文档库 最新最全的文档下载
当前位置:文档库 › JY01无刷电机驱动器原理图(高压版)

JY01无刷电机驱动器原理图(高压版)

无刷直流电机的驱动及控制

无刷直流电机驱动 James P. Johnson, Caterpiller公司 本章的题目是无刷直流电动机及其驱动。无刷直流电动机(BLDC)的运行仿效了有刷并励直流电动机或是永磁直流电动机的运行。通过将原直流电动机的定子、转子内外对调—变成采用包含电枢绕组的交流定子和产生磁场的转子使得该仿效得以可能。正如本章中要进一步讨论的,输入到BLDC定子绕组中的交流电流必须与转子位置同步更变,以便保持磁场定向,或优化定子电流与转子磁通的相互作用,类似于有刷直流电动机中换向器、电刷对绕组的作用。该原理的实际运用只能在开关电子学新发展的今天方可出现。BLDC电机控制是今天世界上发展最快的运动控制技术。可以预见,随着BLDC的优点愈益被大家所熟知且燃油成本持续增加,BLDC必然会进一步广泛运用。 2011-01-30 23.1 BLDC基本原理 在众文献中无刷直流电动机有许多定义。NEMA标准《运动/定位控制电动机和控制》中对“无刷直流电动机”的定义是:“无刷直流电动机是具有永久磁铁转子并具有转轴位置监测来实施电子换向的旋转自同步电机。不论其驱动电子装置是否与电动机集成在一起还是彼此分离,只要满足这一定义均为所指。”

图23.1 无刷直流电机构形 2011-01-31 若干类型的电机和驱动被归类于无刷直流电机,它们包括: 1 永磁同步电机(PMSMs); 2 梯形反电势(back - EMF)表面安装磁铁无刷直流电机; 3 正弦形表面安装磁铁无刷直流电机; 4 内嵌式磁铁无刷直流电机; 5 电机与驱动装置组合式无刷直流电机; 6 轴向磁通无刷直流电机。 图23.1给出了几种较常见的无刷直流电机的构形图。永磁同步电机反电势是正弦形的,其绕组如同其他交流电机一样通常不是满距,或是接近满距的集中式绕组。许多无刷直流电

直流电机驱动电路设计

应用越来越广泛的直流电机,驱动电路设计 Source:电子元件技术| Publishing Date:2009-03-20 中心论题: ?在直流电机驱动电路的设计中,主要考虑功能和性能等方面的因素 ?分别介绍几种不同的栅极驱动电路并比较其性能优缺点 ?介绍PWM调速的实现算法及硬件电路 ?介绍步进电机的驱动方案 解决方案: ?根据实际电路情况以及要求仔细选择驱动电路 ?使用循环位移算法及模拟电路实现PWM调速 ?对每个电机的相应时刻设定相应的分频比值,同时用一个变量进行计数可实现步进电机的分频调速 直流电机驱动电路的设计目标 在直流电机驱动电路的设计中,主要考虑一下几点: 功能:电机是单向还是双向转动?需不需要调速?对于单向的电机驱动,只要用一个大功率三极管或场效应管或继电器直接带动电机即可,当电机需要双向转动时,可以使用由4个功率元件组成的H桥电路或者使用一个双刀双掷的继电器。如果不需要调速,只要使用继电器即可;但如果需要调速,可以使用三极管,场效应管等开关元件实现PWM(脉冲宽度调制)调速。 性能:对于PWM调速的电机驱动电路,主要有以下性能指标。 1。输出电流和电压围,它决定着电路能驱动多大功率的电机。 2。效率,高的效率不仅意味着节省电源,也会减少驱动电路的发热。要提高电路的效率,可以从保证功率器件的开关工作状态和防止共态导通(H桥或推挽电路可能出现的一个问题,即两个功率器件同时导通使电源短路)入手。 3。对控制输入端的影响。功率电路对其输入端应有良好的信号隔离,防止有高电压大电流进入主控电路,这可以用高的输入阻抗或者光电耦合器实现隔离。

4。对电源的影响。共态导通可以引起电源电压的瞬间下降造成高频电源污染;大的电流可能导致地线电位浮动。 5。可靠性。电机驱动电路应该尽可能做到,无论加上何种控制信号,何种无源负载,电路都是安全的。 三极管-电阻作栅极驱动 1.输入与电平转换部分: 输入信号线由DATA引入,1脚是地线,其余是信号线。注意1脚对地连接了一个2K欧的电阻。当驱动板与单片机分别供电时,这个电阻可以提供信号电流回流的通路。当驱动板与单片机共用一组电源时,这个电阻可以防止大电流沿着连线流入单片机主板的地线造成干扰。或者说,相当于把驱动板的地线与单片机的地线隔开,实现“一点接地”。 高速运放KF347(也可以用TL084)的作用是比较器,把输入逻辑信号同来自指示灯和一个二极管的2。7V 基准电压比较,转换成接近功率电源电压幅度的方波信号。KF347的输入电压围不能接近负电源电压,否则会出错。因此在运放输入端增加了防止电压围溢出的二极管。输入端的两个电阻一个用来限流,一个用来在输入悬空时把输入端拉到低电平。

永磁无刷直流电动机的基本工作原理

永磁无刷直流电动机的基本工作原理 无刷直流电动机由电动机主体和驱动器组成,是一种典型的机电一体化产品。 1. 电动机的定子绕组多做成三相对称星形接法,同三相异步电动机十分相似。电动机的转子上粘有已充磁的永磁体,为了检测电动机转子的极性,在电动机内装有位置传感器。驱动器由功率电子器件和集成电路等构成,其功能是:接受电动机的启动、停止、制动信号,以控制电动机的启动、停止和制动;接受位置传感器信号和正反转信号,用来控制逆变桥各功率管的通断,产生连续转矩;接受速度指令和速度反馈信号,用来控制和调整转速;提供保护和显示等等。 无刷直流电动机的原理简图如图一所示: 永磁无刷直流电动机的基本工作原理 主电路是一个典型的电压型交-直-交电路,逆变器提供等幅等频5-26KHZ调制波的对称交变矩形波。 永磁体N-S交替交换,使位置传感器产生相位差120°的U、V、W方波,结合正/反转信号产生有效的六状态编码信号:101、100、110、010、011、001,通过逻辑组件处理产生T1-T4导通、T1-T6导通、T3-T6导通、T3-T2导通、T5-T2导通、T5-T4导通,也就是说将直流母线电压依次加在A+B-、A+C-、B+C-、B+A-、C+A-、C+B-上,这样转子每转过一对N-S极,T1-T6功率管即按固定组合成六种状态的依次导通。每种状态下,仅有两相绕组通电,依次改变一种状态,定子绕组产生的磁场轴线在空间转动60°电角度,转子跟随定子磁场转动相当于60°电角度空间位置,转子在新位置上,使位置传感器U、V、W按约定产生一组新编码,新的编码又改变了功率管的导通组合,使定子绕组产生的磁场轴再前进60°电角度,如此循环,无刷直流电动机将产生连续转矩,拖动负载作连续旋转。正因为无刷直流电动机的换向是自身产生的,而不是由逆变器强制换向的,所以也称作自控式同步电动机。 2. 无刷直流电动机的位置传感器编码使通电的两相绕组合成磁场轴线位置超前转子磁场轴线位置,所以不论转子的起始位置处在何处,电动机在启动瞬间就会产生足够大的启动转矩,因此转子上不需另设启动绕组。 由于定子磁场轴线可视作同转子轴线垂直,在铁芯不饱和的情况下,产生的平均电磁转矩与绕组电流成正比,这正是他励直流电动机的电流-转矩特性。 电动机的转矩正比于绕组平均电流: Tm=KtIav (N·m) 电动机两相绕组反电势的差正比于电动机的角速度: ELL=Keω (V) 所以电动机绕组中的平均电流为: Iav=(Vm-ELL)/2Ra (A) 其中,Vm=δ·VDC是加在电动机线间电压平均值,VDC是直流母线电压,δ是调制波的占空比,Ra为每相绕组电阻。由此可以得到直流电动机的电磁转矩: Tm=δ·(VDC·Kt/2Ra)-Kt·(Keω/2Ra) Kt、Ke是电动机的结构常数,ω为电动机的角速度(rad/s),所以,在一定的ω时,改变占空比δ,就可以线性地改变电动机的电磁转矩,得到与他励直流电动机电枢电压控制相同的控制特性和机械特性。

无刷电机工作及控制原理(图解)

无刷电机工作及控制原理(图解) 左手定则,这个就是电机转动受力分析得基础,简单说就就是磁场中得载流导体,会受到力得作用。 让磁感线穿过手掌正面,手指方向为电流方向,大拇指方向为产生磁力得方向,我相信喜欢玩模型得人都还有一定物理基础得哈哈.

让磁感线穿过掌心,大拇指方向为运动方向,手指方向为产生得电动势方向。为什么要讲感生电动势呢?不知道大家有没有类似得经历,把电机得三相线合在一起,用手去转动电机会发现阻力非常大,这就就是因为在转动电机过程中产生了感生电动势,从而产生电流,磁场中电流流过导体又会产生与转动方向相反得力,大家就会感觉转动有很大得阻力。不信可以试试. 三相线分开,电机可以轻松转动 三相线合并,电机转动阻力非常大 右手螺旋定则,用右手握住通电螺线管,使四指弯曲与电流方向一致,那么大拇指所指得那一端就就是通电螺旋管得N极。

状态1 当两头得线圈通上电流时,根据右手螺旋定则,会产生方向指向右得外加磁感应强度B(如粗箭头方向所示),而中间得转子会尽量使自己内部得磁感线方向与外磁感线方向保持一致,以形成一个最短闭合磁力线回路,这样内转子就会按顺时针方向旋转了。 当转子磁场方向与外部磁场方向垂直时,转子所受得转动力矩最大.注意这里说得就是“力矩”最大,而不就是“力”最大。诚然,在转子磁场与外部磁场方向一致时,转子所受磁力最大,但此时转子呈水平状态,力臂为0,当然也就不会转动了。补充一句,力矩就是力与力臂得乘积。其中一个为零,乘积就为零了. 当转子转到水平位置时,虽然不再受到转动力矩得作用,但由于惯性原因,还会继续顺时针转动,这时若改变两头螺线管得电流方向,如下图所示,转子就会继续顺时针向前转动, 状态2 如此不断改变两头螺线管得电流方向,内转子就会不停转起来了。改变电流方向得这一动作,就叫做换相。补充一句:何时换相只与转子得位置有关,而与其她任何量无直接关系。 第二部分:三相二极内转子电机 一般来说,定子得三相绕组有星形联结方式与三角联结方式,而“三相星形联结得二二导通方式”最为常用,这里就用该模型来做个简单分析。

无刷直流电机的工作原理(带霍尔传感器)

无刷直流电机的工作原理 无刷直流电机的控制结构 无刷直流电机是同步电机的一种,也就是说电机转子的转速受电机定子旋转磁场的速度及转子极数(P)影响: N=120.f / P。在转子极数固定情况下,改变定子旋转磁场的频率就可以改变转子的转速。无刷直流电机即是将同步电机加上电子式控制(驱动器),控制定子旋转磁场的频率并将电机转子的转速回授至控制中心反复校正,以期达到接近直流电机特性的方式。也就是说无刷直流电机能够在额定负载范围内当负载变化时仍可以控制电机转子维持一定的转速。 无刷直流驱动器包括电源部及控制部如图 (1) :电源部提供三相电源给电机,控制部则依需求转换输入电源频率。 电源部可以直接以直流电输入(一般为24V)或以交流电输入(110V/220 V),如果输入是交流电就得先经转换器(converter)转成直流。不论是直流电输入或交流电输入要转入电机线圈前须先将直流电压由换流器(inverter)转成3相电压来驱动电机。换流器(inverter)一般由6个功率晶体管(Q1~Q6)分为上臂(Q1、Q3、Q5)/下臂(Q2、Q4、Q6)连接电机作为控制流经电机线圈的开关。控制部则提供PWM(脉冲宽度调制)决定功率晶体管开关频度及换流器(inverter)换相的时机。无刷直流电机一般希望使用在当负载变动时速度可以稳定于设定值而不会变动太大的速度控制,所以电机内部装有能感应磁场的霍尔传感器(hall-sensor),做为速度之闭回路控制,同时也做为相序控制的依据。但这只是用来做为速度控制并不能拿来做为定位控制。

(图一) 无刷直流电机的控制原理 要让电机转动起来,首先控制部就必须根据hall-sensor感应到的电机转子目前所在位置,然后依照定子绕线决定开启(或关闭)换流器(inverter)中功率晶体管的顺序,如 下(图二) inverter中之AH、BH、CH(这些称为上臂功率晶体管)及AL、BL、CL(这些称为下臂功率晶体管),使电流依序流经电机线圈产生顺向(或逆向)旋转磁场,并与转子的磁铁相互作用,如此就能使电机顺时/逆时转动。当电机转子转动到hall-sensor感应出另一组信号的位置时,控制部又再开启下一组功率晶体管,如此循环电机就可以依同一方向继续转动直到控制部决定要电机转子停止则关闭功率晶体管(或只开下臂功率晶体管);要电机转子反向则功率晶体管开启顺序相反。 基本上功率晶体管的开法可举例如下: AH、BL一组→AH、CL一组→BH、CL一组→BH、AL一组→CH、AL一组→CH、BL 一组, 但绝不能开成AH、AL或BH、BL或CH、CL。此外因为电子零件总有开关的响应时间,所以功率晶体管在关与开的交错时间要将零件的响应时间考虑进去,否则

无刷直流电机工作原理详解

无刷直流电机工作原理详解 日期: 2014-05-28 / 作者: admin / 分类: 技术文章 1. 简介 本文要介绍电机种类中发展快速且应用广泛的无刷直流电机(以下简称BLDC)。BLDC被广泛的用于日常生活用具、汽车工业、航空、消费电子、医学电子、工业自动化等装置和仪表。顾名思义,BLDC不使用机械结构的换向电刷而直接使用电子换向器,在使用中BLDC相比有刷电机有许多的优点,比如: 能获得更好的扭矩转速特性; 高速动态响应; 高效率; 长寿命; 低噪声; 高转速。 另外,BLDC更优的扭矩和外形尺寸比使得它更适合用于对电机自身重量和大小比较敏感的场合。 2. BLDC结构和基本工作原理 BLDC属于同步电机的一种,这就意味着它的定子产生的磁场和转子产生的磁场是同频率的,所以BLDC并不会产生普通感应电机的频差现象。BLDC中又有单相、2相和3相电机的区别,相类型的不同决定其定子线圈绕组的多少。在这里我们将集中讨论的是应用最为 广泛的3相BLDC。 2.1 定子 BLDC定子是由许多硅钢片经过叠压和轴向冲压而成,每个冲槽内都有一定的线圈组成了绕组,可以参见图2.1.1。从传统意义上讲,BLDC的定子和感应电机的定子有点类似,不过在定子绕组的分布上有一定的差别。大多数的BLDC定子有3个呈星行排列的绕组,每 个绕组又由许多内部结合的钢片按照一定的方式组成,偶数个绕组分布在定子的周围组成了偶数个磁极。

BLDC的定子绕组可以分为梯形和正弦两种绕组,它们的根本区别在于由于绕组的不同连接方式使它们产生的反电动势(反电动势的相关介绍请参加EMF一节)不同,分别呈现梯形和正弦波形,故用此命名了。梯形和正弦绕组产生的反电动势的波形图如图2.1.2和图 2.1.3所示。

无刷直流电机的组成及工作原理

无刷直流电机的组成及工作原理 引言 直流无刷电动机一般由电子换相电路、转子位置检测电路和电动机本体三部分组成,电子换相电路一般由控制部分和驱动部分组成,而对转子位置的检测一般用位置传感器来完成。工作时,控制器根据位置传感器测得的电机转子位置有序的触发驱动电路中的各个功率管,进行有序换流,以驱动直流电动机。下文从无刷直流电动机的三个部分对其发展进行分析。 无刷直流电机的组成 电动机本体 无刷直流电动机在电磁结构上和有刷直流电动机基本一样,但它的电枢绕组放在定子上,转子采用的重量、简化了结构、提高了性能,使其可*性得以提高。无刷电动机的发展与永磁材料的发展是分不开的,磁性材料的发展过程基本上经历了以下几个发展阶段:铝镍钴,铁氧体磁性材料,钕铁硼(NdFeB)。钕铁 硼有高磁能积,它的出现引起了磁性材料的一场革命。第三代钕铁硼永磁材料的应用,进一步减少了电机的用铜量,促使无刷电机向高效率、小型化、节能的方向发展。 目前,为提高电动机的功率密度,出现了横向磁场永磁电机,其定子齿槽与电枢线圈在空间位置上相互垂直,电机中的主磁通沿电机轴向流通,这种结构提高了气隙磁密,能够提供比传统电机大得多的输出转矩。该类型电机正处于研究开发阶段。 电子换相电路 控制电路:无刷直流电动机通过控制驱动电路中的功率开关器件,来控制电机的转速、转向、转矩以及保护电机,包括过流、过压、过热等保护。控制电路最初采用模拟电路,控制比较简单。如果将电路数字化,许多硬件工作可以直接由软件完成,可以减少硬件电路,提高其可靠性,同时可以提高控制电路抗干扰的能力,因而控制电路由模拟电路发展到数字电路。 驱动电路:驱动电路输出电功率,驱动电动机的电枢绕组,并受控于控制电路。驱动电路由大功率开关器件组成。正是由于晶闸管的出现,直流电动机才从有刷实现到无刷的飞跃。但由于晶闸管是只具备控制接通,而无自关断能力的半控性开关器件,其开关频率较低,不能满足无刷直流电动机性能的进一步提高。随着电力电子技术的飞速发展,出现了全控型的功率开关器件,其中有可关断晶体管(GTO)、电力场效应晶体管(MOSFET)、金属栅双极性晶体管IGBT 模块、集成门极换流晶闸管(IGCT)及近年新开发的电子注入增强栅晶体管(IEGT)。随着这些功率器件性能的不断提高,相应的无刷电动机的驱动电路也获得了飞速发展。目前,全控型开关器件正在逐渐取代线路复杂、体积庞大、功能指标低的普通晶闸管,驱动电路已从线性放大状态转换为脉宽调制的开关状态,相应的电路组成也由功率管分立电路转成模块化集成电路,为驱动电路实现智能化、高频化、小型化创造了条件。 转子位置检测电路

【CN209419333U】一种新型无刷电机绕线骨架【专利】

(19)中华人民共和国国家知识产权局 (12)实用新型专利 (10)授权公告号 (45)授权公告日 (21)申请号 201920388132.4 (22)申请日 2019.03.26 (73)专利权人 浙江融兴电动科技有限公司 地址 311100 浙江省杭州市余杭区南公河 路1号6幢202室 (72)发明人 黄光欣 李荣贵 赵志强 李国锋  (74)专利代理机构 杭州中利知识产权代理事务 所(普通合伙) 33301 代理人 周中普 (51)Int.Cl. H02K 1/18(2006.01) H02K 1/20(2006.01) H02K 1/14(2006.01) H02K 3/46(2006.01) (54)实用新型名称一种新型无刷电机绕线骨架(57)摘要本实用新型涉及电机技术领域,尤其涉及一种新型无刷电机绕线骨架。包括塑料骨架和固定在塑料骨架上的定子铁芯,塑料骨架包括中间圆筒、前部端板、后部端板,前部端板和后部端板分别固定在中间圆筒的前后两端,中间圆筒内壁上以圆形阵列的方式设置数件径向绕线架,径向绕线架内设置贯穿定子铁芯外壁的径向槽;圆筒形的定子铁芯内壁以圆形阵列的方式设置数件径向铁芯块,径向铁芯块插入径向槽内。定子铁芯为一体化设计,可以减少漏磁问题,通过径向绕线架包裹住径向铁芯块,可以有效的保护线圈,使得本产品稳定性更好,通过在径向铁芯块上设置中部圆弧铁片,还可以增加电机输出效率。通过设置轴向孔,可以起到对定子铁芯散热的作 用。权利要求书1页 说明书3页 附图7页CN 209419333 U 2019.09.20 C N 209419333 U

权 利 要 求 书1/1页CN 209419333 U 1.一种新型无刷电机绕线骨架,包括塑料骨架(1)和固定在塑料骨架(1)上的定子铁芯(2),其特征在于:塑料骨架(1)包括中间圆筒(11)、前部端板(12)、后部端板(13),圆筒形的定子铁芯(2)内壁紧贴中间圆筒(11)外壁进而固定,前部端板(12)和后部端板(13)分别固定在中间圆筒(11)的前后两端,通过前部端板(12)和后部端板(13)用于轴向固定定子铁芯(2),中间圆筒(11)内壁上以圆形阵列的方式设置数件径向绕线架(14),径向绕线架(14)内设置贯穿定子铁芯(2)外壁的径向槽(141);圆筒形的定子铁芯(2)内壁以圆形阵列的方式设置数件径向铁芯块(21),径向铁芯块(21)插入径向槽(141)内。 2.根据权利要求1所述的一种新型无刷电机绕线骨架,其特征在于:径向绕线架(14)内设置径向槽(141)后径向绕线架(14)的壁厚≤0.4mm。 3.根据权利要求1或2所述的一种新型无刷电机绕线骨架,其特征在于:定子铁芯(2)的外壁上设置轴向的外壁凹槽(22)。 4.根据权利要求1所述的一种新型无刷电机绕线骨架,其特征在于:径向铁芯块(21)靠中间侧设置中部圆弧铁片(211)。 2

电动车无刷马达控制器硬件电路详解

电动车无刷马达控制器硬件电路详解 电动车无刷电机是目前最普及的电动车用动力源,无刷电机以其相对有刷电机长寿,免维护的特点得到广泛应用,然而由于其使用直流电而无换向用的电刷,其换向控制相对有刷电机要复杂许多,同时由于电动车负载极不稳定,又使用电池作电源,因此控制器自身的保护及对电机,电源的保护均对控制器提出更多要求。 自电动车用无刷电动机问世以来,其控制器发展分两个阶段:第一阶段为使用专用无刷电动机控制芯片为主组成的纯硬件电路控制器,这种电路较为简单,其中控制芯片的代表是摩托罗拉的MC33035,这个不是这里的主题,所以也不作深入介绍。第二阶段是以MCU为主的控制芯片。这是这篇文章介绍的重点,在MCR版本的设计中,揉和了模拟、数字、大功率MOSFET 驱动等等许多重要应用,结合MCU智能化控制,是一个非常有启迪性的设计。 今以应用最广泛的以PIC16F72为智能控制中心,350W的整机电路为例,整机电路如图1: 整机电路看起来很复杂,我们将其简化成框图再看看:

图2:电路框图 电路大体上可以分成五部分: 一、电源稳压,供应部分; 二、信号输入与预处理部分; 三、智能信号处理,控制部分; 四、驱动控制信号预处理部分; 五、功率驱动开关部分。 下面我们先来看看此电路最核心的部分:PIC16F72组成的单片机智能处理、控制部分,因为其他电路都是为其服务或被其控制,弄清楚这部分,其它电路就比较容易明白。 图3:PIC16F72在控制器中的各引脚应用图 我们先来简单介绍一下PIC16F72的外部资源:该单片机有28个引脚,去掉电源、复位、振

荡器等,共有22个可复用的IO口,其中第13脚是CCP1输出口,可输出最大分辨率达10BIT 的可调PWM信号,另有AN0-AN4共5路AD模数转换输入口,可提供检测外部电路的电压,一个外部中断输入脚,可处理突发事件。内部软件资源我们在软件部分讲解,这里并不需要很关心。 各引脚应用如下: 1:MCLR复位/烧写高压输入两用口 2:模拟量输入口:放大后的电流信号输入口,单片机将此信号进行A-D转换后经过运算来控制PWM的输出,使电流不致过大而烧毁功率管。正常运转时电压应在0-1.5V左右 3:模拟量输入口:电源电压经分压后的输入口,单片机将此信号进行A-D转换后判断电池电压是否过低,如果低则切断输出以保护电池,避免电池因过放电而损坏。正常时电压应在 3V以上 4:模拟量输入口:线性霍尔组成的手柄调速电压输入口,单片机根据此电压高低来控制输出给电机的总功率,从而达到调整速度的目的。 5:模拟/数字量输入口:刹车信号电压输入口。可以使用AD转换器判断,或根据电平高低判断,平时该脚为高电平,当有刹车信号输入时,该脚变成低电平,单片机收到该信号后切断给电机的供电,以减少不必要的损耗。 6:数字量输入口:1+1助力脉冲信号输入口,当骑行者踏动踏板使车前行时,该口会收到齿轮传感器发出的脉冲信号,该信号被单片机接收到后会给电机输出一定功率以帮助骑行者更轻松地往前走。 7:模拟/数字量输入口:由于电机的位置传感器排列方法不同,该口的电平高低决定适合于哪种电机,目前市场上常见的有所谓120°和60°排列的电机。有的控制器还可以根据该口的电压高低来控制起动时电流的大小,以适合不同的力度需求。 8:单片机电源地。 9:单片机外接振荡器输入脚。 10:单片机外接振荡器反馈输出脚。 11:数字输入口:功能开关1 12:数字输入口:功能开关2 13:数字输出口:PWM调制信号输出脚,速度或电流由其输出的脉冲占空比宽度控制。 14:数字输入口:功能开关3 15、16、17:数字输入口:电机转子位置传感器信号输入口,单片机根据其信号变化决定让电机的相应绕组通电,从而使电机始终向需要的方向转动。这个信号上面讲过有120°和60°之分,这个角度实际上是这三个信号的电相位之差,120°就是和三相电一样,每个相位和前面的相位角相差120°。60°就是相差60°。 18:数字输出口:该口控制一个LED指示灯,大部分厂商都将该指示灯用作故障情况显示,当控制器有重大故障时该指示灯闪烁不同的次数表示不同的故障类型以方便生产、维修。 19:单片机电源地。 20:单片机电源正。上限是5.5V。 21:数字输入口:外部中断输入,当电流由于意外原因突然增大而不在控制范围时,该口有低电平脉冲输入。单片机收到此信号时产生中断,关闭电机的输出,从而保护重要器件不致损坏或故障不再扩大。 22:数字输出口:同步续流控制端,当电流比较大时,该口输出低电平,控制其后逻辑电路,使同步续流功能开启。该功能在后面详细讲解。 23--28:数字输出口:是功率管的逻辑开关,单片机根据电机转子位置传感器的信号,由这里输出三相交流信号控制功率MOSFET开关的导通和关闭,使电机正常运转。

有刷直流马达驱动电路

有刷直流马达驱动电路MX612 有刷直流马达驱动电路 MX612 概述 该产品为电池供电的玩具、低压或者电池供电的运动控制应用提供了一种集成的有刷直流马达驱动解决方案。电路内部集成了采用N沟和P沟功率MOSFET设计的H桥驱动电路,适合于驱动有刷直流马达或者驱动步进马达的一个绕组。该电路具备较宽的工作电压范围(从2V到10V),最大持续输出电流达到1.2A,最大峰值输出电流达到2.5A。 该驱动电路内置过热保护电路。通过驱动电路的负载电流远大于电路的最大持续电流时,受封装散热能力限制,电路内部芯片的结温将会迅速升高,一旦超过设定值(典型值150℃),内部电路将立即关断输出功率管,切断负载电流,避免温度持续升高造成塑料封装冒烟、起火等安全隐患。内置的温度迟滞电路,确保电路恢复到安全温度后,才允许重新对电路进行控制。 特性 ●低待机电流(小于0.1uA); ●低静态工作电流; ●集成的H桥驱动电路; ●内置防共态导通电路; ●低导通内阻的功率MOSFET管; ●内置带迟滞效应的过热保护电路(TSD); ●抗静电等级:3KV (HBM)。 典型应用 ● 2-6节AA/AAA干电池供电的玩具马达驱动; ● 2-6节镍-氢/镍-镉充电电池供电的玩具马达驱动; ● 1-2节锂电池供电的马达驱动

引脚排列 引脚定义 功能框图

注:D A JA T A表示电路工作的环境温度,θJA为封装的热阻。150℃表示电路的最高工作结温。 (2)、电路功耗的计算方法: P =I2*R 其中P为电路功耗,I为持续输出电流,R为电路的导通内阻。电路功耗P必须小于最大功耗P D (3)、人体模型,100pF电容通过1.5KΩ 电阻放电。 注:(1)、逻辑控制电源VCC与功率电源VDD内部完全独立,可分别供电。当逻辑控制电源VCC掉电之后,电路将进入待机模式。 (2)、持续输出电流测试条件为:电路贴装在PCB上测试,SOP8封装的测试PCB板尺寸为25mm*15mm。

MOS管驱动直流电机要点

直流电机驱动课程设计 题目:MOS I电机驱动设计 Word专业资料

摘要 直流电动机具有优良的调速特性,调速平滑,方便,调速围广,过载能力大, 能承受频繁的冲击负载,可实现频繁的无级快速起动、制动和反转;能满足生产过程 中自动化系统各种不同的特殊运行要 求。 本文介绍了直流电机驱动控制装置(H 桥驱动)的设计与制作,系统采用分立

元件搭建H 桥驱动电路,PWM 调速信号由单片机提供,信号与H 桥驱动电路之间采用光电耦合器隔离,电机的驱动运转控制由PLC 可编程逻辑控制器实现。 关键词:直流电动机,H 桥驱动,PWM

目录 一、直流电机概述 (4) 二、直流电机驱动控制 (6) 三、直流电机驱动硬件设计 (8) 四、直流电机驱动软件设计 (9) 五、程序代码..................................................... 1..2 六、参考文献..................................................... 1..8

一、概述 19 世纪70 年代前后相继诞生了直流电动机和交流电动机,从此人类社会进入了以电动机为动力设备的时代。以电动机作为动力机械,为人类社会的发展和进步、工业生产的现代化起到了巨大的推动作用。在用电系统中,电动机作为主要的动力设备而广泛地应用于工农业生产、国防、科技及社会生活等各个方面。电动机负荷约占总发电量的70 %,成为用电量最多的电气设备。对电动机的控制可分为简单控制和复杂控制两种。简单控制对电动机进行启动、制动、正反转控制和顺序控制。这类控制可通过继电器、可编程控制器和开关元件

MOS管驱动直流电机

直流电机驱动课程设计题目:MOS管电机驱动设计

摘要 直流电动机具有优良的调速特性,调速平滑,方便,调速范围广,过载能力大,能承受频繁的冲击负载,可实现频繁的无级快速起动、制动和反转;能满足生产过程中自动化系统各种不同的特殊运行要求。 本文介绍了直流电机驱动控制装置(H桥驱动)的设计与制作,系统采用分立元件搭建H桥驱动电路,PWM调速信号由单片机提供,信号与H桥驱动电路之间采用光电耦合器隔离,电机的驱动运转控制由PLC可编程逻辑控制器实现。 关键词:直流电动机,H桥驱动,PWM

目录 一、直流电机概述 (4) 二、直流电机驱动控制 (6) 三、直流电机驱动硬件设计 (8) 四、直流电机驱动软件设计 (9) 五、程序代码 (12) 六、参考文献 (18)

一、概述 19世纪70年代前后相继诞生了直流电动机和交流电动机,从此人类社会进入了以电动机为动力设备的时代。以电动机作为动力机械,为人类社会的发展和进步、工业生产的现代化起到了巨大的推动作用。在用电系统中,电动机作为主要的动力设备而广泛地应用于工农业生产、国防、科技及社会生活等各个方面。电动机负荷约占总发电量的70%,成为用电量最多的电气设备。对电动机的控制可分为简单控制和复杂控制两种。简单控制对电动机进行启动、制动、正反转控制和顺序控制。这类控制可通过继电器、可编程控制器和开关元件来实现。复杂控制是对电动机的转速、转角、转矩、电压、电流等物理量进行控制,而且有时往往需要非常精确的控制。以前对电动机的简单控制应用较多,但是,随着现代化步伐的迈进,人们对自动化的需求越来越高,使电动机的复杂控制变成主流,其应用领域极其广泛。电动机控制技术的发展得力于微电子技术、电力电子技术、传感器技术、永磁材料技术、自动控制技术、微机应用技术的最新发展成就。正是这些技术的进步,使电动机控制技术在近二十多年内发生了翻天覆地的变化。其中电动机控制部分已由模拟控制让位给以单片机为主的微处理器控制,形成数字与模拟的混合控制系统和纯数字控制系统的应用,并向全数字控制系统的方向快速发展。电动机驱动部分所用的功率器件经历了几次更新换代,目前开关速度更快,控制更容易的

无刷直流电机的工作原理

无刷直流电机原理 无刷直流电动机得工作原理?普通直流电动机得电枢在转子上,而定子产生固定不动得磁场。为了使直流电动机旋转,需要通过换向器与电刷不断改变电枢绕组中电流得方向,使两个磁场得方向始终保持相互垂直,从而产生恒定得转矩驱动电动机不断旋转。 无刷直流电动机为了去掉电刷,将电枢放到定子上去,而转子制成永磁体,这样得结构正好与普通直流电动机相反;然而,即使这样改变还不够,因为定子上得电枢通过直流电后,只能产生不变得磁场,电动机依然转不起来。为了使电动机转起来,必须使定子电枢各相绕组不断地换相通电,这样才能使定子磁场随着转子得位置在不断地变化,使定子磁场与转子永磁磁场始终保持左右得空间角,产生转矩推动转子旋转。 无刷直流电动机由电动机主体与驱动器组成,就是一种典型得机电一体化产品。?●电动机得定子绕组多做成三相对称星形接法,同三相异步电动机十分相似。电动机得转子上粘有已充磁得永磁体,为了检测电动机转子得极性,在电动机内装有位置传感器。驱动器由功率电子器件与集成电路等构成,其功能就是:接受电动机得启动、停止、制动信号,以控制电动机得启动、停止与制动;接受位置传感器信号与正反转信号,用来控制逆变桥各功率管得通断,产生连续转矩;接受速度指令与速度反馈信号,用来控制与调整转速;提供保护与显示等等。无刷直流电动机得原理简图如图一所示: ? 主电路就是一个典型得电压型交-直-交电路,逆变器提供等幅等频5-26KH Z调制波得对称交变矩形波。永磁体N-S交替交换,使位置传感器产生相位差120°得U、V、W方波,结合正/反转信号产生有效得六状态编码信号:101、100、110、010、011、001,通过逻辑组建处理产生T1-T4导通、T1-T6导通、T3-T6导通、T3-T2导通、T5-T2导通、T5-T4导通,也就就是说将直流母线电压依次加在A+B-、A+C-、B+C-、B+A-、C+A-、C+B-上,这样转子每转过一对N-S极,T1-T6功率管即按固定组合成六种状态得依次导通。每种状态下,仅有两相绕组通电,依次改变一种状态,定子绕组产生得磁场轴线在空间转动60°电度角,转子跟随定子磁场转动相当于60°电度角空间位置,转子在新位置上,使位置传感器U、V、W按约定产生一组新编码,新得编码又改变了功率管得导通组合,使定子绕组产生得磁场轴再前进60°电度角,如此循环,无刷直流电动机将产

无刷电机烧线断线重绕一贴通一贴搞定无刷电机重绕

无刷电机烧线断线重绕一贴通一贴搞定无刷电 机重绕

无刷电机烧线断线重绕一贴通一贴搞定无刷电 机重绕

声明:本帖不为商业目的,只为各位魔友能够通过本帖修复完善各自的无刷电机,所以部分引用了论坛魔友的经验和照片,只为更好的服务各位摩友,如有引用请理解基础知识 1、模型无刷电机是什么类型的电机 无刷电机输入是直流,工作是交流,属于无刷直流电机之三相无感(感应器-霍尔)电机。 -------------------------------------------------------------------------- 4月12日更新 模型无刷电机工作结构本质上是三相交流电机,但是电机特性却与直流电机类似,所以我们称呼为无刷直流电机。 桥式电路结构,普遍使用分数槽集中绕组结构,除部分车模为有感电机以外,航模电机普遍为无感电机。 2、三角接法和星形(Y)接法 三角接法:三根线头尾相接 1头+2尾,2头+3尾,3头+1尾 星形接法:三根线尾尾相接三相尾部接在一起,其他3根线引出接电机 绕线的顺序都是一样的,三角接法和星形接法只是最后接法不同而已!!! -------------------------------------------------------------------- 2014-3-31更新详解三角接法与星形接法 现代的无刷直流电机普遍采用星形绕法,但是模型无刷电机普遍采用三角绕法 例如:一台2212 1400KV电机(默认三角绕法)改用星形绕法,转速将变为1400除以得出808KV,并且该电机在12V电压下工作功率大为降低,如要实现之前功率,相近。 同样的,一台星形绕法的无刷电机,如需要保持转速和功率不变,在改为三角绕法后,需要降低电压倍使用,否则极易烧坏电机。 星形绕法的特点:效率更高、匝数更少、其他数据一样情况下工作电压更高 三角绕法的特点:匝数更多,其他数据一样的情况下工作电压更低 实际运用:1、3S电机改6S电机,最简单的办法就是将三角绕法改为星形绕法即可。 --------------------------------------------------------------------------- 2014-4-12日更新 总体上,Y星接法(也就是星型接法)在效率上优于封闭接法(也就是三角接法),但是因为方便工业生产的关系,模型大量使用三角接法。 3、线径、股数、匝数 线径:漆包线直径(一般是包括漆皮的) 股数:绕线时多股线一起绕的根数 匝数:每个电极上所绕的圈数 *4*13圈(线径*股数*匝数) T:匝数 (12 KB, 下载次数: 111) 4、绕线顺和逆 定子尾部朝下,上面朝天。 顺:绕线顺时针 逆:绕线逆时针 5、在一定条件前提下,影响转速的因素 在磁钢和定子不变的情况下,匝数是影响无刷电机转速的最大因素。总体规律是匝数越多,转速越慢;匝数越少,转速越快。 6、槽满率 在电机电极上所绕线圈与最大极限所能绕进去的线圈的比例。在磁钢强度前提下,槽满率越高,功率更大;槽满率越低,功率越小。 7、绕线图 全系列无刷电机绕线图 8、2204-2826系列无刷电机绕线数据表格(股数、匝数) 9、12N14P的含义 12极(线圈的定子)14片磁钢的电机。

无刷直流电机工作原理详解

日期: 2014-05-28 / 作者: admin / 分类: 技术文章 1. 简介 本文要介绍电机种类中发展快速且应用广泛的无刷直流电机(以下简称BLDC)。BLDC被广泛的用于日常生活用具、汽车工业、航空、消费电子、医学电子、工业自动化等装置和仪表。顾名思义,BLDC不使用机械结构的换向电刷而直接使用电子换向器,在使用中BLDC相比有刷电机有许多的优点,比如: 能获得更好的扭矩转速特性; 高速动态响应; 高效率; 长寿命; 低噪声; 高转速。 另外,BLDC更优的扭矩和外形尺寸比使得它更适合用于对电机自身重量和大小比较敏感的场合。 2. BLDC结构和基本工作原理 BLDC属于同步电机的一种,这就意味着它的定子产生的磁场和转子产生的磁场是同频率的,所以BLDC并不会产生普通感应电机的频差现象。BLDC中又有单相、2相和3相电机的区别,相类型的不同决定其定子线圈绕组的多少。在这里我们将集中讨论的是应用最为 广泛的3相BLDC。 定子 BLDC定子是由许多硅钢片经过叠压和轴向冲压而成,每个冲槽内都有一定的线圈组成了绕组,可以参见图。从传统意义上讲,BLDC的定子和感应电机的定子有点类似,不过在定子绕组的分布上有一定的差别。大多数的BLDC定子有3个呈星行排列的绕组,每 个绕组又由许多内部结合的钢片按照一定的方式组成,偶数个绕组分布在定子的周围组成了偶数个磁极。 BLDC的定子绕组可以分为梯形和正弦两种绕组,它们的根本区别在于由于绕组的不同连接方式使它们产生的反电动势(反电动势的相关介绍请参加EMF一节)不同,分别呈现梯形和正弦波形,故用此命名了。梯形和正弦绕组产生的反电动势的波形图如图和图

无刷直流电机驱动器说明书

无刷驱动器DBLS-02 一概述: 本控制驱动器为闭环速度型控制器,采用最近型IGBT和MOS功率器,利用直流无刷电机的霍尔信号进行倍频后进行闭环速度控制,控制环节设有PID速度调节器,系统控制稳定可靠,尤其是在低速下总能达到最大转矩,速度控制范围150~10000rpm。 二产品特征: 1、PID速度、电流双环调节器 2、高性能低价格 3、20KHZ斩波频率 4、电气刹车功能,使电机反应迅速 5、过载倍数大于2,在低速下转矩总能达到最大 6、具有过压、欠压、过流、过温、霍尔信号非法等故障报警功能 三电气指标 标准输入电压:24VDC~48VDC,最大电压不超过60VDC。最大输入过载保护电流:15A、30A两款连续输出电流:15A 加速时间常数出厂值:秒其他可定制 四端子接口说明: 1、电源输入端: 引角序号引角名中文定义 1V+直流+24~48VDC输入 2GND GND输入 引角序号引角名中文定义 1MA电机A相 2MB电机B相

3MC电机C相 4GND地线 5HA霍尔信号A相输入端 6HB霍尔信号B相输入端 7HC霍尔信号C相输入端 8+5V霍尔信号的电源线 G ND:信号地F/R:正、反转控制,接GND反转,不接正转,正反转切换时,应先关断EN E N:使能控制:EN接地,电机转(联机状态),EN不接,电机不转(脱机状态)B K:刹车控制:当不接地正常工作,当接地时,电机电气刹车,当负载惯量较大时,应采用脉宽信号方式,通过调整脉宽幅值来控制刹车效果。S V ADJ:外部速度衰减:可以衰减从0~100%,当外部速度指令接时,通过该电位器可以调速试机P G:电机速度脉冲输出:当极对数为P时,每转输出6P个脉冲(OC门输入)A LM:报警输出:当电路处于报警状态时,输出低电平(OC门输出)+5V:调速电压输出,可用电位器在SV和GND形成连续可调内置电位器:调节电机速度增益,可以从0~100%范围内调速。 五驱动器与无刷电机接线图 六机械安装:

无刷直流电动机简介和基本工作原理

无刷直流电动机简介和基本工作原理 无刷直流电动机简介和基本工作原理 无刷直流电动机简介 直流无刷电机 : 又称“无换向器电机交一直一交系统”或“直交系统” 。是将交流电源整流后变成直流, 再由逆变器转换成 频率可调的交流电, 但是, 注意此处逆变器是工作在直流斩波方式。 无刷直流电动机Brushless Direct Current Motor ,BLDC, 采用方波自控式永磁同步 电机,以霍尔传感器取代碳刷换向器, 以钕铁硼作为转子的永磁材料; 产品性能超越传统直流电机的所有优点, 同时又解决了直流电机碳刷滑环的缺点, 数字式控 制, 是当今最理想的调速电机。 无刷直流电动机具有上述的三高特性, 非常适合使用在24 小时连续运转的产业机械及空调冷冻主机、风机水泵、空气压缩机负载; 低速高转矩及高频繁正反转不发热的特性,更适合应用于机床工作母机及牵引电机的驱动; 其稳速运转精度比直流有刷电机更高, 比矢量控制或直接转矩控制速度闭环的变频驱动还要高, 性能价格比更好, 是现代化调速驱动的最佳 选择。 基本工作原理 无刷直流电动机由同步电动机和驱动器组成,是一种典型的机电一体化产品。同步电动机的定子绕组多做成三相对称星形接法,同三相异步电动机十分相似。而转子上粘有已充磁的永磁体,为了检测电动机转子的极性,在电动机内装有位置传感器。驱动器由功率电子器件和集成电路等构成,其功能是:接受电动机的启动、停止、制动信号,以控制电动机的启动、停止和制动;接受位置传感器信号和正反转信号,用来控制逆变桥各功率管的通断,产生连续转矩;接受速 度指令和速度反馈信号,用来控制和调整转速;提供保护和显示等等 无刷直流电动机的位置传感器编码使通电的两相绕组合成磁场轴线位置超前转子磁场轴线位置,所以不论转子的起始

无刷电机烧线断线重绕一贴通,一贴搞定无刷电机重绕。

声明:本帖不为商业目的,只为各位魔友能够通过本帖修复完善各自的无刷电机,所以部分引用了论坛魔友的经验和照片,只为更好的服务各位摩友,如有引用请理解本人业余魔友一枚,不具备专业测试条件和专业理论,只做实用讲解,如有错误请指正。联系QQ:258500262. 基础知识 1、模型无刷电机是什么类型的电机? 无刷电机输入是直流,工作是交流,属于无刷直流电机之三相无感(感应器-霍尔)电机。 -------------------------------------------------------------------------- 4月12日更新 模型无刷电机工作结构本质上是三相交流电机,但是电机特性却与直流电机类似,所以我们称呼为无刷直流电机。 桥式电路结构,普遍使用分数槽集中绕组结构,除部分车模为有感电机以外,航模电机普遍为无感电机。 2、三角接法和星形(Y)接法 三角接法:三根线头尾相接1头+2尾,2头+3尾,3头+1尾 星形接法:三根线尾尾相接三相尾部接在一起,其他3根线引出接电机 绕线的顺序都是一样的,三角接法和星形接法只是最后接法不同而已!!! -------------------------------------------------------------------- 2014-3-31更新详解三角接法与星形接法 现代的无刷直流电机普遍采用星形绕法,但是模型无刷电机普遍采用三角绕法 例如:一台2212 1400KV电机(默认三角绕法)改用星形绕法,转速将变为1400除以1.732得出808KV,并且该电机在12V电压下工作功率大为降低,如要实现之和之前的功率相近。 同样的,一台星形绕法的无刷电机,如需要保持转速和功率不变,在改为三角绕法后,需要降低电压1.732倍使用,否则极易烧坏电机。 星形绕法的特点:效率更高、匝数更少、其他数据一样情况下工作电压更高 三角绕法的特点:匝数更多,其他数据一样的情况下工作电压更低 实际运用:1、3S电机改6S电机,最简单的办法就是将三角绕法改为星形绕法即可。 --------------------------------------------------------------------------- 2014-4-12日更新 总体上,Y星接法(也就是星型接法)在效率上优于封闭接法(也就是三角接法),但是因为方便工业生产的关系,模型大量使用三角接法。 3、线径、股数、匝数 线径:漆包线直径(一般是包括漆皮的) 股数:绕线时多股线一起绕的根数 匝数:每个电极上所绕的圈数 0.21*4*13圈(线径*股数*匝数)T:匝数 2204-2826系列线圈绕线数据.xls(12 KB, 下载次数: 111) 4、绕线顺和逆 定子尾部朝下,上面朝天。 顺:绕线顺时针 逆:绕线逆时针 5、在一定条件前提下,影响转速的因素 在磁钢和定子不变的情况下,匝数是影响无刷电机转速的最大因素。总体规律是匝数越多,转速越慢;匝数越少,转速越快。

相关文档