是某立方晶系物质的几个晶面,试将它们的面间距从大到小按次序重 新排列:(12),(100),(200),(11),(121),(111),(10),(220),(130),(030),(21),(110)。 答:它们的面间距从大到小按次序是:(100)、(110)、(111)、(200)、(10)、(121)、(220)、(21)、(030)、(130)、(11)、(12)。3.衍射线在空间的方位取决于什么?而衍射线的强度又取决于什么? 答:衍射线在空间的方位主要取决于晶体的面网间距,或者晶胞的大小。

材料科学基础(武汉理工大学,张联盟版)课后习题及答案 第二章

第二章答案 2-1略。 2-2(1)一晶面在x、y、z轴上的截距分别为2a、3b、6c,求该晶面的晶面指数;(2)一晶面在x、y、z轴上的截距分别为a/3、b/2、c,求出该晶面的晶面指数。 答:(1)h:k:l==3:2:1,∴该晶面的晶面指数为(321); (2)h:k:l=3:2:1,∴该晶面的晶面指数为(321)。 2-3在立方晶系晶胞中画出下列晶面指数和晶向指数:(001)与[],(111)与[],()与[111],()与[236],(257)与[],(123)与[],(102),(),(),[110],[],[] 答:

2-4定性描述晶体结构的参量有哪些?定量描述晶体结构的参量又有哪些? 答:定性:对称轴、对称中心、晶系、点阵。定量:晶胞参数。 2-5依据结合力的本质不同,晶体中的键合作用分为哪几类?其特点是什么? 答:晶体中的键合作用可分为离子键、共价键、金属键、范德华键和氢键。 离子键的特点是没有方向性和饱和性,结合力很大。共价键的特点是具有方向性和饱和性,结合力也很大。金属键是没有方向性和饱和性的的共价键,结合力是离子间的静电库仑力。范德华键是通过分子力而产生的键合,分子力很弱。氢键是两个电负性较大的原子相结合形成的键,具有饱和性。 2-6等径球最紧密堆积的空隙有哪两种?一个球的周围有多少个四面体空隙、多少个八面体空隙? 答:等径球最紧密堆积有六方和面心立方紧密堆积两种,一个球的周围有8个四面体空隙、6个八面体空隙。 2-7n个等径球作最紧密堆积时可形成多少个四面体空隙、多少个八面体空隙?不等径球是如何进行堆积的? 答:n个等径球作最紧密堆积时可形成n个八面体空隙、2n个四面体空隙。 不等径球体进行紧密堆积时,可以看成由大球按等径球体紧密堆积后,小球按其大小分别填充到其空隙中,稍大的小球填充八面体空隙,稍小的小球填充四面体空隙,形成不等径球体紧密堆积。 2-8写出面心立方格子的单位平行六面体上所有结点的坐标。 答:面心立方格子的单位平行六面体上所有结点为:(000)、(001)(100)(101)(110)(010)(011)(111)(0)(0)(0)(1)(1)(1)。

相关文档
相关文档 最新文档