文档库 最新最全的文档下载
当前位置:文档库 › 函数单调性和奇偶性的综合应用

函数单调性和奇偶性的综合应用

函数单调性和奇偶性的综合应用
函数单调性和奇偶性的综合应用

[课题]函数基本性质

[

函数单调性证明的步骤:

(1) 根据题意在区间上设 (2)

比较大小 ;(3) 下结论 .

(1)考察函数的定义域 ;

(2)计算 的解析式,并考察其与 的解析式的关系(3)下结论 . [例题解析]

例1: 设函数()f x 为定义在R 上的偶函数,且()f x 在[0,)+∞为减函数,则

(2),(),(3)f f f π--的大小顺序

变形1:()y f x =在(0,2)上是增函数,(2)y f x =+是偶函数,则157(),(),()222

f f f 的大小关系

变形2:若函数2()f x x mx n =++,对任意实数x ,都有(1)(3)f x f x -=+成立,试比较(1),(2),(4)f f f - 的大小关系

3、已知函数2

1

()4f x ax bx a b

=+++是定义在[1,2]a a -上的奇函数,且(1)5f =,求a 、b

4、若2

()(2)(1)3f x K x K x =-+-+是偶函数,则()f x 的递减区间是 。

例2:已知()y f x =在定义域(1,1)-上是增函数且为奇函数,(1)(21)0f t f t -+-<,求实数t 的取值范围.

例3:已知()f x 是定义在R 上的奇函数,当0x >时,2()31f x x x =+-, 求()f x 的

解析式.

(3)函数()y f x =是[2,2]-上的偶函数,当[0,2]x ∈时,()f x 是减函数,解不等式

(1)()f x f x -<。1

[1,)2

-

练习:已知()f x 是定义在(1,1)-的偶函数,且在(0,1)上为增函数,若

(2)(3)f a f a -<-,求a 的取值范围。5(2,)2

(4)已知函数()f x 是R 上的奇函数且是增函数,解不等式(45)0f x -+>。54

x <

10 ()f x 是定义在(0,)+∞上的增函数,且()()()x f f x f y y

=-。(1)求(1)f 的值;(2)若

(6)1f =,解不等式1

(3)()23

f x f +-<。

练习:R +

上的增函数满足()()()f xy f x f y =+,且(8)3

f =,解不等式(2)(2)f f x +-

6 x ≥34 思考题:

9已知定义在R 上的函数()f x 对任意实数x 、y 恒有()()()f x f y f x y +=+,且当

0x >时,()0f x <,又2

(1)3

f =-。

(1)求(0)f ;(2)求证()f x 为奇函数;(3)求证()f x 为R 上的减函数; (4)解关于x 的不等式

11

(2)()()()22

f bx f x f bx f b ->-,(2)b >。

【课后作业】

2009—2010高一数学学案 NO.25 编制:卢连伟 审校:高一数学备课组

1.若2(3)21f x x =-,则()f x 的解析式为 。

2.求函数定义域(1)()f x =

(2)y =3.已知2211

()1f x x x x

-=++,则函数()f x 的解析式

4.函数822+--=x x y 的单调增区间为

5.已知函数2()(2)(1)3f x m x m x =-+-+是偶函数,则实数m 的值 6.已知函数53()8f x x ax bx =++-若(2)10f -=,则(2)f 的值 6.定义在实数集上的函数()f x ,对任意x y R ,∈,有

f x y f x y f x f y ()()()()++-=2且f ()00≠.(1)求证f ()01=;

(2)求证:y f x =()是偶函数。

7.已知定义在R 上的偶函数()f x 在区间[0,)+∞上是单调增函数,若

(1)(lg )f f x <,求x 的取值范围.

3. 函数2

()1ax b f x x +=+是定义在(1,1)-上的奇函数,且12

()25f =. (1)确定函数()f x 的解析式;

(2)用定义证明()f x 在(1,1)-上是增函数; (3)解不等式(1)()0f t f t -+<.

函数的单调性及奇偶性(含答案)

函数的单调性及奇偶性 一、单选题(共10道,每道10分) 1.已知函数是上的增函数,若,则下列不一定正确的是( ) A. B. C. D. 答案:D 解题思路: 试题难度:三颗星知识点:函数单调性的定义 2.已知定义在上的函数满足:对任意不同的x1,x2,都有.若 ,则实数a的取值范围是( ) A. B. C. D. 答案:C 解题思路:

试题难度:三颗星知识点:函数单调性的定义 3.已知定义在上的函数满足:对任意不同的x1,x2,都有 .若,则实数a的取值范围是( ) A. B. C. D. 答案:B 解题思路:

试题难度:三颗星知识点:函数单调性的定义 4.函数的单调递减区间是( ) A. B. C. D.无减区间 答案:A 解题思路: 试题难度:三颗星知识点:含绝对值函数的单调性 5.函数的单调递减区间是( ) A., B., C., D., 答案:A 解题思路:

试题难度:三颗星知识点:函数的单调性及单调区间 6.函数的单调递增区间是( ) A. B. C. D. 答案:B 解题思路: 试题难度:三颗星知识点:含绝对值函数的单调性 7.若是奇函数,则实数a的值为( ) A.1 B.-1

C.0 D.±1 答案:A 解题思路: 试题难度:三颗星知识点:函数奇偶性的性质 8.若是定义在上的偶函数,则a的值为( ) A.±1 B.1 C.-1 D.-3 答案:C 解题思路: 试题难度:三颗星知识点:函数奇偶性的性质 9.设是定义在[-2,2]上的奇函数,若在[-2,0]上单调递减,则使成立的实数a的取值范围是( ) A.[-1,2] B. C.(0,1) D.

函数的单调性和奇偶性精品讲义

第三讲 函数的单调性、奇偶性 一、知识点归纳 函数的单调性 (1)定义:设函数y =f (x )的定义域为I , 如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1f (x 2)),那么就说f (x )在区间D 上是增函数(减函数),区间D 为函数y =f (x )的增区间(减区间)概括起来,即 12 12121212121212()()()()()()()()x x x x f x f x f x f x x x x x f x f x f x f x ??<>????? <>???? ? ?<>??? ???>

函数的奇偶性及其应用举例

函数的奇偶性及其应用举例 (湖北省红安县职教中心 金哲、曾诚) 【摘要】 函数是贯穿于初中、高中、大学数学教学的一条主线,也是高中数学的核心 内容,那么真正掌握函数,其中最主要的就是掌握函数的基本性质。函数的奇偶性是函数重要性质之一。近几年高职统考以及技能高考对于函数的奇偶性一直都是热点问题。本文将通过对函数的奇偶性及其应用进行一个系统研究。 【关键词】 函数的奇偶性,判定,应用 一、奇、偶函数的定义: 若函数)(x f ,在其定义域内,任取x 都有))()()(()(x f x f x f x f =--=-或者, 则称函数)(x f 在区间I 上是奇函数(或者偶函数) 二、函数的奇偶性分类 ???? ? ?? =--=-≠--≠-=--=-)()()()()()()()(:)()(:)()(:x f x f x f x f x f x f x f x f x f x f x f x f 且既奇且偶函数: 且非奇非偶函数偶函数奇函数 三、奇、偶函数的图象: 奇函数?图象关于原点成中心对称的函数 偶函数?图象关于y 轴对称的函数。 四、函数奇偶性的性质: ①具有奇偶性的函数,其定义域关于原点对称 ②若f(x)是奇函数,且x 在0处有定义,则f(0)=0 ③奇函数在关于原点对称的区间上若有单调性,则其单调性完全相同 偶函数在关于原点对称的区间上若有单调性,则其单调性恰恰相反 ④任意定义在R 上的函数f(x)都可以唯一地表示成一个奇函数与一个 偶函数的和。 五、 判断函数奇偶性的方法: (1)定义法:欲判断函数)(x f 在给定区间或者定义域内的奇偶性:

第一步:先判断给定区间或者定义域是否关于原点对称,若 不对称,则函数)(x f 一定是非奇非偶函数。 第二步:若对称,再判断)(x f -与)(x f 的关系: ①若)(x f -=-)(x f ,则)(x f 是奇函数 ②若)(x f -=)(x f ,则)(x f 是偶函数 ③若)(x f -=-)(x f 且)(x f -=)(x f ,则)(x f 是既奇且偶函数 ④若)(x f -≠-)(x f 且)(x f -≠)(x f ,则)(x f 是非奇非偶函数 (2)图象法:图象关于原点成中心对称的函数是奇函数; 图象关于y 轴对称的函数是偶函数。, 六、函数奇偶性的应用: (1)函数奇偶性的判断 例1、(2011年高职统考第4题)下列函数为奇函数的为 )0(.5 1<=x x y A )0(.7 1>=x x y B 2 1.x y C = 3 1.x y D = 析:A,B ,C 这三个函数的定义域都不关于原点对称,故均为非奇非偶函数, 只有D 选项,定义域为()+∞∞-,,关于原点对称,并且()3 13 1x x -=-,故D 项所在函数为奇函数。 例2、(2014年文化综合第25题改编)下列函数中为奇函数的是 A .2 ()1f x x =- B .3 ()f x x = C .5()3x f x ?? = ??? D .2 ()log f x x = 析:A 项2()1f x x =-的定义域为()+∞∞-,关于原点对称,但 () 11)(2 2 -=--=-x x x f ,)()(x f x f =-故为偶函数; C 项5()3x f x ?? = ??? 定义域 为()+∞∞-,关于原点对称,但)()()()(,35)(x f x f x f x f x f x -≠-≠-??? ??=--且, 故为非奇非偶函数;D 项2()log f x x =,定义域为()+∞,0,不关于原点对称, 故为非奇非偶函数,只有B 项符合。 例3、判断函数12)(2+-=x x x f 的奇偶性: 析:(法1-定义法)()f x 函数的定义域是()-∞+∞, , ∵ 2()21f x x x =-+,

函数的单调性与奇偶性综合

函数的单调性与奇偶性综合 【课时目标】 1、能准确判断函数的单调性与奇偶性 2、会灵活利用函数的单调性与奇偶性求参数或参数的取值范围 3、能够解决抽象函数的单调性与奇偶性的问题 【基础训练】 1、单调性: (1)函数||2x x y +-=,单调递减区间为 (2)函数b x k y ++=)12(在实数集上是增函数,则k 的取值范围是 (3)已知函数2()(3)2f x ax a x =+++在区间[1,)+∞上为增函数,则实数a 的取值范围是 ___ (4)已知()f x 为R 上的减函数,则满足)1()1(f x f >的实数x 的取值范围是____________ — 2、奇偶性: (1)下列函数具有奇偶性的有 ①x x y 13+= ②x x y 2112-+-= ③x x y +=4 ④?? ???<--=>+=)0(2)0(0)0(222x x x x x y (2)函数1()f x x x =-的图像关于__________对称 (3)若函数(1)()y x x a =+-为偶函数,则a =__________ (4)已知()f x 在R 上是奇函数,且2(4)(),(0,2)()2,(7)f x f x x f x x f +=∈==当时,则_______ 【例题精讲】 例1、已知()f x 是偶函数,而且在0(,)+∞上是减函数.判断()f x 在0(,)-∞上是增函数还是减函数,并加以证明

例2、()f x 是定义在R 的奇函数,且()f x 在0(,)+∞上是增函数,10()f =,则不等式0()()f x f x x --<的解集为_________________ } 练习:已知()f x 是定义在(3,3)-上的偶函数,当0 x ≤< ()f x 的图象如右图,则不等式(1)()0x f x -?≤ 变:()f x 是定义在22[,]-的奇函数,且()f x 在02[,]上单调递减,若1()()f m f m -<,则实数m 的取值范围是________________ … 例3、已知函数()1).f x a =≠ (1)若0a >,则()f x 的定义域是 (2) 若()f x 在区间(]0,1上是减函数,则实数a 的取值范围是______________ 例4:(1)函数()y f x =的图象关于直线1x =对称,若当1x ≤时,2()1f x x =+,求()f x · (2)函数()y f x =的图象关于点(1,1)对称,若当1x ≤时,2()1f x x =+,求()f x

(完整版)函数的单调性与奇偶性练习题基础

1 函数单调性(一) (一)选择题 1.函数x x f 3 )(= 在下列区间上不是..减函数的是( ) A .(0,+∞) B .(-∞,0) C .(-∞,0)∪(0,+∞) D .(1,+∞) 2.下列函数中,在区间(1,+∞)上为增函数的是( ) A .y =-3x +1 B .x y 2 = C .y =x 2-4x +5 D .y =|x -1|+2 3.设函数y =(2a -1)x 在R 上是减函数,则有 A .2 1≥ a B .2 1≤ a C .2 1> a D .2 1< a 4.若函数f (x )在区间[1,3)上是增函数,在区间[3,5]上也是增函数,则函数f (x )在区间[1,5]上( ) A .必是增函数 B .不一定是增函数 C .必是减函数 D .是增函数或减函数 (二)填空题 5.函数f (x )=2x 2-mx +3在[-2,+∞)上为增函数,在(-∞,-2)上为减函数,则m =______. 6.若函数x a x f = )(在(1,+∞)上为增函数,则实数a 的取值范围是______. 7.函数f (x )=1-|2-x |的单调递减区间是______,单调递增区间是______. 8.函数f (x )在(0,+∞)上为减函数,那么f (a 2-a +1)与)4 3(f 的大小关系是______。 *9.若函数f (x )=|x -a |+2在x ∈[0,+∞)上为增函数,则实数a 的取值范围是______. (三)解答题 10.函数f (x ),x ∈(a ,b )∪(b ,c )的图象如图所示,有三个同学对此函数的单调性作出如下的判断: 甲说f (x )在定义域上是增函数; 乙说f (x )在定义域上不是增函数,但有增区间, 丙说f (x )的增区间有两个,分别为(a ,b )和(b ,c ) 请你判断他们的说法是否正确,并说明理由。 11.已知函数.21 )(-= x x f (1)求f (x )的定义域; (2)证明函数f (x )在(0,+∞)上为减函数. 12.已知函数| |1)(x x f = . (1)用分段函数的形式写出f (x )的解析式;

函数奇偶性的归纳总结

函数的奇偶性的归纳总结 考纲要求:了解函数的奇偶性的概念,掌握判断一些简单函数的奇偶性的方法。 教学目标:1、理解函数奇偶性的概念; 2、掌握判断函数的奇偶性的类型和方法; 3、掌握函数的奇偶性应用的类型和方法; 4、培养学生观察和归纳的能力,培养学生勇于探索创新的精神。 教学重点:1、理解奇偶函数的定义; 2、掌握判断函数的奇偶性的类型和方法,并探索其中简单的规律。 教学难点:1、对奇偶性定义的理解; 2、较复杂函数奇偶性的判断及函数奇偶性的某些应用。 教学过程: 一、知识要点: 1、函数奇偶性的概念 一般地,对于函数)(x f ,如果对于函数定义域内任意一个x ,都有)()(x f x f =-,那么函数)(x f 就叫做偶函数。 一般地,对于函数)(x f ,如果对于函数定义域内任意一个x ,都有)()(x f x f -=-,那么函数)(x f 就叫做奇函数。 理解: (1)奇偶性是针对整个定义域而言的,单调性是针对定义域内的某个区间而言的。这两个概念的区别之一就是,奇偶性是一个“整体”性质,单调性是一个“局部”性质; (2)定义域关于原点对称是函数具有奇偶性的必要条件。 2、按奇偶性分类,函数可分为四类: 奇函数非偶函数、偶函数非奇函数、非奇非偶函数、亦奇亦偶函数. 3、奇偶函数的图象:

奇函数?图象关于原点成中心对称的函数,偶函数?图象关于y 轴对称的函数。 4、函数奇偶性的性质: ①具有奇偶性的函数,其定义域关于原点对称(也就是说,函数为奇函数或偶函数的必要条件是其定义域关于原点对称)。 ②常用的结论:若f(x)是奇函数,且x 在0处有定义,则f(0)=0。 ③奇函数在关于原点对称的区间上若有单调性,则其单调性完全相同,最值相反。奇函数f(x)在区间[a,b](0≤a

函数的单调性和奇偶性知识归纳和典型题型

单调性与最大(小)值 要点一、函数的单调性 1.增函数、减函数的概念 一般地,设函数f(x)的定义域为A ,区间D A ?: 如果对于D 内的任意两个自变量的值x 1、x 2,当x 1f(x 2),那么就说f(x)在区间D 上是减函数. 要点诠释: (1)属于定义域A 内某个区间上; (2)任意两个自变量12,x x 且12x x <; (3)都有1212()()(()())f x f x f x f x <>或; 2.单调性与单调区间 (1)单调区间的定义 如果函数f(x)在区间D 上是增函数或减函数,那么就说函数f(x)在区间D 上具有单调性,D 称为函数f(x)的单调区间. 函数的单调性是函数在某个区间上的性质. 要点诠释: ①单调区间与定义域的关系----单调区间可以是整个定义域,也可以是定义域的真子集; ②单调性是通过函数值变化与自变量的变化方向是否一致来描述函数性质的; ③不能随意合并两个单调区间; ④有的函数不具有单调性. (2)已知解析式,如何判断一个函数在所给区间上的单调性? 基本方法:观察图形或依据定义. 3.函数的最大(小)值 一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足: (1)对于任意的x I ∈,都有()f x M ≤(或()f x M ≥); (2) 存在0x I ∈,使得0()f x M =,那么,我们称M 是函数的最大值(或最小值). 要点诠释: ①最值首先是一个函数值,即存在一个自变量0x ,使0()f x 等于最值; ②对于定义域内的任意元素x ,都有0()()f x f x ≤(或0()()f x f x ≥),“任意”两字不可省; ③使函数()f x 取得最值的自变量的值有时可能不止一个; ④函数()f x 在其定义域(某个区间)内的最大值的几何意义是图象上最高点的纵坐标;最小值的几何意义是图象上最低点的纵坐标.

函数奇偶性在解题中的应用

函数奇偶性在解题中的应用 徐辉 函数的奇偶性是函数的重要性质之一,也是日常考试和高考中数学的重点和热点内容之一。它应用广泛,在高中数学的各个分支中都有着极为重要的应用,在解题过程中如果应用的好,常能使难题变易,繁题变简,起到事半功倍的效果。 1.用于求值 例1:已知奇函数,则 解:因为奇函数, 所以对任意,都有成立. 令,则有,从而可得; 令,则有, 从而 . 故. 注:此解利用了若函数是奇函数,则对定义域内的任意, 都有这一性质,特别地,当0在定义域内时,必有. 2.用于比较大小 例2.已知偶函数在区间上单调递减,试比较 的大小.

解:因为是偶函数,所以,故此题只需比较的大小即可. 又因在区间上单调递减,而且 所以,故. 注:此解利用了若函数是偶函数,则对定义域内的任意x,都有这一性质.当然此题也可利用偶函数图象关于y 轴对称这一性质,首先得到在区间是单调递增的,然后再用单调性进行求解. 3.用于求最值 例3.如果奇函数在区间[3,7]上是增函数且最小值为5,那么在区间[-7,-3]上是() A. 增函数且最小值为-5 B. 增函数且最大值为-5 C. 减函数且最小值为-5 D. 减函数且最大值为-5 解:由在区间[3,7]上是增函数且最小值为5,有, 又是奇函数,而奇函数的图象关于原点对称, 故有在[-7,-3]上也是增函数,且当x=-3时,函数取得最大值, 故选B. 注:此解利用了奇函数图象关于原点对称这一性质. 4.用于求参数的值 例4.已知函数(a、b、c∈Z)是奇函数,又f(1)=2,f(2)<3,求a、b、c的值.

解:由是奇函数,知f(-x)=-f(x), 从而,即-bx+c=-(bx+c),c=-c,∴c=0. 又由f(1)=2,知,得a+1=2b①, 而由f(2)<3,知,得② 由①②可解得-1<a<2. 又a∈Z,∴a=0或a=1. 若a=0,则b=,应舍去; 若a=1,则b=1∈Z. ∴a=1,b=1,c=0. 注:本题从函数的奇偶性入手,利用函数的思想建立方程或不等式,组成混合组,最终使问题得以解决. 当然此题也可采用取特殊值的方法得到c的值,如由f(-1)=-f(1),可得c=0. 5.用于求函数的解析式 例5.已知定义在(-∞,+∞)上的函数f(x)的图像关于原点对称,且当x>0时,f(x)=x2-2x+2,求函数f(x)的解析式。解:当x<0时,-x>0,故f(-x)=(-x)2-2(-x)+2=x2+2x+2 因函数f(x)的图像关于原点对称,故函数f(x)为奇函数, 于是f(-x)=-f(x),从而当x<0时,f(x)=-f(-x)=-(x2+2x+2)=-x2-2x-2,

《函数的单调性和奇偶性》经典例题

经典例题透析 类型一、函数的单调性的证明 1.证明函数上的单调性. 证明:在(0,+∞)上任取x1、x2(x1≠x2),令△x=x2-x1>0 则 ∵x1>0,x2>0,∴∴上式<0,∴△y=f(x2)-f(x1)<0 ∴上递减. 总结升华: [1]证明函数单调性要求使用定义; [2]如何比较两个量的大小?(作差) [3]如何判断一个式子的符号?(对差适当变形) 举一反三: 【变式1】用定义证明函数上是减函数. 思路点拨:本题考查对单调性定义的理解,在现阶段,定义是证明单调性的唯一途径. 证明:设x1,x2是区间上的任意实数,且x10 ∴x1f(x2) 上是减函数. 总结升华:可以用同样的方法证明此函数在上是增函数;在今后的学习中经常会碰到这个函数,在此可以尝试利用函数的单调性大致给出函数的图象.

类型二、求函数的单调区间 2. 判断下列函数的单调区间; (1)y=x2-3|x|+2;(2) 解:(1)由图象对称性,画出草图 ∴f(x)在上递减,在上递减,在上递增. (2) ∴图象为 ∴f(x)在上递增. 举一反三: 【变式1】求下列函数的单调区间: (1)y=|x+1|;(2)(3). 解:(1)画出函数图象, ∴函数的减区间为,函数的增区间为(-1,+∞); (2)定义域为,其中u=2x-1为增函数,

在(-∞,0)与(0,+∞)为减函数,则上为减函数; (3)定义域为(-∞,0)∪(0,+∞),单调增区间为:(-∞,0),单调减区间为(0,+∞). 总结升华: [1]数形结合利用图象判断函数单调区间; [2]关于二次函数单调区间问题,单调性变化的点与对称轴相关. [3]复合函数的单调性分析:先求函数的定义域;再将复合函数分解为内、外层函数;利用已知函数的单调性解决.关注:内外层函数同向变化→复合函数为增函数;内外层函数反向变化→复合函数为减函数. 类型三、单调性的应用(比较函数值的大小,求函数值域,求函数的最大值或最小值) 3. 已知函数f(x)在(0,+∞)上是减函数,比较f(a2-a+1)与的大小. 解:又f(x)在(0,+∞)上是减函数,则. 4. 求下列函数值域: (1);1)x∈[5,10];2)x∈(-3,-2)∪(-2,1); (2)y=x2-2x+3;1)x∈[-1,1];2)x∈[-2,2]. 思路点拨:(1)可应用函数的单调性;(2)数形结合. 解:(1)2个单位,再上移2个单位得到,如图 1)f(x)在[5,10]上单增,;

最新函数的奇偶性和单调性综合训练及答案

一、选择题 1.下列判断正确的是( ) A .函数2 2)(2--=x x x x f 是奇函数 B .函数1()(1)1x f x x x +=--是偶函数 C .函数2()1f x x x =+ -是非奇非偶函数 D .函数1)(=x f 既是奇函数又是偶函数 2.若函数2 ()48f x x kx =--在[5,8]上是单调函数,则k 的取值范围是( ) A .(],40-∞ B .[40,64] C .(][),4064,-∞+∞ D .[)64,+∞ 3.函数11y x x = +--的值域为( ) A .( ]2,∞- B .(] 2,0 C .[ ) +∞,2 D .[)+∞,0 4.已知函数()()2212f x x a x =+-+在区间(]4,∞-上是减函数, 则实数a 的取值范围是( ) A .3a ≤- B .3a ≥- C .5a ≤ D .3a ≥ 5.下列四个命题:(1)函数f x ()在0x >时是增函数,0x <也是增函数,所以)(x f 是增函数;(2)若函数2 ()2f x ax bx =++与x 轴没有交点,则2 80b a -<且0a >;(3) 223y x x =--的 递增区间为[)1,+∞;(4) 1y x =+和2(1)y x = +表示相等函数。 其中正确命题的个数是( ) A .0 B .1 C .2 D .3 6.某学生离家去学校,由于怕迟到,所以一开始就跑步,等跑累了再走余下的路程. 在下图中纵轴表示离学校的距离,横轴表示出发后的时间,则下图中的四个图形中较符合该学生走法的是( ) 二、填空题 1.函数x x x f -=2 )(的单调递减区间是____________________。 2.已知定义在R 上的奇函数()f x ,当0x >时,1||)(2 -+=x x x f , 那么0x <时,()f x = . d d 0 t 0 t O A . d d 0 t 0 t O B . d d 0 t 0 t O C . d d 0 t 0 t O D .

函数的奇偶性及周期性综合运用

函数的奇偶性及周期性 1. 已知定义在 R 上的奇函数 f(x) 满足 f(x+2)= -f(x) f(6) 的值为 ( ) A.-1 B.0 C.1 D.2 【答案】 B 【解析】 ∵ f(x+2)=-f(x), ∴ f(6)=f(4+2)=-f(4)=f(2)= -f(0) 又 f(x) 为R 上的奇函数 , ∴ f(0)=0. ∴ f(6)=0. 2. 函数 f ( x) x 3 sin x 1( x R), 若 f(a)=2, 则 f(-a) 的值为 ( ) A.3 B.0 C.-1 D.-2 【答案】 B 【解析】 设 g ( x) 3 sinx, 很明显 g(x) 是一个奇函数 . x ∴ f(x)=g(x)+1. ∵ f(a)=g(a)+1=2, ∴ g(a)=1. ∴ g(-a)=-1. ∴ f(-a)=g(-a)+1=-1+1=0. 3. 已知 f(x) 是定义在 R 上的偶函数 , 并满足 f(x+2)= 1 1 x 2 时 ,f(x)=x-2, 则 f ( x) f(6.5) 等于?? ( ) A.4.5 B.-4.5 C.0.5 D.-0.5 【答案】 D 【 解 析 】 由 f(x 2) 1 得 f(x 4) 1 f ( x ) f ( x 2) f(6.5)=f(2.5). 因为 f(x) 是偶函数 , 得 f(2.5)=f(-2.5)=f(1.5), 而 1 x 2 时 ,f(x)=x-2, 所以 f(1.5)=-0.5. 综上 , 知f(6.5)=-0.5. 4. 已知函数 f(x) 是定义在 R 上的奇函数 , 当 x>0时 ,f(x)= - 是 ( ) A. ( 1) B. ( 1] C. (1 ) D. [1 ) 【答案】 A 【解析】 当 x>0时 f ( x ) 1 2 x 1 1 x 2 当 x<0时,-x>0, ∴ f( x ) 1 2 x . 又∵ f(x) 为 R 上的奇函数 , ∴ f(-x)=-f(x). ∴ f ( x ) 1 2 x . ∴ f ( x ) 2 x 1 . ∴ f ( x) 2 1 1 即 2 x 1 . x ∴ x<-1. 2 2 ∴不等式 f ( x ) 1 的解集是 ( 1) . 2 5. 设 g(x) 是定义在 R 上、以 1为周期的函数 . 若函数 f(x)=x+g(x) 则f(x) 在区间 [0,3] . f ( x) 那 么 f(x) 的 周 期 是 4, 得 2 x 则不等式 f ( x) 1 的解集 2 1 2 在区间 [0,1] 上的值域为 [-2,5],

函数单调性奇偶性周期性和对称性的综合应用

函数单调性、奇偶性、周期性和对称性的综合应用 例1、设f (x )是定义在R 上的奇函数,且()x f y =的图象关于直线2 1=x 对称,则f (1)+ f (2)+ f (3)+ f (4)+ f (5)=_0_______________. 【考点分析】本题考查函数的周期性 解析:()()00f f -=-得()00f =,假设()0f n = 因为点(n -,0)和点(1,0n +)关于12x =对称,所以()()()10f n f n f n +=-=-= 因此,对一切正整数n 都有:()0f n = 从而:()()()()()123450f f f f f ++++=。本题答案填写:0 例2、(2006福建卷)已知()f x 是周期为2的奇函数,当01x <<时,()lg .f x x = 设63(),(),52a f b f ==5(),2 c f =则 (A )a b c << (B )b a c << (C )c b a << (D )c a b << 解:已知()f x 是周期为2的奇函数,当01x <<时,()lg .f x x = 设644()()()555a f f f ==-=-,311()()()222b f f f ==-=-,51()()22 c f f ==<0,∴c a b <<,选D. 例3、(安徽卷理)函数()f x 对于任意实数x 满足条件()() 12f x f x +=,若()15,f =-则()()5f f =__________。 【考点分析】本题考查函数的周期性与求函数值,中档题。 解析:由()()12f x f x +=得()() 14()2f x f x f x +==+,所以(5)(1)5f f ==-,则()()115(5)(1)(12)5 f f f f f =-=-==--+。 【窥管之见】函数的周期性在高考考查中除了在三角函数中较为直接考查外,一 般都比较灵活。本题应直观理解()() 12f x f x += “只要加2,则变倒数,加两次则回原位” 则一通尽通也。 例4、设()f x 是()+∞∞-,上的奇函数,()()x f x f -=+2,当0≤x ≤1时,()x x f =,则f ()等于( ) A.0.5 B.-0.5 D.-

高中数学必修一函数的性质单调性与奇偶性典型精讲精练

1文档收集于互联网,已整理,word 版本可编辑. 函数单调性 证明格式: ① 取任意两个数12,x x 属于定义域D ,且令12x x <(反之亦可); ② 作差12()()f x f x -并因式分解; ③ 判定 12()()f x f x -的正负性,并由此说明函数的增减性; 例 1 用定义法判定下列函数的增减性: ① y x =; ②2y x =; ③3y x =; ④y = ⑤1 y x = ; 练习:1. 判断函数()f x = 2.证明函数 3()f x x x =+在R 上是增函数; 例 2 已知函数 1 ()(0)f x x x x =+>,求证:函数的单调减区间为(0,1],增区间为[1,)+∞,并画出图像; 练习:证明函数 x x x f 2 )(+ =在),2(+∞上是增函数。 3.复合函数的单调性 复合函数的单调性判断(同增异减):构造中间过度函数,按定义比较函数大小并确定函数的单调性; 例 3 判断函数的单调性: (1 ) ()f x = (2 )()f x =; (3) 2 1 ()2 f x x = +; 练习:① y = ②2 13y x = -; ③ 2 154y x x = +-; ④ y ; 4.函数的单调性的等价关系 设[]1212,,,x x a b x x ∈≠那么 []1212()()()0x x f x f x -->?[]1212()() 0(),f x f x f x a b x x ->?-在上是增函数; []1212()()()0x x f x f x --时,()1f x >且对任意的,a b 都有()()()f a b f a f b +=? (1)求证: (0)1f = ; (2)求证:对任意的x R ∈恒有 ()0f x > ; (3)求证:f(x)是R 上的增函数 ; (4)若2()(2)1f x f x x ?->,求x 的取值范围 相关练习 1、设 ()f x 的图像关于原点对称,且在(0,)+∞内是增函数,又(3)0f -=,则()0x f x ?<的解集是………………( ) A {}|303x x x -<<>或 B {}|303x x x <-<<或 C {}|33x x x <->或 D {}|3003x x x -<<<<或 2、若 )(x f 的图像关于y 轴对称,且在[)+∞,0上是减函数,则235()(2)2 2 f f a a -++与的大小关系…( ) A )2 3(-f >)25 2(2++a a f B )23 (-f <)25 2(2++a a f C ) 23 (-f ≥ )2 5 2(2++a a f D 3() 2f -≤25(2)2 f a a ++

函数的单调性和奇偶性典型例题

函数的单调性和奇偶性 例1(1)画出函数y=-x2+2|x|+3的图像,并指出函数的单调区间. 解:函数图像如下图所示,当x≥0时,y=-x2+2x+3=-(x-1)2+4;当x<0时,y=-x2-2x+3=-(x+1)2+4.在(-∞,-1]和[0,1]上,函数是增函数:在[-1,0]和[1,+∞)上,函数是减函数. 评析函数单调性是对某个区间而言的,对于单独一个点没有增减变化,所以对于区间端点只要函数有意义,都可以带上. (2)已知函数f(x)=x2+2(a-1)x+2在区间(-∞,4]上是减函数,求实数a的取值范围. 分析要充分运用函数的单调性是以对称轴为界线这一特征. 解:f(x)=x2+2(a-1)x+2=[x+(a-1)]2-(a-1)2+2,此二次函数的对称轴是x =1-a.因为在区间(-∞,1-a]上f(x)是单调递减的,若使f(x)在(-∞,4]上单调递减,对称轴x=1-a必须在x=4的右侧或与其重合,即1-a≥4,a≤-3. 评析这是涉及逆向思维的问题,即已知函数的单调性,求字母参数范围,要注意利用数形结合. 例2判断下列函数的奇偶性: (1)f(x)=- (2)f(x)=(x-1). 解:(1)f(x)的定义域为R.因为 f(-x)=|-x+1|-|-x-1| =|x-1|-|x+1|=-f(x). 所以f(x)为奇函数.

(2)f(x)的定义域为{x|-1≤x<1},不关于原点对称.所以f(x)既不是奇函数,也不是偶函数. 评析用定义判断函数的奇偶性的步骤与方法如下: (1)求函数的定义域,并考查定义域是否关于原点对称. (2)计算f(-x),并与f(x)比较,判断f(-x)=f(x)或f(-x)=-f(x)之一是否成立.f(-x)与-f(x)的关系并不明确时,可考查f(-x)±f(x)=0是否成立,从而判断函数的奇偶性. 例3已知函数f(x)=. (1)判断f(x)的奇偶性. (2)确定f(x)在(-∞,0)上是增函数还是减函数?在区间(0,+∞)上呢?证明你的结论. 解:因为f(x)的定义域为R,又 f(-x)===f(x), 所以f(x)为偶函数. (2)f(x)在(-∞,0)上是增函数,由于f(x)为偶函数,所以f(x)在(0,+∞)上为减函数. 其证明:取x1<x2<0, f(x1)-f(x2)=- ==. 因为x1<x2<0,所以 x2-x1>0,x1+x2<0, x21+1>0,x22+1>0, 得f(x1)-f(x2)<0,即f(x1)<f(x2). 所以f(x)在(-∞,0)上为增函数. 评析奇函数在(a,b)上的单调性与在(-b,-a)上的单调性相同,偶函数在(a,b)与(-b,-a)的单调性相反. 例4已知y=f(x)是奇函数,它在(0,+∞)上是增函数,且f(x)<0,试问F(x)=在(-∞,0)上是增函数还是减函数?证明你的结论.

函数奇偶性的定义与应用

函数2:函数的奇偶性 【教学目的】 使学生了解奇偶性的概念,掌握判断函数奇偶性的方法; 【重点难点】 重点:函数的奇偶性的有关概念; 难点:奇偶性的应用 一、函数的奇偶性 1.偶函数:一般地,对于函数f(x)的定义域内的任意一个x ,都有f(-x)=f(x),那么f(x)就叫做 偶函数. 2.奇函数:一般地,对于函数f(x)的定义域内的任意一个x ,都有f(-x)=-f(x),那么f(x)就叫 做奇函数. 3.判断函数奇偶性的方法: (1)图像法:偶函数的图像关于y 轴对称;奇函数的图像关于原点对称. (2)定义法:○1首先确定函数的定义域,并判断其是否关于原点对称; ②确定f(-x)与f(x)的关系; ○ 3作出相应结论:若f(-x) = f(x) 或 f(-x)-f(x) = 0,则f(x)是偶函数;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,则f(x)是奇函数. 4.奇偶函数的简单性质: (1)奇函数:奇函数的图像关于原点对称,其单调性在对称区间内相同,如在[a,b ]上为 增函数,则在[-b ,-a ]上也为增函数. (2)偶函数:奇函数的图像关于y 轴对称,其单调性在对称区间内相反,如在[a,b ]上为 增函数,则在[-b ,-a ]上为减函数. 二、函数奇偶性的应用 1、利用定义判断函数奇偶性 例1(1)x x x f 2)(3+= ; (2)2 432)(x x x f +=; (3)1)(2 3--=x x x x f ; (4)2)(x x f = []2,1-∈x ; (5)x x x f -+-=22)( ; (6)2211)(x x x f -+-=; (7)2211(0)2()11(0)2 x x g x x x ?+>??=??--x 时,()()x x x f -=1,求()x f 在R 上解析式;

函数单调性、奇偶性、周期性与对称性综合.doc

专项5函数单调性、奇偶性、周期性、对称性综合 有关函数的奇偶性、单调性、周期性和图像的综合问题,历来都是一个难点,并且几乎是必考的重点内容,它考察的 内容应该说是非常多的,综合性也是非常强的,而且不易想,因而,对很多同学來说,十分头疼,在这一章节内容上, 我们绝对要摒弃大量做题不顾总结的复习思路,基于此,我们从以下几个方面讲这部分内容。 第一个问题,就是对于“已知奇/偶函数一段定义域上的解析式,求另一段的解析式”这样的问题,最为基础题,同学 们一定要知道怎么解决这种问题,但是对于求确切的/(G )的问题,这里的。代指一个确切的常数,我们可以不求出另 一 ?段上的解析式,我们采取“进/退周期”的方式,什么意思呢?就是如果讣我们求的于(G )中的。不在己经解析式的 定义域上,对于比定义域右端点值大的,要根据周期定义每次减一个周期,逐步将其转化到已知解析式的定义域之上, 比如,题目让我们求/(13),我们通过分析发现该函数的周期为2,而我们只知道XG (0,2).上的解析式,那么我们就 可以“退周期”,即/(13) = /(2x6+l) = /(l),即只需要求出这个/(I)就是了,同理,对于比定义域小的,我们用 同样方法,可以“进周期”,求解相关问题。 第二个问题,我们必须要说这个周期的问题,周期其实在高中教材中只是在必修四三角函数中学了,但是函数中却经 常出现,而且不算是超纲内容,这一点需要大家知道,不能因为函数教材屮没有讲就认为不需要掌握,但是有一点需 要大家知道,那就是对于周期性,我们更多的是记住一些结论,推到这些结论是不要求的,因此,我们在这里总结这 些结论,希望大家都记住。 如果一个函数满足= + 则这个函数就是以。为一个周期的函数,这里要强调“一个周期”,事实上,弦/都 是这个函数的周期,也就是说/(x) = f(ka + x), /(x) = f(ka-x), /(x) = f(x-a),还有一?些有关周期的拓展定义: 第三个问题,是有关于图像的问题,特别是图像的做法,有很多是需要掌握对称性规律的,相关的对称性规律结论请 回顾复习专项4,专项4屮有比较基础的对称性总结函数关于兀轴、y 轴、坐标原点对称的规律;特别强调下列三种函 数l.f(x)l,/(lg(x)l),/(g(lxl)),这三种绝对值加到不同地方的函数图像本身的对称性规律要掌握好。 奇函数、偶函数、反函数和一些常见的函数,如对号函数等的对称性 对于耍求函数有几个零点或者两个函数有几个交点的问题,作图是最主耍的方法,作图的吋候,一定要按照我们学过 的函数图像的三种变换进行画图,从授基本的图形开始画,通过平移、对称一步一步的得到我们想要的函数图像,做 图的过程小,如果有带有绝对值,一定要想着使丿IJ 相应带有绝对值的作图规律,坚决不允许通过描点连线的方式进行 作图。 下面开启做题Z 旅,下面的这些题,淘汰、更换历经了很长时间,不论简单还是难度稍微大些,都是非常好的试题, 一定要认认真真完成,对于错题,还要进行总结分析。 1. /⑴为奇函数,g ⑴= /(x) + 9,g(2) = 3,则/(2)= _______________ 2. .f(x)为定义在/?上的奇函数,当xhO 时,/(Q = 2" + 2x + b ,则/(-1)= _____________ ①弘+沪_卍);②弘+沪命;③弘+沪 1 /(x ) ,则函数/(兀)的周期为2a 。

相关文档
相关文档 最新文档