文档库 最新最全的文档下载
当前位置:文档库 › 晶界的迁移

晶界的迁移

晶界的迁移
晶界的迁移

晶界迁移

晶粒长大并不是小晶粒的相互黏结,而是晶界移动的结果。在晶界两边物质的吉布斯自由能之差是使界面向曲率中心移动的驱动力。晶界移动的速率是与晶界曲率以及系统的温度有关。温度升高和曲率半径越小,晶界向其曲率中心移动的速率也越快,气孔在晶界上是随晶界移动还是阻止晶界移动,这与晶界曲率有关,也与气孔直径、数量、气孔作为空位源向晶界扩散的速率、气孔内气体压力大小、包围气孔的晶粒数等因素有关。约束晶粒生长的另一个因素是有少量液相出现在晶界上。少量液相使晶界上形成两个新的固-液界面,从而界面移动的推动力降低和扩散距离增加。因此少量液相可以起到抑制晶粒长大的作用。

根据由许多颗粒组成的多晶体界面移动情况得到以下几条规则: 1.晶界上有界面能的作用,因此晶粒形成一个在几何学上与肥皂泡相似的三维阵列。 2.晶粒边界如果都具有基本上相同的表面张力,晶粒呈正六边形。 3.在晶界上的第二类夹杂物(杂质或气泡),如果它们在烧结温度下不与主晶相形成液相,则将阻碍晶界移动。在烧结体内晶界移动有以下七种方式:气孔靠晶格扩散移动;气孔靠表面扩散移动;气孔靠气相传递;气孔靠晶格扩散聚合;气孔靠晶界扩散聚合;单相晶界本征迁移;存在杂质牵制晶界移动。

二次再结晶的推动力是大晶粒界面与临近高表面能和小曲率半径的晶

面相比有较低的表面能,在表面能的驱动下,大晶粒界面向曲率半径小的晶粒中心推进,以致造成大晶粒进一步长大与小晶粒的消失。晶粒生长与二次再结晶的区别在于前者坯体内晶粒尺寸均匀地生长,服从(9-42)公式。而二次再结晶是个别晶粒异常生长,不服从(9-42)式,晶粒生长是平均尺寸增长,不存在晶核,界面处于平衡状态,界面上无应力。二次再结晶的大晶粒界面上有应力存在。晶粒生长时气孔艘维持在晶界上或晶界交汇处,二次再结晶时气孔被包裹到晶粒内部。从工艺控制考虑,造成二次再结晶的原因主要是原始粒度不均匀、烧结温度偏高和烧结速率太快。其他还有坯体成型压力不均匀,局部有不均匀液相等。为避免气孔封闭在晶粒内,避免晶粒异常生长,应防止致密化速率太快。

晶界在多晶体中不同晶粒之间的交界面,据估计晶界宽度约为5-60nm。晶界上原子排列疏松霍乱,在烧结传质和晶粒生长过程中晶界对坯体致密化起着十分重要的作用。由于烧结体中气孔形状是不规则的,晶界上气孔的扩大、收缩或稳定与表面张力、润湿角、包围气孔的晶粒数有关,还与晶界迁移率、气孔半径、气孔内气压高低等因素有关。在离子晶体中,晶界是阴离子快速扩散的通道。离子晶体的烧结与金属材料不同。阴、阳离子必须同时扩散才能导致物质的传递与烧结。晶界上溶质的偏聚可以延伸晶界的移动

名家素坯体致密化,为了从坯体中完全排除气孔,获得致密烧结体,空位扩散必须在晶界上保持相当高的速率/只有通过抑制晶界的移动才能使气孔在烧结的始终都保持在晶界上,避免晶粒的不连续生长。利用溶质在晶界上偏析的特征,在坯体中添加少量溶质(烧结助剂),就能达到抑制晶界移动的目的。

晶界对性能的影响

晶界对合金性能的影响机理 晶界是固体材料中的一种面缺陷,根据晶界角度的大小可以分为小角晶界(θ<10°)和大角晶界,亚晶界均属小角度晶界,一般小于2°,多晶体中90%以上的晶界属于大角度晶界。根据晶界上原子匹配优劣程度可以分为重位晶界和混乱晶界。在晶界处存在一些特殊的性质:(1)晶界处点阵畸变大,存在晶界能。晶粒的长大和晶界的平直化都能减少晶界面积,从而降低晶界的总能量,这是一个自发过程。晶粒的长大和晶界的平直化均需通过原子的扩散来实现,因此,温度升高和保温时间的增长,均有利于这两过程的进行;(2)晶界处原子排列不规则,在常温下晶界的存在会对位错的运动起阻碍作用,致使塑性变形抗力提高,宏观表现为晶界较晶内具有较高的强度和硬度。晶粒越细,材料的强度越高,这就是细晶强化;高温下则由于晶界存在一定的粘滞性,易使相邻晶粒产生相对滑动;(3)晶界处原子偏离平衡位置,具有较高的动能,并且晶界处存在较多的缺陷如空穴、杂质原子和位错等,故晶界处原子的扩散速度比在晶内快得多;(4)在固态相变过程中,由于晶界能量较高且原子活动能力较大,所以新相易于在晶界处优先形核。原始晶粒越细,晶界越多,则新相形核率也相应越高;(5)由于成分偏析和内吸附现象,特别是晶界富集杂质原子的情况下,往往晶界熔点较低,故在加热过程中,因温度过高将引起晶界熔化和氧化,导致“过热”现象产生;(6)由于晶界能量较高、原子处于不稳定状态,以及晶界富集杂质原子的缘故,与晶内相比晶界的腐蚀速度一般较快。这就是用腐蚀剂显示金相样品组织的依据,也是某些金属材料在使用中发生晶间腐蚀破坏的原因;(7)低温下晶界强度比晶粒内高,高温下晶界强度比晶内低,表现为低温弱化。 基于上述几点晶界的特殊性质,使得多晶材料的塑性变形、强度、断裂、脆性、疲劳和蠕变等性能与单晶材料相比存在很大差异,即晶界不同的特殊性质具体体现在了合金的不同性能。但合金性能与晶界特性间绝不是一一对应的关系,而是几种甚至是所有特性的共同作用而表现出来,不同成分的合金在性能上也表现出各异。 1 晶界与塑性变形 晶界对多晶体的塑性变形的影响起因于下述原因:①晶界对滑移的阻碍作用;②晶界引起多滑移;③晶界滑动;④晶界迁移;⑤晶界偏聚。

位错-晶体缺陷

位错——晶体缺陷作业 S1105051 张玉珠 2.论述一种强化机制在金属组织设计中的应用,举例说明。 固溶强化是融入固溶体中的溶质原子造成晶格畸变,晶格畸变增大了位错运动的阻力,使滑移难以进行,从而使合金固溶体的强度与硬度增加产生强化。包含溶质原子的相就能对材料起到强化作用。一般对固溶强化考虑尺寸效应、模量效应和短程有序(SRO)的作用。 为有效地评价动能穿甲弹材料和提高其性能,以真空处理和锻造退火两种状态下的钨合金动态拉伸性能为判据,采用固溶强化的方法,通过添加稀土元素La,Ce强化93WNiFe合金性能。合金在不同的应变率下,其工程应力—应变曲线随应变率的增加而上升,上屈服点显著上升,延伸率却下降。结果表明在93WNiFe合金中添加稀土元素La,Ce可提高弹用钨合金的动态性能。在高应变率(σs>102)时合金添加La,Ce的真空态强度和塑性高于不添加的,经过锻造后,则合金动态强度比不添加的高出60% ~ 150%,这种性能正好与弹体设计要求的前硬后韧相吻合。添加La,Ce改善性能的途径是:W颗粒和粘结相的固熔强化,W颗粒细化,W—M界面净化W—W界面相对量减少,粘结相W溶解度的减小和游离氢的减少。 3.论述位错与晶界或晶面的交互作用,举例说明。 晶界与位错的交互作用形式分为晶界塞积位错、晶界发出位错和晶界吸收位错。 高纯铝在范性形变初期晶界与位错的交互作用: 在一般情况下,点阵位错以及晶界位错的柏氏矢量并非与晶界面平行,因此点阵位错沿晶界的分解或运动均需要提供一攀移分量,这就是温度对晶界与位错交互作用机制影响的关键。在低温形变中,被晶界捕获的点阵位错很难进行攀移。对于特殊位向的大角晶界,被捕获的点阵位错虽可分解为数个晶界位错,或与预先存在的晶界位错网络发生Suzuki反应但分解产物以及反应产物亦难以通过攀移而松弛,在任意大角晶界中,点阵位错由于得不到充分的热激活很难产生核心宽化,同时也难以沿晶界作整体攀移运动。结果被晶界捕获的位错将对随后而至的位错作用一长程斥力或直接发生短程反应,造成位错在晶界前的塞积。对于小应变范性形变,这种晶界塞积所导致的应力集中将对形变硬化产生重要贡献。随着形变温度的升高,一方面由晶内进人晶界的点阵位错的可动性增加,使得部分位错有可能在热激活及外应力场的作用下,通过分解松弛、核心宽化,以及沿晶界运动而与异号位错相抵消等方式对形变回复产生贡献。另一方面,温度的升高可能有助于激活晶界台阶而向晶内发射位错同时在晶界附近的应力集中区激活更多的次级滑移,结果在松弛一部分应力的同时增加了晶内位错之间交互作用的机会。当形变温度提高到一定程度后,进人晶界的点阵位错借助充分的热激活,通过不同的机制而被晶界迅速吸收。 7.论述如何在强化的同时,提高韧性 对于钢材料,采用细晶强化的方式,提高强度的同时,其塑性韧性也相对提高。这是因为钢晶粒细化后,晶界增多,而晶界上的原子排列不规则,杂质和缺陷多,能量较高,阻碍位错的通过,即阻碍塑性变形,就实现了高强度。晶粒越细,在一定体积内的晶粒数目多,则在同样塑性变形量下,变形分散在更多的晶

什么叫晶界

材物0802 陆寅 12 题目:晶界对材料性质的影响 摘要: 简述晶界的定义以及其来源与分类,引入晶界对材料性质的各种作用原理与原因,通过列举各种材料性质与其晶界间的关系来说明晶界对材料性质的影响,并对晶界的研究作出展望。 关键词: 晶界面缺陷晶界的分类晶界腐蚀多晶材料金属材料无机非金属材料材料 论述: 什么叫晶界 grain boundary 晶界是结构相同而取向不同晶体之间的界面。在晶界面上,原子排列从一个取向过渡到另一个取向,故晶界处原子排列处于过渡状态。 晶界的分类 晶粒与晶粒之间的接触界面叫做晶界有二种不同的分类方法,一种简单地按两个晶粒之间夹角的大小来分类。分成小角度晶界和大角度晶界。小角度晶界是相邻两个晶粒的原子排列铝合的角度很小,约2`~3`。两个晶粒间晶界由完全配合部分与失配部分组成。,界面处质点排列着一系列棱位图。当一颗晶粒绕垂直晶粒界面的轴旋转微小角度,也能形成由螺旋位错构成的扭转小角度晶界。大角度晶界在多晶体中占多数,这时晶界上质点的排列已接近无序状态。另一种分类是根据晶界两边原子排列的连贯性来划分的。当界面两侧的晶体具有非常相似的结构和类似的取向,越过界面原子面是连续的。这样的界面称为共格晶界。例如,氢氧化镁加热分解成氧化镁,Mg(OH)2--》MgO+H2O,就形成这样的间界。这种氧化物的氧离子密堆平面通过类似堆积的氢氧化物的平面脱氢而直接得到。因此当Mg(OH)。结构内有转变为MgO结构的畴出现时,则阴离子面是连续的。然而,两种结构的晶面间距彼此不同,分别为C1和C2,(C2-C1)/C1=Q被定义为品面间距的失配度。为了保个相或二个相发生弹性应变,或通过引入位错来达到。失配度Q是弹性应变的一个量弹性应变的存在,使系统的能量增大,系统能量与cQ2成正比,C为常数。另一种类型的晶界称做半共格晶界。在这种结构中,最简单的看只有晶面间距C1比较小的一个相发生应变。弹性应变可以成引入半个原子晶面进入应变相下降,这样就生成所谓界面位错。位错的引入、使在位错线附近发生局部的晶格畸变。显然晶体的能量也增加。 晶界的特性 由于晶界上两个晶粒的质点排列取向有一定的差异,两者都力图使晶界上的质点排列符合于自己的取向。当达到平衡时,晶界上的原子就形成某种过渡的排列。显然,晶界上由于原子排列不规则而造成结构比较疏松,因而也使晶界具有一些不同于晶粒的特性。晶界上原子排列较晶粒内疏松,因而晶界易受腐蚀(热侵蚀、化学腐蚀)后,很易显露出来;由于晶界上结构疏松,在多晶体中,晶界是原子(离子)快速扩散的通道,并容易引起杂质原子(离子)偏聚,同时也使晶界处熔点低于晶粒;晶界上原子排列混乱,存在着许多空位、位错和键变形等缺陷,使之处于应力畸变状态。故能阶较高,使得晶界成为富态相变时代先成核的区域。利用晶界的一系列特性,通过控制晶界组成、结构和相态等来制造新型无机材料是材料科学工作者很感兴趣的研究领域。但是多晶体晶界尺度仅在0.lum以下,并非一般显微工能研究的。而要采用俄歇谱仪及离子探针等。由于晶界上成分复杂,因此对晶界的研究还有待深入。晶界对无机非金属材料的影响 无机非金属材料是由微细粉料烧结而成的。在烧结时,众多的的微细颗粒形成大量的结晶中心。当它们发育成晶粒并逐渐长大到相遇时就形成晶界。因而无机非金属材料是由形状不规

(完整版)晶界和亚晶界

3.3.2 晶界和亚晶界 属于同一固相但位向不同的晶粒之间的界面称为晶界(grain boundary);而每个晶粒有时又由若干个位向稍有差异的亚晶粒所组成,相邻亚晶粒间的界面称为亚晶界(sub-grain boundary)。晶粒的平均直径通常在0.015—0.25mm范围内,而亚晶粒的平均直径则通常为0.001mm的范围内。 二维点阵中晶界位置可用两个晶粒的位向差θ和晶界相对于一个点阵某一平面的夹角φ来确定,如图所示。 根据相邻晶粒之间位向差θ角的大小不同可将晶界分为两类: 1.小角度晶界(small-angle grain boundary)——相邻晶粒的位向差小于10°的晶界;亚晶界均属小角度晶界,一般小于2°; 2.大角度晶界(large-angle grain boundary)——相邻晶粒的位向差大于10°的晶界,多晶体中90%以上的晶界属于此类。 3.3.2.1小角度晶界的结构 按照相邻亚晶粒间位向差的型式不同,小角度晶界可分为倾斜晶界、扭转晶界和重合晶界等。它们的结构可用相应的模型来描述。 1.对称倾斜晶界 对称倾斜晶界(symmetrical tilt boundary)可看作是把晶界两侧晶体互相倾斜的结果。由于相邻两晶粒的位向差θ角很小,其晶界可看成是由一列平行的刃型位错所构成。 2.不对称倾斜晶界 如果倾斜晶界的界面绕x轴转了一角度φ,则此时两晶粒之间的位向差仍为θ角,但此时晶界的界面对于两个晶粒是不对称的,故称不对称倾斜晶界(unsymmetrical tilt boundary)。它有两个自由度θ和φ。该晶界结构可看成由两组柏氏矢量相互垂直的刃型位错交错排列而构成的。 3.扭转晶界 扭转晶界(twist boundary)是小角度晶界的一种类型。它可看成是两部分晶体绕某一轴在一个共同的晶面上相对扭转一个θ角所构成的,扭转轴垂直于这一共同的晶面。该晶界的结构可看成是由互相交叉的螺型位错所组成,如图3-71 。 扭转晶界和倾斜晶界均是小角度晶界的简单情况,不同之处在于倾斜晶界形成时,转轴在晶界内;扭转晶界的转轴则垂直于晶界。一般情况下,小角度晶界都可看成是两部分晶体绕某一轴旋转一角度而形成的,只不过其转轴既不平行于晶界也不垂直于晶界。对于这样的小角度晶界,可看作是由一系列刃位错、螺位错或混合位错的网络所构成。

相关文档