文档库 最新最全的文档下载
当前位置:文档库 › 计算方法上机作业插值与拟合实验报告

计算方法上机作业插值与拟合实验报告

计算方法上机作业插值与拟合实验报告
计算方法上机作业插值与拟合实验报告

计算方法实验

题目:

班级:

学号:

姓名:

目录

计算方法实验 (1)

1 实验目的 (3)

2 实验步骤 (3)

2.1环境配置: (3)

2.2添加头文件 (3)

2.3主要模块 (3)

3 代码 (4)

3.1主程序部分 (4)

3.2多项式方程部分 (4)

3.3核心算法部分 (8)

3.4数据结构部分 (13)

4运行结果 (19)

4.1拉格朗日插值法运行结果 (19)

4.2牛顿插值法运行结果 (20)

4.3多项式拟合运行结果 (20)

5总结 (21)

拉格朗日插值法 (21)

牛顿插值法 (21)

多项式拟合 (21)

6参考资料 (22)

1 实验目的

1.通过编程对拉格朗日插值法、牛顿插值法以及多项式拟合数据的理解

2.观察上述方法的计算稳定性和求解精度并比较各种方法利弊

2 实验步骤

2.1环境配置:

VS2013,C++控制台程序

2.2添加头文件

#include "stdio.h"

#include "stdlib.h"

#include "stdafx.h"

2.3主要模块

程序一共分成三层,最底层是数据结构部分,负责存储数据,第二层是交互部分,即多项式方程部分,负责输入输出获得数据,最上层是核心的算法部分,负责处理已获得的数据。具体功能如下:

●数据结构部分

数据结构部分是整个程序的最底层,负责存储部分。因方程系数作为数据元素插入和删除操作较少,而顺序表空间利用率大且查看方便,故此程序选用顺序表保存系数。数据结构文件中写的是有关顺序表的所有基本操作以供其他文件调用。本次实验使用列主元高斯消元法作为求解方程组的方法,所以也用了二维顺序表存储数组。综上,数据结构部分文件是前两个试验的文件内容和,稍作修改。

●常系数微分方程部分

多项式方程部分是程序的第二层,内容主要是常系数微分方程导数的计算和显示菜单部分。

●算法部分

算法部分分为两个文件,一个是插值部分,一个是拟合部分。

插值部分文件负责有关插值的核心算法,处于整个程序最上层部分,负责拉格朗日插值法和牛顿插值法的具体实现过程。调用方程文件的函数,将获得的数据进行处理运算,将结果返回给方程主函数和输出的第二层。每种方法有两个函数,一个为仅仅实现一次插值的算法,另一个是和方程部分联系的

函数,负责交互中想实现的整体的算法。

拟合部分文件主要负责多项式拟合的算法实现,因为要用到列主元高斯消去法所以也将此部分算法移入其中。

主函数负责获取方程系数并显示,算法和方程作为后台程序,顺序表作为存储手段。

3 代码

3.1主程序部分

// Interpolationandfitting.cpp : 定义控制台应用程序的入口点。

//

#include "stdafx.h"

#include"equation.h"

#include "stdafx.h"

int _tmain(intargc, _TCHAR* argv[])

{

GetEquation();

while (Exflag)

{

ShowMenu();

}

return 0;

}

3.2多项式方程部分

方程部分头文件

#ifndef _EQUATION_H

#define _EQUATION_H

#include "squencelist.h"

#include "stdio.h"

#include "stdlib.h"

extern intNumberx;

extern intExflag;

extern sequenlist *B;

extern sequenlist *D;

extern sequenlist *L;

void GetEquation(void);

void ShowMenu(void);

void printres(sequenlist *A);

void printfunction2(datacoa *A);

void printfunctionf(datacoa *A);

void Tip(void);

#endif

方程部分CPP文件

#include "stdafx.h"

#include "equation.h"

#include "math.h"

#include "alfitting.h"

#include "alinterpolation.h"

#include "squencelist.h"

#include "stdio.h"

#include

#include

//全局变量

intNumberx=0;

intExflag = 1;

sequenlist *B;

sequenlist *D;

sequenlist *L;

////////////////////////获得给定数据///////////////////////// void GetEquation(void)

{

int j = 0;

datatype x = 0;

B = InitList();

D = InitList();

cout<< "输入给定数据的个数:" <

cin>>Numberx;

cout<< "从小到大输入x,输入00结束(如y=x^2+2x+1输入1 2 1 00):" <

cin>> x;

while (x != 00)

{

for (j = 1; j <= Numberx; j++)

{

if (!Insert(B, x, j))exit(0);

cin>> x;

}

}

cin.clear();

cout<< "输入f(x),输入00结束(如y=x^2+2x+1输入1 2 1 00):" <

cin>> x;

while (x != 00)

{

for (j = 1; j <= Numberx; j++)

{

if (!Insert(D, x, j))exit(0);

cin>> x;

}

}

printres(B);

printres(D);

}

//////////////////////////显示交互/////////////////////////////

void ShowMenu(void)

{

int c1, c2;

cout<< "选择插值的方法:" <

cout<< "1.拉格朗日插值法" <

cout<< "2.牛顿插值法" <

cout<< "3.直接拟合" <

cout<< "0.退出" <

cin>> c1;

switch (c1)

{

case 0:

Tip();

break;

case 1:

Langmethod();

break;

case 2:

Newtonmethod();

break;

case 3:

break;

default:break;

}

cout<< "选择拟合方式:" <

cout<< "1.多项式拟合" <

cout<< "2.返回插值" <

cout<< "0.退出" <

cin>> c2;

switch (c2)

{

case 0:

Tip();

break;

case 1:

Fpolynomial();

Tip();

break;

case 2:

break;

default:break;

}

}

////////////////////////打印结果/////////////////////////// void printres(sequenlist *A)

{

inti;

for (i = 1; i<= A->last; i++)

{

cout<data[i];

}

cout<

}

////////////////////////打印输出矩阵/////////////////////////// void printfunction2(datacoa *A)

{

inti, j;

cout<< "矩阵=" <

for (i = 1; i<= A->m; i++)

{

for (j = 1; j <= A->n; j++)

{

cout<data[i][j];

}

cout<

}

}

////////////////////////打印输出函数/////////////////////////// void printfunctionf(datacoa *A)

{

inti = 1;

cout<< "f=";

cout<< A->data[i][A->n];

for (i = 2; i<= A->m; i++)

{

if (A->data[i][A->n]< 0)

cout<< A->data[i][A->n] << "*" << "x^" <

else cout<< "+" << A->data[i][A->n] << "*" << "x^" <

}

cout<

}

////////////////////////返回提示///////////////////////////

void Tip(void)

{

int flag;

cout<< "输入000退出,其余返回:" <

cin>> flag;

if (flag == 000)Exflag = 0;

}

3.3核心算法部分

插值部分头文件

#ifndef _ALINTERPOLATION_H

#define _ALINTERPOLATION_H

#include "stdio.h"

#include "stdlib.h"

void Langmethod(void);

datatype Langarange(sequenlist *X, sequenlist *F, datatype x);

datatype Newtoninterpolation(sequenlist *X, sequenlist *F, datatype x);

void Newtonmethod(void);

#endif

插值部分CPP文件

#include "alinterpolation.h"

#include "stdafx.h"

#include "squencelist.h"

#include "equation.h"

#include "math.h"

//////////////////////////拉格朗日插值//////////////////////////// datatype Langarange(sequenlist *X, sequenlist *F, datatype x)

{

inti, j;

datatype temp = 0;

L = InitList();

for (i = 1; i<= Numberx; i++)

{

Insert(L, F->data[i], i);

for (j = 1; j <= Numberx; j++)

{

if (j == i)continue;

L->data[i] = L->data[i] * ((x - X->data[j]) / (X->data[i] - X->data[j]));

}

temp = temp + L->data[i];

}

return temp;

}

void Langmethod(void)

{

inti;

datatype x, f;

cout<< "请输入插值点:" << "\t";

cin>> x;

f = Langarange(B, D, x);

i = Findi(B, x);

Insert(B, x, i);

Insert(D, f, i);

printres(B);

printres(D);

}

//////////////////////////牛顿多项式插值//////////////////////////// datatype Newtoninterpolation(sequenlist *X, sequenlist *F, datatype x) {

inti, j, k;

datacoa *FX;

datatype temp1 = 0, temp2 = 0, Nn = 0;

double temp = 1;

FX = InitStruct();

for (i = 1; i<= Numberx; i++)

{

InsertA2(FX, X->data[i], i, 1);

InsertA2(FX, F->data[i], i, 2);

}

for (j = 3; j <= Numberx + 1; j++)

{

for (i = 1; i<= Numberx - j + 2; i++)

{

temp1 = FX->data[i + 1][j - 1] - FX->data[i][j - 1];

temp2 = FX->data[i + j - 2][1] - FX->data[i][1];

InsertA2(FX, temp1 / temp2, i, j);

}

}

Nn = FX->data[1][2];

for (j = 3; j <= Numberx + 1; j++)

{

for (k = 1; k <= j - 2; k++)

temp = temp*(x - FX->data[k][1]);

Nn = Nn + temp*FX->data[1][j];

temp = 1;

}

return Nn;

}

void Newtonmethod(void)

{

inti;

datatype x, f;

cout<< "请输入插值点:" << "\t";

cin>> x;

f = Newtoninterpolation(B, D, x);

i = Findi(B, x);

Insert(B, x, i);

Insert(D, f, i);

printres(B);

printres(D);

}

●拟合部分头文件

#ifndef _ALFITTING_H

#define _ALFITTING_H

#include "stdio.h"

#include "stdlib.h"

void ColumnGaussmethod(datacoa *A, intXnumbers);

void Fpolynomial(void);

#endif

●拟合部分CPP文件

#include "alfitting.h"

#include "stdafx.h"

#include "squencelist.h"

#include "equation.h"

#include "math.h"

//////////////////////////列主元高斯消元法//////////////////////////// void ColumnGaussmethod(datacoa *A, intXnumbers)

{

inti, j, i2, flagc, k, j2;

intFnumber = Xnumbers - 1;

datatype temp, res;

for (i = 1; i

{

flagc = i;

for (i2 = i + 1; i2 <= Fnumber; i2++)

if ((fabs(A->data[i2][i]))>(fabs(A->data[flagc][i])))

flagc = i2;

if (flagc != i)

for (k = i; k <= Xnumbers; k++)

{

temp = A->data[i][k];

A->data[i][k] = A->data[flagc][k];

A->data[flagc][k] = temp;

}

for (i2 = i + 1; i2 <= Fnumber; i2++)

{

temp = A->data[i2][i] / A->data[i][i];

for (j2 = i; j2 <= Xnumbers; j2++)

A->data[i2][j2] = A->data[i2][j2] - temp*A->data[i][j2];

}

}

for (i = Fnumber; i>= 1; i--)

{

for (j = Fnumber; j >= i + 1; j--)

A->data[i][Xnumbers] = A->data[i][Xnumbers] - A->data[i][j] * A->data[j][Xnumbers + 1];

res = A->data[i][Xnumbers] / A->data[i][i];

InsertA2(A, res, i, Xnumbers + 1);

}

}

//////////////////////////多项式拟合////////////////////////////

void Fpolynomial(void)

{

intXnumbers;

inti, j, k;

datatype s = 0, t = 0;

datacoa *A;

A = InitStruct();

cout<< "请输入拟合次数:" << "\t";

cin>>Xnumbers;

for (i = 1; i<= Xnumbers + 1; i++)

{

for (j = 1; j <= Xnumbers + 1; j++)

{

for (k = 1; k <= B->last; k++)

s = s + pow(B->data[k], j + i - 2);

InsertA2(A, s, i, j);

s = 0;

}

for (k = 1; k <= B->last; k++)

t = t + pow(B->data[k], i - 1)*D->data[k];

InsertA2(A, t, i, Xnumbers + 2);

t = 0;

}

ColumnGaussmethod(A, A->n);

printfunctionf(A);

}

3.4数据结构部分

数据结构头文件

#ifndef _SQUENCELIST_H

#define _SQUENCELIST_H

#include "stdio.h"

#include "stdlib.h"

#include "stdafx.h"

#include

using namespace std;

#define maxsize 1024

/**

*sequenlist

*/

typedef double datatype;

typedef struct

{

datatype data[maxsize][maxsize];

int m, n;

}datacoa;

typedef struct

{

datatype data[maxsize];

int last;

}sequenlist;

sequenlist *InitList();

int Length(sequenlist*);

int Insert(sequenlist*, datatype, int);

int Delete(sequenlist*, int);

int Locate(sequenlist*, datatype);

void del_node(sequenlist*, datatype); void PrintList(sequenlist*);

int Compare_L(sequenlist*, sequenlist*); int Findi(sequenlist*L, datatype x);

void Invert(sequenlist*);

datacoa *InitStruct();

int InsertA2(datacoa*, datatype, int, int);

void DeleteLie(datacoa*L, int j);

void DeleteLine(datacoa*L, int i);

/**

*linklist

*/

typedef char linkdatatype;

typedef struct node

{

linkdatatype data;

struct node*next;

}linklist;

linklist* CreateListF();

#endif

数据结构CPP文件

#include "stdafx.h"

#include "squencelist.h"

///////////////////////////////////数据结构部分///////////////////////////////////////////

///////////////////////////////////sequenlist/////////////////////////////////////////// sequenlist *InitList()

{

sequenlist*L = (sequenlist*)malloc(sizeof(sequenlist));

L->last = 0;

return L;

// sequenlist*L = new sequenlist;

}

int Length(sequenlist*L)

{

return L->last;

}

intInsert(sequenlist*L, datatype x, inti)

{

int j;

if (L->last >= maxsize - 1)

cout<< "表已满" <

return 0;

}

for (j = L->last; j >= i; j--)

L->data[j + 1] = L->data[j];

L->data[i] = x;

L->last++;

return 1;

}

intDelete(sequenlist*L, inti)

{

int j;

if ((i<1) || (i>L->last))

{

cout<< "非法删除位置" <

return 0;

}

for (j = i; j <= L->last; j++)

L->data[j] = L->data[j + 1];

L->last--;

return 1;

}

intLocate(sequenlist*L, datatype x)

{

inti = 1;

while (i<= L->last)

{

if (L->data[i] != x)i++;

else return i;

}

return 0;

}

/*顺序表中删除所有元素为x的结点*/ void del_node(sequenlist*L, datatype x) {

inti = Locate(L, x);

while (i != 0)

if (!Delete(L, i))break;

i = Locate(L, x);

}

}

void PrintList(sequenlist*L)

{

inti = 1;

for (i = 1; i<= L->last; i++)

cout<< L->data[i] << ' ';

cout<

}

intCompare_L(sequenlist*A, sequenlist*B) {

int j = 1;

inti = 0;

int n, m;

n = A->last;

m = B->last;

while ((j <= n) && (j <= m))

{

if (A->data[j] == B->data[j])i = 0;

if (A->data[j] < B->data[j])

{

i = -1;

break;

}

if (A->data[j] > B->data[j])

{

i = 1;

break;

}

j++;

}

if (i != 0)return i;

else

{

if (m

if (n

if (m == n)i = 0;

return i;

}

int Findi(sequenlist*L,datatype x)

{

inti;

for (i = 1; i< L->last; i++)

if (L->data[i]>x)break;

return i;

}

void Invert(sequenlist*L)

{

inti;

datatype temp;

for (i = 1; i<= L->last / 2; i++)

{

temp = L->data[i];

L->data[i] = L->data[L->last + 1 - i];

L->data[L->last + 1 - i] = temp;

}

}

///////////////////////////////////ARRAY[][]/////////////////////////////////////////// datacoa *InitStruct()

{

datacoa*L = (datacoa*)malloc(sizeof(datacoa));

L->m = 0;

L->n = 0;

return L;

// datacoa*L = new datacoa;

}

int InsertA2(datacoa*L, datatype x, inti, int j)

{

int k;

if ((L->m >= maxsize - 1) || (L->n >= maxsize - 1))

{

cout<< "表已满" <

return 0;

for (k = L->n; k >= j; k--)

L->data[i][k + 1] = L->data[i][k];

L->data[i][j] = x;

if (i> L->m)L->m++;

if (j > L->n)L->n++;

return 1;

}

void DeleteLie(datacoa*L, int j)

{

int k, i;

if ((j<1) || (j>L->n))

{

cout<< "非法删除位置" <

}

for (i = 1; i<= L->m; i++)

{

for (k = j; k <= L->n; k++)

L->data[i][j] = L->data[i][j + 1];

}

L->n--;

}

void DeleteLine(datacoa*L, inti)

{

int k, j;

if ((i<1) || (i>L->m))

{

cout<< "非法删除位置" <

}

for (j = 1; j <= L->n; j++)

{

for (k = i; k <= L->m; k++)

L->data[i][j] = L->data[i + 1][j];

}

L->m--;

}

///////////////////////////////////linklist/////////////////////////////////////////// linklist* CreateListF()

{

linklist *head, *p;

char ch;

head = (linklist*)malloc(sizeof(linklist));

head->next = NULL;

cin>>ch;

while (ch != '\n')

{

p = (linklist*)malloc(sizeof(linklist));

p->data = ch;

p->next = head->next;

head->next = p;

}

return head;

}

4运行结果

4.1拉格朗日插值法运行结果

4.2牛顿插值法运行结果

4.3多项式拟合运行结果

《计算方法》课内实验报告

《计算方法》实验报告 姓名: 班级: 学号: 实验日期: 2011年10月26日

一、实验题目: 数值积分 二、实验目的: 1.熟悉matlab 编写及运行数值计算程序的方法。 2.进一步理解数值积分的基础理论。 3.进一步掌握应用不同的数值积分方法求解给定的积分并给出数据结果及误差分析。 三、实验内容: 1.分别用复合梯形求积公式及复合辛普森求积公式计算积分xdx x ln 10 ? , 要求计算精度达到410-,给出计算结果并比较两种方法的计算节点数. 2.用龙贝格求积方法计算积分dx x x ?+3 021,使误差不超过510-. 3.用3=n 的高斯-勒让德公式计算积分?3 1 sin x e x ,给出计算结果. 4.用辛普森公式(取2==M N ) 计算二重积分.5 .00 5 .00 dydx e x y ? ? - 四、实验结果: 1.(1)复合梯形法: 将区间[a,b]划分为n 等份,分点n k n a b h kh a x k ,2,1,0,,=-=+=在每个区间[1,+k k x x ](k=0,1,2,···n-1)上采用梯形公式,则得 )()]()([2)()(1 11 1 f R x f x f h dx x f dx x f I n n k k k b a n k x x k k ++===∑?∑? -=+-=+ 故)]()(2)([21 1 b f x f a f h T n k k n ++=∑-=称为复合梯形公式 计算步长和划分的区间 Eps=1E-4 h1=sqrt(Eps/abs(-(1-0)/12*1/(2+1))) h1 =0.0600 N1=ceil(1/h1) N1 =17 用复合梯形需要计算17个结点。 复合梯形: function T=trap(f,a,b,n) h=(b-a)/n;

插值与拟合实验报告

学生实验报告

了解插值与拟合的基本原理和方法;掌握用MATLAB计算插值与作最小二乘多项式拟合和曲线拟合的方法;通过范例展现求解实际问题的初步建模过程; 通过动手作实验学习如何用插值与拟合方法解决实际问题,提高探索和解决问题的能力。这对于学生深入理解数学概念,掌握数学的思维方法,熟悉处理大量的工程计算问题的方法具有十分重要的意义。 二、实验仪器、设备或软件:电脑,MATLAB软件 三、实验内容 1.编写插值方法的函数M文件; 2.用MATLAB中的函数作函数的拟合图形; 3.针对实际问题,试建立数学模型,并求解。 四、实验步骤 1.开启软件平台——MATLAB,开启MATLAB编辑窗口; 2.根据各种数值解法步骤编写M文件; 3.保存文件并运行; 4.观察运行结果(数值或图形); 5.写出实验报告,并浅谈学习心得体会。 五、实验要求与任务 根据实验内容和步骤,完成以下具体实验,要求写出实验报告(实验目的→问题→数学模型→算法与编程→计算结果→分析、检验和结论→心得体会)。 1.天文学家在1914年8月的7次观测中,测得地球与金星之间距离(单位:米),并取得常用对数值,与日期的一组历史数据如下表: 由此推断何时金星与地球的距离(米)的对数值为9.93518? 解:输入命令

days=[18 20 22 24 26 28 30]; distancelogs=[9.96177 9.95436 9.94681 9.93910 9.93122 9.92319 9.91499]; t1=interp1(distancelogs,days,9.93518) %线性插值 t2=interp1(distancelogs,days,9.93518,'nearest') %最近邻点插值 t3=interp1(distancelogs,days,9.93518,'spline') %三次样条插值 t4=interp1(distancelogs,days,9.93518,'cubic') %三次插值 计算结果: t1 = 24.9949 t2 = 24 t3 = 25.0000 t4 =

计算方法上机实验报告

《计算方法》上机实验报告 班级:XXXXXX 小组成员:XXXXXXX XXXXXXX XXXXXXX XXXXXXX 任课教师:XXX 二〇一八年五月二十五日

前言 通过进行多次的上机实验,我们结合课本上的内容以及老师对我们的指导,能够较为熟练地掌握Newton 迭代法、Jacobi 迭代法、Gauss-Seidel 迭代法、Newton 插值法、Lagrange 插值法和Gauss 求积公式等六种算法的原理和使用方法,并参考课本例题进行了MATLAB 程序的编写。 以下为本次上机实验报告,按照实验内容共分为六部分。 实验一: 一、实验名称及题目: Newton 迭代法 例2.7(P38):应用Newton 迭代法求 在 附近的数值解 ,并使其满足 . 二、解题思路: 设'x 是0)(=x f 的根,选取0x 作为'x 初始近似值,过点())(,00x f x 做曲线)(x f y =的切线L ,L 的方程为))((')(000x x x f x f y -+=,求出L 与x 轴交点的横坐标) (') (0001x f x f x x - =,称1x 为'x 的一次近似值,过点))(,(11x f x 做曲线)(x f y =的切线,求该切线与x 轴的横坐标) (') (1112x f x f x x - =称2x 为'x

的二次近似值,重复以上过程,得'x 的近似值序列{}n x ,把 ) (') (1n n n n x f x f x x - =+称为'x 的1+n 次近似值,这种求解方法就是牛顿迭代法。 三、Matlab 程序代码: function newton_iteration(x0,tol) syms z %定义自变量 format long %定义精度 f=z*z*z-z-1; f1=diff(f);%求导 y=subs(f,z,x0); y1=subs(f1,z,x0);%向函数中代值 x1=x0-y/y1; k=1; while abs(x1-x0)>=tol x0=x1; y=subs(f,z,x0); y1=subs(f1,z,x0); x1=x0-y/y1;k=k+1; end x=double(x1) K 四、运行结果: 实验二:

太原理工大学数值计算方法实验报告

本科实验报告 课程名称:计算机数值方法 实验项目:方程求根、线性方程组的直接解 法、线性方程组的迭代解法、代数插值和最 小二乘拟合多项式 实验地点:行勉楼 专业班级: ******** 学号: ********* 学生姓名: ******** 指导教师:李誌,崔冬华 2016年 4 月 8 日

y = x*x*x + 4 * x*x - 10; return y; } float Calculate(float a,float b) { c = (a + b) / 2; n++; if (GetY(c) == 0 || ((b - a) / 2) < 0.000005) { cout << c <<"为方程的解"<< endl; return 0; } if (GetY(a)*GetY(c) < 0) { return Calculate(a,c); } if (GetY(c)*GetY(b)< 0) { return Calculate(c,b); } } }; int main() { cout << "方程组为:f(x)=x^3+4x^2-10=0" << endl; float a, b; Text text; text.Getab(); a = text.a; b = text.b; text.Calculate(a, b); return 0; } 2.割线法: // 方程求根(割线法).cpp : 定义控制台应用程序的入口点。// #include "stdafx.h" #include"iostream"

心得体会 使用不同的方法,可以不同程度的求得方程的解,通过二分法计算的程序实现更加了解二分法的特点,二分法过程简单,程序容易实现,但该方法收敛比较慢一般用于求根的初始近似值,不同的方法速度不同。面对一个复杂的问题,要学会简化处理步骤,分步骤一点一点的循序处理,只有这样,才能高效的解决一个复杂问题。

插值法和拟合实验报告(数值计算)

插值法和拟合实验报告 一、 实验目的 1.通过进行不同类型的插值,比较各种插值的效果,明确各种插值的优越性; 2.通过比较不同次数的多项式拟合效果,了解多项式拟合的原理; 3.利用matlab 编程,学会matlab 命令; 4.掌握拉格朗日插值法; 5.掌握多项式拟合的特点和方法。 二、 实验题目 1.、插值法实验 将区间[-5,5]10等分,对下列函数分别计算插值节点 k x 的值,进行不同类型 的插值,作出插值函数的图形并与)(x f y =的图形进行比较: ;11)(2x x f += ;a r c t a n )(x x f = .1)(42 x x x f += (1) 做拉格朗日插值; (2) 做分段线性插值; (3) 做三次样条插值. 2、拟合实验 给定数据点如下表所示: 分别对上述数据作三次多项式和五次多项式拟合,并求平方误差,作出离散函数 ),(i i y x 和拟合函数的图形。 三、 实验原理 1.、插值法实验

∏∑∏∏∏∑∑≠==≠=≠=≠=+-==--= =-= ==-=-=----==++==j i j j i i i i i n i i n n j i j j n j i j j i i n j i j j n i i i n i i n n n o i n i i n x x x x x y x l x L x x c n i x x c x x x c x x x x x x x x c y x l x L y x l y x l y x l x L ,00 ,0,0,01100 00 )(l )()() (1 ,1,0, 1)()(l ) ()())(()()()()()()()(, 故, 得 再由,设 2、拟合实验

c 计算器实验报告

简单计算器 姓名: 周吉祥 实验目的:模仿日常生活中所用的计算器,自行设计一个简单的计算器程序,实现简单的计算功能。 实验内容: (1)体系设计: 程序是一个简单的计算器,能正确输入数据,能实现加、减、乘、除等算术运算,运算结果能正确显示,可以清楚数据等。 (2)设计思路: 1)先在Visual C++ 6.0中建立一个MFC工程文件,名为 calculator. 2)在对话框中添加适当的编辑框、按钮、静态文件、复选框和单 选框 3)设计按钮,并修改其相应的ID与Caption. 4)选择和设置各控件的单击鼠标事件。 5)为编辑框添加double类型的关联变量m_edit1. 6)在calculatorDlg.h中添加math.h头文件,然后添加public成 员。 7)打开calculatorDlg.cpp文件,在构造函数中,进行成员初始 化和完善各控件的响应函数代码。 (3)程序清单:

●添加的public成员: double tempvalue; //存储中间变量 double result; //存储显示结果的值 int sort; //判断后面是何种运算:1.加法2.减法3. 乘法 4.除法 int append; //判断后面是否添加数字 ●成员初始化: CCalculatorDlg::CCalculatorDlg(CWnd* pParent /*=NULL*/) : CDialog(CCalculatorDlg::IDD, pParent) { //{{AFX_DATA_INIT(CCalculatorDlg) m_edit1 = 0.0; //}}AFX_DATA_INIT // Note that LoadIcon does not require a subsequent DestroyIcon in Win32 m_hIcon = AfxGetApp()->LoadIcon(IDR_MAINFRAME); tempvalue=0; result=0; sort=0; append=0; }

数值分析实验插值与拟合

《数值分析》课程实验一:插值与拟合 一、实验目的 1. 理解插值的基本原理,掌握多项式插值的概念、存在唯一性; 2. 编写MA TLAB 程序实现Lagrange 插值和Newton 插值,验证Runge 现象; 3. 通过比较不同次数的多项式拟合效果,理解多项式拟合的基本原理; 4. 编写MA TLAB 程序实现最小二乘多项式曲线拟合。 二、实验内容 1. 用Lagrange 插值和Newton 插值找经过点(-3, -1), (0, 2), (3, -2), (6, 10)的三次插值公式,并编写MATLAB 程序绘制出三次插值公式的图形。 2. 设 ]5,5[,11 )(2 -∈+= x x x f 如果用等距节点x i = -5 + 10i /n (i = 0, 1, 2, …, n )上的Lagrange 插值多项式L n (x )去逼近它。不妨取n = 5和n = 10,编写MATLAB 程序绘制出L 5(x )和L 10(x )的图像。 (2) 编写MA TLAB 程序绘制出曲线拟合图。 三、实验步骤 1. (1) Lagrange 插值法:在线性空间P n 中找到满足条件: ?? ?≠===j i j i x l ij j i , 0,, 1)(δ 的一组基函数{}n i i x l 0)(=,l i (x )的表达式为 ∏ ≠==--= n i j j j i j i n i x x x x x l ,0),,1,0()( 有了基函数{}n i i x l 0)(=,n 次插值多项式就可表示为 ∑==n i i i n x l y x L 0 )()( (2) Newton 插值法:设x 0, x 1, …, x n 是一组互异的节点,y i = f (x i ) (i = 0, 1, 2, …, n ),f (x )在处的n 阶差商定义为

计算方法第二章方程求根上机报告

实验报告名称 班级:学号:姓名:成绩: 1实验目的 1)通过对二分法与牛顿迭代法作编程练习与上级运算,进一步体会二分法与牛顿迭代法的不同特点。 2)编写割线迭代法的程序,求非线性迭代法的解,并与牛顿迭代法。 2 实验内容 用牛顿法和割线法求下列方程的根 x^2-e^x=0; x*e^x-1=0; lgx+x-2=0; 3实验步骤 1)根据二分法和牛顿迭代法,割线法的算法编写相应的求根函数; 2)将题中所给参数带入二分法函数,确定大致区间; 3)用牛顿迭代法和割线法分别对方程进行求解; 3 程序设计 牛顿迭代法x0=1.0; N=100; k=0; eps=5e-6; delta=1e-6; while(1) x1=x0-fc1(x0)/fc2(x0); k=k+1; if k>N disp('Newmethod failed')

break end if(abs(x1-x0)=delta) c=x1; x1=cutnext(x0,x1); x0=c; %x0 x1μYí?μ?μ?x1 x2 è?è?±£′??úx0 x1 end k=k+1; if k>N disp('Cutline method failed') break; end if(abs(x1-x0)

计算方法实验报告格式

计算方法实验报告格式 小组名称: 组长姓名(班号): 小组成员姓名(班号): 按贡献排序情况: 指导教师评语: 小组所得分数: 一个完整的实验,应包括数据准备、理论基础、实验内容及方法,最终对实验结果进行分析,以达到对理论知识的感性认识,进一步加深对相关算法的理解,数值实验以实验报告形式完成,实验报告格式如下: 一、实验名称 实验者可根据报告形式需要适当写出. 二、实验目的及要求 首先要求做实验者明确,为什么要做某个实验,实验目的是什么,做完该实验应达到什么结果,在实验过程中的注意事项,实验方法对结果的影响也可以以实验目的的形式列出. 三、算法描述(实验原理与基础理论) 数值实验本身就是为了加深对基础理论及方法的理解而设置的,所以要求将实验涉及到的理论基础,算法原理详尽列出. 四、实验内容 实验内容主要包括实验的实施方案、步骤、实验数据准备、实验的算法以及可能用到的仪器设备. 五、程序流程图 画出程序实现过程的流程图,以便更好的对程序执行的过程有清楚的认识,在程序调试过程中更容易发现问题. 六、实验结果 实验结果应包括实验的原始数据、中间结果及实验的最终结果,复杂的结果可以用表格

形式列出,较为简单的结果可以与实验结果分析合并出现. 七、实验结果分析 实验结果分析包括对对算法的理解与分析、改进与建议. 数值实验报告范例 为了更好地做好数值实验并写出规范的数值实验报告,下面给出一简单范例供读者参考. 数值实验报告 小组名称: 小组成员(班号): 按贡献排序情况: 指导教师评语: 小组所得分数: 一、实验名称 误差传播与算法稳定性. 二、实验目的 1.理解数值计算稳定性的概念. 2.了解数值计算方法的必要性. 3.体会数值计算的收敛性与收敛速度. 三、实验内容 计算dx x x I n n ? += 1 10 ,1,2,,10n = . 四、算法描述 由 dx x x I n n ? += 1 10 ,知 dx x x I n n ?+=--101110,则

数值分析拉格朗日插值法上机实验报告

课题一:拉格朗日插值法 1.实验目的 1.学习和掌握拉格朗日插值多项式。 2.运用拉格朗日插值多项式进行计算。 2.实验过程 作出插值点(1.00,0.00),(-1.00,-3.00),(2.00,4.00)二、算法步骤 已知:某些点的坐标以及点数。 输入:条件点数以及这些点的坐标。 输出:根据给定的点求出其对应的拉格朗日插值多项式的值。 3.程序流程: (1)输入已知点的个数; (2)分别输入已知点的X坐标; (3)分别输入已知点的Y坐标; 程序如下: #include #include #include float lagrange(float *x,float *y,float xx,int n) /*拉格朗日

插值算法*/ { int i,j; float *a,yy=0.0; /*a作为临时变量,记录拉格朗日插值多项*/ a=(float*)malloc(n*sizeof(float)); for(i=0;i<=n-1;i++) { a[i]=y[i]; for(j=0;j<=n-1;j++) if(j!=i) a[i]*=(xx-x[j])/(x[i]-x[j]); yy+=a[i]; } free(a); return yy; } int main() { int i; int n; float x[20],y[20],xx,yy; printf("Input n:");

scanf("%d",&n); if(n<=0) { printf("Error! The value of n must in (0,20)."); getch();return 1; } for(i=0;i<=n-1;i++) { printf("x[%d]:",i); scanf("%f",&x[i]); } printf("\n"); for(i=0;i<=n-1;i++) { printf("y[%d]:",i);scanf("%f",&y[i]); } printf("\n"); printf("Input xx:"); scanf("%f",&xx); yy=lagrange(x,y,xx,n); printf("x=%f,y=%f\n",xx,yy); getch(); } 举例如下:已知当x=1,-1,2时f(x)=0,-3,4,求f(1.5)的值。

数值分析上机实验报告

数值分析上机实验报告

《数值分析》上机实验报告 1.用Newton 法求方程 X 7-X 4+14=0 在(0.1,1.9)中的近似根(初始近似值取为区间端点,迭代6次或误差小于0.00001)。 1.1 理论依据: 设函数在有限区间[a ,b]上二阶导数存在,且满足条件 {}α?上的惟一解在区间平方收敛于方程所生的迭代序列 迭代过程由则对任意初始近似值达到的一个中使是其中上不变号 在区间],[0)(3,2,1,0,) (') ()(],,[x |))(),((|,|,)(||)(|.4;0)(.3],[)(.20 )()(.110......b a x f x k x f x f x x x Newton b a b f a f mir b a c x f a b c f x f b a x f b f x f k k k k k k ==- ==∈≤-≠>+ 令 )9.1()9.1(0)8(4233642)(0)16(71127)(0)9.1(,0)1.0(,1428)(3 2 2 5 333647>?''<-=-=''<-=-='<>+-=f f x x x x x f x x x x x f f f x x x f 故以1.9为起点 ?? ?? ? ='- =+9.1)()(01x x f x f x x k k k k 如此一次一次的迭代,逼近x 的真实根。当前后两个的差<=ε时,就认为求出了近似的根。本程序用Newton 法求代数方程(最高次数不大于10)在(a,b )区间的根。

1.2 C语言程序原代码: #include #include main() {double x2,f,f1; double x1=1.9; //取初值为1.9 do {x2=x1; f=pow(x2,7)-28*pow(x2,4)+14; f1=7*pow(x2,6)-4*28*pow(x2,3); x1=x2-f/f1;} while(fabs(x1-x2)>=0.00001||x1<0.1); //限制循环次数printf("计算结果:x=%f\n",x1);} 1.3 运行结果: 1.4 MATLAB上机程序 function y=Newton(f,df,x0,eps,M) d=0; for k=1:M if feval(df,x0)==0 d=2;break else x1=x0-feval(f,x0)/feval(df,x0); end e=abs(x1-x0); x0=x1; if e<=eps&&abs(feval(f,x1))<=eps d=1;break end end

插值与拟合实验报告

一、给定函数y=sinx的函数表如下表,用拉格朗日插值求sin0.57891的近似 值 M文件: function yh=lagrange2(x0,y0,xh) n = length(x0); m = length(xh); yh=zeros(1,m); for k = 1:m for i = 1:n xp = x0([1:i-1 i+1:n]); yp = prod((xh(k)-xp)./(x0(i)-xp)); yh(k) = yh(k) + yp*y0(i); end end 执行:>> x0=[0.4,0.5,0.6,0.7] x0 = 0.4000 0.5000 0.6000 0.7000 >> y0=[0.38942,0.47943,0.56464,0.64422] y0 = 0.3894 0.4794 0.5646 0.6442 >> lagrange2(x0,y0,0.57891) 执行结果: ans = 0.5471

二、 1. 给定sin110.190809,sin120.207912,sin130.224951,o o o ===构造牛顿 插值函数计算'sin1130o 。 M 文件: function fp = newpoly(x,y,p) n = length(x); a(1) = y(1); for k = 1 : n - 1 d(k, 1) = (y(k+1) - y(k))/(x(k+1) - x(k)); end for j = 2 : n - 1 for k = 1 : n - j d(k, j) = (d(k+1, j - 1) - d(k, j - 1))/(x(k+j) - x(k)); end end d for j = 2 : n a(j) = d(1, j-1); end Df(1) = 1; c(1) = a(1); for j = 2 : n Df(j)=(p - x(j-1)) .* Df(j-1); c(j) = a(j) .* Df(j);

插值法实验报告

实验二插值法 1、实验目的: 1、掌握直接利用拉格郎日插值多项式计算函数在已知点的函数值;观察拉格郎日插值的龙格现象。 2、了解Hermite插值法、三次样条插值法原理,结合计算公式,确定函数值。 2、实验要求: 1)认真分析题目的条件和要求,复习相关的理论知识,选择适当的解决方案和算法; 2)编写上机实验程序,作好上机前的准备工作; 3)上机调试程序,并试算各种方案,记录计算的结果(包括必要的中间结果); 4)分析和解释计算结果; 5)按照要求书写实验报告; 3、实验内容: 1) 用拉格郎日插值公式确定函数值;对函数f(x)进行拉格郎日插值,并对f(x)与插值多项式的曲线作比较。 已知函数表:(0.56160,0.82741)、(0.56280,0.82659)、(0.56401,0.82577)、(0.56521,0.82495)用三次拉格朗日插值多项式求x=0.5635时函数近似值。 2) 求满足插值条件的插值多项式及余项 1) 4、题目:插值法 5、原理: 拉格郎日插值原理: n次拉格朗日插值多项式为:L n (x)=y l (x)+y 1 l 1 (x)+y 2 l 2 (x)+…+y n l n (x)

n=1时,称为线性插值, L 1(x)=y (x-x 1 )/(x -x 1 )+y 1 (x-x )/(x 1 -x )=y +(y 1 -x )(x-x )/(x 1 -x ) n=2时,称为二次插值或抛物线插值, L 2(x)=y (x-x 1 )(x-x 2 )/(x -x 1 )/(x -x 2 )+y 1 (x-x )(x-x 2 )/(x 1 -x )/(x 1 -x 2 )+y 2 (x -x 0)(x-x 1 )/(x 2 -x )/(x 2 -x 1 ) n=i时, Li= (X-X0)……(X-X i-1)(x-x i+1) ……(x-x n) (X-X0)……(X-X i-1)(x-x i+1) ……(x-x n) 6、设计思想: 拉格朗日插值法是根据n + 1个点x0, x1, ... x n(x0 < x1 < ... x n)的函数值f (x0), f (x1) , ... , f (x n)推出n次多項式p(x),然后n次多項式p (x)求出任意的点x对应的函数值f (x)的算法。 7、对应程序: 1 ) 三次拉格朗日插值多项式求x=0.5635时函数近似值 #include"stdio.h" #define n 5 void main() { int i,j; float x[n],y[n]; float x1; float a=1; float b=1; float lx=0; printf("\n请输入想要求解的X:\n x="); scanf("%f",&x1); printf("请输入所有点的横纵坐标:\n"); for(i=1;i

计算方法上机实习题大作业(实验报告).

计算方法实验报告 班级: 学号: 姓名: 成绩: 1 舍入误差及稳定性 一、实验目的 (1)通过上机编程,复习巩固以前所学程序设计语言及上机操作指令; (2)通过上机计算,了解舍入误差所引起的数值不稳定性 二、实验内容 1、用两种不同的顺序计算10000 21n n -=∑,分析其误差的变化 2、已知连分数() 1 01223//(.../)n n a f b b a b a a b =+ +++,利用下面的算法计算f : 1 1 ,i n n i i i a d b d b d ++==+ (1,2,...,0 i n n =-- 0f d = 写一程序,读入011,,,...,,,...,,n n n b b b a a 计算并打印f 3、给出一个有效的算法和一个无效的算法计算积分 1 041 n n x y dx x =+? (0,1,...,1 n = 4、设2 2 11N N j S j == -∑ ,已知其精确值为1311221N N ?? -- ?+?? (1)编制按从大到小的顺序计算N S 的程序 (2)编制按从小到大的顺序计算N S 的程序 (3)按两种顺序分别计算10001000030000,,,S S S 并指出有效位数 三、实验步骤、程序设计、实验结果及分析 1、用两种不同的顺序计算10000 2 1n n -=∑,分析其误差的变化 (1)实验步骤: 分别从1~10000和从10000~1两种顺序进行计算,应包含的头文件有stdio.h 和math.h (2)程序设计: a.顺序计算

#include #include void main() { double sum=0; int n=1; while(1) { sum=sum+(1/pow(n,2)); if(n%1000==0)printf("sun[%d]=%-30f",n,sum); if(n>=10000)break; n++; } printf("sum[%d]=%f\n",n,sum); } b.逆序计算 #include #include void main() { double sum=0; int n=10000; while(1) { sum=sum+(1/pow(n,2)); if(n%1000==0) printf("sum[%d]=%-30f",n,sum); if(n<=1)break; n--; } printf("sum[%d]=%f\n",n,sum); } (3)实验结果及分析: 程序运行结果: a.顺序计算

计算方法实验报告 拟合

南京信息工程大学实验(实习)报告 一、实验目的: 用最小二乘法将给定的十个点拟合成三次多项式。 二、实验步骤: 用matlab编制以函数为基的多项式最小二乘拟合程序,并用于对下列数据作三次多项式最小二乘拟合(取权函数wi=1) x -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 y -2.30 -1 -0.14 -0.25 0.61 1.03 1.75 2.75 4.42 6.94 给定直线方程为:y=1/4*x3+1/2*x2+x+1 三、实验结论: 最小二乘法:通过最小化误差的平方和寻找数据的最佳函数匹配。利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。最小二乘法还可用于曲线拟合。 一般地。当测量数据的散布图无明显的规律时,习惯上取n次代数多项式。 程序运行结果为: a = 0.9731 1.1023 0.4862 0.2238 即拟合的三次方程为:y=0.9731+1.1023x+0.4862*x2+0.2238*x3

-2.5 -2-1.5-1-0.5 00.51 1.52 2.5 -4-20246 81012 x 轴 y 轴 拟合图 离散点 y=a(1)+a(2)*x+a(3)*x.2+a(4)*x.3 结论: 一般情况下,拟合函数使得所有的残差为零是不可能的。由图形可以看出最小二乘解决了残差的正负相互抵消的问题,使得拟合函数更加密合实验数据。 优点:曲线拟合是使拟合函数和一系列的离散点与观测值的偏差平方和达到最小。 缺点:由于计算方法简单,若要保证数据的精确度,需要大量的数据代入计算。

实验四 插值法与曲线拟合

计算方法实验报告 专业班级:医学信息工程一班姓名:陈小芳学号:201612203501002 实验成绩: 1.【实验题目】 插值法与曲线拟合 2.【实验目的】 3.【实验内容】 4. 【实验要求】

5. 【源程序(带注释)】 (1)拉格朗日插值 #include #include #include #include #include #define n 4 //插值节点的最大下标 main() { double x1[n+1]={0.4,0.55,0.65,0.8,0.9}; double y1[n+1]={0.4175,0.57815,0.69657,0.88811,1.02652}; double Lagrange(double x1[n+1],double y1[n+1],float t); int m,k;float x,y;float X;double z; printf("\n The number of the interpolation points is m ="); //输入插值点的个数 while(!scanf("%d",&m)) { fflush(stdin); printf("\n输入错误,请重新输入:\n"); printf("\n The number of the interpolation points is m ="); } for(k=1;k<=m;k++) { printf("\ninput X%d=",k); while(!scanf("%f",&X)) { fflush(stdin); printf("\n输入错误,请重新输入:\n"); printf("\ninput X%d=",k); } z=Lagrange(x1,y1,X); printf("P(%f)=%f\n",X,z); } getch(); return (0); } double Lagrange(double x[n+1],double y[n+1],float X) { int i,j;

数学实验-实验2 插值与拟合

广州大学学生实验报告 开课学院及实验室: 2014年 月 日 学院 数学与信息科学学院 年级、专业、班 姓名 学号 实验课程名称 数学实验 成绩 实验项目名称 实验2 插值与拟合 指导老师 一、实验目的 1、掌握用MATLAB 计算拉格朗日、分段线性、三次样条三种插值的方法,改变节点的数目,对三种插值结果进行初步分析。 2、掌握用MATLAB 作线性最小二乘拟合的方法。 3、通过实例学习如何用插值方法与拟合方法解决实际问题,注意二者的联系和区别。 二、实验设备 电脑、MATLAB 三、实验要求 1..选择一些函数,在n 个节点上(n )不要太大,如5~11)用拉格朗日,分段线性,三次样条三种插值方法,,计算m 各插值点的函数值(m 要适中,如50~100).通过数值和图形的输出,将三种插值结果与精确值进行比较.适当增加n ,再作比较,由此作初步分析.下列函数供选择参考: a. y=sin x ,0≦x ≦2π; 2.用 1 2 y x =在x=0,1,4,9,16产生5个节点15,...,P P .用不同的节点构造插值公式来计算x=5处的插值(如用 15,...,P P ;14,...,P P ;24,...,P P 等)与精确值比较进行分析。 5.对于实验1中的录像机计数器,自己实测一组数据(或利用给出的数据),确定模型2 t an bn =+中的系数a,b. 6.用电压V=10伏的电池给电容器充电,电容器上t 时刻的电压为 0()()t v t V V V e -τ =--,其中 0V 是电容器的初始 电压,τ是充电常数。试由下面一组t ,V 数据确定0V 和τ. t/s 0.5 1 2 3 4 5 7 9 V/V 6.36 6.48 7.26 8.22 8.66 8.99 9.43 9.63 8. 弹簧在力F 的作用下伸长x ,一定范围内服从胡克定律:F 与x 成正比,即F=kx,k 为弹性系数.现在得到下面一组x ,F 数据,并在(x,F )坐标下作图(图13).可以看出,当F大到一定数值(如x=9以后)后,就不服从这个定律了。试由数据拟合直线F=kx,并给出不服从胡克定律时的近似公式(曲线)。 1)要求直线与曲线在x=9处相连接。 2)要求直线与曲线在x=9处光滑连接. 四、实验程序 预备: function y=lagr1(x0,y0,x) n=length(x0);m=length(x); for i=1:m z=x(i); s=0.0; for k=1:n p=1.0; for j=1:n if j~=k p=p*(z-x0(j))/(x0(k)-x0(j)); end end s=s+p*y0(k); end y(i)=s; end 五、实验操作过程 当n=5时 clear; n=5; %在n 个节点上进行插值 m=75; %产生m 个插值点,计算函数在插值点处的精确值,将来进行对比 x=0:4/(m-1):2*pi; y=sin(x); z=0*x; x0=0:4/(n-1):2*pi; y0=sin(x0); y1=lagr1(x0,y0,x); % y1为拉格朗日插值 y2=interp1(x0,y0,x); % y2为分段线性插值 y3=spline(x0,y0,x); % y3为三次样条插值 [x' y' y1' y2' y3'] plot(x,z,'k',x,y,'r:',x,y1,'g-.',x,y2,'b',x,y3,'y--') gtext('Lagr.'), gtext('Pieces. linear'), gtext('Spline'), gtext('y=sin(x)') hold off; %比较插值所得结果与函数在插值点处的精确值 s = ' x y y1 y2 y3' [x' y' y1' y2' y3'] 结果 ans = 0 0 0 0 0 0.0541 0.0540 0.0495 0.0455 0.0611 0.1081 0.1079 0.0999 0.0910 0.1207 0.1622 0.1615 0.1510 0.1365 0.1787 0.2162 0.2145 0.2025 0.1819 0.2350 0.2703 0.2670 0.2541 0.2274 0.2896 0.3243 0.3187 0.3054 0.2729 0.3425 0.3784 0.3694 0.3563 0.3184 0.3936 0.4324 0.4191 0.4066 0.3639 0.4429 0.4865 0.4675 0.4559 0.4094 0.4904 0.5405 0.5146 0.5040 0.4548 0.5359 0.5946 0.5602 0.5508 0.5003 0.5796 0.6486 0.6041 0.5961 0.5458 0.6212 0.7027 0.6463 0.6396 0.5913 0.6609 0.7568 0.6866 0.6812 0.6368 0.6985 0.8108 0.7248 0.7208 0.6823 0.7341 0.8649 0.7610 0.7583 0.7278 0.7675

计算方法实验报告册

实验一——插值方法 实验学时:4 实验类型:设计 实验要求:必修 一 实验目的 通过本次上机实习,能够进一步加深对各种插值算法的理解;学会使用用三种类型的插值函数的数学模型、基本算法,结合相应软件(如VC/VB/Delphi/Matlab/JAVA/Turbo C )编程实现数值方法的求解。并用该软件的绘图功能来显示插值函数,使其计算结果更加直观和形象化。 二 实验内容 通过程序求出插值函数的表达式是比较麻烦的,常用的方法是描出插值曲线上尽量密集的有限个采样点,并用这有限个采样点的连线,即折线,近似插值曲线。取点越密集,所得折线就越逼近理论上的插值曲线。本实验中将所取的点的横坐标存放于动态数组[]X n 中,通过插值方法计算得到的对应纵坐标存放 于动态数组[]Y n 中。 以Visual C++.Net 2005为例。 本实验将Lagrange 插值、Newton 插值和三次样条插值实现为一个C++类CInterpolation ,并在Button 单击事件中调用该类相应函数,得出插值结果并画出图像。CInterpolation 类为 class CInterpolation { public : CInterpolation();//构造函数 CInterpolation(float *x1, float *y1, int n1);//结点横坐标、纵坐标、下标上限 ~ CInterpolation();//析构函数 ………… ………… int n, N;//结点下标上限,采样点下标上限 float *x, *y, *X;//分别存放结点横坐标、结点纵坐标、采样点横坐标 float *p_H,*p_Alpha,*p_Beta,*p_a,*p_b,*p_c,*p_d,*p_m;//样条插值用到的公有指针,分别存放 i h ,i α,i β,i a ,i b ,i c ,i d 和i m }; 其中,有参数的构造函数为 CInterpolation(float *x1, float *y1, int n1) { //动态数组x1,y1中存放结点的横、纵坐标,n1是结点下标上限(即n1+1个结点) n=n1; N=x1[n]-x1[0]; X=new float [N+1]; x=new float [n+1]; y=new float [n+1];

相关文档 最新文档