文档库 最新最全的文档下载
当前位置:文档库 › 高中物理-机械振动-简谐振动-弹簧振子

高中物理-机械振动-简谐振动-弹簧振子

高中物理-机械振动-简谐振动-弹簧振子
高中物理-机械振动-简谐振动-弹簧振子

机械振动-简谐振动-弹簧振子

机械振动的定义

机械振动是指物体或质点在其平衡位置附近所作有规律的往复性运动。

老式的钟表,下面都有一个钟摆,钟摆的左右摆动,就是一种机械振动。另外,单摆也是一种典型的机械振动。

常用来描述机械振动的物理量是位移、速度、加速度、力、周期、频率。

机械振动典型案例

高中物理选修3-4教材中主要讨论了两个机械振动的模型,其一是弹簧振子,其二是单摆。这两种振动模式都属于简谐振动(简谐振动定义在文章下方)。

下面分别对这两种机械振动模式进行简要介绍。

1.弹簧振子

弹簧振子是一个不考虑摩擦阻力,不考虑弹簧的质量,不考虑振子的大小和形状的理想化的物理模型。

如下图所示,不考虑小球与桌面的摩擦以及弹簧的质量,初始时刻小球在弹簧原长位置获得一定速度,则小球会在弹簧弹力的作用下,以O点为中心往复运动。这就是弹簧振子模型。

2.单摆

单摆是一种理想的物理模型,它由理想化的摆球和摆线组成。

如下图所示,不计摆线的伸缩和空气摩擦,当把小球拉离到某一位置(摆线与竖直方向夹角为θ,要求θ小于5°),则小球会周而复始的做往复运动。这就是单摆模型。

单摆的周期与摆线长度和当地重力加速度有关,我们可以利用单摆来测定当地重力加速度。

机械振动分类

从高中物理考题来看,机械振动分类可分为:简谐振动与非简谐振动。

简谐振动指的是满足,物体所受的力跟位移成正比,并且力总是指向平衡位置。我们把物体所受到的力称之为回复力。

如果用F表示物体受到的回复力,用x表示小球对于平衡位置的位移,根据胡克定律,F和x成正比,它们之间的关系可用下式来表示:

F=-kx;

请注意,这里的负号指的是方向,因为回复力的方向,总是与物体运动的位移方向相反。

简谐振动是一种没有能量损失的振动模式,在没有外界干扰下,将永远运动下去。

非简谐振动也可称之为阻尼振动,指的是由外在阻力作用,这种机械振动模式早晚会停下来。

简谐振动

简谐振动指的是满足,物体所受的力跟位移成正比(F=-kx),并且力总是指向平衡位置。

我们把物体所受到的力称之为回复力,回复力的方向与位移总是相反的;回复力的效果,是让物体回到平衡位置去。

机械振动的能量

机械振动的能量与振幅相关,振幅越大,机械振动的能量就越大。

机械波的由来

机械振动在介质中的传播,叫做机械波。

弹簧振子的简谐振动

弹簧振子的简谐振动 弘毅学堂汪洲 26 实验目的: (1)测量弹簧振子的振动周期T。 (2)求弹簧的倔强系数k和有效质量0m 实验器材 气垫导轨、滑块、附加砝码、弹簧、光电门、数字毫秒计。 实验原理: 在水平的气垫导轨上,两个相同的弹簧中间系一滑块,滑块做往返振动,如图2.2.4所示。如果不考虑滑块运动的阻力,那么,滑块的振动可以看成是简谐运动。

设质量为1m 的滑块处于平衡位置,每个弹簧的伸长量为0x ,当1m 距平衡点x 时,1m 只受弹性力10()k x x -+与10()k x x --的作用,其中1k 是弹簧的倔强系数。根据牛顿第二定律,其运动方程为 1010()()k x x k x x mx -+--=&& 令 12k k = 则有 kx mx -=&& ① 方程①的解为 00sin()x A t ω?=+ 说明滑块做简谐振动。式中,A 为振幅,0?为初相位,0ω叫做振动系统的固有圆频率。有 0k m ω=

且 10m m m =+ 式中,m 为振动系统的有效质量,0m 为弹簧的有效质量,1m 为滑块和砝码的质量。 0ω由振动系统本身的性质所决定。振动周期T 与0ω有下列关系 222T πω= == ② 在实验中,我们改变1m ,测出相应的T ,考虑T 与m 的关系,从而求出k 和0m 。 实验内容: (1)按气垫导轨和计时器的使用方法和要求,将仪器调整到正常工作状态。 (2)将滑块从平衡位置拉至光电门左边某一位置,然后放手让滑块振动,记录A T 的值。要求记录5位有效数字,共测量10次。 (3)再按步骤(2)将滑块从平衡位置拉至光电门右边某一位置测量B T ,重复步骤(2)共测量10次。 取A T 和B T 的平均值作为振动周期T ,与T 相应的振动系统有效质量是 10m m m =+,其中1m 就是滑块本身(未加砝码块)的质量,0m 为弹簧的有效质量。 (4)在滑块上对称地加两块砝码,再按步骤(2)和步骤(3)测量相应的周期。有效质量20m m m =+,其中2m 为滑块本身质量加上两块砝码的质量和。 (5)再用30m m m =+和40m m m =+测量相应的周期T 。式中, 3m =1m +“4块砝码的质量” 4m =1m +“6块砝码的质量” 注意记录每次所加砝码的号码,以便称出各自的质量。

气垫导轨上弹簧振子振动的研究

气垫导轨上弹簧振子振动的研究 力学实验最困难的问题就是摩擦力对测量的影响。气垫导轨就是为消除摩擦而设计的力学实验的装置,它使物体在气垫上运动,避免物体与导轨表面的直接接触,从而消除运动物体与导轨表的摩擦,也就是说,物体受到的摩擦阻力几乎可以忽略。利用气垫导轨可以进行许多力学实验,如测速度、加速度,验证牛顿第二定律、动量守恒定律,研究简谐振动、阻尼振动等,本实验采用气垫导轨研究弹簧振子的振动。 一、必做部分:简谐振动 [实验目的] 1.测量弹簧振子的振动周期T 。 2.求弹簧的倔强系数k 和有效质量 0m 。 [仪器仪器] 气垫导轨、滑块、附加砝码、弹簧、光电门、数字毫秒计。 [实验原理] 在水平的气垫导轨上,两个相同的弹簧中间系一滑块,滑块做往返振动,如图13-1所示。如果不考虑滑块运动的阻力,那么,滑块的振动可以看成是简谐振动。 设质量为m 1的滑块处于平衡位置,每个弹簧的伸长量为x 0,当m 1距平衡点x 时,m 1只受 弹性力)(01x x k +-与)(01x x k --的作用,其中k 1是弹簧的倔强系数。根据牛顿第二定律,其运动方程为 x m x x k x x k =--+-)()(0101(1) 令 12k k = 方程(1)的解为 )s i n (00?ω+=t A x (2) 说明滑块是做简谐振动。式中:A —振幅;0?—初相位。 m k = 0ω (3) 0ω叫做振动系统的固有频率。而 01m m m += (4) 式中:m —振动系统的有效质量;m 0—弹簧的有效质量;m 1—滑块和砝码的质量。 0ω由振动系统本身的性质所决定。振动周期T 与0ω有下列关系: k m m k m T 010 222+=== ππ ωπ (5) 在实验中,我们改变m 1,测出相应的T ,考虑T 与m 的关系,从而求出k 和0m 。 图13-1简谐运动原理图

高一物理 机械振动

高一物理机械振动 【教学结构】 一、机械振动 物体(质点)在某一中心位置两侧所做的往复运动就叫做机械振动,物体能够围绕着平衡位置做往复运动,必然受到使它能够回到平衡位置的力即回复力。回复力是以效果命名的力,它可以是一个力或一个力的分力,也可以是几个力的合力。 产生振动的必要条件是:a、物体离开平衡位置后要受到回复力作用。b、阻力足够小。 二、简谐振动 1.定义:物体在跟位移成正比,并且总是指向平衡位置的回复力作用下的振动叫简谐振动。简谐振动是最简单,最基本的振动。研究简谐振动物体的位置,常常建立以中心位置(平衡位置)为原点的坐标系,把物体的位移定义为物体偏离开坐标原点的位移。因此简谐振动也可说是物体在跟位移大小成正比,方向跟位移相反的回复力作用下的振动,即F=-k x,其中“-”号表示力方向跟位移方向相反。 2.简谐振动的条件:物体必须受到大小跟离开平衡位置的位移成正比,方向跟位移方向相反的回复力作用。 3.简谐振动是一种机械运动,有关机械运动的概念和规律都适用,简谐振动的特点在于它是一种周期性运动,它的位移、回复力、速度、加速度以及动能和势能(重力势能和弹性势能)都随时间做周期性变化。 三、描述振动的物理量,简谐振动是一种周期性运动,描述系统的整体的振动情况常引入下面几个物理量。 1.振幅:振幅是振动物体离开平衡位置的最大距离,常用字母“A”表示,它是标量,为正值,振幅是表示振动强弱的物理量,振幅的大小表示了振动系统总机械能的大小,简谐振动在振动过程中,动能和势能相互转化而总机械能守恒。 2.周期和频率,周期是振子完成一次全振动的时间,频率是一秒钟内振子完成全振动的次数。振动的周期T跟频率f之间是倒数关系,即T=1/f。 振动的周期和频率都是描述振动快慢的物理量,简谐振动的周期 和频率是由振动物体本身性质决定的,与振幅无关,所以又叫固 有周期和固有频率。 四、单摆:摆角小于5°的单摆是典型的简谐振动。 细线的一端固定在悬点,另一端拴一个小球,忽略线 的伸缩和质量,球的直径远小于悬线长度的装置叫单摆。单摆 做简谐振动的条件是:最大摆角小于5°,单摆的回复力F 是重力在圆弧切线方向的分力。如图1所示,单摆的周期公图1

《弹簧振子》模型

“弹簧振子”模型 太原市第十二中学 姚维明 模型建构: 【模型】常见弹簧振子及其类型问题 在简谐运动中,我们对弹簧振子(如图1,简称模型甲)比较熟悉。在学习过程中,我们经常会遇到与此相类似的一个模型(如图2,简称模型乙)。认真比较两种模型的区别和联系,对于培养我们的思维品质,提高我们的解题能力有一定的意义。 【特点】①弹簧振子做简谐运动时,回复力F=-kx ,“回复力”为振子运动方向上的合力。加速度为m kx a -= ②简谐运动具有对称性,即以平衡位置(a=0)为圆心,两侧对称点回复力、加速度、位移都是对称的。这是解题的关键。 模型典案: 【典案1】把一个小球挂在一个竖直的弹簧上,如图2。当它平衡后再用力向下拉伸一小段距离后轻轻放手,使小球上下振动。试证明小球的振动是简谐振动。 〖证明〗设弹簧劲度系数为k ,不受拉力时的长度为l 0,小球质量为m ,当挂上小球平衡时,弹簧的伸长量为x 0。由题意得mg=kx 0 容易判断,由重力和弹力的合力作为振动的回复力 假设在振动过程中的某一瞬间,小球在平衡位置下方,离开平衡位置O 的距离为x,取向下的方向为正方向 则回复力F=mg+[-k(x 0+x)]=mg-kx 0-kx= -kx 根据简谐运动定义,得证 比较: (1)两种模型中,弹簧振子都是作简谐运动。这是它们的相同之处。 (2)模型甲中,由弹簧的弹力提供回复力。因此,位移(x),回复力(F),速度(v),加速度(a),各量大小是关于平衡位置O 点对称的。 (3)模型乙中,由弹簧的弹力和重力两者的合力提供回复力。弹簧的弹力大小关于平衡位置是不对称...的,这点要特别注意。但是,回复力(加速度)大小关于平衡位置是对称..的。在解题时我们经常用到这点。 【典案2】如图3所示,质量为m 的物块放在弹簧上, 弹簧在竖直方向上做简谐运动,当振幅为A 时,物体对弹 簧的最大压力是物重的1.8倍,则物体对弹簧的最小压力是 物重的多少倍?欲使物体在弹簧振动中不离开弹簧,其振幅 最大为多少? 〖解析〗1)选物体为研究对象,画出其振动过程的几个 特殊点,如图4所示, O 为平衡位置,P 为最高点,Q 为最低点。 图2 m 图3 P 点

高中物理机械振动机械波习题含答案解析

机械振动、机械波 第一部分五年高考题荟萃 2009年高考新题 一、选择题 1.(09·全国Ⅰ·20)一列简谐横波在某一时刻的波形图如图1所示,图中P、Q两质点的横坐标分别为x=1.5m 和x=4.5m。P点的振动图像如图2所示。 在下列四幅图中,Q点的振动图像可能是(BC ) 解析:本题考查波的传播.该波的波长为4m.,PQ两点间的距离为3m..当波沿x轴正方向传播时当P在平衡位置向上振动时而Q点此时应处于波峰,B正确.当沿x轴负方向传播时,P点处于向上振动时Q点应处于波谷,C对。 2.(09·全国卷Ⅱ·14)下列关于简谐振动和简谐波的说法,正确的是(AD ) A.媒质中质点振动的周期一定和相应的波的周期相等 B.媒质中质点振动的速度一定和相应的波的波速相等 C.波的传播方向一定和媒质中质点振动的方向一致 D.横波的波峰与波谷在振动方向上的距离一定是质点振幅的两倍 解析:本题考查机械波和机械振动.介质中的质点的振动周期和相应的波传播周期一致A正确.而各质点做简谐

运动速度随时间作周期性的变化,但波在介质中是匀速向前传播的,所以不相等,B错.对于横波而言传播方向和振动方向是垂直的,C错.根据波的特点D正确。 3.(09·北京·15)类比是一种有效的学习方法,通过归类和比较,有助于掌握新知识,提高学习效率。在类比过程中,既要找出共同之处,又要抓住不同之处。某同学对机械波和电磁波进行类比,总结出下列内容,其中的是( D ) 不正确 ... A.机械波的频率、波长和波速三者满足的关系,对电磁波也适用 B.机械波和电磁波都能产生干涉和衍射现象 C.机械波的传播依赖于介质,而电磁波可以在真空中传播 D.机械波既有横波又有纵波,而电磁波只有纵波 解析:波长、波速、频率的关系对任何波都是成立的,对电磁波当然成立,故A选项正确;干涉和衍射是波的特性,机械波、电磁波都是波,这些特性都具有,故B项正确;机械波是机械振动在介质中传播形成的,所以机械波的传播需要介质而电磁波是交替变化的电场和磁场由近及远的传播形成的,所以电磁波传播不需要介质,故C项正确;机械波既有横波又有纵波,但是电磁波只能是横波,其证据就是电磁波能够发生偏振现象,而偏振现象是横波才有的,D项错误。故正确答案应为D。 4.(09·北京·17)一简谐机械波沿x轴正方向传播,周期为T,波长为 。若在x=0处质点的振动图像如右图所示,则该波在t=T/2时刻的波形曲线为( A ) 解析:从振动图上可以看出x=0处的质点在t=T/2时刻处于平衡位置,且正在向下振动,四个选项中只有A图符合要求,故A项正确。 5.(09·上海物理·4)做简谐振动的单摆摆长不变,若摆球质量增加为原来的4倍,摆球经过平衡位置时速度减小为原来的1/2,则单摆振动的( C )A.频率、振幅都不变B.频率、振幅都改变 C.频率不变、振幅改变D.频率改变、振幅不变

第九章简谐振动自测题

第九章简谐振动自测题 一、选择题 1、对于一个作简谐振动的物体,下列说法正确的是( (A)物体处在正的最大位移处时,速度和加速度都达到最大值 (B)物体处于平衡位置时,速度和加速度都为零 (C)物体处于平衡位置时,速度最大,加速度为零 (D)物体处于负的最大位移处时,速度最大,加速度为零 2、对一个作简谐振动的物体,下面哪种说法是正确的( (A)物体位于平衡位置且向负方向运动时,速度和加速度都为零 (B)物体位于平衡位置且向正方向运动时,速度最大,加速度为零 (C)物体处在负方向的端点时,速度和加速度都达到最大值 (D)物体处在正方向的端点时,速度最大,加速度为零 3、一弹簧振子作简谐振动,当运动到平衡位置时,下列说法正确的是:() (A)速度最大(B)加速度最大 (C)频率最小(D)周期最小 4、一弹簧振子作简谐振动,当运动到最大振幅处时,下列说法正确的是:() (A)速度最大(B)加速度最大 (C)频率最小(D)周期最小 5、一质点作简谐振动,振动方程为二Acos(‘t ?「),当质点处于最大位移时则 有() (A)=0 ;(B)V =0 ;(C)a =0 ;(D)- 0. 6 —质点作简谐振动,振动方程为x=Acos( 7 + ■'),当时间t=T 2( T为周期)时,质点的速度为() (A)A sin :(B)-A sin :(C)-A cos :(D A cos 7、将一个弹簧振子分别拉离平衡位置1m和2 m后,由静止释放(形变在弹性限度内),则它们作简谐振动时的() (A)周期相同(B)振幅相同(C)最大速度相同(D)最大加速度相同 8、一作简谐振动的物体在t=0时刻的位移x=0,且向x轴的负方向运动,则其初相位为()

气垫弹簧振子的简谐振动实验报告

××大学实验报告 学院:×× 系:物理系专业:×× 年级:××级 姓名:×× 学号:×× 实验时间:×× 指导教师签名:_______________ 实验四:气垫弹簧振子的简谐振动 一.实验目的与要求: 1. 考察弹簧振子的振动周期与振动系统参量的关系。 2. 学习用图解法求出等效弹簧的倔强系数和有效质量。 3. 学会气垫调整与试验方法。 二.实验原理: 1.弹簧的倔强系数 弹簧的伸长量x 与它所受的拉力成正比 F=kx k=X F 2.弹簧振子的简谐运动方程 根据牛顿第二定律,滑块m 1 的运动方程为 -k 1(x+x 01)-k 2(x-x 02)=m 2 2dt x d ,即-(k 1+k 2)x=m 2 2dt x d 式中,m=m 1+m 0(系统有效质量),m 0是弹簧有效质量,m 1是滑块质量。令 k=k 1+k 2,则 -kx= m 2 2dt x d 解为x=A sin (ω0t+ψ0 ),ω0= m k = m k k 2 1+ 而系统振动周期 T 0=0 2ωπ=2π k m

当 m 0《 m 1时,m 0=3 s m ,m s 是弹簧的实际质量(m 0与m s 的关系可简单写成 m 0=3 m s )。 本实验通过改变m 1测出相应的T ,以资考察T 和m 的关系,从而求出m 0和 k 。 三.主要仪器设备: 气垫导轨、滑块(包括挡光刀片)、光电门、测时器、弹簧。 四.实验内容及实验数据记录: 1.气垫导轨水平的调节 使用开孔挡光片,智能测时器选在2pr 功能档。让光电门A 、B 相距约60cm (取导轨中央位置),给滑块以一定的初速度(Δ t 1和Δt 2控制在20-30ms 内),让 它在导轨上依次通过两个光电门.若在同一方向上运动的Δ t 1和Δt 2的相对 误差小于3%,则认为导轨已调到水平.否则重新调整水平调节旋钮。 2.研究弹簧振子的振动周期与振幅的关系 先将测时器设置于6pd (测周期)功能档。按动选择钮,屏幕显示6pd 时,按动执行键,显示为0。每按一次选择键,显示加1;当达到预定值(如预置数为n =6,则表示测3个周期的时间)后,将滑块拉离平衡点6.00厘米(即选定某一振幅),再按执行键,放手让其运动,进入测周期操作。当屏幕上显示预置数减为0后,显示屏上出现总时间t ;由此可得周期T = n t 2。 再重新测量几次并取平均值。并测量滑块和弹簧的质量,利用T 0= 2ωπ =2π k m 计算弹簧的倔强系数。取不同的振幅测量,探讨周期与振幅是否有关。 3.观测简谐振动周期T 与m 的关系,并求出k 与弹簧的有效质量m 0。

高中物理-机械振动、机械波高考真题演练

高中物理-机械振动、机械波高考真题演练1.[·山东理综,38(1)](多选)如图, 轻弹簧上端固定,下端连接一小物块,物块沿竖直方向做简谐运动。以竖直向上为正方向,物块简谐运动的表达式为y=0.1sin(2.5πt)m。t=0时刻,一小球从距物块h高处自由落下;t=0.6 s时,小球恰好与物块处于同一高度。取重力加速度的大小g=10 m/s2。以下判断正确的是() A.h=1.7 m B.简谐运动的周期是0.8 s C.0.6 s内物块运动的路程是0.2 m D.t=0.4 s时,物块与小球运动方向相反 2.(·天津理综,3)图甲为一列简谐横波在某一时刻的波形图,a、b 两质点的横坐标分别为x a=2 m和x b=6 m,图乙为质点b从该时刻开始计时的振动图象。下列说法正确的是() A.该波沿+x方向传播,波速为1 m/s B.质点a经4 s振动的路程为4 m C.此时刻质点a的速度沿+y方向

D.质点a在t=2 s时速度为零 3.(·北京理综,15) 周期为2.0 s的简谐横波沿x轴传播,该波在某时刻的图象如图所示,此时质点P沿y轴负方向运动,则该波() A.沿x轴正方向传播,波速v=20 m/s B.沿x轴正方向传播,波速v=10 m/s C.沿x轴负方向传播,波速v=20 m/s D.沿x轴负方向传播,波速v=10 m/s 4.(·四川理综,2)平静湖面传播着一列水面波(横波),在波的传播方向上有相距3 m的甲、乙两小木块随波上下运动,测得两小木块每分钟都上下30次,甲在波谷时,乙在波峰,且两木块之间有一个波峰。这列水面波() A.频率是30 Hz B.波长是3 m C.波速是1 m/s D.周期是0.1 s 5.(·福建理综,16)简谐横波在同一均匀介质中沿x轴正方向传播,波速为v。若某时刻在波的传播方向上,位于平衡位置的两质点a、b 相距为s,a、b之间只存在一个波谷,则从该时刻起,下列四幅波形图中质点a最早到达波谷的是()

简谐振动的研究·实验报告

简谐振动的研究·实验报告 【实验目的】 研究简谐振动的基本特征 【实验仪器】 气垫导轨、通用数字计时器、滑块、砝码、弹簧(5对)、约利氏秤 朱力氏秤 朱力氏秤的示意图如右图所示。一个可以升降的套杆1上刻有毫米分度,并附有读数游标2。将弹簧3挂在1顶部,下端挂一有水平刻线G 的小镜子4,小镜子外套一个带有水平刻线D 的玻璃管5,镜下再钩挂砝码盘6。添加砝码时,小镜子随弹簧伸长而下移。欲知弹簧伸长量需旋动标尺调节旋钮7将弹簧提升,直至镜上水平刻线G 与玻璃管上水平刻线D 及D 在镜中的像相互重合,实现所谓“三线重合”。测量时注意先用底座上螺丝调节弹簧铅直,此时小镜子应不会接触到玻璃管。 【实验原理】 简谐振动是振动中最简单、最基本的运动,对简谐振动的研究有着重要的意义。简谐振动的方程为 x x 2ω-= 其位移方程为 )sin(αω+=t A x 速度方程为 )sin(αωω+=t A v 其运动的周期为 ω π 2= T T 或ω由振动系统本身的特性决定,与初始运动无关。而A ,α是由初始条件决定的。 实验系统如图4-15-1所示。

两个弹性系数k 相同的弹簧分别挂在质量为m 的滑行器两侧,且处于拉伸的状态。在弹性恢复力的作用下,滑行器沿水平导轨作往复运动。当滑行器离开平衡位置0x 至坐标x 时,水平方向上受弹性恢复力)()(00x x k x x k --+-与的作用,有 x m x x k x x k =--+-)00()( 即 x m kx =-2 令k k 20=,有 x m k x x m x k 0 0-==- 或 上式形式与简谐振动方程相同,由此可知滑行器的运动为简谐振动。与简谐振动方程比较可得 m k 0 2= ω 即该简谐振动的角频率 m k 0 = ω 1、)sin(αω+=t A x 的验证 将光电门F 置于0x 处,光电门G 置于1x 处,滑行器1拉至A x 处(010x x x x A ->-)释放,由计时器测出滑行器从0x 运动至1x 的时间1t 。依次改变光电门G 的位置i x ,每次都从A x 释放滑行器,测出对应i x 的时间i t ,最后移开光电门G 。从滑行器通过0x 时开始计时,当它从最大位移返回到0x 时,终止计时,测出时间值为2 T t =,可求出达到最大位置的时间2 t t B = 。 从上面的操作中可以看出2 π α= =,A x A 。将测量的i x ,i t 值代入(4)式,看其是 否成立。ω可由(4)式求出,其中B t T 4=。 2、)cos(αωω+=t A v 的验证 使滑行器处于平衡位置,并使挡光板正对坐标原点,然后依次改变光电门的位置(x 取值与1中相同),每次仍均在A x 处释放滑行器,这样可由计时器给出的时间i t ?及滑行距离 s ?(挡光板两相应边距离)可求出i v ,将i v 及1测出的i t 对应代入(3)式时,看是否成

弹簧振子的简谐振动

弹簧振子的简谐振动 弘毅学堂汪洲 2016300030016 实验目的: (1)测量弹簧振子的振动周期T。 (2)求弹簧的倔强系数k和有效质量 m 实验器材 气垫导轨、滑块、附加砝码、弹簧、光电门、数字毫秒计。 实验原理: 在水平的气垫导轨上,两个相同的弹簧中间系一滑块,滑块做往返振动,如图2.2.4所示。如果不考虑滑块运动的阻力,那么,滑块的振动可以看成是简谐运动。

设质量为1m 的滑块处于平衡位置,每个弹簧的伸长量为0x ,当1m 距平衡点x 时,1m 只受弹性力10()k x x -+与10()k x x --的作用,其中1k 是弹簧的倔强系数。根据牛顿第二定律,其运动方程为 1010()()k x x k x x mx -+--= 令 12k k = 则有 kx mx -= ① 方程①的解为 00sin()x A t ω?=+ 说明滑块做简谐振动。式中,A 为振幅,0?为初相位,0ω叫做振动系统的固有圆频率。有 0ω= 且 10m m m =+

式中,m 为振动系统的有效质量,0m 为弹簧的有效质量,1m 为滑块和砝码的质量。 0ω由振动系统本身的性质所决定。振动周期T 与0ω有下列关系 222T πω= == ② 在实验中,我们改变1m ,测出相应的T ,考虑T 与m 的关系,从而求出k 和0m 。 实验内容: (1)按气垫导轨和计时器的使用方法和要求,将仪器调整到正常工作状态。 (2)将滑块从平衡位置拉至光电门左边某一位置,然后放手让滑块振动,记录A T 的值。要求记录5位有效数字,共测量10次。 (3)再按步骤(2)将滑块从平衡位置拉至光电门右边某一位置测量B T ,重复步骤(2)共测量10次。 取A T 和B T 的平均值作为振动周期T ,与T 相应的振动系统有效质量是10m m m =+,其中1m 就是滑块本身(未加砝码块)的质量,0m 为弹簧的有效质量。 (4)在滑块上对称地加两块砝码,再按步骤(2)和步骤(3)测量相应的周期。有效质量 20m m m =+,其中2m 为滑块本身质量加上两块砝码的质量和。 (5)再用30m m m =+和40m m m =+测量相应的周期T 。式中, 3m =1m +“4块砝码的质量” 4m =1m +“6块砝码的质量” 注意记录每次所加砝码的号码,以便称出各自的质量。 (6)测量完毕,先取下滑块、弹簧等,再关闭气源,切断电源,整理好仪器。 (7)在天平上称出两弹簧的实际质量并与其有效质量进行比较。 数据处理: 1、用逐差法处理数据 由下列公式 221 104()T m m k π=+

高中物理第十一章机械振动总结

高中物理第十一章 机械振动总结 一、机械振动: (一)简谐运动: 1、简谐运动的特征: 1)运动学特征:振动物体离开平衡位置的位移随时间按正弦规律变化 在振动中位移常指是物体离开平衡位置的位移 2)动力学特征:回复力的大小与振动物体离开平衡的位移成正比, 方向与位移方向相反(指向平衡位置) kx F -= ①回复力:使振动物体回到平衡位置的力叫做回复力。 ②回复力是根据力的效果来命名的。 ③回复力的方向总是指向平衡位置。 ④回复力可以是物体所受的合外力,也可以是几个力的合力,也可以是一个力,或者某个力的分力。 ⑤由回复力产生的加速度与位移成正比,方向与位移方向相反x m k a -= ⑥证明一个物体是否是作简谐运动,只需要看它的回复力的特征 2、简谐运动的运动学分析: 1)简谐运动的运动过程分析: (1)常用模型:弹簧振子(其运动过程代表了简谐运动的过程) (2)运动过程: 简谐运动的基本过程是两个加速度减小的加速运动过程和两个加速度增大的减速运动过程 (3)简谐运动的对称性: 做简谐运动的物体在经过关于平衡位置对称的两点时,两处的加速度、速度、回复力大小相等 (大小相等、相等)。动能、势能相等(大小相等、

相等)。 2)表征简谐运动的物理量: (1)振幅:振动物体离开平衡位置的最大距离叫做振动的振幅。 ①振幅是标量。 ②振幅是反映振动强弱的物理量。 (2)周期和频率: ①振动物体完成一次全振动所用的时间叫做振动的周期。 ②单位时间内完成全振动的次数叫做全振动的频率。 它们的关系是T=1/f 。 在一个周期内振动物体通过的路程为振幅的4倍;在半个周期内振动物体通过的路程为振幅2倍;在1/4个周期内物体通过的路程不一定等于振幅 3)简谐运动的表达式:)sin(?ω+=t A x 4)简谐运动的图像: 振动图像表示了振动物体的位移随时间变化的规律。 反映了振动质点在所有时刻的位移。 从图像中可得到的信息: ①某时刻的位置、振幅、周期 ②速度:方向→顺时而去;大小比较→看位移大小 ③加速度:方向→与位移方向相反;大小→与位移成正比 3、简谐运动的能量转化过程: 1)简谐运动的能量:简谐运动的能量就是振动系统的总机械能。 ①振动系统的机械能与振幅有关,振幅越大,则系统机械能越大。 ②阻尼振动的振幅越来越小。 2)简谐运动过程中能量的转化: 系统的动能和势能相互转化,转化过程中机械能的总量保持不变。

弹簧质量与弹簧振子振动周期关系的探讨(精)

第26卷第5期 V01.26No.5 周口师范学院学报 JournalofZhoukouNormalUniversity 2009年9月 Sep.2009 弹簧质量与弹簧振子振动周期关系的探讨 周俊敏,王玉梅 (周口师范学院物理系,河南周口466001) 摘要:从能量的观点出发,分别讨论了弹簧振子垂直地面放置和平行地面放置时所遵守的运动方程,并通过解微分方程,得出结论.这些结论对指导实验和生产实践有一定的参考价值. 关键词:弹簧振子;振动周期;机械能守恒;运动方程中图分类号:0326文献标识码:A 文章编号:1671—9476(2009)05—0058—03 弹簧振子在生产实践中有着十分广泛的应用,而振动的周期是描述振动系统运动的一个非常重要的基本物理量,因此探讨弹簧质量对弹簧振子振动周期的影响就显得十分必要.在实验教学中笔者发现,大部分实验教材直接给出弹簧振子的振动周 r‘‘—?———=7 的正方向,建立坐标系如图1(b)所示.设质点的位置坐标为X,引即为质点相对于坐标原点的位移. 取物体为研究对象,作用在物体上的力有两个:重力大小为mg,方向竖直向下;弹簧对物体的拉力F=一k(x+z。),方向竖直向上.由此可知物体的合力F台一一点(z+X。)+mg=一妇.由简谐 图1 期公式为T一2,r^/m+cM,学生通过实验测出f V K 值的范围为0.32~0.34,但未从理论上分析c值在这一范围的原因[1-3].另外,教材中分析弹簧振子振动周期时,大都从力的观点[4_51出发得出运动方程.笔者从能量的观点出发,分别讨论弹簧振子垂直地面放置和平行地面放置时所遵守的运动方程,并通过解运动方程得出弹簧振子的振动周期以及 1

弹簧振子的简谐振动

弹簧振子的简谐振动 弘毅学堂汪洲26 实验目的: (1)测量弹簧振子的振动周期T。 (2)求弹簧的倔强系数k和有效质量 m 实验器材 气垫导轨、滑块、附加砝码、弹簧、光电门、数字毫秒计。 实验原理: 在水平的气垫导轨上,两个相同的弹簧中间系一滑块,滑块做往返振动,如图2.2.4所示。如果不考虑滑块运动的阻力,那么,滑块的振动可以看成是简谐运动。

设质量为1m 的滑块处于平衡位置,每个弹簧的伸长量为0x ,当1m 距平衡点x 时,1m 只受弹性力10()k x x -+与10()k x x --的作用,其中1k 是弹簧的倔强系数。根据牛顿第二定律,其运动方程为 1010()()k x x k x x mx -+--= 令 12k k = 则有 kx mx -= ① 方程①的解为 00sin()x A t ω?=+ 说明滑块做简谐振动。式中,A 为振幅,0?为初相位,0ω叫做振动系统的固有圆频率。有 0k m ω= 且

10m m m =+ 式中,m 为振动系统的有效质量,0m 为弹簧的有效质量,1m 为滑块和砝码的质量。 0ω由振动系统本身的性质所决定。振动周期T 与0ω有下列关系 222T πω= == ② 在实验中,我们改变1m ,测出相应的T ,考虑T 与m 的关系,从而求出k 和0m 。 实验内容: (1)按气垫导轨和计时器的使用方法和要求,将仪器调整到正常工作状态。 (2)将滑块从平衡位置拉至光电门左边某一位置,然后放手让滑块振动,记录A T 的值。要求记录5位有效数字,共测量10次。 (3)再按步骤(2)将滑块从平衡位置拉至光电门右边某一位置测量B T ,重复步骤(2)共测量10次。 取A T 和B T 的平均值作为振动周期T ,与T 相应的振动系统有效质量是10m m m =+,其中1m 就是滑块本身(未加砝码块)的质量,0m 为弹簧的有效质量。 (4)在滑块上对称地加两块砝码,再按步骤(2)和步骤(3)测量相应的周期。有效质量20m m m =+,其中2m 为滑块本身质量加上两块砝码的质量和。 (5)再用30m m m =+和40m m m =+测量相应的周期T 。式中, 3m =1m +“4块砝码的质量” 4m =1m +“6块砝码的质量” 注意记录每次所加砝码的号码,以便称出各自的质量。 (6)测量完毕,先取下滑块、弹簧等,再关闭气源,切断电源,整理好仪器。 (7)在天平上称出两弹簧的实际质量并与其有效质量进行比较。 数据处理:

高中物理机械振动知识点与题型总结.doc

(一)机械振动 物体(质点)在某一中心位置两侧所做的往复运动就叫做机械振动,物体能够围绕着平衡位置做往复运动,必然受到使它能够回到平衡位置的力即回复力。回复力是以效果命名的力,它可以是一个力或一个力的分力,也可以是几个力的合力。 产生振动的必要条件是:a、物体离开平衡位置后要受到回复力作用。b、阻力足够小。 (二)简谐振动 1. 定义:物体在跟位移成正比,并且总是指向平衡位置的回复力作用下的振动叫简谐振动。简谐振动是最简单,最基本的振动。研究简谐振动物体的位置,常常建立以中心位置(平衡位置)为原点的坐标系,把物体的位移定义为物体偏离开坐标原点的位移。因此简谐振动也可说是物体在跟位移大小成正比,方向跟位移相反的回复力作用下的振动,即F=-k x,其中“-”号表示力方向跟位移方向相反。 2. 简谐振动的条件:物体必须受到大小跟离开平衡位置的位移成正比,方向跟位移方向相反的回复力作用。 3. 简谐振动是一种机械运动,有关机械运动的概念和规律都适用,简谐振动的特点在于它是一种周期性运动,它的位移、回复力、速度、加速度以及动能和势能(重力势能和弹性势能)都随时间做周期性变化。 (三)描述振动的物理量,简谐振动是一种周期性运动,描述系统的整体的振动情况常引入下面几个物理量。 1. 振幅:振幅是振动物体离开平衡位置的最大距离,常用字母“A”表示,它是标量,为正值,振幅是表示振动强弱的物理量,振幅的大小表示了振动系统总机械能的大小,简谐振动在振动过程中,动能和势能相互转化而总机械能守恒。 2. 周期和频率,周期是振子完成一次全振动的时间,频率是一秒钟内振子完成全振动的次数。振动的周期T跟频率f之间是倒数关系,即T=1/f。振动的周期和频率都是描述振动快慢的物理量,简谐振动的周期和频率是由振动物体本身性质决定的,与振幅无关,所以又叫固有周期和固有频率。 (四)单摆:摆角小于5°的单摆是典型的简谐振动。 细线的一端固定在悬点,另一端拴一个小球,忽略线的伸缩和质量,球的直径远小于悬线长度的装置叫单摆。单摆做简谐 振动的条件是:最大摆角小于5°,单摆的回复力F是重力在圆弧切线方向的分力。单摆的周期公式是T=。由公式可知单摆做简谐振动的固有周期与振幅,摆球质量无关,只与L和g有关,其中L是摆长,是悬点到摆球球心的距离。g是单摆所在处的重力加速度,在有加速度的系统中(如悬挂在升降机中的单摆)其g应为等效加速度。 (五)振动图象。 简谐振动的图象是振子振动的位移随时间变化的函数图象。所建坐标系中横轴表示时间,纵轴表示位移。图象是正弦或余弦函数图象,它直观地反映出简谐振动的位移随时间作周期性变化的规律。要把质点的振动过程和振动图象联系起来,从图象可以得到振子在不同时刻或不同位置时位移、速度、加速度,回复力等的变化情况。 (六)阻尼振动、受迫振动、共振。 简谐振动是一种理想化的振动,当外界给系统一定能量以后,如将振子拉离开平衡位置,放开后,振子将一直振动下去,振子在做简谐振动的图象中,振幅是恒定的,表明系统机械能不变,实际的振动总是存在着阻力,振动能量总要有所耗散,因此振动系统的机械能总要减小,其振幅也要逐渐减小,直到停下来。振幅逐渐减小的振动叫阻尼振动,阻尼振动虽然振幅越来越小,但振动周期不变,振幅保持不变的振动叫无阻尼振动。 振动物体如果在周期性外力──策动力作用下振动,那么它做受迫振动,受迫振动达到稳定时其振动周期和频率等于策动力的周期和频率,而与振动物体的固有周期或频率无关。 物体做受迫振动的振幅与策动力的周期(频率)和物体的固有周期(频率)有关,二者相差越小,物体受迫振动的振幅越大,当策动力的周期或频率等于物体固有周期或频率时,受迫振动的振幅最大,叫共振。 【典型例题】 [例1] 一弹簧振子在一条直线上做简谐运动,第一次先后经过M、N两点时速度v(v≠0)相同,那么,下列说法正确的是() A. 振子在M、N两点受回复力相同 B. 振子在M、N两点对平衡位置的位移相同 C. 振子在M、N两点加速度大小相等 D. 从M点到N点,振子先做匀加速运动,后做匀减速运动 解析:建立弹簧振子模型如图所示,由题意知,振子第一次先后经过M、N两点时速度v相同,那么,可以在振子运动路径上确定M、N两点,M、N两点应关于平衡位置O对称,且由M运动到N,振子是从左侧释放开始运动的(若M点定在O点右侧,则振子是从右侧释放的)。建立起这样的物理模型,这时问题就明朗化了。

有关弹簧问题中应用简谐运动特征的解题技巧

有关弹簧问题中应用简谐运动特征的解题技巧 黄 菊 娣 (浙江省上虞市上虞中学 312300) 弹簧振子的运动具有周期性和对称性,因而很容易想到在振动过程中一些物理量的大小相等,方向相同,是周期性出现的;而经过半个周期后一些物理量则是大小相等,方向相反.但是上面想法的逆命题是否成立的条件是:①此弹簧振子的回复力和位移符合kx F -=(x 指离开平衡位置的位移) ;②选择开始计时的位置是振子的平衡位置或左、右最大位移处,若开始计时不是选择在这些位置,则结果就显而易见是不成立的. 在这里就水平弹簧振子和竖直弹簧在作简谐运动过程中应用其特征谈一谈解题技巧,把复杂的问题变简单化,从而消除学生的一种碰到弹簧问题就无从入手的一种恐惧心理. 一、弹簧振子及解题方法 在判断弹簧振子的运动时间,运动速度及加速度等一些物理量时所取的起始位置很重要,在解题方法上除了应用其规律和周期性外,运用图象法解,会使问题更简单化. 例1 一弹簧振子做简谐运动,周期为T ,则正确的说法是………………………………………( ) A .若t 时刻和(t +Δt )时刻振子运动位移的大小相等,方向相同,则Δt 一定等于T 的整数倍 B .若t 时刻和(t +Δt )时刻振子运动速度大小相等,方向相反,则Δt 一定等于 2 T 的整数倍 C .若Δt =T ,则在t 时刻和(t +Δt )时刻振子运动的加速度一度相等 D .若Δt =2T ,则在t 时刻和(t +Δt )时刻弹 簧的长度一定相等 解法一:如图1为一个弹簧振子的示意图,O 为平衡位置,B 、C 为两侧最大位移处,D 是C 、O 间任意位置. 对于A 选项,当振子由D 运动到B 再回到D ,振子两次在D 处位移大小、方向都相 同,所经历的时间显然不为T ,A 选项错. 对于B 选项,当振子由D 运动到B 再回到D ,振子两次在D 处运动速度大小相等,方向相反,但经过的时间不是 2 T ,可见选项B 错. 由于振子的运动具有周期性,显然加速度也是如此,选项C 正确. 对于选项D ,振子由B 经过O 运动到C 时,经过的时间为 2 T ,但在B 、C 两处弹簧长度不等,选项D 错.正确答案选C . 解法二:本题也可利用弹簧振子做简谐运动的图象来解.如图2所示,图中A 点与B 、E 、F 、I 等点的振动位移大小相等,方向相同.由图可见,A 点与E 、I 等点对应的时刻差为T 或T 的整数倍;A 点与B 、F 等点对应的时刻差不为T 或T 的整数倍,因此选项A 不正确.用同样的方法很容易判断出选项B 、D 也不正确.故只有选项C 正确. 图1

实验十九 弹簧振子的研究

实验十九 弹簧振子的研究 【实验目的】 1.研究弹簧本身质量对振动的影响; 2.研究不同形式的弹簧,其质量对振动的影响是否相同 【实验仪器】 弹簧(锥形的、柱形的),停表(或数字毫秒计及光电门),砝码,托盘。 【实验原理】 设弹簧的劲度系数为k ,悬挂负载质量为m (图 19-1)。一般给出弹簧振动周期T 的公式为 k m T π 2= (19-1) 测量加各种不同负载m 的周期T 的值,作T m -图线,如图 19-2(a),可以看出T 与m 不是线性关系,但是作m T -2图 线,则显然是一直线(图19-2(b)),不过此直线不通过 零点,即 0=m 时02≠T 。从上述实验结果可以看出在弹簧周期公式中的质量,除去负载 m 还应包括弹簧自身质量0m 的一部分,即 )219(20 -+=k Cm m T π 式中C 为未知系数。在此实验中就是研究C 值。 【实验内容】 研究锥形弹簧的C 值 (1)先测弹簧的质量0m 。其次测量弹簧下端悬挂不同负载m 时的周期T (砝码托盘的质量应计入负载中), 共测 n 次。(2)用停表测量周期时,要测量连续振动50次的时间t 。握停表 的手最好和负载同步振动。 为了显示0m 的影响,负载 m 的

起始值应尽可能取小些(比如0m 的三分之一左右或更小),变化范围适当大些。 n 也应大些。 2.数据处理 将式(19—2)改为 )319(442 022 -+=m k cm k T ππ 则得令 k b cm k a m x T y 2 022 4,4,,ππ= === bx a y += 从n 组),(i i y x 值,可以求得b a 、值,从而求出C 值, bm a C = (19-4) 并且C 的不确定度)(c u 为 )519())(())(())(( )(2 022-++=m m u b b u a a u C C u 3.研究柱形弹簧的C 值,步骤同上 4.比较二C 值是否一致。 注意:有的弹簧,当所加负载增到某值m 附近时,在上下振动的同时有明显地左右摆动,这对测量周期很不方便,这时可在弹簧上端加一长些的吊线即可解决 回答问题: 1.你对如何测准周期有何体会? 2.对此实验的结果你作些什么说明?设想再做什么探索? 测量举例 1.锥形弹簧(No.15) g m g m 8242.1)(,651.120='=托盘

弹簧振子的简谐振动

弹簧振子的简谐振动 弘毅学堂汪洲2016300030016 实验目的: (1)测量弹簧振子的振动周期T。 (2)求弹簧的倔强系数k和有效质量 m 实验器材 气垫导轨、滑块、附加砝码、弹簧、光电门、数字毫秒计。 实验原理: 在水平的气垫导轨上,两个相同的弹簧中间系一滑块,滑块做往返振动,如图2.2.4所示。如果不考虑滑块运动的阻力,那么,滑块的振动可以看成是简谐运动。

设质量为1m 的滑块处于平衡位置,每个弹簧的伸长量为0x ,当1m 距平衡点x 时,1m 只受弹性力10()k x x -+与10()k x x --的作用,其中1k 是弹簧的倔强系数。根据牛顿第二定律,其运动方程为 1010()()k x x k x x mx -+--= 令 12k k = 则有 kx mx -= ① 方程①的解为 00sin()x A t ω?=+ 说明滑块做简谐振动。式中,A 为振幅,0?为初相位,0ω叫做振动系统的固有圆频率。有 0k m ω= 且

10m m m =+ 式中,m 为振动系统的有效质量,0m 为弹簧的有效质量,1m 为滑块和砝码的质量。 0ω由振动系统本身的性质所决定。振动周期T 与0ω有下列关系 222T πω= == ② 在实验中,我们改变1m ,测出相应的T ,考虑T 与m 的关系,从而求出k 和0m 。 实验内容: (1)按气垫导轨和计时器的使用方法和要求,将仪器调整到正常工作状态。 (2)将滑块从平衡位置拉至光电门左边某一位置,然后放手让滑块振动,记录A T 的值。要求记录5位有效数字,共测量10次。 (3)再按步骤(2)将滑块从平衡位置拉至光电门右边某一位置测量B T ,重复步骤(2)共测量10次。 取A T 和B T 的平均值作为振动周期T ,与T 相应的振动系统有效质量是10m m m =+,其中1m 就是滑块本身(未加砝码块)的质量,0m 为弹簧的有效质量。 (4)在滑块上对称地加两块砝码,再按步骤(2)和步骤(3)测量相应的周期。有效质量20m m m =+,其中2m 为滑块本身质量加上两块砝码的质量和。 (5)再用30m m m =+和40m m m =+测量相应的周期T 。式中, 3m =1m +“4块砝码的质量” 4m =1m +“6块砝码的质量” 注意记录每次所加砝码的号码,以便称出各自的质量。 (6)测量完毕,先取下滑块、弹簧等,再关闭气源,切断电源,整理好仪器。 (7)在天平上称出两弹簧的实际质量并与其有效质量进行比较。 数据处理:

气轨上的弹簧简谐振动实验报告

气轨上弹簧振子的简谐振动 目的要求: (1)用实验方法考察弹簧振子的振动周期与系统参量的关系并测定弹簧的劲度系数和有效质量。 (2)观测简谐振动的运动学特征。 (3)测量简谐振动的机械能。 仪器用具: 气轨(自带米尺,2m,1mm),弹簧两个,滑块,骑码,挡光刀片,光电计时器,电子天平(0.01g),游标卡尺(0.05mm),螺丝刀。 实验原理: (一)弹簧振子的简谐运动过程: 质量为m1的质点由两个弹簧与连接,弹簧的劲度系数分别 为k1和k2,如下图所示: 当m1偏离平衡位置x时,所受到的弹簧力合力为 令 k=,并用牛顿第二定律写出方程 解得 X=Asin() 即其作简谐运动,其中 在上式中,是振动系统的固有角频率,是由系统本身决定的。m=m 1+m0是振动系统的有效质量,m 0是弹簧的有效质量,A是振幅,是初相位,A和由起始条件决定。系统的振动周期为

通过改变测量相应的T,考察T 和的关系,最小二乘法线性拟合求出k 和 (二)简谐振动的运动学特征: 将()对t 求微分 ) 可见振子的运动速度v 的变化关系也是一个简谐运动,角频率为,振幅为,而且v 的相位比x 超前 .消去t,得 v2=ω02(A2?x2) x=A时,v=0,x=0 时,v 的数值最大,即 实验中测量x和v 随时间的变化规律及x和v 之间的相位关系。 从上述关系可得 (三)简谐振动的机械能: 振动动能为 系统的弹性势能为 则系统的机械能 式中:k 和A均不随时间变化。上式说明机械能守恒,本实验通过测定不同位 置x上m 1的运动速度v,从而求得和,观测它们之间的相互转换并验证机 械能守恒定律。 (四)实验装置: 1.气轨设备及速度测量 实验室所用气轨由一根约2m 长的三角形铝材做成,气轨的一端堵死,另 一端送入压缩空气,气轨的两个方向上侧面各钻有两排小孔,空气从小孔喷出。把用合金铝做成的滑块放在气轨的两个喷气侧面上,滑块的内表面经过精加工

相关文档