文档库 最新最全的文档下载
当前位置:文档库 › 运动控制系统仿真---实验讲义全

运动控制系统仿真---实验讲义全

运动控制系统仿真---实验讲义全
运动控制系统仿真---实验讲义全

《运动控制系统仿真》实验讲义

仕宏

xiesh https://www.wendangku.net/doc/733515302.html,

实验一、闭环控制系统及直流双闭环调速系统仿真

一、实验学时:6学时

二、实验容:

1. 已知控制系统框图如图所示:

图1-1 单闭环系统框图

图中,被控对象s e s s G 1501

30010)(-+=,Gc(s)为PID 控制器,试整定PID 控制器参数,并建立控制系统Simulink 仿真模型。再对PID 控制子系统进行封装,要求可通过封装后子系统的参数设置页面对Kp 、Ti 、Td 进行设置。

2. 已知直流电机双闭环调速系统框图如图1-2所示。试设计电流调节器ACR 和转速调

节器ASR 并进行Simulink 建模仿真。

图1-2 直流双闭环调速系统框图

三、实验过程:

1、建模过程如下:

(1)PID 控制器参数整顿

根据PID 参数的工程整定方法(Z-N 法),如下表所示, Kp=τ

K T 2.1=0.24,Ti=τ2=300,Td=τ5.0=75。 控制器类型

由阶跃响应整定

由频域响应整定 Kp

Ti Td Kp Ti Td P τK T

无 无 c K 5.0 无 无

PI τ

K T 9.0

τ3 无 c K 4.0 c T 8.0 无 PID τK T 2.1

τ2 τ5.0 c K 6.0 c T 5.0 c T 12.0

(2 建立simulink 仿真模型如下图1-3所示,并进行参数设置:

图1-3 PID控制系统Simulink仿真模型

图1-3中,step模块“阶跃时间”改为0,Transport Delay模块的“时间延迟”设置为150,仿真时间改为1000s,如下图1-4所示:

图1-3 PID控制参数设置

运行仿真,得如下结果:

图1-5 PID控制运行结果

(3)PID子系统的创建

首先将参数Gain、Gain1、Gain三个模块的参数进行设置,如下图所示:

图1-6 PID参数设置

然后建立PID控制器子系统,如下图1-7所示:

图1-7 PID子系统

再对PID子系统进行封装,选中“Subsystem”后,单击鼠标右键,选择“Mask subsystem”,弹出封装编辑器,并进行相应参数设置,如下图1-8、1-9所示,

图 1-8 PID子系统封装文本显示

图1-9 PID子系统封装参数设置

在对图1-9所示封装变量设置完成后,封装后的PID子系统如下图1-10所示

图1-10封装后 PID控制仿真模型

双击图1-10中的PID子系统,按图1-11作参数设置,即可完成PID参数设置。

图1-11 PID控制器参数设置

封装后运行仿真,结果如图1-12所示:

图1-12封装后系统运行结果

2、建模方法:

图1-2中r(t)为给定输入,采用阶跃信号。Y(t)为系统输出,表示直流电机的转速。ASR为转速调节器,由PI调节器组成。ACR为电流调节器,也是一个PI调节器。根据直流双闭环调速系统工程整定方法,进行ASR和ACR的参数整定时,首先断开转速环,整定电流调节器ACR。然后接通转速环,整定转速环ASR,同时调节电流环参数。根据上述分析,首先建立直流双闭环调速系统的高层仿真模型,其中转速调节器和电流调节器由空白子系统组成,如图1-13所示。

图2-1 直流双闭环调速系统Simulink 仿真模型

图1-13中给定速度输入信号R (t )由信号源模块库的Step (阶跃)信号生成,通过改变阶跃信号的幅值,可以改变双闭环调速系统给定输入电压,其变化围为-10V ~10V 。负载电流信号IL 也由阶跃信号生成,通过改变阶跃输入信号的幅值和时间,可观察系统在不同负载下的转速响应。输入滤波环节

101.01+s 、转速反馈环节1

01.0007.0+s 、电流反馈环节1002.005.0+s 、转速调节器输入滤波环节1

002.01+s 及其他模块为传递函数描述的数学模型,在Simulink 仿真中,可使用Continue (连续系统)模块库的Transfer Fcn 模块实现。增益模块可以使用Math (数学)模块库的Gain 来实现。转速调节器ASR 和电流调节器ACR 首先由两个空白子系统组成,结果如图1-13所示。

下面对转速调节器ASR 和电流调节器ACR 进行设计,结果如图1-14和图1-15所示。对图1-14和图1-15所示的子系统进行封装,可得如图1-16所示的结果。利用工程整定及Simulink 动态调试的方法,对转速调节器和电流调节器进行参数整定,参数结果如图1-16所示。

图1-14 转速调节器子系统Simulink 模型 图1-15 电流调节器子系统Simulink 模型

自动控制原理MATLAB仿真实验报告

实验一 MATLAB 及仿真实验(控制系统的时域分析) 一、实验目的 学习利用MATLAB 进行控制系统时域分析,包括典型响应、判断系统稳定性和分析系统的动态特性; 二、预习要点 1、 系统的典型响应有哪些? 2、 如何判断系统稳定性? 3、 系统的动态性能指标有哪些? 三、实验方法 (一) 四种典型响应 1、 阶跃响应: 阶跃响应常用格式: 1、)(sys step ;其中sys 可以为连续系统,也可为离散系统。 2、),(Tn sys step ;表示时间范围0---Tn 。 3、),(T sys step ;表示时间范围向量T 指定。 4、),(T sys step Y =;可详细了解某段时间的输入、输出情况。 2、 脉冲响应: 脉冲函数在数学上的精确定义:0 ,0)(1)(0 ?==?∞ t x f dx x f 其拉氏变换为:) ()()()(1)(s G s f s G s Y s f === 所以脉冲响应即为传函的反拉氏变换。 脉冲响应函数常用格式: ① )(sys impulse ; ② ); ,();,(T sys impulse Tn sys impulse ③ ),(T sys impulse Y = (二) 分析系统稳定性 有以下三种方法: 1、 利用pzmap 绘制连续系统的零极点图; 2、 利用tf2zp 求出系统零极点; 3、 利用roots 求分母多项式的根来确定系统的极点 (三) 系统的动态特性分析 Matlab 提供了求取连续系统的单位阶跃响应函数step 、单位脉冲响应函数impulse 、零输入响应函数initial 以及任意输入下的仿真函数lsim.

系统仿真综合实验指导书(2011.6)

系统仿真综合实验指导书 电气与自动化工程学院 自动化系 2011年6月

前言 电气与自动化工程学院为自动化专业本科生开设了控制系统仿真课程,为了使学生深入掌握MATLAB语言基本程序设计方法,运用MATLAB语言进行控制系统仿真和综合设计,同时开设了控制系统仿真综合实验,30学时。为了配合实验教学,我们编写了综合实验指导书,主要参考控制系统仿真课程的教材《自动控制系统计算机仿真》、《控制系统数字仿真与CAD》、《反馈控制系统设计与分析——MATLAB语言应用》及《基于MATLAB/Simulink的系统仿真技术与应用》。

实验一MATLAB基本操作 实验目的 1.熟悉MATLAB实验环境,练习MATLAB命令、m文件、Simulink的基本操作。 2.利用MATLAB编写程序进行矩阵运算、图形绘制、数据处理等。 3.利用Simulink建立系统的数学模型并仿真求解。 实验原理 MATLAB环境是一种为数值计算、数据分析和图形显示服务的交互式的环境。MATLAB有3种窗口,即:命令窗口(The Command Window)、m-文件编辑窗口(The Edit Window)和图形窗口(The Figure Window),而Simulink另外又有Simulink模型编辑窗口。 1.命令窗口(The Command Window) 当MATLAB启动后,出现的最大的窗口就是命令窗口。用户可以在提示符“>>”后面输入交互的命令,这些命令就立即被执行。 在MATLAB中,一连串命令可以放置在一个文件中,不必把它们直接在命令窗口内输入。在命令窗口中输入该文件名,这一连串命令就被执行了。因为这样的文件都是以“.m”为后缀,所以称为m-文件。 2.m-文件编辑窗口(The Edit Window) 我们可以用m-文件编辑窗口来产生新的m-文件,或者编辑已经存在的m-文件。在MATLAB 主界面上选择菜单“File/New/M-file”就打开了一个新的m-文件编辑窗口;选择菜单“File/Open”就可以打开一个已经存在的m-文件,并且可以在这个窗口中编辑这个m-文件。 3.图形窗口(The Figure Window) 图形窗口用来显示MATLAB程序产生的图形。图形可以是2维的、3维的数据图形,也可以是照片等。 MATLAB中矩阵运算、绘图、数据处理等内容参见教材《自动控制系统计算机仿真》的相关章节。 Simulink是MATLAB的一个部件,它为MATLAB用户提供了一种有效的对反馈控制系统进行建模、仿真和分析的方式。 有两种方式启动Simulink:

控制系统仿真与CAD 实验报告

《控制系统仿真与CAD》 实验课程报告

一、实验教学目标与基本要求 上机实验是本课程重要的实践教学环节。实验的目的不仅仅是验证理论知识,更重要的是通过上机加强学生的实验手段与实践技能,掌握应用 MATLAB/Simulink 求解控制问题的方法,培养学生分析问题、解决问题、应用知识的能力和创新精神,全面提高学生的综合素质。 通过对MATLAB/Simulink进行求解,基本掌握常见控制问题的求解方法与命令调用,更深入地认识和了解MATLAB语言的强大的计算功能与其在控制领域的应用优势。 上机实验最终以书面报告的形式提交,作为期末成绩的考核内容。 二、题目及解答 第一部分:MATLAB 必备基础知识、控制系统模型与转换、线性控制系统的计算机辅助分析 1. >>f=inline('[-x(2)-x(3);x(1)+a*x(2);b+(x(1)-c)*x(3)]','t','x','flag','a','b','c');[t,x]=ode45( f,[0,100],[0;0;0],[],0.2,0.2,5.7);plot3(x(:,1),x(:,2),x(:,3)),grid,figure,plot(x(:,1),x(:,2)), grid

2. >>y=@(x)x(1)^2-2*x(1)+x(2);ff=optimset;https://www.wendangku.net/doc/733515302.html,rgeScale='off';ff.TolFun=1e-30;ff.Tol X=1e-15;ff.TolCon=1e-20;x0=[1;1;1];xm=[0;0;0];xM=[];A=[];B=[];Aeq=[];Beq=[];[ x,f,c,d]=fmincon(y,x0,A,B,Aeq,Beq,xm,xM,@wzhfc1,ff) Warning: Options LargeScale = 'off' and Algorithm = 'trust-region-reflective' conflict. Ignoring Algorithm and running active-set algorithm. To run trust-region-reflective, set LargeScale = 'on'. To run active-set without this warning, use Algorithm = 'active-set'. > In fmincon at 456 Local minimum possible. Constraints satisfied. fmincon stopped because the size of the current search direction is less than twice the selected value of the step size tolerance and constraints are satisfied to within the selected value of the constraint tolerance. Active inequalities (to within options.TolCon = 1e-20): lower upper ineqlin ineqnonlin 2 x = 1.0000 1.0000 f =

实验二 最少拍控制系统仿真

实验二 最少拍控制系统仿真 一、 实验目的 1. 学习最少拍系统的设计方法和使用Matlab 进行仿真的方法 二、 实验器材 x86系列兼容型计算机,Matlab 软件 三、 实验原理 建立所示的数字系统控制模型并进行系统仿真,已知)1(10)(+= s s s G P ,采样周期T=1s 。 广义被控对象脉冲传递函数: [])3679.01)(1()718.01(679.3)1(1)()(1111-------+=??????+?-==z z z z s s K s e Z s G Z z G Ts ,则G(z)的零点为-0.718(单位圆内)、极点为1(单位圆上)、0.368(单位圆内),故u=0,v=1,m=1。 a. 有纹波系统 单位阶跃信号:根据稳定性要求,G(z)中z=1的极点应包含在Φe (z)的零点中,系统针对阶跃输入进行设计,q=1,显然准确性条件中已满足了稳定性要求,于是可设01)(?-=Φz z ,根据1)1(=Φ求得10=?,则1)(-=Φz z , 11718.01)3679.01(2717.0)(1)()(1)(--+-=Φ-Φ=z z z z z G z D 。 单位斜披信号:根据稳定性要求,G(z)中z=1的极点应包含在Φe (z)的零点中,系统针对阶跃输入进行设计,q=2,显然准确性条件中已满足了稳定性要求,于是可设)()(1101--+=Φz z z ??,根据1)1(=Φ,0)1('=Φ求得20=?,11-=?,则 2 12)(---=Φz z z ,)718.01)(1()5.01)(3679.01(5434.0)(1)()(1)(1111----+---=Φ-Φ=z z z z z z z G z D 。 单位加速度信号:根据稳定性要求,G(z)中z=1的极点应包含在Φe (z)的零点中,系统

系统仿真实验报告

中南大学系统仿真实验报告 指导老师胡杨 实验者 学号 专业班级 实验日期 2014.6.4 学院信息科学与工程学院

目录 实验一MATLAB中矩阵与多项式的基本运算 (3) 实验二MATLAB绘图命令 (7) 实验三MATLAB程序设计 (9) 实验四MATLAB的符号计算与SIMULINK的使用 (13) 实验五MATLAB在控制系统分析中的应用 (17) 实验六连续系统数字仿真的基本算法 (30)

实验一MATLAB中矩阵与多项式的基本运算 一、实验任务 1.了解MATLAB命令窗口和程序文件的调用。 2.熟悉如下MATLAB的基本运算: ①矩阵的产生、数据的输入、相关元素的显示; ②矩阵的加法、乘法、左除、右除; ③特殊矩阵:单位矩阵、“1”矩阵、“0”矩阵、对角阵、随机矩阵的产生和运算; ④多项式的运算:多项式求根、多项式之间的乘除。 二、基本命令训练 1.eye(m) m=3; eye(m) ans = 1 0 0 0 1 0 0 0 1 2.ones(n)、ones(m,n) n=1;m=2; ones(n) ones(m,n) ans = 1 ans = 1 1

3.zeros(m,n) m=1,n=2; zeros(m,n) m = 1 ans = 0 0 4.rand(m,n) m=1;n=2; rand(m,n) ans = 0.8147 0.9058 5.diag(v) v=[1 2 3]; diag(v) ans = 1 0 0 0 2 0 0 0 3 6.A\B 、A/B、inv(A)*B 、B*inv(A) A=[1 2;3 4];B=[5 6;7 8]; a=A\B b=A/B c=inv(A)*B d=B*inv(A) a = -3 -4 4 5 b = 3.0000 -2.0000 2.0000 -1.0000

《控制系统计算机仿真》实验指导书

实验一 Matlab使用方法和程序设计 一、实验目的 1、掌握Matlab软件使用的基本方法; 2、熟悉Matlab的数据表示、基本运算和程序控制语句 3、熟悉Matlab绘图命令及基本绘图控制 4、熟悉Matlab程序设计的基本方法 二、实验内容 1、帮助命令 使用help命令,查找sqrt(开方)函数的使用方法; 2、矩阵运算 (1)矩阵的乘法 已知A=[1 2;3 4]; B=[5 5;7 8]; 求A^2*B (2)矩阵除法 已知A=[1 2 3;4 5 6;7 8 9]; B=[1 0 0;0 2 0;0 0 3]; A\B,A/B (3)矩阵的转置及共轭转置 已知A=[5+i,2-i,1;6*i,4,9-i]; 求A.', A' (4)使用冒号选出指定元素 已知:A=[1 2 3;4 5 6;7 8 9]; 求A中第3列前2个元素;A中所有列第2,3行的元素; (5)方括号[] 用magic函数生成一个4阶魔术矩阵,删除该矩阵的第四列 3、多项式 (1)求多项式p(x) = x3 - 2x - 4的根 (2)已知A=[1.2 3 5 0.9;5 1.7 5 6;3 9 0 1;1 2 3 4] , 求矩阵A的特征多项式; 求特征多项式中未知数为20时的值; 4、基本绘图命令 (1)绘制余弦曲线y=cos(t),t∈[0,2π] (2)在同一坐标系中绘制余弦曲线y=cos(t-0.25)和正弦曲线y=sin(t-0.5),t∈[0,2π] 5、基本绘图控制 绘制[0,4π]区间上的x1=10sint曲线,并要求: (1)线形为点划线、颜色为红色、数据点标记为加号; (2)坐标轴控制:显示范围、刻度线、比例、网络线 (3)标注控制:坐标轴名称、标题、相应文本; 6、基本程序设计 (1)编写命令文件:计算1+2+?+n<2000时的最大n值; (2)编写函数文件:分别用for和while循环结构编写程序,求2的0到n次幂的和。 三、预习要求 利用所学知识,编写实验内容中2到6的相应程序,并写在预习报告上。

控制系统综合实验模板

科技学院 综合实验报告 ( -- 第1 学期) 名称: 控制系统综合实验 题目: 水位控制系统综合实验 院系: 动力工程系 班级: 自动化09K1 学号: 09191 116 学生姓名: 秦术员 指导教师: 平玉环 设计周数: 1周 成绩: 日期: 1月7日

《控制系统》综合实验 任务书 一、目的与要求 本综合实验是自动化专业的实践环节。经过本实践环节, 使学生对实际控制系统的结构、系统中各环节的关系、数字控制器的应用和控制系统的整定等建立起完整的概念。培养学生利用所学理论知识分析、解决实际问题的能力。 1. 了解单容水箱水位控制系统的实际结构及各环节之间的关 系。 2. 学会数字控制器组态方法。 3. 掌握控制系统整定方法, 熟悉工程整定的全部内容。 二、主要内容 1.熟悉紧凑型过程控制系统, 并将系统调整为水位控制状态。 2.对数字控制器组态。 3.求取对象动态特性。 4.计算调节器参数。 5.调节器参数整定。 6.做扰动实验, 验证整定结果。 7.写出实验报告。 三、进度计划

四、实验成果要求 完成实验报告, 实验报告包括: 1.实验目的 2.实验设备 3.实验内容, 必须写出参数整定过程, 并分析控制器各参数的作用, 总结出一般工程整定的步骤。 4.实验总结, 此次实验的收获。 以上内容以打印报告形式提交。 五、考核方式 根据实验时的表现、及实验报告确定成绩。 成绩评分为经过以及不经过。 学生姓名: 秦术员 指导教师: 平玉环 1月7日

一、综合实验的目的与要求 本综合实验是自动化专业的实践环节。经过本实践环节, 使学生对实际控制系统的结构、系统中各环节的关系、数字控制器的应用和控制系统的整定等建立起完整的概念。培养学生利用所学理论知识分析、解决实际问题的能力。 1. 了解单容水箱水位控制系统的实际结构及各环节之间的关 系。 2. 学会数字控制器组态方法。 3. 掌握控制系统整定方法, 熟悉工程整定的全部内容。 二、实验正文 1. 实验设备 紧凑型过程控制系统; 上位机 2. 液位控制系统 2.1 液位控制系统流程图, 如图1

控制系统仿真实验报告

哈尔滨理工大学实验报告 控制系统仿真 专业:自动化12-1 学号:1230130101 姓名:

一.分析系统性能 课程名称控制系统仿真实验名称分析系统性能时间8.29 地点3# 姓名蔡庆刚学号1230130101 班级自动化12-1 一.实验目的及内容: 1. 熟悉MATLAB软件的操作过程; 2. 熟悉闭环系统稳定性的判断方法; 3. 熟悉闭环系统阶跃响应性能指标的求取。 二.实验用设备仪器及材料: PC, Matlab 软件平台 三、实验步骤 1. 编写MATLAB程序代码; 2. 在MATLAT中输入程序代码,运行程序; 3.分析结果。 四.实验结果分析: 1.程序截图

得到阶跃响应曲线 得到响应指标截图如下

2.求取零极点程序截图 得到零极点分布图 3.分析系统稳定性 根据稳定的充分必要条件判别线性系统的稳定性最简单的方法是求出系统所有极点,并观察是否含有实部大于0的极点,如果有系统不稳定。有零极点分布图可知系统稳定。

二.单容过程的阶跃响应 一、实验目的 1. 熟悉MATLAB软件的操作过程 2. 了解自衡单容过程的阶跃响应过程 3. 得出自衡单容过程的单位阶跃响应曲线 二、实验内容 已知两个单容过程的模型分别为 1 () 0.5 G s s =和5 1 () 51 s G s e s - = + ,试在 Simulink中建立模型,并求单位阶跃响应曲线。 三、实验步骤 1. 在Simulink中建立模型,得出实验原理图。 2. 运行模型后,双击Scope,得到的单位阶跃响应曲线。 四、实验结果 1.建立系统Simulink仿真模型图,其仿真模型为

过程控制系统仿真实验指导

过程控制系统Matlab/Simulink 仿真实验 实验一 过程控制系统建模 ............................................................................................................. 1 实验二 PID 控制 ............................................................................................................................. 2 实验三 串级控制 ............................................................................................................................. 6 实验四 比值控制 ........................................................................................................................... 13 实验五 解耦控制系统 . (19) 实验一 过程控制系统建模 指导内容:(略) 作业题目一: 常见的工业过程动态特性的类型有哪几种?通常的模型都有哪些?在Simulink 中建立相应模型,并求单位阶跃响应曲线。 作业题目二: 某二阶系统的模型为2 () 22 2n G s s s n n ?ζ??= ++,二阶系统的性能主要取决于ζ,n ?两个参数。试利用Simulink 仿真两个参数的变化对二阶系统输出响应的影响,加深对二阶 系统的理解,分别进行下列仿真: (1)2n ?=不变时,ζ分别为0.1, 0.8, 1.0, 2.0时的单位阶跃响应曲线; (2)0.8ζ=不变时,n ?分别为2, 5, 8, 10时的单位阶跃响应曲线。

《MATLAB与控制系统。。仿真》实验报告

《MATLAB与控制系统仿真》 实验报告 班级: 学号: 姓名: 时间:2013 年 6 月

目录实验一MATLAB环境的熟悉与基本运算(一)实验二MATLAB环境的熟悉与基本运算(二)实验三MATLAB语言的程序设计 实验四MATLAB的图形绘制 实验五基于SIMULINK的系统仿真 实验六控制系统的频域与时域分析 实验七控制系统PID校正器设计法 实验八线性方程组求解及函数求极值

实验一MATLAB环境的熟悉与基本运算(一) 一、实验目的 1.熟悉MATLAB开发环境 2.掌握矩阵、变量、表达式的各种基本运算 二、实验基本原理 1.熟悉MATLAB环境: MATLAB桌面和命令窗口、命令历史窗口、帮助信息浏览器、工作空间浏览器、文件和搜索路径浏览器。 2.掌握MATLAB常用命令 表1 MATLAB常用命令 变量与运算符 3.1变量命名规则 3.2 MATLAB的各种常用运算符 表3 MATLAB关系运算符 表4 MATLAB逻辑运算符

| Or 逻辑或 ~ Not 逻辑非 Xor逻辑异或 符号功能说明示例符号功能说明示例 :1:1:4;1:2:11 . ;分隔行.. ,分隔列… ()% 注释 [] 构成向量、矩阵!调用操作系统命令 {} 构成单元数组= 用于赋值 的一维、二维数组的寻访 表6 子数组访问与赋值常用的相关指令格式 三、主要仪器设备及耗材 计算机 四.实验程序及结果 1、新建一个文件夹(自己的名字命名,在机器的最后一个盘符) 2、启动MATLAB,将该文件夹添加到MATLAB路径管理器中。 3、学习使用help命令。

第一章系统仿真的基本概念与方法

第一章控制系统及仿真概述 控制系统的计算机仿真是一门涉及到控制理论、计算数学与计算机技术的综合性新型学科。这门学科的产生及发展差不多是与计算机的发明及发展同步进行的。它包含控制系统分析、综合、设计、检验等多方面的计算机处理。计算机仿真基于计算机的高速而精确的运算,以实现各种功能。 第一节控制系统仿真的基本概念 1.系统: 系统是物质世界中相互制约又相互联系着的、以期实现某种目的的一个运动整体,这个整体叫做系统。 “系统”是一个很大的概念,通常研究的系统有工程系统和非工程系统。 工程系统有:电力拖动自动控制系统、机械系统、水力、冶金、化工、热力学系统等。 非工程系统:宇宙、自然界、人类社会、经济系统、交通系统、管理系统、生态系统、人口系统等。 2.模型: 模型是对所要研究的系统在某些特定方面的抽象。通过模型对原型系统进行研究,将具有更深刻、更集中的特点。 模型分为物理模型和数学模型两种。数学模型可分为机理模型、统计模型与混合模型。 3.系统仿真: 系统仿真,就是通过对系统模型的实验,研究一个存在的或设计中的系统。更多的情况是指以系统数学模型为基础,以计算机为工具对系统进行实验研究的一种方法。 要对系统进行研究,首先要建立系统的数学模型。对于一个简单的数学模型,可以采用分析法或数学解析法进行研究,但对于复杂的系统,则需要借助于仿真的方法来研究。 那么,什么是系统仿真呢?顾名思义,系统仿真就是模仿真实的事物,也就是用一个模型(包括物理模型和数学模型)来模仿真实的系统,对其进行实验研究。用物理模型来进行仿真一般称为物理仿真,它主要是应用几何相似及环境条件相似来进行。而由数学模型在计算机上进行实验研究的仿真一般则称为数字仿真。我们这里讲的是后一种仿真。 数字仿真是指把系统的数学模型转化为仿真模型,并编成程序在计算机上投入运行、实验的全过程。通常把在计算机上进行的仿真实验称为数字仿真,又称计算机仿真。

控制系统仿真实验报告1

昆明理工大学电力工程学院学生实验报告 实验课程名称:控制系统仿真实验 开课实验室:年月日

实验一 电路的建模与仿真 一、实验目的 1、了解KCL 、KVL 原理; 2、掌握建立矩阵并编写M 文件; 3、调试M 文件,验证KCL 、KVL ; 4、掌握用simulink 模块搭建电路并且进行仿真。 二、实验内容 电路如图1所示,该电路是一个分压电路,已知13R =Ω,27R =Ω,20S V V =。试求恒压源的电流I 和电压1V 、2V 。 I V S V 1 V 2 图1 三、列写电路方程 (1)用欧姆定律求出电流和电压 (2)通过KCL 和KVL 求解电流和电压

四、编写M文件进行电路求解(1)M文件源程序 (2)M文件求解结果 五、用simulink进行仿真建模(1)给出simulink下的电路建模图(2)给出simulink仿真的波形和数值

六、结果比较与分析

实验二数值算法编程实现 一、实验目的 掌握各种计算方法的基本原理,在计算机上利用MATLAB完成算法程序的编写拉格朗日插值算法程序,利用编写的算法程序进行实例的运算。 二、实验说明 1.给出拉格朗日插值法计算数据表; 2.利用拉格朗日插值公式,编写编程算法流程,画出程序框图,作为下述编程的依据; 3.根据MATLAB软件特点和算法流程框图,利用MATLAB软件进行上机编程; 4.调试和完善MATLAB程序; 5.由编写的程序根据实验要求得到实验计算的结果。 三、实验原始数据 上机编写拉格朗日插值算法的程序,并以下面给出的函数表为数据基础,在整个插值区间上采用拉格朗日插值法计算(0.6) f,写出程序源代码,输出计算结果: 四、拉格朗日插值算法公式及流程框图

简单控制系统PYTHON仿真实验

计算机基础理论实验四 简单控制系统python仿真实验 学号:13 姓名: 陈严 实验日期:2012/5/24 实验目的:学习计算机仿真的方法。 实验内容:1.建立test.py文件,运行test.py,分析实验结果; 2.为每一行代码写一个注释 系统如上图,鼓风机吹出风需要经过阀门才能到达风轮;而风轮的转速会影响到杠杆位置间接影响到阀门开度。鼓风机的输入为正作用;风轮以至阀门的影响为负作用(或负反馈)。 代码: #coding=utf-8 #系统参数 a=0.1 b=1.0 #系统结构,F:鼓风机的风力; F1:实际输入风力;W:风轮转速 def WW(): return a*F1 //*每次输入的风力 def FF1(): return F-b*W //*杠杆所得到的力 #初始条件 F1=2 //*实际输入风力为2

W=0.2 //*风轮转速为0.2转每秒 print F1,W //*输入实际风力和转速 #鼓风机风力正常 F=2.2 //*鼓风机的风力为2.2 print "鼓风机风力",F //*输出鼓风机的风力 #随着时间增加 for t in xrange(20): //*返回一个迭代序列 F1,W=FF1(),WW() //*将风力和转速进行更新 print F1,W //*输出更新后的风力和转速#鼓风机风力偏大 F=2.3 //*当鼓风机的风力为2.3时print "鼓风机风力",F #随着时间增加 for t in xrange(20): //*返回迭代列20次 F1,W=FF1(),WW() //*再次更新 print F1,W //*输出实际风力和转速 #鼓风机风力偏小 F=2.2 //*当风力为2.2时 print "鼓风机风力",F #随着时间增加 for t in xrange(20): //*在f=2.2时,再次迭代 F1,W=FF1(),WW() print F1,W 实验结果:

控制系统数字仿真实验报告

控制系统数字仿真实验报告 班级:机械1304 姓名:俞文龙 学号: 0801130801

实验一数字仿真方法验证1 一、实验目的 1.掌握基于数值积分法的系统仿真、了解各仿真参数的影响; 2.掌握基于离散相似法的系统仿真、了解各仿真参数的影响; 3.熟悉MATLAB语言及应用环境。 二、实验环境 网络计算机系统(新校区机电大楼D520),MATLAB语言环境 三实验内容 (一)试将示例1的问题改为调用ode45函数求解,并比较结果。 实验程序如下; function dy = vdp(t,y) dy=[y-2*t/y]; end [t,y]=ode45('vdp',[0 1],1); plot(t,y); xlabel('t'); ylabel('y');

(二)试用四阶RK 法编程求解下列微分方程初值问题。仿真时间2s ,取步长h=0.1。 ?????=-=1 )0(2y t y dt dy 实验程序如下: clear t0=0; y0=1; h=0.1; n=2/h; y(1)=1; t(1)=0; for i=0:n-1 k1=y0-t0^2; k2=(y0+h*k1/2)-(t0+h/2)^2; k3=(y0+h*k2/2)-(t0+h/2)^2;

k4=(y0+h*k3)-(t0+h)^2; y1=y0+h*(k1+2*k2+2*k3+k4)/6; t1=t0+h; y0=y1; t0=t1; y(i+2)=y1; t(i+2)=t1; end y1 t1 figure(1) plot(t,y,'r'); xlabel('t'); ylabel('y'); (三)试求示例3分别在周期为5s的方波信号和脉冲信号下的响应,仿真时间20s,采样周期Ts=0.1。

MATLAB与控制系统仿真及实验 2016 (二)

MATLAB与控制系统仿真及实验 实验报告 (二) 2015- 2016 学年第 2 学期 专业: 班级: 学号: 姓名: 20 年月日

实验二 MATLAB的图形绘制 一、实验目的 1.学习MATLAB图形绘制的基本方法 2.熟悉和了解MATLAB图形绘制程序编辑的基本指令 3.熟悉掌握利用MATLAB图形编辑窗口编辑和修改图形界面,添加图形的标注 4.掌握plot、subplot的指令格式和语法 二、实验设备及条件 计算机一台(包含MATLAB 软件环境)。 三、实验内容 1.生成1×10 维的随机数向量a,分别用红、黄、蓝、绿色绘出其连线图、杆图、阶梯图和条形图,并分别标出标题“连线图”、“杆图”、“阶梯图”、“条形图”。 (1. Generate random vector of dimension 1×10, and use different functions plot, stem, stairs and bars to draw figures with different colors, such as red, yellow, blue and green. Then title the figures with "Plot", "Stem", "Stem", "Bars" respectively.) a=rand(1,10); subplot(2,2,1); plot(a,'r'); title('连线图'); subplot(2,2,2); stem(a,'y'); title('杆图'); subplot(2,2,3); stairs(a,'b'); title('阶梯图'); subplot(2,2,4); bar(a,'g'); title('条形图'); 2. 绘制函数曲线,要求写出程序代码。 (2. Plot the curves and write down the code.) (1) 在区间[0:2π]均匀的取50个点,构成向量t t=linspace(0,2*pi,50)

运动控制系统仿真实验讲义

《运动控制系统仿真》实验讲义 谢仕宏

实验一、闭环控制系统及直流双闭环调速系统仿真 一、实验学时:6学时 二、实验内容: 1. 已知控制系统框图如图所示: 图1-1 单闭环系统框图 图中,被控对象s e s s G 150130010)(-+= ,Gc(s)为PID 控制器,试整定PID 控制器参数,并建立控制系统Simulink 仿真模型。再对PID 控制子系统进行封装,要求可通过封装后子系统的参数设置页面对Kp 、Ti 、Td 进行设置。 2. 已知直流电机双闭环调速系统框图如图1-2所示。试设计电流调节器ACR 和转速调节器ASR 并进行Simulink 建模仿真。 图1-2 直流双闭环调速系统框图

三、实验过程: 1、建模过程如下: (1)PID控制器参数整顿 T2.1=,Ti=τ2=300,根据PID参数的工程整定方法(Z-N法),如下表所示, Kp= τK Td=τ5.0=75。 表1-1 Z-N法整定PID参数 (2)simulink仿真模型建立 建立simulink仿真模型如下图1-3所示,并进行参数设置:

图1-3 PID控制系统Simulink仿真模型 图1-3中,step模块“阶跃时间”改为0,Transport Delay模块的“时间延迟”设置为150,仿真时间改为1000s,如下图1-4所示: 图1-3 PID控制参数设置 运行仿真,得如下结果:

图1-5 PID控制运行结果 (3)PID子系统的创建 首先将参数Gain、Gain1、Gain三个模块的参数进行设置,如下图所示: 图1-6 PID参数设置 然后建立PID控制器子系统,如下图1-7所示:

控制系统仿真和设计实验报告

控制系统仿真与设计实验报告 姓名: 班级: 学号: 指导老师:峰

7.2.2控制系统的阶跃响应 一、实验目的 1.观察学习控制系统的单位阶跃响应; 2.记录单位阶跃响应曲线; 3.掌握时间相应的一般方法; 二、实验容 1.二阶系统G(s)=10/(s2+2s+10) 键入程序,观察并记录阶跃响应曲线;录系统的闭环根、阻尼比、无阻尼振荡频率;记录实际测去的峰值大小、峰值时间、过渡时间,并与理论值比较。 (1)实验程序如下: num=[10]; den=[1 2 10]; step(num,den); 响应曲线如下图所示: (2)再键入: damp(den); step(num,den); [y x t]=step(num,den); [y,t’] 可得实验结果如下:

实际值理论值峰值 1.3473 1.2975 峰值时间 1.0928 1.0649 过渡时间+%5 2.4836 2.6352

+%2 3.4771 3.5136 2. 二阶系统G(s)=10/(s2+2s+10) 试验程序如下: num0=[10]; den0=[1 2 10]; step(num0,den0); hold on; num1=[10]; den1=[1 6.32 10]; step(num1,den1); hold on; num2=[10]; den2=[1 12.64 10]; step(num2,den2); 响应曲线:

(2)修改参数,分别实现w n1= (1/2)w n0和w n1= 2w n0响应曲线 试验程序: num0=[10]; den0=[1 2 10]; step(num0,den0); hold on; num1=[2.5]; den1=[1 1 2.5]; step(num1,den1); hold on; num2=[40]; den2=[1 4 40]; step(num2,den2); 响应曲线如下图所示: 3.时作出下列系统的阶跃响应,并比较与原系统响应曲线的差别与特点,作出相应的实验分析结果。

哈工大 计算机仿真技术实验报告 仿真实验四基于Simulink控制系统仿真与综合设计

基于Simulink 控制系统仿真与综合设计 一、实验目的 (1) 熟悉Simulink 的工作环境及其功能模块库; (2) 掌握Simulink 的系统建模和仿真方法; (3) 掌握Simulink 仿真数据的输出方法与数据处理; (4) 掌握利用Simulink 进行控制系统的时域仿真分析与综合设计方法; (5) 掌握利用 Simulink 对控制系统的时域与频域性能指标分析方法。 二、实验内容 图2.1为单位负反馈系统。分别求出当输入信号为阶跃函数信号)(1)(t t r =、斜坡函数信号t t r =)(和抛物线函数信号2/)(2t t r =时,系统输出响应)(t y 及误差信号)(t e 曲线。若要求系统动态性能指标满足如下条件:a) 动态过程响应时间s t s 5.2≤;b) 动态过程响应上升时间s t p 1≤;c) 系统最大超调量%10≤p σ。按图1.2所示系统设计PID 调节器参数。 图2.1 单位反馈控制系统框图

图2.2 综合设计控制系统框图 三、实验要求 (1) 采用Simulink系统建模与系统仿真方法,完成仿真实验; (2) 利用Simulink中的Scope模块观察仿真结果,并从中分析系统时域性能指标(系统阶跃响应过渡过程时间,系统响应上升时间,系统响应振荡次数,系统最大超调量和系统稳态误差); (3) 利用Simulink中Signal Constraint模块对图2.2系统的PID参数进行综合设计,以确定其参数; (4) 对系统综合设计前后的主要性能指标进行对比分析,并给出PID参数的改变对闭环系统性能指标的影响。 四、实验步骤与方法 4.1时域仿真分析实验步骤与方法 在Simulink仿真环境中,打开simulink库,找出相应的单元部件模型,并拖至打开的模型窗口中,构造自己需要的仿真模型。根据图2.1 所示的单位反馈控制系统框图建立其仿真模型,并对各个单元部件模型的参数进行设定。所做出的仿真电路图如图4.1.1所示。

仿真综合实验指导书

《控制系统仿真》实验 指导书 电子信息与电气工程系 自动化教研室 2011年8月

前言 电子信息与电气工程系为自动化专业本科生开设了控制系统仿真课程,为了使学生深入掌握MATLAB语言基本程序设计方法,运用MATLAB语言进行控制系统仿真和综合设计,同时开设了控制系统仿真综合实验,学时为12学时。为了配合实验教学,我们编写了综合实验指导书,主要参考控制系统仿真课程的教材《控制系统数字仿真与CAD》、《反馈控制系统设计与分析——MATLAB语言应用》及《基于MATLAB/Simulink的系统仿真技术与应用》。 自动化教研室 2011年8月

实验一MATLAB基本操作 实验目的 1.熟悉MATLAB实验环境,练习MATLAB命令、m文件、Simulink的基本操作。 2.利用MATLAB编写程序进行矩阵运算、图形绘制、数据处理等。 3.利用Simulink建立系统的数学模型并仿真求解。 实验原理 MATLAB环境是一种为数值计算、数据分析和图形显示服务的交互式的环境。MATLAB 有3种窗口,即:命令窗口(The Command Window)、m-文件编辑窗口(The Edit Window)和图形窗口(The Figure Window),而Simulink另外又有Simulink模型编辑窗口。 1.命令窗口(The Command Window) 当MA TLAB启动后,出现的最大的窗口就是命令窗口。用户可以在提示符“>>”后面输入交互的命令,这些命令就立即被执行。 在MA TLAB中,一连串命令可以放置在一个文件中,不必把它们直接在命令窗口内输入。在命令窗口中输入该文件名,这一连串命令就被执行了。因为这样的文件都是以“.m”为后缀,所以称为m-文件。 2.m-文件编辑窗口(The Edit Window) 我们可以用m-文件编辑窗口来产生新的m-文件,或者编辑已经存在的m-文件。在MATLAB主界面上选择菜单“File/New/M-file”就打开了一个新的m-文件编辑窗口;选择菜单“File/Open”就可以打开一个已经存在的m-文件,并且可以在这个窗口中编辑这个m-文件。 3.图形窗口(The Figure Window) 图形窗口用来显示MA TLAB程序产生的图形。图形可以是2维的、3维的数据图形,也可以是照片等。 MA TLAB中矩阵运算、绘图、数据处理等内容参见教材《控制系统数字仿真与CAD(第2版)》P56-92。 Simulink是MATLAB的一个部件,它为MA TLAB用户提供了一种有效的对反馈控制系统进行建模、仿真和分析的方式。 有两种方式启动Simulink:

控制系统仿真实验一报告

实验一经典的连续系统仿真建模方法 一实验目的 1.了解和掌握利用仿真技术对控制系统进行分析的原理和步骤。 2.掌握机理分析建模方法。 3.深入理解一阶常微分方程组数值积分解法的原理和程序结构,学习用Matlab 编写 数值积分法仿真程序。 4.掌握和理解四阶Runge-Kutta 法,加深理解仿真步长与算法稳定性的关系。 二实验内容 1. 编写四阶 Runge_Kutta 公式的计算程序,对非线性模型(3)式进行仿真。(1)将阀位u 增大10%和减小10%,观察响应曲线的形状; u=0.45时的图像: u=0.55 01002003004005006007008009001000 1.25 1.3 1.35 1.4 1.45 1.5

开大或关小阀位之后,稳态值会相应的从原液位上升或下降,这是符合实际的。 (2) 研究仿真步长对稳定性的影响,仿真步长取多大时RK4 算法变得不稳定? 由(1)可知,当步长为40时,仿真结果是稳定的 当步长为80时的图像 01002003004005006007008009001000 1.35 1.4 1.45 1.5 1.55 1.6 1.65 1.7

h (1,1)的数值稳定,但是并不是实际求得的稳态值。h (1,2)的值显然发散。 进一步取小步长,取hstep=42时,图像出现偏差,但是稳态值不变 Hstep=65时,图像偏差明显 0200400600800100012001400160018002000 -140 -120-100-80-60-40-200 20020040060080010001200 1.35 1.41.451.51.551.61.651.7 1.75

控制系统仿真 实验二

实验二Matlab的数值运算及绘图 1.试验目的 (1)学习Matlab语言的基本矩阵运算; (2)学习Matlab语言的点运算; (3)学习多项式运算; (4)学习Matlab语言的各种二维绘图; 2.试验内容 在下面的试验操作中,认真记录每项操作的作用和目的; (1)基本矩阵运算 1)创建数值矩阵。 键入 a=[1 2 3;4 5 6;7 8 9]; 观察 a a(3,2) a(:,1) 键入 t=0:10 u=0:0.1:10 观察矩阵变量t,u的值。 键入 a(:,3)=[2;3;4] a 观察矩阵a的变化。 键入 b=[1 1+2i ;3+4i 3] 观察复数矩阵。 2)创建特殊矩阵; 键入 a=ones(3,3) b=zeros(2,2) c=eye(4) 观察特殊矩阵。 3)练习矩阵运算; 键入 a=[0 1 0;0 0 1;-6 -11 -6]; b=[1 2;3 4;5 6]; c=[1 1 0;0 1 1]; 作矩阵乘运算 v1=c*a v2=a*b v3=c*a*b v4=b*c v5=c*b 矩阵乘方运算 a^2 a^(1/2) 矩阵加减运算 a1=a+b*c a2=c*b-a(1:2,1:2) a3=a(1:2,2:3)+c*b 矩阵右除(矩阵右除为四则运算的除运算,必须满足矩阵维数的要求)ar=c/a 矩阵左除(矩阵左除等价于逆乘运算a\c=a-1*c,a-1为矩阵a的逆运算)al=a\b 4)练习矩阵特征运算 完成以下矩阵特征运算。 a' inv(a) rank(a) det(a) eig(a) (2)Matlab语言的点运算 1)练习点乘与点除。 a1=[1 2;3 4] a2=0.2*a1 观察 [a1 a2] [a1.*a2 a1./a2] 2)由点运算完成标量函数运算与作图。 正、余弦函数的点运算。 t=0:2*pi/180:2*pi; y1=sin(t);y2=cos(t); y=y1.*y2; plot(t,[y' y1' y2']);

相关文档
相关文档 最新文档