文档库 最新最全的文档下载
当前位置:文档库 › 细胞生物学要点总结

细胞生物学要点总结

细胞生物学考试复习

1、放射自显影技术(autoradiography): 标本经放射性标记,感光材料原位暴光,可以确定放射性标记物在细胞内的定位。用于凝胶或琼脂平板时,能鉴定出放射性的条带或菌落。

2、动粒(kinetochore): 是指在主缢痕处两条染色单体的外侧表层部位的特殊结构。是纺锤丝微管的连接处,化学本质是蛋白质。

3、着丝粒(centromere): 是在主缢痕处两条染色单体相连处的中心部位,即主缢痕的内部结构,化学本质是一段DNA序列。着丝粒的

位置是鉴别染色体类型的一个重要标志。

4、核型(karyotype): 是指体细胞中在形态、结构和遗传功能彼此不同而互相协调的全套染色体数,也称染色体组型。根据染色体的

相对大小、着丝粒的位置、臂的长短、有无随体等特征,可把生物体细胞中全套染色体按一定顺序分组排列。染

色体组数,每组染色体的数目多少,均随生物种而异。正常人的46条染色体可分为A~G等7个组,因此,正常

人的核型可表示为46,XX(XY)。

5、多线染色体(polytene chromosome) :

6、微管组织中心(microtubule organizing center,MTOC):

7、周期蛋白(cyclin ): 在整个真核生物的细胞周期中,浓度随细胞周期的变化而时升时降的几个相关的蛋白质。细胞周期蛋白与依

赖于细胞周期蛋白的激酶之间形成复合物,从而激活并决定了这些酶的底物特异性。

8、限制点(restriction point): 限制点是哺乳动物细胞周期G

期控制进入S期的调节点,相当于酵母的START点。监测细胞的大小

1

及营养状态等,包括生长因子,满足条件则可通过细胞周期限制点,完成余下的细胞周期过程。

9、促后期复合物(anaphase-promoting complex, APC): APC即遍在蛋白连接酶(ubiquitin ligase,E3)复合物。 E3通常是一种复合体,由多亚基组成。APC激发E2-遍在蛋白复合物与有丝分裂周期蛋白破坏框结合,促使蛋白酶体降解周期蛋白,导致细胞完成M期。

10、M期促进因子(M phase-promotinp factor,MPF): 一种蛋白质,CDK1与周期蛋白B结合成MPF,其含量在有丝分裂前迅速上升,

在有丝分裂后迅速下降,被认为是触发有丝分裂的物质。

11、关卡(checkpoint): 监控细胞周期事件的发生、发展过程是否严格按程序进行的控制点称为关卡。

12、核孔复合物(nuclear pore complexs,NPCs) :核被膜上有许多孔, 称为核孔( nuclear pore ),是细胞核膜上沟通核质与胞质的

开口, 由内外两层膜的局部融合所形成, 核孔的直径为80~120nm

13、信号肽(signal peptide):将膜结合核糖体上合成的蛋白质的N-端的序列称为信号序列(signal sequence),将组成该序列的肽

称为信号肽。在不需要特别区分时,可将它们统称为信号序列或信号肽。

14、伪装mRNA(masked mRNA):未受精的卵细胞中携带有大量的mRNA,但这些mRNA在发育的早期不能进行蛋白质的合成,一般将这些

储存在卵细胞中为后期发育合成蛋白质用的mRNA称为“伪装的”mRNA(masked mRNA)

15、蛋白质寻靶(protein targeting):游离核糖体上合成的蛋白质释放到胞质溶胶后被运送到不同的部位,即先合成,后运输。由

于在游离核糖体上合成的蛋白质在合成释放之后需要自己寻找目的地,因此又称为蛋白质寻靶16、染色体早熟凝集(premature chromosome condensation,PCC):将处于分裂期的细胞与处于细胞周期其他阶段的细胞融合, M期的

细胞质总是能够诱导非有丝分裂的细胞中的染色质凝集, 这种现象称为染色体早熟凝集

17、细胞识别(cell recognition) :指细胞对同种或异种细胞、同源或异源细胞以及对自己和异己物质分子的认识和鉴别。

18、联会复合体(synaptonemal complex,SC):联会是在减数分裂的偶线期两条同源染色体侧面紧密相帖并进行配对的现象。联会染

色体间的配对是专一性的, 可以同时发生在分散的几个点上。染色体联会伴随一种复杂结构的形成:联会复

合体。

19、踏车现象(treadmilling) :在微丝装配时,若G-肌动蛋白分子添加到F-肌动蛋白丝上的速率正好等于G-肌动蛋白分子从F-肌动

蛋白上失去的速率时, 微丝净长度没有改变, 这种过程称为肌动蛋白的踏车现象

20、组成型分泌途径(constitutive secretory pathway):这种分泌途径中运输小泡持续不断地从高尔基体运送到细胞质膜,并立即

进行膜的融合,将分泌小泡中的蛋白质释放到细胞外, 此过程不需要任何信号的触发, 它存在于所有类型的细胞

中。组成型分泌途径除了给细胞外提供酶、生长因子和细胞外基质成分外,也为细胞质膜提供膜整合蛋白和

膜脂。

21、协同运输(cotransport):又称偶联运输,它不直接消耗ATP,但要依赖离子泵建立的电化学梯度,所以又将离子泵称为初级主

动运输(primary active transport),将协同运输称为次级主动运输(secondary active transport)。

22、糖萼(glycocalyx):细胞质膜通常是由覆盖在细胞表面的保护层保护着,这种保护层即是细胞被。由于这层结构的主要成份是糖,

所以又称为糖萼(glycocalyx),或多糖包被

23、细胞的胞吐作用(exocytosis):也称细胞的分泌活动动物细胞和植物细胞将在粗面内质网上合成而又非内质网组成部分的蛋白和脂

通过小泡运输的方式经过高尔基体的进一步加工和分选运送到细胞内相应结构、细胞质膜以及细胞外的过程称为细胞的分泌。

24、溶酶体(lysosome):是动物细胞中一种膜结合细胞器,含有多种水解酶类, 在细胞内起消化和保护作用, 可与吞噬泡或胞饮泡结合,

消化和利用其中的物质

25、端粒酶(telomerase)

26、微丝(microfilament):

27、信号假说(signal hypothesis),要点是:

(1)分泌蛋白的合成始于细胞质中的游离核糖体;

(2)合成的N-端信号序列露出核糖体后,靠自由碰撞与内质网膜接触,然后靠N-端信号序列的疏水性插入内质网的膜;

(3)蛋白质继续合成,并以袢环形式穿过内质网的膜;

(4)如果合成的是分泌的蛋白,除了信号序列被信号肽酶切除外,全部进入内质网的腔,若是膜蛋白,则由一个或多个停止转移信号将蛋白质锚定在内质网膜上。

28、桥粒(desmosomes)

29、Hayflick界限(Hayflick life span):即细胞最大分裂次数。

比较cAMP信号系统与IP

3

-DAG信号系统在跨膜信号传递作用的异同

答:二者都是G蛋白偶联信号转导系统,但是第二信使不同,分别由不同的效应物生成:cAMP由腺苷酸环化酶(AC)水解细胞中的ATP 生成,cAMP再与蛋白激酶A(PKA)结合,引发一系列细胞质反应与细胞核中的作用。在另一种信号转导系统中,效应物磷脂酶Cq(PLC)

将膜上的磷脂酰肌醇4,5-二磷酸分解为两个信使:二酰甘油(DAG)与1,4,5-三磷酸肌醇(IP

3),IP

3

动员胞内钙库释放C a2+,与钙调

蛋白结合引起系列反应,而DAG在Ca2+的协同下激活蛋白激酶C(PKC),再引起级联反应。

说明G蛋白在跨膜信号传递中的作用。

答:G蛋白是GTP结合蛋白,它介导细胞质膜上最多、也是最重要的信号转导系统。G蛋白在G蛋白耦联信号转导系统中所起的作用相当于一个分子开关,和GDP结合时呈静息状态,和GTP结合时呈活化状态。在活性和非活性状态转换时,G蛋白起桥梁作用,使受体和效应物耦联起来,将细胞外信号转变成细胞内信号。

ras基因中的一个突变(导致蛋白质中第12位甘氨酸被缬氨酸取代)会导致蛋白GTP酶活性的丧失,并且会使正常细胞发生癌变。请解释这一现象。

答:Ras蛋白是一种单体小G蛋白,与GTP结合时活化,将GTP水解为GDP后失活。如果ras基因突变导致GTP酶活性的丧失(由于一个氨基酸的替换),Ras就不能去活化,信号级联系统始终处于开放状态。因而转录﹑翻译﹑复制以及生长分裂都失去控制,导致癌变的发生。

比较膜结合核糖体和游离核糖体的蛋白质合成及去向

答:在与内质网结合的核糖体上合成的蛋白质带有一特定的信号序列,与一信号识别颗粒(SRP)结合,由内质网上的SRP受体识别。这些蛋白质属于分泌出细胞的蛋白,或与特定细胞器结合的蛋白质,以及整合膜蛋白。无这些信号序列的蛋白质在游离核糖体上合成,构成细胞质、细胞核、线粒体或叶绿体的蛋白质。

受体介导的内吞与吞噬作用有何不同?

答:细胞的内吞有两种类型,一种是吞噬细胞完成的对有害物质的吞噬;一种是通过质膜受体介导的对细胞外营养物质(包括有害物质)的内吞。吞噬作用又叫胞吃作用,吞入物通常是较大的颗粒,形成的囊泡叫吞噬体,直径一般大于250nm,在大多数高等动物细胞中,这是一种保护措施而非摄食手段,而且高等动物有一些特化的吞噬细胞。被吞噬颗粒与细胞表面结合后,激活受体,向细胞传递吞噬信号。受体介导的内吞作用主要用于摄取生物大分子,约有50种以上的不同蛋白质,包括激素、生长因子等通过这种方式进入细胞。吞入物质首先与质膜中的受体结合,配体/受体复合物在质膜上形成被膜小窝,再形成被膜小泡,随后网格蛋白解聚形成无被小泡,即初级内体。

列出线粒体的3个特征,这些特征与线粒体起源共生学说一致,该学说认为线粒体起源于包埋进其它原核宿主细胞内的细菌

答:(1)大小,某些线粒体的大小和细菌的大小相近;

(2)膜脂的构成,线粒体内膜富含心磷脂且缺少胆固醇,这也是很多细菌质膜的特征;

(3)基因组特征以及转录和翻译机制。

何谓前导肽?从线粒体基质蛋白的定位,可看出前导肽在转运蛋白时具有哪些特点?

一般将游离核糖体上合成的蛋白质N-端信号序列称为导向序列、导向信号或前导肽。

线粒体转运肽转运基质蛋白时,具有以下特点:

⑴需要受体: 由于被转运的蛋白质需要穿过(或插入)线粒体膜,前导肽首先需要与线粒体膜上的受体识别,然后才能进行转运。

⑵从接触点进入: 线粒体的内外膜要局部融合形成被运输蛋白进入的接触点(contact site)。

⑶蛋白质要解折叠: 蛋白质在合成时为了防止降解,需要立即折叠形成空间结构,但是在转运时,必须解折叠,运入线粒体之后再重新折叠。

⑷需要能量: 前导肽引导的蛋白质转运是一个耗能过程,既要消耗ATP,又要膜电位的驱动。

⑸需要导肽酶: 由于前导肽只是起蛋白质转运的引导作用,而非蛋白质的永久结构,所以,当蛋白质到达目的地后,前导肽要被切除,是由导肽酶催化的。

⑹需要分子伴侣的帮助:在线粒体蛋白的转运过程中,至少需要两种类型的分子伴侣的参与,一种是帮助转运的蛋白质解折叠,另一种是将转运的蛋白质重新折叠。

动粒与着丝粒有何不同?

答:动粒和着丝粒都指染色体上与有丝分裂纺缍体相连的点。动粒在显微镜下是染色体上一个与微管相连的密集区域,化学本质是蛋白质。着丝粒是染色体进行正确分离所必需的区域,化学本质是一段DNA序列。

比较导肽与核定位信号的区别。

答:核定位信号与导肽的区别在于:

核定位信号可以反复利用,即永久性, 前导肽一般只能使用一次就被切除;

核定位信号通过由核孔引导蛋白质,而前导肽则通过跨膜运输。

非组蛋白具有哪些结构特征?

4答:非组蛋白是细胞核中组蛋白以外的蛋白质。非组蛋白是一类不均一的蛋白(异质性),一般呈酸性,带负电荷,参与基因表达调控的非组蛋白具有序列特异性识别。

试述细胞核的结构和功能

答:间期细胞核的结构有主要5个组成部分:双层膜组成的核被膜,液态的核质,一个或多个核仁,核基质为细胞核提供骨架网络,DNA纤维(染色质或染色体)。细胞核主要有2个功能:一是通过遗传物质的复制和细胞分裂维持细胞世代间的连续性(遗传);二是通过基因的选择性表达,控制细胞的活动。

请说明分子伴侣的基本概念及其功能。

答:基本概念:是由不相关的蛋白质组成的一个家系,介导其他蛋白质的正确装配,但自身不是最后功能结构的成分。主要功能包括:帮助蛋白质正确折叠和装配;帮助蛋白质转运和定位;参与细胞期和细胞核结构的发生;应激反应;参与信号转导等。

简述真核生物细胞周期G1/S期转换的分子机理。

CyclinD-CDK4/6 、CyclinE-CDK2表达并磷酸化底物: APC失活,S期CDK转录, S期CDK复合物抑制物降解.

其中CyclinE-CDK2磷酸化P107(Rb)- E2F,释放出 E2F导致S期CDK转录

关卡(checkpoint)位于细胞周期的哪些阶段?每次“检查”什么?

答:控制系统至少有3个关卡,G

1关卡(靠近G

1

末期)、G

2

关卡(靠近G

2

末期)、中期关卡(中期末)。每一个关卡处,由细胞所处的状

态与环境决定细胞能否通过此关卡,进入下一阶段。G

1

关卡(限制点)检测细胞大小和环境,如果条件合适就会激发DNA复制,使控

制系统向前移动。G

2

关卡处,控制系统检测细胞大小、状态,以及DNA复制是否完毕。在中期关卡,控制系统检测所有染色体是否都与纺锤体相连并排列于迟到板上,检测MPF是否失活,否则不能进行有丝分裂和胞质分裂。

简述真核生物细胞周期G2/M期转换的分子机理。

答:CyclinB- CDK 1表达高峰,磷酸化底物(促进染色体凝集,核纤层磷酸化,核被膜装配,细胞相关的酶与蛋白质磷酸化. ),进入有丝分裂。 CyclinB- CDK 1的活性还需要: CAK 和 Weel激酶将CDK1磷酸化, CDC25的去磷酸化.

简述真核生物细胞周期M中期/M后期转换的分子机理。

答:APC的激活降解CyclinB,脱离M中期,进入M后期。

而APC的激活依赖:1、高CyclinB- CDK1浓度。2、动粒微管与每个染色体的动粒结合,解除Mad2对Cdc20的抑制,Cdc20激活APC.

P53蛋白如何通过控制细胞周期进行抑癌作用?

答:激活编码P21蛋白的基因,抑制周期蛋白的作用

细胞凋亡及肿瘤发生有什么联系?

答:细胞凋亡与肿瘤发生有密切的关系,如抑癌基因产物P53介导的细胞凋亡一旦受到抑制,可使细胞恶性变异。

抑癌基因的作用是什么?

答:抑癌基因编码一些检测细胞周期的蛋白质。如果这类重要基因的两个拷贝发生突变,将导致细胞失控地生长和分裂。

简述程序性细胞死亡的意义

维持细胞总数的平衡,在形态建成中起重要作用。

细胞凋亡的主要特征是什么?

答“细胞凋亡的主要特征是: 细胞核皱缩,DNA被降解(200bp及其倍数),与胞质内容物形成凋亡小体,被周围细胞吞噬。无细胞内容物外泄,不引起炎症。

简述参与秀丽新小杆线虫的细胞程序性死亡基因的分组及相关作用。

参与秀丽新小杆线虫的细胞程序性死亡的15个基因,根据其作用不同大致可分为4组。第1组含同PCD有关的决定死亡的两个基因,该组基因在线虫CE的PCD调控具有重要意义:第2组含有执行死亡的四个基因。第3组含有7个与死亡细胞被吞噬细胞所吞噬的基因;第四组是死亡细胞在吞噬体中被降解的基因。由这四组基因共同作用导致线虫细胞的程序化死亡。

为什么抑癌基因是隐性基因,而癌基因表现为显性基因作用?

答:如果抑癌基因的一个等位基因发生突变,该突变基因的产物就不能正常发挥功能;肿瘤的形成是由于完全缺乏了功能正常的肿瘤抑制蛋白,由于另一个未突变的抑癌基因的等位基因的产物能够充当其在细胞周期调控中的角色,细胞不会癌变,因此抑癌基因的突变表现为隐性。对于癌基因来说,不正常的蛋白质产物足以致癌,因为这种基因产物的作用是刺激细胞生长分裂,而不是进行负调控。即使存在功能正常的原癌基因产物(由另一未突变的等位基因编码),细胞也会出现恶变,因此癌基因的作用是显性的。

如果在所有的人细胞中抑癌基因以异常的高浓度进行表达,可以吗?解释答案

答:抑癌基因的正常功能如同抗增殖基因,它们编码的蛋白质能阻断细胞周期。在正常细胞分裂期间,这些基因必须被关闭。如果所有细胞都超量表达这些蛋白质,那么可能已经失去了关闭这些基因的机制,从而细胞分裂会停止,人体会走向死亡。

最新细胞生物学知识点总结

细胞通讯的方式 (1)细胞通过分泌化学信号进行细胞间通讯,这是多细胞生物普遍采用的通讯方式。 (2)细胞间接触依赖性的通讯,指细胞间直接接触,通过与质膜结合的信号分子影响其它细胞。 (3)动物相邻细胞间形成间隙连接以及植物细胞间通过胞间连丝使细胞间相互沟通,通过交换小分子来实现代谢耦联或电耦联。 细胞分泌化学信号可长距离或短距离发挥作用,其作用方式分为: (1)内分泌,由内分泌细胞分泌信号分子到血液中,通过血液循环运送到体内各个部位,作用于靶细胞。 (2)旁分泌,细胞通过分泌局部化学介质到细胞外液中,经过局部扩散作用于邻近靶细胞。在多细胞生物中调节发育的许多生长因子往往是通过旁分泌起作用的。此外,旁分泌方式对创伤或感染组织刺激细胞增殖以恢复功能也具有重要意义。 (3)自分泌,细胞对自身分泌的物质产生反应。自分泌信号常存在于病理条件下,如肿细胞合成并释放生长因子刺激自身,导致肿瘤细胞的持续增殖。 (4)通过化学突触传递神经信号,当神经元接受刺激后,神经信号以动作电位的形式沿轴突快速传递至神经末梢,电压门控的Ca2+通道将电信号转换为化学信号。 通过胞外信号介导的细胞通讯步骤 (1)产生信号的细胞合成并释放信号分子。 (2)运送信号分子至靶细胞。 (3)信号分子与靶细胞受体特异性结合并导致受体激活。 (4)活化受体启动胞内一种或多种信号转导途径。 (5)引发细胞功能、代谢或发育的改变。 (6)信号的解除并导致细胞反应终止。 核被膜所具有的功能

一方面,核被膜构成了核、质之间的天然选择性屏障,将细胞分成核与质两大结构与功能区域,使得DNA复制、RNA转录与加工在核内进行,而蛋白质翻译则局限在细胞质中。这样既避免了核质问彼此相互干扰,使细胞的生命活动秩序更加井然,同时还能保护核内的DNA分子免受损伤。 另一方面,核被膜调控细胞核内外的物质交换和信息交流。核被膜并不是完全封闭的,核质之间进行着频繁的物质交换与信息交流。这些物质交换与信息交流主要是通过核被膜上的核孔复合体进行的。 核被膜的结构组成及特点 (1)核被膜由内外两层平行但不连续的单位膜构成。面向核质的一层膜被称作内(层)核膜,而面向胞质的另一层膜称为外(层)核膜。两层膜厚度相同,约为7。5 nm。两层膜之间有20~40nm的透明空隙,称为核周间隙或核周池。核周间隙宽度随细胞种类不同而异,并随细胞的功能状态而改变。 (2)核被膜的内外核膜各有特点:①外核膜表面常附有核糖体颗粒,且常常与糙面内质网相连,使核周间隙与内质网腔彼此相通。从这种结构上的联系出发,外核膜可以被看作是糙面内质网的一个特化区域。②内核膜表面光滑,无核糖体颗粒附着,但紧贴其内表面有一层致密的纤维网络结构,即核纤层。内核膜上有一些特有的蛋白成分,如核纤层蛋白B受体。③双层核膜互相平行但并不连续,内、外核膜常常在某些部位相互融合形成环状开口,称为核孔,:在核孔上镶嵌着一种复杂的结构,叫做核孔复合体。核孔周围的核膜特称为孔膜区,它也有一些特有的蛋白成分。

医用细胞生物学知识点

医用细胞生物学知识点 细胞生物学 (cell biology ):细胞生物学是以细胞为研究对象,经历了从显微水平到亚显微和分子水平 的发展过程,成为今天在分子层次上研究细胞精细结构和生命活动规律的学科。 医学细胞生物学 (medical cell biology):医学细胞生物学以揭示人体各种细胞在生理和病理过程中 的生 命活动规律为目的,期望能对人体各种疾病的发病机制予以深入阐明,为疾病的诊断、治疗和预防提 供理论依据和策略。 对细胞概念理解的五个角度: ①细胞是构成有机体的基本单位; ②细胞是代谢与功能的基本单位; ③ 细胞是有机体生长与发育的基础; ④细胞是遗传的基本单位; ⑤没有细胞就没有完整的生命。 生物界划分的三个类型:原核细胞、古核细胞和真核细胞。 原核细胞与真核细胞的比较: p13 表 2-1 生物大分子:是由有机小分子构成的,大约有 3000种,分子量从 10000到 1000000。 核酸 (nucleic acid ) 的基本单位 :核苷酸。 核苷酸:核苷的戊糖羟基与磷酸形成酯键,即成为核苷酸。 DNA 分子的双螺旋结构模型( p18图 2-8):DNA 分子由两条相互平行而方向相反的多核苷酸链组成, 即一条链中磷酸二酯键连接的核苷酸方向是 5'→3',另一条是 3'→ 5',两条链围绕着同一个中心轴 以右手方向盘绕成双螺旋结构。 基因组:细胞或生物体的一套完整的单倍体遗传物质称为基因组。 动物细胞内含有的主要 RNA 种类及功能: p20 表 2-3 核酶 (ribozyme ) :核酶是具有酶活性的 RNA 分子。 蛋白质 ( protein )的基本单 位:氨基酸。 肽键:肽键是一个氨基酸分子上的 羧基 与另一个氨基酸分子上的 氨基经脱水缩合 而成的化学键。 肽 (peptide) :氨基通过肽键而连接成的化合物称为肽。 蛋白质分子的二级结构: α -螺旋, β-片层。 酶 (enzyme):酶是由生物体细胞产生的具有催化剂作用的蛋白质。 酶的特性:高催化效率,高度专一性,高度不稳定性。 光学显微镜的种类:普通光学显微镜,荧光显微镜,相差显微镜,暗视野显微镜,共聚焦激光扫描显 微镜。 细胞培养:细胞培养是指细胞在体外的培养技术,即无菌条件下,从机体中取出组织或细胞,模拟机 体内正常生理状态下生存的基本条件,让它在培养器皿中继续生存、生长和繁殖的方法。 细胞膜 (cell membrane ):细胞膜是包围在细胞质表面的一层薄膜,又称质膜 ( plasma membrane ) 生物膜 ( biomembrane ):目前把 质膜 和细胞内膜系统 总称为生物膜。 细胞膜的组成:主要由脂类、蛋白质和糖类组成 磷脂 (phospholipid)可分为两类:甘油磷脂 由于磷脂分子具有亲水头和疏水 尾,故称为 膜蛋白可分为三种基本类型:膜内在蛋白 蛋白 (lipid anchored protein) 。 细胞外被 ( cell coat ):在大多数真核细胞表面有富含糖类的周缘区,称为细胞外被或糖萼。 细胞外被的基本功能: 保护细胞抵御各种物理、化学性损伤 ,如消化道、呼吸道等上皮细胞的细胞外 被有助于润滑、防止机械损伤,保护黏膜上皮不受消化酶的作用。 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11 . 12 . 13 . 14 . 15 . 16 . 17 . 18 . 19. 20. 21 . 22 . 23 . 24 . 25 . 26. 27. 28. (phosphoglycerides )和鞘磷脂 (sphingomyelin,SM) 。 两亲性分子 或兼性分子 。 intrinsic protein )、膜外在蛋白 (extrinsic

细胞生物学知识点总结

细胞生物学知识点总结 导读:细胞生物学知识点总结 细胞通讯的方式 (1)细胞通过分泌化学信号进行细胞间通讯,这是多细胞生物 普遍采用的通讯方式。 (2)细胞间接触依赖性的通讯,指细胞间直接接触,通过与质 膜结合的信号分子影响其它细胞。 (3)动物相邻细胞间形成间隙连接以及植物细胞间通过胞间连 丝使细胞间相互沟通,通过交换小分子来实现代谢耦联或电耦联。 细胞分泌化学信号可长距离或短距离发挥作用,其作用方式分为:(1)内分泌,由内分泌细胞分泌信号分子到血液中,通过血液 循环运送到体内各个部位,作用于靶细胞。 (2)旁分泌,细胞通过分泌局部化学介质到细胞外液中,经过 局部扩散作用于邻近靶细胞。在多细胞生物中调节发育的许多生长因子往往是通过旁分泌起作用的。此外,旁分泌方式对创伤或感染组织刺激细胞增殖以恢复功能也具有重要意义。 (3)自分泌,细胞对自身分泌的物质产生反应。自分泌信号常 存在于病理条件下,如肿细胞合成并释放生长因子刺激自身,导致肿瘤细胞的'持续增殖。 (4)通过化学突触传递神经信号,当神经元接受刺激后,神经 信号以动作电位的形式沿轴突快速传递至神经末梢,电压门控的Ca2+

通道将电信号转换为化学信号。 通过胞外信号介导的细胞通讯步骤 (1)产生信号的细胞合成并释放信号分子。 (2)运送信号分子至靶细胞。 (3)信号分子与靶细胞受体特异性结合并导致受体激活。 (4)活化受体启动胞内一种或多种信号转导途径。 (5)引发细胞功能、代谢或发育的改变。 (6)信号的解除并导致细胞反应终止。 核被膜所具有的功能 一方面,核被膜构成了核、质之间的天然选择性屏障,将细胞分成核与质两大结构与功能区域,使得DNA复制、RNA转录与加工在核内进行,而蛋白质翻译则局限在细胞质中。这样既避免了核质问彼此相互干扰,使细胞的生命活动秩序更加井然,同时还能保护核内的DNA分子免受损伤。 另一方面,核被膜调控细胞核内外的物质交换和信息交流。核被膜并不是完全封闭的,核质之间进行着频繁的物质交换与信息交流。这些物质交换与信息交流主要是通过核被膜上的核孔复合体进行的。 核被膜的结构组成及特点 (1)核被膜由内外两层平行但不连续的单位膜构成。面向核质的一层膜被称作内(层)核膜,而面向胞质的另一层膜称为外(层)核膜。两层膜厚度相同,约为7。5 nm。两层膜之间有20~40nm的

医学细胞生物学复习(带答案)

细胞衰老与死亡 1.衰老细胞的特征之一是常常出现下列哪种结构的固缩 A.核仁B.细胞核 C.染色体 D.脂褐质 E.线粒体 2.小鼠成纤维细胞体外培养平均分裂次数为 A.25 次B.50 次 C.100 次 D.140 次 E.12 次 3.细胞凋亡与细胞坏死最主要的区别是后者出现 A.细胞核肿胀 B.内质网扩张 C.细胞变形D.炎症反应 E.细胞质变形 4.细胞凋亡指的是 A.细胞因增龄而导致的正常死亡 B.细胞因损伤而导致的死亡 C.机体细胞程序性的自杀死亡 D.机体细胞非程序性的自杀死亡 E.细胞因衰老而导致死亡 5.下列哪项不属细胞衰老的特征 A.原生质减少,细胞形状改变 B.细胞膜磷脂含量下降,胆固醇含量上升C.线粒体数目减少,核膜皱襞D.脂褐素减少,细胞代谢能力下降 E.核明显变化为核固缩,常染色体减少 6.迅速判断细胞是否死亡的方法是 A.形态学改变 B.功能状态检测 C.繁殖能力测定D.活性染色法 E.内部结构观察 7.机体中寿命最长的细胞是 A.红细胞 B.表皮细胞 C.白细胞 D.上皮细胞E.神经细胞

细胞的统一性与多样性 1. 肠上皮细胞由肠腔吸收葡萄糖,是属于 A.单纯扩散 B.易化扩散 C.主动转运 D.入胞作用 E.吞噬 2. 在一般生理情况下,每分解一分子ATP,钠泵转运可使 A. 2个Na+移出膜外 B. 2个K+移入膜内 C. 2个Na+移出膜外,同时有2个K+移入膜内 D. 3个Na+移出膜外,同时有2个K+移入膜内 E. 2个Na+移出膜外,同时有3个K+移入膜内 小分子的跨膜运输 1.肠上皮细胞由肠腔吸收葡萄糖,是属于 A. 单纯扩散 B. 易化扩散 C. 主动转运 D. 入胞作用 E. 吞噬核糖体 1.多聚核糖体是指 A.细胞中有两个以上的核糖体集中成一团 B.一条mRNA 串连多个核糖体的结构组合 C.细胞中两个以上的核糖体聚集成簇状或菊花状结构D.rRNA 的聚合体 E.附着在内质网上的核糖体

医学细胞生物学知识点归纳

线粒体: 1.呼吸链(电子传递链)Respiratory chain一系列能够可逆地接受和释放H+和e-的化学物质所组成的酶体系在线粒体内膜上有序地排列成互相关联的链状。 2.化学渗透假说(氧化磷酸化偶联机制):线粒体内膜上的呼吸链起质子泵的作用,利用高能电子传递过程中释放的能量将H+泵出内膜外,造成内膜内外的一个H+梯度(严格地讲是离子的电化学梯度),A TP合酶再利用这个电化学梯度来合成A TP。 3.电子载体:在电子传递过程中与释放的电子结合并将电子传递下去的物质称为电子载体。参与传递的电子载体有四种∶黄素蛋白、细胞色素、铁硫蛋白和辅酶Q,在这四类电子载体中,除了辅酶Q以外,接受和提供电子的氧化还原中心都是与蛋白相连的辅基。 4.阈值效应:突变所产生的效应取决于该细胞中野生型和突变型线粒体DNA的比例,只有突变型DNA达到一定数量(阈值)才足以引起细胞的功能障碍,这种现象称为阈值效应。 5.导向序列:将游离核糖体上合成的蛋白质的N-端信号称为导向信号,或导向序列,由于这一段序列是氨基酸组成的肽,所以又称为转运肽。 6.信号序列:将膜结合核糖体上合成的蛋白质的N-端的序列称为信号序列,将组成该序列的肽称为信号肽。 7.共翻译转运:膜结合核糖体上合成的蛋白质通过定位信号,一边翻译,一边进入内质网,由于这种转运定位是在蛋白质翻译的同时进行的,故称为共翻译转运。 8.蛋白质分选:在膜结合核糖体上合成的蛋白质通过信号肽,经过连续的膜系统转运分选才能到达最终的目的地,这一过程又称为蛋白质分选。 核糖体: 1.原核生物mRNA中与核糖体16S rRNA结合的序列称为SD序列(SD sequence) 。 2.核酶:将具有酶功能的RNA称为核酶。 3.N-端规则(N-end rule): 每一种蛋白质都有寿命特征,称为半衰期(half-life)。研究发现多肽链N-端特异的氨基酸与半衰期相关,称为N-端规则。 4.泛素介导途径:蛋白酶体对蛋白质的降解通过泛素(ubiquitin)介导,故称为泛素降解途径。蛋白酶体对蛋白质的降解作用分为两个过程:一是对被降解的蛋白质进行标记,由泛素完成;二是蛋白酶解作用,由蛋白酶体催化。 细胞核: 1.核内膜:有特有的蛋白成份(如核纤层蛋白B受体),膜的内表面有一层网络状纤维蛋白质,即核纤层(nuclear lamina),可支持核膜。 核外膜:靠向细胞质的一层,是内质网的一部分,胞质面附有核糖体 核周隙:内、外膜之间有宽20~40nm的腔隙,与粗面内质网腔相通 核孔复合体:内、外膜融合处,物质运输的通道 核纤层:内核膜内表面的纤维网络,支持核膜,并与染色质、核骨架相连。 2.核孔复合体:是细胞核内外膜融合形成的小孔,直径约为70 nm,是细胞核与细胞质间物质交换的通道。 3.核孔蛋白:参与构成核孔的蛋白质,可能在经核孔的主动运输中发挥作用。 核运输受体:参与物质通过核孔的主动运输。 核周蛋白: 是一类与核孔选择性运输有关的蛋白家族,相当于受体蛋白。 5.输入蛋白:核定位信号的受体蛋白, 存在于胞质溶胶中, 可与核定位信号结合, 帮助核蛋白进入细胞核。 输出蛋白:存在于细胞核中识别并与输出信号结合的蛋白质, 帮助核内物质通过核孔复合

细胞生物学复习重点修订稿

细胞生物学复习重点内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)

第四章细胞膜和细胞表面 1.组成细胞膜的组要化学成分是什么这些分子是如何排列的 2. 膜脂、膜蛋白、膜糖类。膜脂排列成双分子层,极性头部朝向内外两侧,非极性尾部相对排列位于膜的内部;整合膜蛋白镶嵌于脂质双分子层中,外在膜蛋白主要分布于膜的内表面;膜糖类是分布与细胞膜外表面的一层寡糖侧链。 3.生物膜的两个显着性特征是什么? ①流动性:膜脂和膜蛋白都是可运动的。②不对称性:膜的内外两层的膜脂种类、分布不同;整合膜蛋白不对称镶嵌,外在膜蛋白在内表面;膜糖类分布在外表面。 3.小分子物质跨膜运输有哪几种各有什么特点 4. (1)被动运输其转运方向为顺浓度梯度,不消化代谢能。 (2)主动运输需要消化细胞的代谢能,但可以逆浓度梯度转运;包括离子泵和协同运输。①离子泵本身具有ATPase活性,在分解ATP放能的同时实现离子的逆浓度梯度转运;②协同运输在动物细胞是借助顺浓度转运Na+,即消耗Na+梯度的同时实现溶质的逆浓度转运,是间接地消耗ATP。 5.以钠钾泵为例,简述细胞膜的主动运输过程 ①在胞质侧结合3个钠离子;②水解ATP,本身磷酸化;③构象变化,钠离子转移到胞外侧,释放钠离子;④结合胞外2个钾离子;⑤去磷酸化;⑥构象变化,钾离子转移到胞质侧,释放钾离子。 6.以低密度脂蛋白(LDL)为例,简述受体介导的内吞作用的主要过程

①膜外侧LDL受体与LDL结合;②膜内陷形成有被小凹;③内陷进一步形成有被小泡;④有被小泡脱衣被,与内体融合;⑤内体酸性环境下受体与LDL分离,返回膜上。、 第五章细胞信号传导 1.cAMP信号通路和磷脂酰肌醇信号通路有哪些区别和联系? 是G蛋白偶联受体介导的主要2条信号转导通路。信号通路的前半段是相同的:G 蛋白偶联受体识别结合胞外信号分子,导致G蛋白三聚体解离,并发生GDP与GTP 交换,游离的Gα-GTP处于活化状态,导致结合并激活效应器蛋白。但两条通路的效应器并不相同,因此通路后半段组成及产生的细胞效应存在差别:(1)cAMP 信号通路:第一个效应器是腺苷酸环化酶(AC),活化后产生第二信使cAMP,进而活化蛋白激酶A(PKA),导致靶蛋白磷酸化及一系列级联反应;(2)磷脂酰肌醇信号通路:第一个效应器是磷脂酶C(PLC),活化后产生第二信使IP3和DAG,DAG锚定于质膜内侧,IP3扩散至内质网,刺激内质网释放Ca2+,至胞质Ca2+浓度升高,DAG和Ca2+活化蛋白激酶C(PKC),并进一步使底物蛋白磷酸化。 2.试述细胞内Ca2+浓度的调控机制 细胞膜和内质网膜上均有Ca2+泵和Ca2+通道,①Ca2+泵以主动运输方式将胞质中的Ca2+转运至胞外或内质网腔,使静息状态下胞质Ca2+浓度极低(10-7摩尔浓度);②当信号分子与Ca2+通道蛋白特异结合(如内质网上的Ca2+通道蛋白与IP3结合、突触后膜上的Ca2+通道蛋白与乙酰胆碱结合),会引起Ca2+通道瞬间开放,使胞质Ca2+浓度迅速升高,产生细胞效应。 3.总结细胞信号转导途径的组成与基本特征 组成:①配体即胞外信号分子;②受体:细胞表面受体和细胞内受体;③第二信

华师细胞生物学简答题(个人复习总结)

1、何谓成熟促进因子(MPF)?包括哪些主要成分?如何证明某一细胞提取液含有MPF? 成熟促进因子是指M期细胞中存在的促进细胞分裂的因子,是由两个不同亚基组成的异质二聚体,其一为调节亚基,有周期蛋白组成;其二为催化亚基,是丝氨酸/苏氨酸型蛋白激酶,其活性有懒于周期蛋白,故称为周期依赖性蛋白激酶。可以通过蛙卵细胞质移植实验证实MPF。成熟蛙卵细胞的细胞质可以诱导未成熟的蛙卵细胞提前进入成熟期。 2、简述微管、微丝和中间纤维的主要异同点?(顺序为微管、微丝、中间纤维) 直径:22nm、7nm、10nm;基本构件:α、β—微管蛋白,肌动蛋白,中间纤维丝蛋白;相对分子量(乘10的3次):50,43,40~200;结构:13根原丝围成的α—螺旋中空管状,双股α—螺旋,多级螺旋;极性:有,有,无;单体蛋白库:有,有,无;踏车现象:有,有,无;特异性药物:秋水仙素、长春花碱,细胞松弛素B、鬼笔环肽,无;运动相关蛋白:驱动蛋白、动力蛋白,肌球蛋白,无;主要功能:细胞运动、胞内运输、支持作用,变形运动、形状维持、胞质环流、胞质分裂环的桶状结构,骨架作用、细胞连接、信息传递;细胞分裂:纺锤体,无,包围纺锤体。 3、为什么将内质网比喻“开放的监狱”? KDEL信号序列为内质网驻守信号,如果内质网驻守蛋白被错误的包装进了COPII,并运输到顺面高尔基体,高尔基体膜上存在KDEL识别受体,能识别错误运输来的内质网驻守蛋白,并形成COP I小泡,将内质网驻守蛋白运输返回内质网。 4、在研究工作中分离得到一个与动物减数分裂直接相关的基因A,如果想由此获得该基因的单克隆抗体,请简要叙述实验方案及其实验原理。 英国科学家Milstein和Kohler因提出单克隆抗体而获得1984年诺贝尔生理学或医学奖。它是将产生抗体的单个B淋巴细胞同肿瘤细胞杂交,获得既能产生抗体又能无线增值的杂种细胞,并一次生产抗体的技术。其原理是:B淋巴细胞能够产生抗体,但在体外不能进行无限分裂;而肿瘤细胞虽然可以在体外进行无限传代,但不能产生抗体。将这两种细胞融合后得到的杂交瘤细胞具有两种亲本细胞的特性。 实验方案:a、表达基因A的蛋白,免疫小老鼠,获得免疫的淋巴细胞;b、将经过免疫的小老鼠的淋巴细胞与Hela细胞融合;c、利用选择培养基对融合细胞进行培养筛选,只有真正融合的细胞才能继续生长;d、融合细胞的培养,抗体的纯化。 5、微管是体内膜泡运输的导轨,请分析体内膜泡定向运输的机制? 微管是有极性的,微管的马达蛋白(动力蛋白和驱动蛋白)运输小泡也是单向的。动力蛋白向微管的负极运输小泡,驱动蛋白向微管的正极运输小泡。,另外,起始膜泡上有V-SNARE,靶膜上有T-SNARE。V-SNARE与T-SNARE选择性识别并定向融合。这两种因素共同导致了膜泡的定向运输。 6、简述细胞周期蛋白B的结构特点和动态调控机制?

细胞生物学复习要点整理

春2周细胞膜 1.细胞膜的化学组成及其特性:膜脂;膜蛋白;膜糖。 2.细胞膜的分子结构模型:流动镶嵌模型,脂筏模型。 3.细胞膜的生物学特性:不对称性;流动性(膜流动性的影响因素)。 1.脂质体(liposome):当脂质分子被水环境包围时,自发聚集,疏水尾在内, 亲水头在外,出现两种存在形式:球状分子团、形成双分子层,为防止两端尾部与水接触,游离端自动闭合,形成充满液体的球状小泡称为脂质体。 2.细胞外被(cell coat)或糖萼(glycocalyx):质膜中的糖蛋白和糖脂向外表面 延伸出的寡糖链构成的糖类物质。 3.脂筏(lipid raft):膜双层内含有特殊脂质和蛋白质组成的微区,微区中富含胆 固醇和鞘脂,其中聚集一些的特定种类的膜蛋白。由于鞘脂的脂肪酸尾部比较长,这一区域比膜的其他部分厚,更有秩序且较少流动,称脂筏。 1.细胞膜的基本结构特征与生理功能? 1)脂类:包括磷脂、胆固醇、糖脂,构成细胞膜主体,与膜流动性有关。 2)蛋白质:可分为内在蛋白和外在蛋白,是膜功能的主要体现者,如物质运输、 信号转导等。 3)糖类:包括糖脂和糖蛋白,对细胞有保护作用,在细胞识别起作用。 2.影响膜脂流动性的因素? 1)脂肪酸链的饱和程度(不饱和流动性大)。 2)脂肪酸链的长短(短链流动性大)。 3)胆固醇的双重调节(相变温度以上降低,相变温度以下提高)。 4)卵磷脂和鞘磷脂的比值(比值高的流动性大)。 5)膜蛋白的影响(膜蛋白越多,流动性越差)。 6)极性基团、环境温度、pH、离子强度。 春3、4周细胞内膜系统、囊泡转运 1.细胞内膜系统的概念、组成。 2.粗面内质网功能:蛋白质的合成;蛋白质的折叠装配;蛋白质的糖基化;蛋白 质的胞内运输。 3.滑面内质网的功能:参与脂质物质的合成运输;参与糖原代谢;参与解毒;参 与储存和调节Ca2+;参与胃酸、胆汁的合成分泌(内质网以葡萄糖-6-磷酸酶为标志酶)。 4.信号肽假说:新生肽链N端有独特序列称为信号肽,细胞基质中存在SRP能 识别并结合信号肽,SRP另一端与核糖体结合,形成复合结构,然后向内质网膜移动,与内质网膜上SRP-R识别结合,并附着于移位子上,然后SRP解离,肽链延伸。当肽链进入内质网腔时,信号肽序列会被内质网腔信号肽酶切除,肽链继续延伸至终止。 5.高尔基体是高度动态、具有极性的细胞器,以糖基转移酶为标志酶,主要功能 有:糖蛋白合成;参与脂质代谢;是大分子转运枢纽;加工成熟蛋白。 6.溶酶体酶的形成:①在内质网中合成、折叠和N-连接糖基化修饰,形成N-连 接的甘露糖糖蛋白,运送至高尔基体;②溶酶体酶蛋白在高尔基体中加工时甘露糖残基磷酸化为甘露糖-6-磷酸(M-6-P),为分选重要信号;③溶酶体酶分选并以出芽方式转运到前溶酶体。 7.溶酶体以酸性磷酸酶为标志酶,主要功能为:细胞内的消化作用;细胞营养功 能;机体防御和保护;激素分泌的调控;个体发生和发育的调控。 8.过氧化物酶体(peroxisome)又称微体,特点:①内有尿酸氧化酶结晶,称作 类核体;②模内表面界面可见一条称为边缘板的高电子致密度条带状结构。以过氧化物酶为标志酶。主要功能:清除细胞代谢所产生的H2O2及其他毒物; 对细胞氧张力的调节作用;参与脂肪酸等高能分子物质的代谢。 9.三种了解最多的囊泡:①网格蛋白有被囊泡:来源于反面高尔基体网状结构和 细胞膜,介导蛋白质从反面高尔基网状结构向胞内体、溶酶体和细胞膜运输; 在受体介导的胞吞作用过程中,介导物质从细胞膜向细胞质或从胞内体向从溶酶体运输;②COP Ⅰ有被囊泡:主要产生于高尔基体顺面膜囊,主要负责回收、转运内质网逃逸蛋白返回内质网及高尔基体膜内蛋白的逆向运输;③COP Ⅱ有被囊泡:产生于粗面内质网,主要介导从内质网到高尔基体的物质转运。

最新医用细胞生物学知识点(完整版)

医用细胞生物学知识点 By 小羊,小生(修整)友情提示:知识点很多,重点加粗,书中的表格均有,有些重点需掌握绘图(请查阅书本)。主要考点:名词解释,细胞的结构与功能。建议系统总结一下内质网,高尔基复合体,溶酶体的标志酶和各自的功能。1.细胞生物学(cell biology):细胞生物学是从细胞的显微,亚显微和分子三个水平对细胞的各种生命活动开展研究的学科。 2.对细胞概念理解的五个角度: ①细胞是构成有机体的基本单位; ②细胞是代谢与功能的基本单位; ③细胞是有机体生长与发育的基础; ④细胞是遗传的基本单位; ⑤没有细胞就没有完整的生命。 ⑥细胞具有全能性。 3.生物界划分的三个类型:原核细胞、古核细胞和真核细胞。 4.原核细胞与真核细胞的比较:p13表2-1 5.真核细胞特点的理解: ①以脂质及蛋白质成分为基础的膜相结构体系-生物膜系统 ②以核酸,蛋白质为主要成分的遗传信息表达体系-遗传信息表达系统 ③由特异蛋白质分子构成的细胞骨架体系-细胞骨架系统 ④细胞质溶胶 6.生物大分子:细胞内主要的大分子有核酸,蛋白质,多糖。 7.核酸(nucleic acid)的基本单位:核苷酸。 8.核苷酸:核苷酸由戊糖,碱基和磷酸三部分组成。 9.DNA分子的双螺旋结构模型(p18图2-8):DNA分子由两条相互平行而方向相反的多核苷酸链组成,

即一条链中磷酸二酯键连接的核苷酸方向是5’→3’,另一条是3’→5’,两条链围绕着同一个中心轴以右手方向盘绕成双螺旋结构。简而言之:DNA分子是由两条反向平行的核苷酸链组成。 10.基因组:细胞或生物体的一套完整的单倍体遗传物质称为基因组。 11.动物细胞内含有的主要RNA种类及功能:p20表2-3 12.核酶(ribozyme):核酶是具有酶活性的RNA分子。 13.蛋白质(protein)的基本单位:氨基酸。 14.肽键:肽键是一个氨基酸分子上的羧基与另一个氨基酸分子上的氨基经脱水缩合而成的化学键。15.肽(peptide):氨基酸通过肽键而连接成的化合物称为肽。 16.蛋白质分子的二级结构:α-螺旋,β-片层。 17.酶(enzyme):酶是由生物体细胞产生的具有催化剂作用的蛋白质。 18.酶的特性:高催化效率,高度专一性,高度不稳定性。 19.光学显微镜的种类:普通光学显微镜,荧光显微镜,相差显微镜,暗视野显微镜,共聚焦激光扫描显微镜。 20.细胞培养:细胞培养是指细胞在体外的培养技术,即无菌条件下,从机体中取出组织或细胞,模拟机体内正常生理状态下生存的基本条件,让它在培养器皿中继续生存、生长和繁殖的方法。

细胞生物学重点总结

细胞生物学重点总结 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

细胞生物学期末复习资料整理 第一章:1、细胞生物学cell biology:是研究细胞基本生命活动规律的科学, 是在显微、亚显微和分子水平上,以研究细胞结构与功能,细胞增殖、分化、 衰老与凋亡,细胞信号传递,真核细胞基因表达与调控,细胞起源与进化等为 主要内容的一门学科。P2 1、什么叫细胞生物学试论述细胞生物学研究的主要内容。P3-5 答:细胞生物学是研究细胞基本生命活动规律的科学,它是在三个水平(显微、亚 显微与分子水平)上,以研究细胞的结构与功能、细胞增殖、细胞分化、细胞衰 老开发商地亡、细胞信号传递、真核细胞基因表达与调控、细胞起源与进化等 为主要内容的一门科学。 细胞生物学的主要研究内容主要包括两个大方面:细胞结构与功能、细胞重要 生命活动。涵盖九个方面的内容:⑴细胞核、染色体以及基因表达的研究;⑵ 生物膜与细胞器的研究;⑶细胞骨架体系的研究;⑷细胞增殖及其调控;⑸细 胞分化及其调控;⑹细胞的衰老与凋亡;⑺细胞的起源与进化;⑻细胞工程; ⑼细胞信号转导。 2、试论述当前细胞生物学研究最集中的领域。 P5-6 答:当前细胞生物学研究主要集中在以下四个领域:⑴细胞信号转导;⑵细胞 增殖调控;⑶细胞衰老、凋亡及其调控;⑷基因组与后基因组学研究。人类亟 待通过以上四个方面的研究,阐明当今主要威胁人类的四大疾病:癌症、心血 管疾病、艾滋病和肝炎等传染病的发病机制,并采取有效措施达到治疗的目 的。 3.细胞学说(cell theory) p9 细胞学说是1838~1839年间由德国的植物学家施莱登和动物学家施旺所提出, 直到1858年才较完善。它是关于生物有机体组成的学说,主要内容有: ①细胞是有机体,一切动植物都是由单细胞发育而来,即生物是由细胞和细 胞的产物所组成; ②所有细胞在结构和组成上基本相似; ③新细胞是由已存在的细胞分裂而来; ④生物的疾病是因为其细胞机能失常。 4、细胞学发展的经典时期 P10 ⑴原生质理论的提出;⑵细胞分裂的研究;⑶重要细胞器的发现。 第二章:试论述原核细胞与真核细胞最根本的区别。 P35-37 答:原核细胞与真核细胞最根本的区别在于:①生物膜系统的分化与演变:真 核细胞以生物膜分化为基础,分化为结构更精细、功能更专一的基本单位—— 细胞器,使细胞内部结构与职能的分工是真核细胞区别于原核细胞的重要标 志;②遗传信息量与遗传装置的扩增与复杂化:由于真核细胞结构与功能的复

细胞生物学知识点总结

细胞生物学知识点总结 细胞生物学知识点总结 导语:细胞学说是施莱登和施旺所提出:一切植物、动物都是由细胞组成的,细胞是一切动植物体的基本单位。以下是小编为大家整理分享的细胞生物学知识点总结,欢迎阅读参考。 细胞生物学知识点总结 细胞通讯的方式 (1)细胞通过分泌化学信号进行细胞间通讯,这是多细胞生物普遍采用的通讯方式。 (2)细胞间接触依赖性的通讯,指细胞间直接接触,通过与质膜结合的信号分子影响其它细胞。 (3)动物相邻细胞间形成间隙连接以及植物细胞间通过胞间连丝使细胞间相互沟通,通过交换小分子来实现代谢耦联或电耦联。 细胞分泌化学信号可长距离或短距离发挥作用,其作用方式分为: (1)内分泌,由内分泌细胞分泌信号分子到血液中,通过血液循环运送到体内各个部位,作用于靶细胞。

(2)旁分泌,细胞通过分泌局部化学介质到细胞外液中,经过局部扩散作用于邻近靶细胞。在多细胞生物中调节发育的许多生长因子往往是通过旁分泌起作用的。此外,旁分泌方式对创伤或感染组织刺激细胞增殖以恢复功能也具有重要意义。 (3)自分泌,细胞对自身分泌的物质产生反应。自分泌信号常存在于病理条件下,如肿细胞合成并释放生长因子刺激自身,导致肿瘤细胞的持续增殖。 (4)通过化学突触传递神经信号,当神经元接受刺激后,神经信号以动作电位的形式沿轴突快速传递至神经末梢,电压门控的Ca2+通道将电信号转换为化学信号。 通过胞外信号介导的细胞通讯步骤 (1)产生信号的细胞合成并释放信号分子。 (2)运送信号分子至靶细胞。 (3)信号分子与靶细胞受体特异性结合并导致受体激活。 (4)活化受体启动胞内一种或多种信号转导途径。 (5)引发细胞功能、代谢或发育的改变。 (6)信号的解除并导致细胞反应终止。 核被膜所具有的功能

医学细胞生物学总复习提纲

细胞生物总复习提纲 特别提醒:每道题都有答题限制时间,若时间到了没有主动点提交,系统都会自动提交更新为下一道(系统会默认提交测试者点选得答案,若无点选则无答案),不能回瞧,所以要在注意时间得前提下认真思考作答。 一.主要题型 1.英译汉5道,合计5分(一些重点章节得重点单词,不 考汉译英); 2.问答题2个(以细胞膜、内膜系统、细胞核、细胞周期、 细胞凋亡等章节内容为主,2题分别为12分与8分, 合计20分); 3.实验图片题10道,合计15分。(电镜图片及光镜图片。 电镜图片以实验手册后面得图片为主;光镜图片以实验 课做过瞧过得重点结构为主); 4.选择题:单选60道,合计54分,多选6道,合计6分。 以上四项卷面满分合计100分,折算率90%后为90分; 5.平时3次实验到勤及实验报告平均分折算率10%后为 10分。 二.重点章节 第4、5、8、13章。就是出问答题最有可能得章节。 三.主要内容

第一章 1、细胞生物学发展史中得里程碑式事件(每个阶段1-2件事); 2、基本概念:医学细胞生物学(英文)。 第二章 1、细胞得形状要结合有关实例来记忆 影响细胞形态得几个方面因素,请瞧教材 2、最小得细胞 3、真核细胞得结构 4、真核细胞与原核细胞得区别 5、分子基础记忆氨基酸,核苷酸(基团及分类,化学键) 6、蛋白质掌握1,2级结构;DNA,RNA得基本结构特点与类型 7、英文:原核细胞、真核细胞、膜相结构、非膜相结构、氨基 酸、蛋白质、核酸、核苷酸 第三章 1、光学显微镜与电学显微镜得主要特点及其主要差别 2.分辨率,分辨力得概念理解 3、最高分辨率,最大放大倍数 4、老师PPT上有光镜及电镜标本制作厚薄及特殊要求。 5、荧光显微镜得光源,相差显微镜及暗视野显微镜得主要得适 用标本、优点。 6、细胞培养技术关注细胞融合得概念,诱导融合方法手段,成 功得例子

医学细胞生物学要点

1.电镜与光镜的主要区别?什么叫显微镜分辨率?光学显微镜是以可见光为照明源,将微小的物体形成放大影像的光学仪器;而电子显微镜则是以电子束为照明源,通过电子流对样品的透射或反射及电磁透镜的多级放大后在荧光屏上成像的大型仪器。显微镜分辨率:分辨率或称分辨力是指在人眼明视距离处,能够清楚地分辨被检物体细微结构最小间隔的能力。 2.电镜主要分哪二类?透视和扫描 3.流式细胞术在科学研究中的应用?目前该技术广泛应用于生物大分子物质的定量,细胞周期分析,细胞表面抗原表达,细胞因子的检测,活细胞分类纯化等领域。 4.配制培养基时调节pH值的目的是什么?因为有的培养物对生长环境PH值要求高,有的则要求低,不同培养物的最适生长pH不同 5.细胞传代培养的目的是什么?传代培养是组织培养常规保种方法之一。也是几乎所有细胞生物学实验的基础。当细胞在培养瓶中长满后就需要将其稀释分种成多瓶,细胞才能继续生长。这一过程就叫传代。传代培养可获得大量细胞供实验所需。 6.蛋白质电泳的种类及特点?蛋白质电泳(一般指SDS-PAGE)一般使用的都是聚丙烯酰胺凝胶电泳,电泳的驱动力靠与蛋白质结合的SDS上所携带的负电荷。特点:分辨力高和固相免疫测定特异性高,敏感等 7.核酸杂交技术的分类?根据杂交对象的不同可分为:DNA与DNA;RNA与DNA另外:Western blot,根据杂交对象位置的不同可分为:固相杂交,液相杂交,原位杂交。 8.聚合酶链式反应PCR的实施步骤是什么?1.DNA变性(90℃-96℃):双链DNA模板在热作用下,氢键断裂,形成单链DNA2.退火(25℃-65℃):系统温度降低,引物与DNA模板结合,形成局部双链。3.延伸(70℃-75℃):在Taq酶(在72℃左右,活性最佳)的作用下,以dNTP为原料,从引物的5′端→3′端延伸,合成与模板互补的DNA链。4.还有就是体外快速DNA复制 9.细胞膜的基本特征是什么?细胞膜把细胞包裹起来,使细胞能够保持相对的稳定性,维持正常的生命活动。此外,细胞所必需的养分的吸收和代谢产物的排出都要通过细胞膜。所以,细胞膜的这种选择性的让某些分子进入或排出细胞的特性,叫做选择渗透性。这是细胞膜最基本的一种功能。如果细胞丧失了这种功能,细胞就会死亡.。细胞膜除了通过选择性渗透来调节和控制细胞内,外的物质交换外,还能以"胞吞"和"胞吐"的方式,帮助细胞从外界环境中摄取液体小滴和捕获食物颗粒,供应细胞在生命活动中对营养物质的需求。细胞膜也能接收外界信号的刺激使细胞做出反应,从而调节细胞的生命活动。细胞膜不单是细胞的物理屏障,也是在细胞生命活动中有复杂功能的重要结构。 10.细胞膜上膜脂和膜蛋白的种类?膜脂有磷脂,糖脂,胆固醇,膜蛋白有膜内在蛋白(整合膜蛋白)(2)膜外在蛋白(周边膜蛋白)(3)脂锚定蛋白(连接蛋白) 11.简述真核细胞中小分子和大分子的跨膜运输途径和主要特点?(1)小分子和离子(需载体蛋白,通道蛋白)被动运输(简单扩散和易化扩散)顺浓度梯度主动运输(消耗能量),(2)大分子物质胞吞胞吐(消耗能量) 12.载体蛋白和通道蛋白在物质跨膜运输中的作用?通道蛋白只参与被动运输,载体蛋白既参与主动运输又参与被动运输,(1)通道蛋白:在蛋白质中心形成一个亲水性的通道,使特定溶质穿越。被动运输②载体蛋白:通过蛋白质发生可逆的构象变化进行物质运输。 主动或被动; 13.胞饮作用和吞噬作用的区别?一、吞噬作用,细胞内吞较大的固体颗粒物质,如细菌、细胞碎片等,称为吞噬作用。吞噬现象是原生动物获取营养物质的主要方式,在后生动物中亦存在吞噬现象。如:在哺乳动物中,中性颗粒白细胞和巨噬细胞具有极强的吞噬能

细胞生物学重点总结题库

细胞生物学 名词解释 1.主动运输:借助于镶嵌在细胞膜上专一性很强的载体蛋白,通过消耗细胞代谢的能量,将物质从低浓 度向高浓度的运输方式 2.被动运输:不消耗细胞代谢能,而将物质从浓度高的一侧经细胞膜转运到浓度低的一侧 3.常染色质:指间期细胞核中解旋的细纤维丝,结构疏松,用碱性染料染色时不易着色,在电镜下呈浅 亮区 4.异染色质:指间期核内边缘结构紧密,呈凝聚状态、碱性染料染色时着色很深的团块状结构,常包装 成20-30nm的纤维丝,多分布于核的边缘,也有一部分与核仁结合,参与构成核仁染色质 5.分子伴侣:是一类在细胞内协助其他蛋白质多肽链进行正确折叠、组装、转运及降解的蛋白质分子, 但其自身并不参与最终产物的形成 6.膜受体介导的跨膜信号传导:胞外信息分子与膜受体结合,将信息传递至细胞质或核内,调节靶细胞 功能的过程 7.呼吸链:指一系列可逆地接受及释放电子或质子的脂蛋白复合体,他们存在于线粒体内膜,形成相互 关联、有序排列的功能结构体系,并偶联线粒体的氧化磷酸反应,称之为呼吸链或者电子传递链 8.内膜系统:指位于细胞质内,在结构、功能乃至发生上有一定联系的膜相结构的总称。是真核细胞特 有的膜性结构系统。包括内质网、高尔基复合体、溶酶体、过氧化氢酶体、核膜和分泌泡等 9.细胞决定:在细胞发生可识别的形态变化之前,就受到一定的限制而确定了细胞的发展方向,这时细 胞内已经发生了改变,确定了未来的发育命运。这种现象称作细胞决定 10.细胞凋亡:是一个主动的由基因决定的自动结束生命的过程。亦称细胞的程序性死亡 11.干细胞:指具有无限或较长期的自我更新能力,并能分化产生至少一种“专业”细胞的原始细胞 12.核骨架:指间期细胞核出去各种有形成分后剩余的由纤维状蛋白质构成的精密网状体。为细胞内组份 提供了一个结构支架。 简答题 1.是以多级螺旋模型为例,阐明染色质从一级结构到四级结构的组装 答:首先,一个组蛋白核心和200bp左右的DNA构成了一个核小体。核小体结构为染色质包装的一级结构其次,在组蛋白H1存在的情况下,核小体结构螺旋缠绕,窄的一面向外,6个核小体绕成一个螺旋,形成螺线管 然后,螺线管进一步螺旋化形成圆筒状结构,称为超螺线管,为第三结构 最后,超螺线管进一步螺旋化、盘绕和折叠,形成染色单体,即染色体第四结构 2.是以放射环结构模型为例,阐明染色质从一级结构到四级结构的组装。 答:①非组蛋白构成的染色体骨架和有骨架伸出的无数的DNA侧环 ②30nm的染色线折叠成环,沿染色体纵轴,由中央向四周伸出,构成放射环 ③由螺旋管形成DNA复制环,每18个复制环呈放射状平面排列,结合在核机制上形成微带。微带是染色体高级结构的单位,大约106个微带沿纵轴构建成子染色体 3.简述并作图表示G蛋白受体介导的磷脂酰基醇信号通路 答:细胞外信号分子→G蛋白受体→GPRr(G蛋白)→ ╱IP3→胞内钙离子↑→钙离子结合蛋白→细胞反应 ╲DG→激活PKC→蛋白磷酸化∕促进钠离子∕氢离子交换使细胞内PH↑→促进细胞增值和分化 4.以cAMP信号途径(糖原分解)为例,阐述G蛋白偶联受体介导的信号通路组成,特点及其主要功能。答:当糖原与细胞膜上的糖原受体CG蛋白偶联受体结合后,激活GS。通过GS作用于腺苷酸环化酶CG蛋

《细胞周期》——细胞生物学知识点总结

《细胞周期》 ★细胞的最终命运: 细胞分裂及生长(相关物质准备)→细胞增殖(受到严密的调控机制所监控)→细胞死亡 ★标准的细胞周期: (从G1期开始,历经S、G2,到M期结束) 一.细胞周期的基本概念: 1.细胞周期:细胞周期是细胞增殖周期的简称,指细胞从分裂结束后开始生长,到再次分裂终了所经历的全过程。 2.细胞周期时间(Tc):细胞周期时间因细胞类型、状态和环境而异,变异范围大,从0h~数年都可能。 3.细胞的增殖特性(机体细胞的状态): 1)增殖细胞(周期性细胞):能够增殖,不断进入 周期完成分裂。 2)暂不增殖细胞(休眠细胞,G0细胞):长期停 留在G1晚期(G0期)而不越过限制点,未丧失 分裂能力,在适当条件下可恢复到增殖状态。 3)永不增殖细胞(终末分化细胞):始终停留在 G1期,失去增殖能力直到衰老死亡。 二.细胞周期的研究方法: ★细胞周期模型 细胞周期研究中经常使用一些典型的物种和细胞系统,最常用的模型包括酵母、爪蟾胚胎细胞和哺乳动物体外培养细胞。 ★细胞周期同步化 ——由于实验常常需要设法获得时相均一的细胞群,使样品中的细胞都处于大致相同的细胞周期阶段,所以常需要使细胞周期同步化。 同步化的策略:①诱导同步化;②选择同步化 同步化常用方法:①细胞分裂收获法②代谢抑制法(加入过量胸苷后清洗)③低温培养法 ★3H-TdR(氚标记胸苷)有丝分裂标记法(测定细胞周期的时间) ——应用3H-TdR短期饲养细胞,数分钟至半小时后,将3H-TdR洗脱,置换新鲜培养液并继续培养。随后,每隔半小时或1小时定期取样,作放射自显影观察分析,从而确定细胞周期各个时相的长短。

1知识点汇总细胞骨架

细胞生物学知识点汇总 I说明: 本文档就是王飞老师细胞生物学课上内容的精炼与总结,也就是考试出题的主要依据。内容过于精炼则必有若干舍弃之处,希望同学不要为了考试而学习,将这份文字资料为您节省的复习时间用于阅读中英文教材与查找感兴趣的细胞生物学领域的前沿资料,这样才能对这门课程有一个更加全面的了解。 本文档中出现的英文不要求掌握(名词解释部分除外),只就是对复杂中文名词或重点内容的一个辅助的英文注解。由于某些中文名称的翻译过于繁琐且不合理,不如英文名称容易记忆,因此中英文只要掌握一种即可,在考试过程中无论就是中文、英文还就是英文缩写,只要写对任何一种即可得分。 内容编写过程中缺乏足够的审核步骤,如发现错别字或内容明显错误之处请及时联系老师确认内容的正确性。 II 细胞骨架知识点汇总: 核心知识点(约占考试总分值的60%):1 7 20 25 29 32 41 44 45 49 51 普通知识点(约占考试总分值的30%):3 9 11 12 14 16 17 18 19 23 26 28 30 31 35 37 38 39 43 47 48 50 54 扩展知识点(约占考试总分值的10%):2 4 5 6 8 10 13 15 21 22 24 27 33 34 36 40 42 46 52 53 55 1 细胞骨架(cytoskeleton)的定义与种类: 定义:细胞骨架就是贯穿整个细胞的复杂的纤维状蛋白网络结构 细胞内有三种类型的细胞骨架,分别就是微丝(microfilament,MF),微管(microtubule,MT)与中间丝(intermediate filament,IF)。 2 肌动蛋白(actin)的种类及分布 真核细胞内的肌动蛋白主要分为三大类,名称及分布情况如下: α肌动蛋白 主要存在于肌肉细胞的收缩性结构中,目前已发现的四种α肌动蛋白分别属于横纹肌、心肌、血管平滑肌与肠道平滑肌。 β肌动蛋白 存在于所有种类的细胞内,就是细胞内绝大部分微丝骨架的基本组分。 γ肌动蛋白 在所有细胞内都有分布,主要存在于与应力纤维相关的结构中。 3微丝的组成与极性 A微丝由肌动蛋白单体聚合而成。 B肌动蛋白就是一种球状蛋白,其三维构象具有一道很深的裂缝,在裂缝内部有一

相关文档
相关文档 最新文档