文档库 最新最全的文档下载
当前位置:文档库 › 回归预测分析---SVM神经网络

回归预测分析---SVM神经网络

回归预测分析---SVM神经网络
回归预测分析---SVM神经网络

回归预测分析---SVM神经网络

%% SVM神经网络的回归预测分析上证指数开盘指数预测

%%清空环境变量

fun cti on chapter14

tic; ----------------------------

close all ;

clear;

clc;

format compact ;

%%数据的提取和预处理

%载入测试数据上证指数(1990.12.19-2009.08.19)

%数据是一个4579*6 的double 型的矩阵,每一行表示每一天的上证指数

%6列分别表示当天上证指数的开盘指数,指数最高值,指数最低值,收盘指数易额.

load chapter14_sh.mat ;

%提取数据

[m,n] = size(sh); ts = sh(2:m,1);

tsx = sh(1:m-1,:);

%画岀原始上证指数的每日开盘数figure;

plot(ts, 'Li neWidth' ,2);

title( '上证指数的每日开盘数(1990.12.20-2009.08.19)' , 'FontSize' xlabel( '交易日天数(1990.12.19-2009.08.19)' , 'FontSize' ,12); ylabel( '开盘数','FontSize' ,12);

grid on;

%数据预处理,将原始数据进行归一化

ts = ts';

tsx = tsx';

% mapminmax 为matlab 自带的映射函数

%对ts进行归一化

[TS,TSps] = mapmi nm ax(ts,1,2);

%画岀原始上证指数的每日开盘数归一化后的图像

figure;

plot (TS, 'Li neWidth' ,2);当日交易量,当日交,12);

ti tle( '原始上证指数的每日开盘数归一化后的图像','FontSize' ,12);

xlabel( '交易日天数(1990.12.19-2009.08.19)' ,'FontSize' ,12);

ylabel( '归一化后的开盘数','FontSize' ,12);

grid on ;

%对TS进行转置,以符合libsvm 工具箱的数据格式要求

TS = TS';

% mapminmax 为matlab 自带的映射函数

%对tsx进行归一化

[TSX,TSXps] = mapmi nm ax(tsx,1,2);

%对TSX进行转置,以符合libsvm 工具箱的数据格式要求

TSX = TSX';

%%选择回归预测分析最佳的SVM参数c&g

%首先进行粗略选择:

[bestmse,bestc,bestg] = SVMcgForRegress (T S,TSX,-8,8,-8,8);

%打印粗略选择结果

disp('打印粗略选择结果’);

str = spri ntf( 'Best Cross Validatio n MSE = %g Best c = %g Best g =

%g' ,bestmse,bestc,bestg);

disp(str);

%根据粗略选择的结果图再进行精细选择:

[bestmse,bestc,bestg] = SVMcgForRegress (T S,TSX,-4,4,-4,4,3,0.5,0.5,0.05);

%打印精细选择结果

disp('打印精细选择结果’);

str = spri ntf( 'Best Cross Validatio n MSE = %g Best c = %g Best g =

%g' ,bestmse,bestc,bestg);

disp(str);

%%利用回归预测分析最佳的参数进行SVM网络训练

cmd = [ '-c ' , num2str(bestc), ' -g ' , n um2str(bestg) , ' -s 3 -p 0.01' model = svmtrai n(TS,TSX,cmd);

%% SVM网络回归预测

[predict,mse] = svmpredict(TS,TSX,model);

predict = mapm inm ax( 'reverse' ,predict',TSps);

predict = predict';

均方误差 MSE = %g 相关系数 R = %g%%' ,mse(2),mse(3)*100);

%%结果分析

figure; hold on; plot(ts, '-o'); plot(predict,

'r-A '

);

legend('原始数据',‘回归预测数据'); hold off ; title(

'原始数据和回归预测数据对比

’,‘FontSize'

,12);

xlabel( '交易日天数(1990.12.19-2009.08.19)' , 'FontSize' ,12);

ylabel( '开盘数','FontSize' ,12); grid on;

figure;

error = predict - ts'; plot(error, 'rd' ); ti tle( '误差图(predicted data - original data)' ,'FontSize'

,12);

xlabel(

'交易日天数(1990.12.19-2009.08.19)'

,'FontSize'

,12);

ylabel(

'误差量','FontSize' ,12);

grid on ;

figure;

error = (predict - ts')./ts'; plot(error, 'rd' );

title( '相对误差图 (predicted data - original data)/original data' , 'FontSize'

,12);

xlabel( '交易日天数(1990.12.19-2009.08.19)' , 'FontSize'

,12);

ylabel( '相对误差量','FontSize' ,12); grid on; snapnow; toc;

%% 子函数 SVMcgForRegress.m fun cti on

[mse,bestc,bestg]=

SVMcgForRegress(train 」abel,trai n,cmi n,cmax,gmi n,gmax,v,cstep,gstep,mse step) %SVMcg cross validati on by faruto %

%打印回归结果 str = spri ntf( disp(str);

% about the parameters of SVMcg

if n arg in < 10

msestep = 0.06;

end

if n argi n < 8

cstep = 0.8;

gstep = 0.8;

end

if n argi n < 7

v = 5;

end

if n argi n < 5

gmax = 8;

gmin = -8;

end

if n argi n < 3

cmax = 8;

cmin = -8;

end

% X:c Y:g cg:acc

[X,Y] = meshgrid(cmi n:cstep:cmax,gmi n:gstep:gmax);

[m, n] = size(X);

cg = zeros( m,n);

eps = 10A(-4);

bestc = 0;

bestg = 0;

mse = Inf;

base num = 2;

for i = 1:m

for j = 1:n

cmd = [ '-v ' ,n um2str(v), ' -c ' ,n um2str( base numAX(i,j) ), ' -g ',num2str( basenumAY(i,j) ), ' -s 3 -p 0.1' ];

cg(i,j) = svmtrai n(train_label, trai n, cmd);

if cg(i,j) < mse

mse = cg(i,j);

bestc = base numAX(i,j);

bestg = base numWj); end if abs( cg(i,j)-mse )<=eps && bestc > base numAX(i,j) mse = cg(i,j);

bestc = base numWj); bestg = base numWj); end end end

% to draw the acc with differe nt c & g [cg,ps] = mapmi nm ax(cg,0,1); figure;

[C,h] = con tour(X ,丫, cg,0:msestep:0.5); clabel(C,h, 'FontSize'

,10, 'Color'

, 'r' );

xlabel(

'log2c'

,'FontSize'

,12);

ylabel( 'log2g' ,'FontSize' ,12);

firstl ine =

'SVR 参数选择结果图(等高线图 )[GridSearchMethod]' sec on dli ne

=[ 'Best c=' ,n um2str(bestc),

'g=' ,n

um2str(bestg),

CVmse=' ,n um2str(mse)];

title({firstl in e;secon dli ne}, grid on; figure;

meshc(X ,丫, cg); % mesh(X ,丫, cg); % surf(X ,丫, cg);

axis([cmi n,cmax,gmi n,gmax,0,1]); xlabel( 'log2c' , 'FontSize' ,12); ylabel( 'log2g'

, 'FontSize'

,12); zlabel( 'MSE' , 'FontSize' ,12);

'SVR 参数选择结果图(3D 视图)[GridSearchMethod]'

CVmse='

,n um2str(mse)];

sec on dli ne =[ 'Best c=' ,n um2str(bestc), g=' ,n um2str(bestg), title({firstl in e;sec on dli ne},

'Fon tsize'

,12);

'Fo ntsize'

,12);

firstl ine =

基于Bp神经网络的股票预测

基于B p神经网络的股 票预测 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

基于神经网络的股票预测 【摘要】: 股票分析和预测是一个复杂的研究领域,本论文将股票技术分析理论与人工神经网络相结合,针对股票市场这一非线性系统,运用BP神经网络,研究基于历史数据分析的股票预测模型,同时,对单只股票短期收盘价格的预测进行深入的理论分析和实证研究。本文探讨了BP神经网络的模型与结构、BP算法的学习规则、权值和阈值等,构建了基于BP神经网络的股票短期预测模型,研究了神经网络的模式、泛化能力等问题。并且,利用搭建起的BP神经网络预测模型,采用多输入单输出、单隐含层的系统,用前五天的价格来预测第六天的价格。对于网络的训练,选用学习率可变的动量BP算法,同时,对网络结构进行了隐含层节点的优化,多次尝试,确定最为合理、可行的隐含层节点数,从而有效地解决了神经网络隐含层节点的选取问题。 【abstract] ,,makingin-depththeoreticalanalysisandempiricalstudiesontheshort-termclosingpriceforecastsofsinglestock. Secondly,makingresearchonthemodelandstructureofBPneuralnetwork, learningrules,weightsofBPalgorithmandsoon,buildingastockshort-termforecastingmodelbasedontheBPneuralnetwork,,usingsystemofmultiple-inputsingle-outputandsinglehiddenlayer,,. 【关键词】BP神经网络股票预测分析 1.引言 股票市场是一个不稳定的非线性动态变化的复杂系统,股价的变动受众多因素的影响。影响股价的因素可简单地分为两类,一类是公司基本面的因素,另一类是股票技术面的因

(完整word版)支持向量机(SVM)原理及应用概述分析

支持向量机(SVM )原理及应用 一、SVM 的产生与发展 自1995年Vapnik (瓦普尼克)在统计学习理论的基础上提出SVM 作为模式识别的新方法之后,SVM 一直倍受关注。同年,Vapnik 和Cortes 提出软间隔(soft margin)SVM ,通过引进松弛变量i ξ度量数据i x 的误分类(分类出现错误时i ξ大于0),同时在目标函数中增加一个分量用来惩罚非零松弛变量(即代价函数),SVM 的寻优过程即是大的分隔间距和小的误差补偿之间的平衡过程;1996年,Vapnik 等人又提出支持向量回归 (Support Vector Regression ,SVR)的方法用于解决拟合问题。SVR 同SVM 的出发点都是寻找最优超平面(注:一维空间为点;二维空间为线;三维空间为面;高维空间为超平面。),但SVR 的目的不是找到两种数据的分割平面,而是找到能准确预测数据分布的平面,两者最终都转换为最优化问题的求解;1998年,Weston 等人根据SVM 原理提出了用于解决多类分类的SVM 方法(Multi-Class Support Vector Machines ,Multi-SVM),通过将多类分类转化成二类分类,将SVM 应用于多分类问题的判断:此外,在SVM 算法的基本框架下,研究者针对不同的方面提出了很多相关的改进算法。例如,Suykens 提出的最小二乘支持向量机 (Least Square Support Vector Machine ,LS —SVM)算法,Joachims 等人提出的SVM-1ight ,张学工提出的中心支持向量机 (Central Support Vector Machine ,CSVM),Scholkoph 和Smola 基于二次规划提出的v-SVM 等。此后,台湾大学林智仁(Lin Chih-Jen)教授等对SVM 的典型应用进行总结,并设计开发出较为完善的SVM 工具包,也就是LIBSVM(A Library for Support Vector Machines)。LIBSVM 是一个通用的SVM 软件包,可以解决分类、回归以及分布估计等问题。 二、支持向量机原理 SVM 方法是20世纪90年代初Vapnik 等人根据统计学习理论提出的一种新的机器学习方法,它以结构风险最小化原则为理论基础,通过适当地选择函数子集及该子集中的判别函数,使学习机器的实际风险达到最小,保证了通过有限训练样本得到的小误差分类器,对独立测试集的测试误差仍然较小。 支持向量机的基本思想:首先,在线性可分情况下,在原空间寻找两类样本的最优分类超平面。在线性不可分的情况下,加入了松弛变量进行分析,通过使用非线性映射将低维输

基于人工神经网络的通信信号分类识别

基于人工神经网络的通信信号分类识别 冯 涛 (中国电子科技集团公司第54研究所,河北石家庄050081) 摘 要 通信信号的分类识别是一种典型的统计模式识别问题。系统地论述了通信信号特征选择、特征提取和分类识别的原理和方法。设计了人工神经网络分类器,包括神经网络模型的选择、分类器的输入输出表示、神经网络拓扑结构和训练算法,并提出了分层结构的神经网络分类器。 关键词 模式识别;特征提取;分类器;神经网中图分类号 TP391 文献标识码 A Classification and Identification of Communication Signal Using Artificial Neural Networks FE NG Tao (T he 54th Research Institute of CETC,Shijia zhuan g Hebei 050081,China) Abstract The classification and identificati on of communication signal is a typical statistical pattern identification.The paper discusses the theory and method of feature selection,feature extraction and classi fication &identificaiton of communication signal.A classifier based on artificial neural networks is designed,includin g the selection of neural network model,the input and output expression of the classifier,neural network topology and trainin g algorithm.Finally a hierarchical archi tecture classifier based on artificial neural networks is presented. Key words pattern recognition;features extraction;classifier;neural networks 收稿日期:2005-12-16 0 引言 在通信对抗侦察中,侦察接收设备在截获敌方通信信号后,必须经过对信号的特征提取和对信号特征的分析识别,才能变为有价值的通信对抗情报。通过对信号特征的分析识别,可以得到信号种类、通信体制、网路组成等方面的情报,从而为研究通信对抗策略、研制和发展通信对抗装备提供重要参考依据。 1 通信信号分类识别的原理 通信信号的分类识别是一种典型的模式识别应用,其作用和目的就是将某一接收到的信号正确地归入某一种类型中。一般过程如图1 所示。 图1 通信信号分类识别的一般过程 下面简单介绍这几部分的作用。 信号获取:接收来自天线的信号x (t),并对信号进行变频、放大和滤波,输出一个中频信号; A/D 变换:将中频模拟信号变换为计算机可以运算的数字信号x (n); 以上2步是信号空间x (t)到观察空间x (n )的变换映射。 特征提取:为了有效地实现分类识别,必须对原始数据进行变换,得到最能反映分类差别的特征。这些特征的选择和提取是非常重要的,因为它强烈地影响着分类器的设计和性能。理想情况下,经过特征提取得到的特征向量对不同信号类型应该有明显的差别; 分类器设计和分类决策:分类问题是根据识别对象特征的观察值将其分到某个类别中去。首先,在样本训练集基础上确定合适的规则和分类器结构,然后,学习训练得到分类器参数。最后进行分类决策,把待识别信号从特征空间映射到决策空间。 2 通信信号特征参数的选择与特征提取 2 1 通信信号特征参数的选择 选择好的特征参数可以提高低信噪比下的正确 识别率,降低分类器设计的难度,是基于统计模式识别方法最为关键的一个环节。试图根据有限的信号 信号与信息处理 24 2006Radio Engineering Vo1 36No 6

人工神经网络及其在医学影像分析中的应用解析

人工神经网络及其在医学影像分析中的应用 作者:雷元义1陈海东2 摘要:人工神经网络(ANN)是在结构上模仿生物神经联结型系统,能够设计来进行模式分析,信号处理等工作。为了使医学生和医务工作者能对神经网络,特别是人工神经网络及其在医学图像和信号检测与分析中的应用有个全面了解,本文避免了繁琐的数学分析与推导,以阐明物理概念为主,深入浅出地就有关问题加以阐述,期望有所裨益。 关键词:人工神经网络;产生;原理;特点;应用 Application of man- made neural network and medical Image to analyses Abstract: Man- made neural network (ANN)is a binding system on structure to imitate biological neural to link. It can carry on pattern discriminate, Signal processing et. in order to let the me dical students and workers understand the neural network, esp ecially understand the man- made neural network which applies to the medical image to a nalyses, the article avoids complicated figure’s analysis and reasoning. It explains the concerned profound questions, mai nly about the physical concept. In simple terms. I hope it can work ! Key words: Man- made neural network; Produce; Principle; Characteristic; Applic ation 人工神经的出现与发展,从而解决了对于那些利用其它信号处理技术无法解决的问题,已成为信号处理的强有力的工具,人工神经网络的应用开辟了新的领域。二十世纪九十年代初,神经网络的研究在国际上曾经出现一股热潮,近年来有增无减,已广泛应用在民用、军用、医学生物等各个领域。 1 神经网络与人工神经网络 1.1 神经网络 神经网络就是由多个非常简单的处理单元彼此按某种方式相互连接而成的计算机系统。该系统是靠其状态对外部输入信息的动态响应来处理信息。 1.2 人工神经网络 1.2.1 神经元模型的产生 神经元(神经细胞)是神经系统的基本构造单位,是处理人体内各部分之间相互信息传递的基本单元。每个神经元都由一个简单处理作用的细胞体,一个连接其它神经元的轴突和一些向外伸出的其它较短分支——树突组成。人的大脑正是拥有约个神经元这个庞大的信息处理体系,来完成极其复杂的分析和推导工作。 人工神经网络(ARTIFICIALNEURALNETWORK,简称(A.N.N.)就是在对

基于BP神经网络预测模型指南

基于BP神经网络的国际黄金价格预测模型 公文易文秘资源网顾孟钧张志和陈友2009-1-2 13:35:26我要投稿添加到百度搜藏 [摘要] 为了寻找国际黄金价格与道琼斯工业指数、美国消费者指数,国际黄金储备等因素之间的内在关系,本文对1972年~2006年间的各项数据首先进行归一化处理,利用MATLAB神经网络工具箱进行模拟训练,建立了基于BP神经网络的国际黄金价格预测模型 [摘要] 为了寻找国际黄金价格与道琼斯工业指数、美国消费者指数,国际黄金储备等因素之间的内在关系,本文对1972年~2006年间的各项数据首先进行归一化处理,利用MATLAB神经网络工具箱进行模拟训练,建立了基于BP神经网络的国际黄金价格预测模型。 [关键词] MATLAB BP神经网络预测模型数据归一化 一、引言 自20世纪70年代初以来的30多年里,世界黄金价格出现了令人瞠目的剧烈变动。20 世纪70年代初,每盎司黄金价格仅为30多美元。80年代初,黄金暴涨到每盎司近700美元。本世纪初,黄金价格处于每盎司270美元左右,此后逐年攀升,到2006年5月12日达到了26年高点,每盎司730美元,此后又暴跌,仅一个月时间内就下跌了约160美元,跌幅高达21.9%。最近两年,黄金价格一度冲高到每盎司900多美元。黄金价格起伏如此之大,本文根据国际黄金价格的影响因素,通过BP神经网络预测模型来预测长期黄金价格。 二、影响因素 刘曙光和胡再勇证实将观察期延长为1972年~2006年时,则影响黄金价格的主要因素扩展至包含道琼斯指数、美国消费者价格指数、美元名义有效汇率、美国联邦基金利率和世界黄金储备5个因素。本文利用此观点,根据1972年~2006年各因素的值来建立神经网络预测模型。 三、模型构建

人工神经网络BP算法简介及应用概要

科技信息 2011年第 3期 SCIENCE &TECHNOLOGY INFORMATION 人工神经网络是模仿生理神经网络的结构和功能而设计的一种信息处理系统。大量的人工神经元以一定的规则连接成神经网络 , 神经元之间的连接及各连接权值的分布用来表示特定的信息。神经网络分布式存储信息 , 具有很高的容错性。每个神经元都可以独立的运算和处理接收到的信息并输出结果 , 网络具有并行运算能力 , 实时性非常强。神经网络对信息的处理具有自组织、自学习的特点 , 便于联想、综合和推广。神经网络以其优越的性能应用在人工智能、计算机科学、模式识别、控制工程、信号处理、联想记忆等极其广泛的领域。 1986年 D.Rumelhart 和 J.McCelland [1]等发展了多层网络的 BP 算法 , 使BP 网络成为目前应用最广的神经网络。 1BP 网络原理及学习方法 BP(BackPropagation 网络是一种按照误差反向传播算法训练的多层前馈神经网络。基于 BP 算法的二层网络结构如图 1所示 , 包括输入层、一个隐层和输出层 , 三者都是由神经元组成的。输入层各神经元负责接收并传递外部信息 ; 中间层负责信息处理和变换 ; 输出层向 外界输出信息处理结果。神经网络工作时 , 信息从输入层经隐层流向输出层 (信息正向传播 , 若现行输出与期望相同 , 则训练结束 ; 否则 , 误差反向进入网络 (误差反向传播。将输出与期望的误差信号按照原连接通路反向计算 , 修改各层权值和阈值 , 逐次向输入层传播。信息正向传播与误差反向传播反复交替 , 网络得到了记忆训练 , 当网络的全局误差小于给定的误差值后学习终止 , 即可得到收敛的网络和相应稳定的权值。网络学习过程实际就是建立输入模式到输出模式的一个映射 , 也就是建立一个输入与输出关系的数学模型 :

人工神经网络大作业

X X X X大学 研究生考查课 作业 课程名称:智能控制理论与技术 研究生姓名:学号: 作业成绩: 任课教师(签名) 交作业日时间:2010年12月22日

人工神经网络(artificial neural network,简称ANN)是在对大脑的生理研究的基础上,用模拟生物神经元的某些基本功能元件(即人工神经元),按各种不同的联结方式组成的一个网络。模拟大脑的某些机制,实现某个方面的功能,可以用在模仿视觉、函数逼近、模式识别、分类和数据压缩等领域,是近年来人工智能计算的一个重要学科分支。 人工神经网络用相互联结的计算单元网络来描述体系。输人与输出的关系由联结权重和计算单元来反映,每个计算单元综合加权输人,通过激活函数作用产生输出,主要的激活函数是Sigmoid函数。ANN有中间单元的多层前向和反馈网络。从一系列给定数据得到模型化结果是ANN的一个重要特点,而模型化是选择网络权重实现的,因此选用合适的学习训练样本、优化网络结构、采用适当的学习训练方法就能得到包含学习训练样本范围的输人和输出的关系。如果用于学习训练的样本不能充分反映体系的特性,用ANN也不能很好描述与预测体系。显然,选用合适的学习训练样本、优化网络结构、采用适当的学习训练方法是ANN的重要研究内容之一,而寻求应用合适的激活函数也是ANN研究发展的重要内容。由于人工神经网络具有很强的非线性多变量数据的能力,已经在多组分非线性标定与预报中展现出诱人的前景。人工神经网络在工程领域中的应用前景越来越宽广。 1人工神经网络基本理论[1] 1.1神经生物学基础 可以简略地认为生物神经系统是以神经元为信号处理单元,通过广泛的突触联系形成的信息处理集团,其物质结构基础和功能单元是脑神经细胞即神经元(neu ron)。(1)神经元具有信号的输入、整合、输出三种主要功能作用行为。突触是整个神经系统各单元间信号传递驿站,它构成各神经元之间广泛的联接。(3)大脑皮质的神经元联接模式是生物体的遗传性与突触联接强度可塑性相互作用的产物,其变化是先天遗传信息确定的总框架下有限的自组织过程。 1.2建模方法 神经元的数量早在胎儿时期就已固定,后天的脑生长主要是指树突和轴突从神经细胞体中长出并形成突触联系,这就是一般人工神经网络建模方法的生物学依据。人脑建模一般可有两种方法:①神经生物学模型方法,即根据微观神经生物学知识的积累,把脑神经系统的结构及机理逐步解释清楚,在此基础上建立脑功能模型。②神经计算模型方法,即首先建立粗略近似的数学模型并研究该模型的动力学特性,然后再与真实对象作比较(仿真处理方法)。 1.3概念 人工神经网络用物理可实现系统来模仿人脑神经系统的结构和功能,是一门新兴的前沿交叉学科,其概念以T.Kohonen.Pr的论述最具代表性:人工神经网络就是由简单的处理单元(通常为适应性)组成的并行互联网络,它的组织能够模拟生物神经系统对真实世界物体所作出的交互反应。 1.4应用领域 人工神经网络在复杂类模式识别、运动控制、感知觉模拟方面有着不可替代的作用。概括地说人工神经网络主要应用于解决下述几类问题:模式信息处理和模式识别、最优化问题、信息的智能化处理、复杂控制、信号处理、数学逼近映射、感知觉模拟、概率密度函数估计、化学谱图分析、联想记忆及数据恢复等。 1.5理论局限性 (1)受限于脑科学的已有研究成果由于生理试验的困难性,目前对于人脑思维与记忆机制的认识尚很肤浅,对脑神经网的运行和神经细胞的内部处理机制还没有太多的认识。 (2)尚未建立起完整成熟的理论体系目前已提出的众多人工神经网络模型,归纳起来一般都是一个由节点及其互连构成的有向拓扑网,节点间互连强度构成的矩阵可通过某种学

神经网络预测精度

神经网络预测外汇的误差、精度情况 一、涨落方向预测效果 1.1涨落方向的计算公式: for( i=0;i=0 num=num+1 percent=(num/Testnum)*100% 公式中,Testnum 表示测试例数;Result 表示用来测试数据的实际值,Computer_Result 表示通过神经网络训练学习而计算出的测试数据的预测值。I 表示工作日,i+1表示下一个工作日;如果满足 (Result[i+1]- Result[i])* (Computer_Result[i+1]- Computer_Result[i]))>=0 (1) 则说明第二天与第一天汇率实际值的差,和第二天与第一天汇率预测值的差是同号。也就是说,第二天比第一天汇率的实际值增涨时,第二天比第一天的预测值也增涨了。最终涨落度以这两者差的同号个数在测试例数中所占的比例来计量。 1.2涨落效果 表1 涨落情况分析 测试例数 涨落度 20个 64%-71% 30个 62%-70% 50个 53%-59% 100个 53%-61% 涨落情况分析如图所示,这是单机版forcast 的测试结果。涨落度是满足上面(1)式的测试数据量与测试例数的比例。从此分析结果得出如下结论: 1、测试数据和训练数据间隔越近,准确度越高。 2、测数例数越少,涨落度的值越大。 二、误差分析 2.1误差计算公式 M x x Y M t t t SE 2) (12∑=-= (2) 公式(2)为半方差SE (half square error )计算误差公式,其中M 是预测的 次数,t 是预测汇率的时间序数,t x 是第t 时刻汇率的预测值,t x 是第t 时刻汇率 的实际值。 2.2误差效果分析 这个误差计算结果主要用来衡量网络收敛效果。最小训练误差在forcast 中可以根据自己的需要来自行设定。通常在训练时,设定的最小误差为1.0e-4。 如最小训练误差为1.0e-4,实际训练次数为3675次,误差为1.77559e-4。

SVM神经网络的回归预测分析---上证指数开盘指数预测

SVM神经网络的回归预测分析---上证指数开盘指数预测 该案例作者申明: 1:本人长期驻扎在此板块里,对该案例提问,做到有问必答。 2:此案例有配套的教学视频,配套的完整可运行Matlab程序。 3:以下内容为该案例的部分内容(约占该案例完整内容的1/10)。 4:此案例为原创案例,转载请注明出处(Matlab中文论坛,《Matlab神经网络30个案例分析》)。 5:若此案例碰巧与您的研究有关联,我们欢迎您提意见,要求等,我们考虑后可以加在案例里。 6:您看到的以下内容为初稿,书籍的实际内容可能有少许出入,以书籍实际发行内容为准。 7:此书其他常见问题、预定方式等,请点击这里。 Contents ●清空环境变量 ●数据的提取和预处理 ●选择回归预测分析最佳的SVM参数c&g ●利用回归预测分析最佳的参数进行SVM网络训练 ●SVM网络回归预测 ●结果分析 ●子函数 SVMcgForRegress.m 清空环境变量 function chapter14 tic; close all; clear; clc; format compact; 数据的提取和预处理 % 载入测试数据上证指数(1990.12.19-2009.08.19) % 数据是一个4579*6的double型的矩阵,每一行表示每一天的上证指数 % 6列分别表示当天上证指数的开盘指数,指数最高值,指数最低值,收盘指数,当日交易量,当日交易额. load chapter14_sh.mat; % 提取数据 [m,n] = size(sh); ts = sh(2:m,1); tsx = sh(1:m-1,:); % 画出原始上证指数的每日开盘数 figure;

人工神经网络发展前景111

人工神经网络发展前景 姓名 单位 摘要 在分析人工神经网络的发展过程、基本功能、应用范围的基础上,着重论述了神经网络与专家系统、模糊技术、遗传算法、灰色系统及小波分析的融合。 关键词 英文摘要 英文关键词 1前言 人工神经网络的发展起源于何时,说法不一。一般认为,其起源可追溯到Warren WcCulloch和Walter Pitts提出的MP模型。从此拉开了神经网络的序幕。20世纪50年代后期,Frank Rosenblatt定义了一种以后常用的神经网络结构,称为感知器。这是人工神经网络第一个实际应用;20世纪60年代,Bernard Widrow和Ted Hoff提出了一个新的学习算法用于训练自适应线性神经网络;20世纪70年代,Grossberg 提出了自适应共振理论。他研究了两种记忆机制(短期记忆和长期记忆),提出了一种可视系统的自组织神经网络,这是一种连续时间竞争网络,是构成自适应谐振理论网络基础;20世纪80年代,Hopfield 及一些学者提出了Hopfield网络模型,这是一种全连接的反馈网络。此外,Hinton等提出了Boltzman机。Kumellhart等人提出误差反向

传播神经网络,简称BP网络。目前BP神经网络已成为广泛使用的网络。 2应用现状 神经网络以及独特的结构和处理信息的方法,在许多实际应用领域中取得了显著的成效,主要应用如下: 1)信号处理。神经网络广泛应用于自适应信号处理和非线性信号处理中。前者如信号的自适应滤波、时间序列预测、谱估计、噪声消除等;后者如非线性滤波、非线性预测、非线性编码、调制/解调等。2)模式识别。神经网络不仅可以处理静态模式如固定图像、固定能谱等,还可以处理动态模式如视频图像、连续语音等。 3)系统识别。基于神经网络的系统辨识是以神经网络作为被识对象的模型,利用其非线性特性,可建立非线性系统的静态或动态模型。 4)智能检测。在对综合指标的检测(例如对环境舒适度这类综合指标检测)中,以神经网络作为智能检测中的信息处理联想等数据融合处理,从而实现单一传感器不具备的功能。 5)汽车工程。神经网络在汽车刹车自动控制系统中也有成功的应用,该系统能在给定刹车距离、车速和最大减速度的情况下,以人体能感受到的最小冲击实现平稳刹车,而不受路面坡度和车重影响。 6)化学工程。神经网络在光谱分析、判定化学反应的生成物、判定离子浓度及研究生命体中某些化合物的含量与生物活性的对应关系都有广泛应用并取得了一定成果。 7)卫生保健、医疗。比如通过训练自主组合的多层感知器可以区分

实验报告 人工神经网络

实验报告人工神经网络 实验原理:利用线性回归和神经网络建模技术分析预测。 实验题目:利用给出的葡萄酒数据集,解释获得的分析结论。 library(plspm); data(wines); wines 实验要求: 1、探索认识意大利葡萄酒数据集,对葡萄酒数据预处理,将其随机划分为训练集和测试集,然后创建一个线性回归模型; 2、利用neuralnet包拟合神经网络模型; 3、评估两个模型的优劣,如果都不理想,提出你的改进思路。 分析报告: 1、线性回归模型 > rm(list=ls()) > gc() used (Mb) gc trigger (Mb) max used (Mb) Ncells 250340 13.4 608394 32.5 408712 21.9 Vcells 498334 3.9 8388608 64.0 1606736 12.3 >library(plspm) >data(wines) >wines[c(1:5),] class alcohol malic.acid ash alcalinity magnesium phenols flavanoids 1 1 14.23 1.71 2.43 15.6 127 2.80 3.06 2 1 13.20 1.78 2.14 11.2 100 2.65 2.76 3 1 13.16 2.36 2.67 18.6 101 2.80 3.24 4 1 14.37 1.9 5 2.50 16.8 113 3.85 3.49 5 1 13.24 2.59 2.87 21.0 118 2.80 2.69 nofla.phen proantho col.intens hue diluted proline 1 0.28 2.29 5.64 1.04 3.9 2 1065 2 0.26 1.28 4.38 1.05 3.40 1050 3 0.30 2.81 5.68 1.03 3.17 1185 4 0.24 2.18 7.80 0.86 3.4 5 1480 5 0.39 1.82 4.32 1.04 2.93 735 > data <- wines > summary(wines)

回归预测分析神经网络

%%S V M神经网络的回归预测分析---上证指数开盘指数预测 %% 清空环境变量 function chapter14 tic; close all; clear; clc; format compact; %% 数据的提取和预处理 % 数据是一个4579*6的double型的矩阵,每一行表示每一天的上证指数 % 6列分别表示当天上证指数的开盘指数,指数最高值,指数最低值,收盘指数,当日交易量,当日交易额. load ; % 提取数据 [m,n] = size(sh); ts = sh(2:m,1); tsx = sh(1:m-1,:); % 画出原始上证指数的每日开盘数 figure; plot(ts,'LineWidth',2); title(,'FontSize',12); xlabel(,'FontSize',12); ylabel('开盘数','FontSize',12); grid on; % 数据预处理,将原始数据进行归一化 ts = ts'; tsx = tsx'; % mapminmax为matlab自带的映射函数 % 对ts进行归一化 [TS,TSps] = mapminmax(ts,1,2); % 画出原始上证指数的每日开盘数归一化后的图像 figure; plot(TS,'LineWidth',2); title('原始上证指数的每日开盘数归一化后的图像','FontSize',12); xlabel(,'FontSize',12); ylabel('归一化后的开盘数','FontSize',12); grid on; % 对TS进行转置,以符合libsvm工具箱的数据格式要求 TS = TS'; % mapminmax为matlab自带的映射函数 % 对tsx进行归一化 [TSX,TSXps] = mapminmax(tsx,1,2); % 对TSX进行转置,以符合libsvm工具箱的数据格式要求

人工神经网络的发展及应用

人工神经网络的发展与应用 神经网络发展 启蒙时期 启蒙时期开始于1980年美国著名心理学家W.James关于人脑结构与功能的研究,结束于1969年Minsky和Pape~发表的《感知器》(Perceptron)一书。早在1943年,心理学家McCulloch和数学家Pitts合作提出了形式神经元的数学模型(即M—P模型),该模型把神经细胞的动作描述为:1神经元的活动表现为兴奋或抑制的二值变化;2任何兴奋性突触有输入激励后,使神经元兴奋与神经元先前的动作状态无关;3任何抑制性突触有输入激励后,使神经元抑制;4突触的值不随时间改变;5突触从感知输入到传送出一个输出脉冲的延迟时问是0.5ms。可见,M—P模型是用逻辑的数学工具研究客观世界的事件在形式神经网络中的表述。现在来看M—P 模型尽管过于简单,而且其观点也并非完全正确,但是其理论有一定的贡献。因此,M—P模型被认为开创了神经科学理论研究的新时代。1949年,心理学家D.0.Hebb 提出了神经元之间突触联系强度可变的假设,并据此提出神经元的学习规则——Hebb规则,为神经网络的学习算法奠定了基础。1957年,计算机学家FrankRosenblatt提出了一种具有三层网络特性的神经网络结构,称为“感知器”(Perceptron),它是由阈值性神经元组成,试图模拟动物和人脑的感知学习能力,Rosenblatt认为信息被包含在相互连接或联合之中,而不是反映在拓扑结构的表示法中;另外,对于如何存储影响认知和行为的信息问题,他认为,存储的信息在神经网络系统内开始形成新的连接或传递链路后,新 的刺激将会通过这些新建立的链路自动地激活适当的响应部分,而不是要求任何识别或坚定他们的过程。1962年Widrow提出了自适应线性元件(Ada—line),它是连续取值的线性网络,主要用于自适应信号处理和自适应控制。 低潮期 人工智能的创始人之一Minkey和pape~经过数年研究,对以感知器为代表的网络系统的功能及其局限性从数学上做了深入的研究,于1969年出版了很有影响的《Perceptron)一书,该书提出了感知器不可能实现复杂的逻辑函数,这对当时的人工神经网络研究产生了极大的负面影响,从而使神经网络研究处于低潮时期。引起低潮的更重要的原因是:20世纪7O年代以来集成电路和微电子技术的迅猛发展,使传统的冯·诺伊曼型计算机进入发展的全盛时期,因此暂时掩盖了发展新型计算机和寻求新的神经网络的必要性和迫切性。但是在此时期,波士顿大学的S.Grossberg教授和赫尔辛基大学的Koho—nen教授,仍致力于神经网络的研究,分别提出了自适应共振理论(Adaptive Resonance Theory)和自组织特征映射模型(SOM)。以上开创性的研究成果和工作虽然未能引起当时人们的普遍重视,但其科学价值却不可磨灭,它们为神经网络的进一步发展奠定了基础。 复兴时期 20世纪80年代以来,由于以逻辑推理为基础的人工智能理论和冯·诺伊曼型计算机在处理诸如视觉、听觉、联想记忆等智能信息处理问题上受到挫折,促使人们

人工神经网络在聚类分析中的运用

摘要:本文采用无导师监督的som网络,对全国31个省市自治区的人民生活质量进行了综合评价,在没有先验信息的条件下,不采用人为主观赋予各指标权重的办法,转而运用自组织神经网络自组织竞争学习的网络方法来进行赋值、计算和评价,消除了主观确定各指标的权重的主观性,得到的结果较为符合各省市自治区的实际结果。 关键词:聚类分析;k-means聚类;系统聚类;自组织神经网络;人民生活质量 一、引言(研究现状) 自改革开放以来,我国生产力极大发展,生活水平总体上得到了提高。但是,地区间的发展不平衡始终存在,而且差距越来越大,不同地区人民的生活水平也存在显著的差异。据此,我们利用自组织人工神经网络方法对全国31个省市自治区的人民生活水平质量进行分析评价。 二、指标选取与预处理 1.指标选取 遵循合理性、全面性、可操作性、可比性的原则,从以下5个层面共11个二级指标构建了人民生活质量综合评价指标体系(如下表所示)。 人民生活质量综合评价指标体系 2.指标预处理 (1)正向指标是指标数据越大,则评价也高,如人均可支配收入,人均公园等。 正向指标的处理规则如下(1): kohonen 自组织神经网络 输入层是一个一维序列,该序列有n个元素,对应于样本向量的维度;竞争层又称为输出层,该层是由m′n=h个神经元组成的二维平面阵列其神经元的个数对应于输出样本空间的维数,可以使一维或者二维点阵。 竞争层之间的神经元与输入层之间的神经元是全连接的,在输入层神经元之间没有权连接,在竞争层的神经元之间有局部的权连接,表明竞争层神经元之间的侧反馈作用。训练之后的竞争层神经元代表者不同的分类样本。 自组织特征映射神经网络的目标:从样本的数据中找出数据所具有的特征,达到能够自动对样本进行分类的目的。 2.网络反馈算法 自组织网络的学习过程可分为以下两步: (1)神经元竞争学习过程 对于每一个样本向量,该向量会与和它相连的竞争层中的神经元的连接权进行竞争比较(相似性的比较),这就是神经元竞争的过程。相似性程度最大的神经元就被称为获胜神经元,将获胜神经元称为该样本在竞争层的像,相同的样本具有相同的像。 (2)侧反馈过程 竞争层中竞争获胜的神经元会对周围的神经元产生侧反馈作用,其侧反馈机制遵循以下原则:以获胜神经元为中心,对临近邻域的神经元表现为兴奋性侧反馈。以获胜神经元为中心,对邻域外的神经元表现为抑制性侧反馈。 对于竞争获胜的那个神经元j,其邻域内的神经元在不同程度程度上得到兴奋的侧反馈,而在nj(t)外的神经元都得到了抑制的侧反馈。nj(t)是时间t的函数,随着时间的增加,nj(t)围城的面积越来越小,最后只剩下一个神经元,而这个神经元,则反映着一个类的特征或者一个类的属性。 3.评价流程 (1)对n个输入层输入神经元到竞争层输出神经元j的连接权值为(6)式:

matlab30个案例分析案例14-SVM神经网络的回归预测分析

%% SVM神经网络的回归预测分析---上证指数开盘指数预测 % %% 清空环境变量 function chapter14 tic; close all; clear; clc; format compact; %% 数据的提取和预处理 % 载入测试数据上证指数(1990.12.19-2009.08.19) % 数据是一个4579*6的double型的矩阵,每一行表示每一天的上证指数 % 6列分别表示当天上证指数的开盘指数,指数最高值,指数最低值,收盘指数,当日交易量,当日交易额. load chapter14_sh.mat; % 提取数据 [m,n] = size(sh); ts = sh(2:m,1); tsx = sh(1:m-1,:); % 画出原始上证指数的每日开盘数 figure; plot(ts,'LineWidth',2); title('上证指数的每日开盘数(1990.12.20-2009.08.19)','FontSize',12); xlabel('交易日天数(1990.12.19-2009.08.19)','FontSize',12); ylabel('开盘数','FontSize',12); grid on; % 数据预处理,将原始数据进行归一化 ts = ts'; tsx = tsx'; % mapminmax为matlab自带的映射函数 % 对ts进行归一化 [TS,TSps] = mapminmax(ts,1,2); % 画出原始上证指数的每日开盘数归一化后的图像 figure; plot(TS,'LineWidth',2); title('原始上证指数的每日开盘数归一化后的图像','FontSize',12); xlabel('交易日天数(1990.12.19-2009.08.19)','FontSize',12);

精选-人工神经网络复习题

《神经网络原理》 一、填空题 1、从系统的观点讲,人工神经元网络是由大量神经元通过极其丰富和完善的连接而构成的自适应、非线性、动力学系统。 2、神经网络的基本特性有拓扑性、学习性和稳定收敛性。 3、神经网络按结构可分为前馈网络和反馈网络,按性能可分为离散型和连续型,按学习方式可分为有导师和无导师。 4、神经网络研究的发展大致经过了四个阶段。 5、网络稳定性指从t=0时刻初态开始,到t时刻后v(t+△t)=v(t),(t>0),称网络稳定。 6、联想的形式有两种,它们分是自联想和异联想。 7、存储容量指网络稳定点的个数,提高存储容量的途径一是改进网络的拓扑结构,二是改进学习方法。 8、非稳定吸引子有两种状态,一是有限环状态,二是混沌状态。 9、神经元分兴奋性神经元和抑制性神经元。 10、汉明距离指两个向量中对应元素不同的个数。 二、简答题 1、人工神经元网络的特点? 答:(1)、信息分布存储和容错性。 (2)、大规模并行协同处理。 (3)、自学习、自组织和自适应。

(4)、人工神经元网络是大量的神经元的集体行为,表现为复杂的非线性动力学特性。 (5)人式神经元网络具有不适合高精度计算、学习算法和网络设计没有统一标准等局限性。 2、单个神经元的动作特征有哪些? 答:单个神经元的动作特征有:(1)、空间相加性;(2)、时间相加性;(3)、阈值作用;(4)、不应期;(5)、可塑性;(6)疲劳。 3、怎样描述动力学系统? 答:对于离散时间系统,用一组一阶差分方程来描述: X(t+1)=F[X(t)]; 对于连续时间系统,用一阶微分方程来描述: dU(t)/dt=F[U(t)]。 4、F(x)与x 的关系如下图,试述它们分别有几个平衡状态,是否为稳定的平衡状态? 答:在图(1)中,有两个平衡状态a 、b ,其中,在a 点曲线斜率|F ’(X)|>1,为非稳定平稳状态;在b 点曲线斜率|F ’(X)|<1 ,为稳定平稳状态。 X X

关于人工神经网络的分析

人工神经网络 分析 班级: 学号: 姓名: 指导教师: 时间:

摘要: 人工神经网络也简称为神经网络,是一种模范动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。 自从认识到人脑的计算与传统的计算机相比是完全不同的方式开始,关于人工神经网络的研究就开始了。半个多世纪以来,神经网络经历了萌芽期、第一次高潮期、反思低潮期、第二次高潮期、再认识与应用研究期五个阶段。而近年来,人工神经网络通过它几个突出的优点更是引起了人们极大的关注,因为它为解决大复杂度问题提供了一种相对来说比较有效的简单方法。目前,神经网络已成为涉及计算机科学、人工智能、脑神经科学、信息科学和智能控制等多种学科和领域的一门新兴的前言交叉学科。 英文摘要: Artificial neural networks are also referred to as the neural network is a neural network model of animal behavior, distributed parallel information processing algorithm mathematical model. This network relies on system complexity, achieved by adjusting the number of nodes connected to the relationship between, so as to achieve the purpose of processing information. Since the understanding of the human brain compared to traditional computer calculation and are completely different way to start on artificial neural network research began. Over half a century, the neural network has experienced infancy, the first high tide, low tide reflections, the second peak period, and again knowledge and applied research on five stages. In recent years, artificial neural networks through which several prominent advantage is attracting a great deal of attention because it is a large complex problem solving provides a relatively simple and effective way. Currently, neural networks have become involved in computer science, artificial intelligence, brain science, information science and intelligent control and many other disciplines and fields of an emerging interdisciplinary foreword. 关键字:

相关文档
相关文档 最新文档