文档库 最新最全的文档下载
当前位置:文档库 › 实验4 矩形脉冲信号的分解

实验4 矩形脉冲信号的分解

实验4  矩形脉冲信号的分解
实验4  矩形脉冲信号的分解

实验4 矩形脉冲信号的分解

一、实验目的

1. 分析典型的矩形脉冲信号,了解矩形脉冲信号谐波分量的构成;

2. 观察矩形脉冲信号通过多个数字滤波器后,分解出各谐波分量的情况。

二、实验原理

1. 信号的频谱与测量

信号的时域特性和频域特性是对信号的两种不同的描述方式。对于一个时域的周期信号)t (f ,只要满足狄利克莱(Dirichlet)条件,就可以将其展开成三角形式或指数形式的傅里叶级数。

例如,对于一个周期为T 的时域周期信号)t (f ,可以用三角形式的傅里叶级数求出它的各次分量,在区间)1,1(T t t +内表示为:

)sin cos 1

(0)(t n n

b t n n n a a t f Ω+Ω∑∞

=+=-----(1) 即将信号分解成直流分量及许多余弦分量和正弦分量,研究

其频谱分布情况。

A

A(c)

图4-1 信号的时域特性和频域特性

信号的时域特性与频域特性之间有着密切的内在联系,这种联系可以用图4-1来形象地表示。其中图4-1(a)是信号在幅度--时间--频率三维座标系统中的图形;图4-1(b)是信号在幅度--时间座标系统中的图形即波形图;把周期信号分解得到的各次谐波分量按频率的高低排列,就可以得到频谱图。反映各频率分量幅度的频谱称为振幅频谱。图4-1(c)是信号在幅度--频率座标系统中的图形即振幅频谱图。反映各分量相位的频谱称为相位频谱。在本实验中只研究信号振幅频谱。周期信号的振幅频谱有三个性质:离散性、谐波性、收敛性。测量时利用了这些性质。从振幅频谱图上,可以直观地看出各频率分量所占的比重。测量方法有同时分析法和顺序分析法。

同时分析法的基本工作原理是利用多个滤波器,把它们的中心频率分别调到被测信号的各个频率分量上。当被测信号同时加到所有滤波器上,中心频率与信号所包含的某次谐波分量频率一致的滤波器便有输出。在被测信号发生的实际时间内可以同时测得信号所包含的各频率分量。在本实验中采用同时分析法进行频谱分析,如图4-2所示。

图4-2 用同时分析法进行频谱分析

其中,P801出来的是基频信号,即基波;P802出来的

是二次谐波;P803的是三次谐波,依此类推。

2. 矩形脉冲信号的频谱

一个幅度为E ,脉冲宽度为τ,重复周期为T 的矩形脉冲信号,如图4-3所示。

图4-3 周期性矩形脉冲信号

其傅里叶级数为:

t n T

n Sa T E T E t f n i ωπτττcos )(2)(1∑

=+=----(2) 该信号第n 次谐波的振幅为:

T

n T n T E T n Sa T E a n /)

/sin(2)(2τπτπττπτ=

=

----(3)

由上式可见第n 次谐波的振幅与E 、T 、τ有关。

3. 信号的分解提取

进行信号分解和提取是滤波系统的一项基本任务。当我们仅对信号的某些分量感兴趣时,可以利用选频滤波器,提取其中有用的部分,而将其它部分滤去。

目前DSP 数字信号处理系统构成的数字滤波器已基本取代了传统的模拟滤波器,数字滤波器与模拟滤波器相比具有许多优点。用DSP 构成的数字滤波器具有灵活性高、精度高和稳定性高,体积小、性能高,便于实现等优点。

因此

T

在这里我们选用了数字滤波器来实现信号的分解。

在数字滤波器模块上,选用了有8路输出的D/A转换器TLV5608(U502),因此设计了8个滤波器(一个低通、六个带通、一个高通)将复杂信号分解提取某几次谐波。

分解输出的8路信号可以用示波器观察,测量点分别是TP801、TP802、TP803、TP804、TP805、TP806、TP807 、TP808。

三、实验内容

(一)、开关设置和线路连接

1.J701:“方波”P702----P101

2.按SW101,数码管SMG101上显示数字“5”。

(二)、实验步骤

1、输入的矩形脉冲信号:f=4KHZ V=4V,

改变信号的脉宽τ,测量不同τ时信号频谱中各分量的大小。

2、示波器可分别在TP801、TP802、TP80

3、TP80

4、

TP805、

TP806、TP807和TP808上观测信号各次谐波的波形。

根据表4-1、表4-2中给定的数值进行实验,并记录实验获得的数据填入表中。

注意:在调节输入信号的参数值(频率、幅度等)时,需在P702与P101连接后,用示波器在TP101上观测调节。S704按钮为占空比选择按钮,每按下一次可以选择不同的占空比输出。

3、τ/T=1/2:τ的数值按要求调整,测得的信号频谱中

各分量的大小,其数据按表的要求记录。

电压峰峰值的理论值的算法:按公式(3)求出

电压有效值的算法:峰值乘以根号2分之一(峰值乘以0.707)

τ的矩形脉冲信号的频谱

表4-1 21=

T

4、

1=T

τ

:矩形脉冲信号的脉冲幅度E 和频率f 不变,τ

的数值按要求调整,测得的信号频谱中各分量的大小,其数据按表的要求记录。

表4-2 4

1=T

τ

的矩形脉冲信号的频谱

注意4个跳线器K801、K802、K803、K804应放在左边位置。4个跳线器的功能为:当置于左边位置时,只是连通;当置于右边位置时,可分别通过W801、W802、W803、

W408调节各路谐波的幅度大小。

四、实验报告要求

1. 按要求记录各实验数据,填写表4-1、表4-2。

2. 描绘三种被测信号的振幅频谱图。

五、实验设备

1.信号与系统实验箱、双踪示波器、毫伏表各1台

六、思考题

τ的矩形脉冲信号在哪些谐波分量上幅度为零?

1. 41=

T

请画出基波信号频率为5KHz的矩形脉冲信号的频谱图(取最高频率点为10次谐波)。

τ的矩形脉冲信号的基波和2、3次谐2. 要提取一个41=

T

波,以及4次以上的高次谐波,你会选用几个什么类型(低通?带通?…)的滤波器?

实验一脉冲时间信号MATLAB表示

实验1 连续时间信号在MATLAB 中的表示 1. 实验目的 学会运用MATLAB 表示常用连续时间信号的方法;观察并熟悉这些信号的波形和特性。 2. 实验原理 在某一时间区间内,除若干个不连续点外,如果任意时刻都可以给出确定的函数值,则称该信号为连续时间信号,简称为连续信号。从严格意义上讲,MATLAB 数值计算的方法并不能处理连续时间信号。然而,可利用连续信号在等时间间隔点的取样值来近似表示连续信号,即当取样时间间隔足够小时,这些离散样值能够被MATLAB 处理,并且能较好地近似表示连续信号。 MATLAB 提供了大量生成基本信号的函数。比如常用的指数信号、正余弦信号等都是MATLAB 的内部函数。为了表示连续时间信号,需定义某一时间或自变量的范围和取样时间间隔,然后调用该函数计算这些点的函数值,最后画出其波形图。 3. 实例分析 3.1 典型信号的MATLAB 表示 (1)实指数信号 实指数信号的基本形式为()t f t Ke α=。式中,,K α为实数。当0α>时,实指数信号随时间按指数式增长;当0α<时,实指数信号随时间按指数式衰减;当0α=时候,则转化为直流信号。MATLAB 中用exp 函数来表示实指数信号,其语句格式为: *exp(*)y K a t = 例1 用MATLAB 命令产生单边衰减指数信号 1.52()t e u t -,并绘出时间03t ≤≤的波形图。 解:MATLAB 源程序为:

clear;clc; K = 2; a = -1.5; t = 0:0.01:3; ft = K*exp(a*t); plot(t,ft);grid on axis([0,3,0,2.2]); title('单边指数衰减信号'); (2)正弦信号 正弦信号的基本形式为()sin()f t K t ω?=+或者()cos()f t K t ω?=+。其中K 是振幅;ω是角频率; ?是初相位。这三个参数称为正弦信号的三要素。MATLAB 中可用sin 或者cos 函数来表示正弦信号,其语句格式为: *sin(*)K t phi ω+ *c o s (*K t p h i ω+ 例2 用MATLAB 命令产生正弦信号2sin(2/4)t ππ+,并绘出时间03t ≤≤的波形图。 解:MATLAB 源程序为: clear;clc; K = 2; w = 2*pi; phi = pi/4; t = 0:0.01:3; ft = K*sin(w*t+phi); plot(t,ft);grid on axis([0,3,-2.2,2.2]); title('正弦信号'); 图1 单边指数衰减信号 图2 正弦信号 (3)抽样信号 抽样信号的基本形式为()sin()/Sa t t t =,在MATLAB 中用与()Sa t 类似的sinc()t 函数表示,定义为sinc()sin()/()t t t ππ=。 可以看出,()Sa t 函数与sinc()t 没有本质的区别, 只是在时间尺度上不同而已。 例3 用MATLAB 命令产生抽样信号()Sa t ,并绘出时间为66t ππ-≤≤的波形图。

矩形脉冲信号频谱分析

小组成员: 刘鑫 龙宇 秦元成 王帅 薛冬寒 梁琼健 一、傅里叶分析方法与过程 周期信号的分解 1、三角形式 周期为T 的周期信号,满足狄里赫利(Dirichlet )条件(实际中遇到的所有周期信号都符合该条件),便可以展开为傅里叶级数的三角形式,即: ∑∑∞=∞ =Ω+Ω+=110s i n c o s 21 )(n n n n t n b t n a a t f (1) ?-=Ω=2 2 ,2,1cos )(2T T n dt t n t f T a n (2) ?-=Ω=2 2 ,2,1sin )(2T T n dt t n t f T b n (3) 式中: T π 2= Ω 为基波频率, n a 与 n b 为傅里叶系数。 其中 n a 为n 的偶函数, n b 为n 的奇函数。 将上式中同频率项合并可写成: ∑∞ =+Ω+=++Ω++Ω+=1022110)cos 21 ... )2cos()cos(21 )(n n n t n A A t A t A A t f ???(

式中: ) arctan(...3,2,1,2 2 0n n n n a b n b a A a A n n -==+==? (5) n n n n n n A b A a A a ??sin cos 0 0-=== (6) 2.指数形式 由于 2 cos jx jx e e x -+= (7) 三角函数形式可以写为 t jn j n n t jn j n n t n j n t n j n e e A e e A A e e A A t f n n n n Ω--∞=Ω∞=+Ω-∞ =+Ω∑∑∑++=++=????1 10)(1)(0212121] [2 1 21)( (8) 将上式第三项中的n 用-n 代换,并考虑到 为n 的偶函数, 为n 的奇函数 则上式可写为: t jn j n n t jn j n n t jn j n n t jn j n n e e A e e A A e e A e e A A t f n n n n Ω∞ --=Ω∞=Ω--∞ -=-Ω∞=∑∑∑∑++=++=-????1 1011021 212121 2121)( (9) 将上式中的 0A 写成 t j j e e A Ω000?(其中 00=?),则上式可写为

周期矩形信号的频谱分析

1.周期信号的频谱 周期信号在满足一定条件时,可以分解为无数三角信号或指数之和。这就是周期信号的傅里叶级数展开。在三角形式傅里叶级数中,各谐波分量的形式为()1cos n n A n t ω?+;在指数形式傅里叶级数中,分量的形式必定为1j n t n F e ω 与1-j -n t n F e ω 成对出现。为了把周期信号所具有的各 次谐波分量以及各谐波分量的特征(如模、相角等)形象地表示出来,通常直接画出各次谐波的组成情况,因而它属于信号的频域描述。 以周期矩形脉冲信号为lifenxi 周期信号频谱的特点。周期矩形信号在一个周期(-T/2,T/2)内的时域表达式为 ,2 0,>2 ()A t T t f t ττ ≤?=?? (2-6) 其傅里叶复数系数为 12 n n A F Sa T ωττ?? = ??? (2-7) 由于傅里叶复系数为实数,因而各谐波分量的相位为零(n F 为正)或为π±(n F 为负),因此不需要分别画出幅度频谱n F 与相位频谱n φ。可以直接画出傅里叶系数n F 的分布图。 如图2.4.1所示。该图显示了周期性矩形脉冲信号()T f t 频谱的一些性质,实际上那个也是周期性信号频谱的普遍特性: ① 离散状频谱。即谱线只画出现在1ω的整数倍频率上,两条谱线的间隔为1ω(等于2π/t )。 ② 谱线宽度的包络线按采样函数()1/2a S n ωτ的规律变化。如图2.4.2所示。但1ω 为 2π τ 时,即( )2m π ωτ =(m=1,2,……)时,包络线经过零点。在两相邻 零点之间,包络线有极值点,极值的大小分别为-0.212()2A T τ,

(整理)数字电路实验讲义

数字电路实验讲义 课题:实验一门电路逻辑功能及测试课型:验证性实验 教学目标:熟悉门电路逻辑功能,熟悉数字电路实验箱及示波器使用方法 重点:熟悉门电路逻辑功能。 难点:用与非门组成其它门电路 教学手段、方法:演示及讲授 实验仪器: 1、示波器; 2、实验用元器件 74LS00 二输入端四与非门 2 片 74LS20 四输入端双与非门 1 片 74LS86 二输入端四异或门 1 片 74LS04 六反相器 1 片 实验内容: 1、测试门电路逻辑功能 (1)选用双四输入与非门74LS20 一只,插入面包板(注意集成电路应摆正放平),按图1.1接线,输入端接S1~S4(实验箱左下角的逻辑电平开关的输出插口),输出端接实验箱上方的LED 电平指示二极管输入插口D1~D8 中的任意一个。 (2)将逻辑电平开关按表1.1 状态转换,测出输出逻辑状态值及电压值填表。

2、逻辑电路的逻辑关系 (1)用74LS00 双输入四与非门电路,按图1.2、图1.3 接线,将输入输出逻辑关系分别填入表1.2,表1.3 中。 (2)写出两个电路的逻辑表达式。 3、利用与非门控制输出 用一片74LS00 按图1.4 接线。S 分别接高、低电平开关,用示波器观察S 对输出脉冲的控制作用。 4、用与非门组成其它门电路并测试验证。

(1)组成或非门: 用一片二输入端四与非门组成或非门B + =,画出电路图,测试并填 = A A B Y? 表1.4。 (2)组成异或门: ①将异或门表达式转化为与非门表达式; ②画出逻辑电路图; ③测试并填表1.5。 5、异或门逻辑功能测试 (1)选二输入四异或门电路74LS86,按图1.5 接线,输入端1、2、4、5 接电平开关输出插口,输出端A、B、Y 接电平显示发光二极管。 (2)将电平开关按表1.6 的状态转换,将结果填入表中。

数字电子技术实验教案

湖南工学院教案用纸 实验1基本门电路逻辑功能测试(验证性实验) 一、实验目的 1?熟悉基本门电路图形符号与功能; 2?掌握门电路的使用与功能测试方法; 3?熟悉实验室数字电路实验设备的结构、功能与使用。 二、实验设备与器材 双列直插集成电路插座,逻辑电平开关,LED发光显示器,74LS00, 74LS20 , 74LS86,导 线 三、实验电路与说明 门电路是最简单、最基本的数字集成电路,也是构成任何复杂组合电路和时序电路的基本单 元。常见基本集门电路包括与门、或门、与非门、非门、异或门、同或门等,它们相应的图形符号与逻辑功能参见教材P.176, Fig.6.1。根据器件工艺,基本门电路有TTL门电路和CMOS门电路之分。TTL门电路工作速度快,不易损坏,CMOS门电路输出幅度大,集成 度高,抗干扰能力强。 1.74LS00 —四2输入与非门功能与引脚: 2. 74LS20 —双4输入与非门功能与引脚: 3. 74LS86 —四2输入异或门功能与引脚: 四、实验内容与步骤 1.74LS00功能测试: ①74LS00插入IC插座;②输入接逻辑电平开关;③输出接LED显示器;④接电源;⑤拔

动开关进行测试,结果记入自拟表格。 湖南工学院教案用纸

2. 74LS20功能测试: 实验过程与74LS00功能测试类似。 3. 74LS86功能测试: 实验过程与74LS00功能测试类似。 4. 用74LS00构成半加器并测试其功能: ①根据半加器功能:S A B , C AB,用74LS00设计一个半加器电路; ②根据所设计电路进行实验接线; ③电路输入接逻辑电平开关,输出接LED显示器; ④通电源测试半加器功能,结果记入自拟表格。 5. 用74LS86和74LS00构成半加器并测试其功能: 实验过程与以上半加器功能测试类似。 五、实验报告要求 1. 内容必须包括实验名称、目的要求、实验电路及设计步骤、实验结果记录与分析、实验总结与体会等。2?在报告中回答以下思考题: ①如何判断逻辑门电路功能是否正常? ②如何处理与非门的多余输入端? 实验2组合逻辑电路的设计与调试(设计性综合实验) 一、实验目的 1?熟悉编码器、译码器、数据选择器等MSI的功能与使用; 2?进一步掌握组合电路的设计与测试方法; 3?学会用MSI实现简单逻辑函数。 二、实验设备与器材

周期矩形脉冲的分解与合成

周期矩形脉冲的分解与合成

本科实验报告 实验名称:周期矩形脉冲的分解与合成

一、实验目的和要求 ? 进一步了解波形分解与合成原理。 ? 进一步掌握用傅里叶级数进行谐波分析的方法。 ? 分析典型的矩形脉冲信号,了解矩形脉冲信号谐波分量的构成。 ? 观察矩形脉冲信号通过多个数字滤波器后,分解出各谐波分量的情况。 ? 观察相位对波形合成中的作用。 二、实验内容和原理 2.1 信号的时域特性与频域特性 时域特性和频域特性是信号的两种不同的描述方式。一个时域上的周期信号,只要满足荻里赫勒(Dirichlet)条件,就可以将其展开成三角形式或指数形式的傅里叶级数。由于三角形式的傅里叶级数物理含义比较明确,所以本实验利用三角形式实现对周期信号的分解。 一个周期为T 的时域周期信号()x t ,可以在任意00(,)t t T +区间,精确分解为以下三角形式傅里叶级数,即 0001()(cos sin ) k k k x t a a k t b k t ωω∞ ==++∑ 2.2 矩形脉冲信号的幅度谱 一般利用指数形式的傅里叶级数计算周期信号的幅度谱。 0()jk t k k x t X e ω∞ =-∞ = ∑ (3) 式中0/2 /2 1()T jk t k T X x t e dt T ω--= ? 。计算出指数形式的复振幅k X 后,再利用单边幅 度谱和双边幅度谱的关系:0 2,0 ,0k k X k C X k ?≠?=?=??,即可求出第k 次谐波对应的振

幅。 内容: (1)方波信号的分解。调整“信号源及频率计模块”各主要器件,通过TP1~TP8观察500Hz方波信号的各次谐波,并记录各次谐波的峰峰值。 (2)矩形波信号的分解。将矩形脉冲信号的占空比变为25%,再通过TP1~TP8观察500Hz矩形脉冲信号的各次谐波,并记录各次谐波的峰峰值。 (3)方波的合成。将矩形脉冲信号的占空比再变为50%,通过调节8位拨码开关,观察不同组合的方波信号各次谐波的合成情况,并记录实验结果。 (4)相位对矩形波合成的影响。将SW1调节到“0110”,通过调节8位拨码开关,观察不同组合的方波信号各次谐波的合成情况,并记录实验结果。 三、实验项目 周期矩形脉冲的分解与合成 四、实验器材 信号与系统实验箱一台 双踪示波器一台 五、实验步骤 5.1 方波信号的分解 ①连接“信号源与频率计模块”的模拟输出端口P2与“数字信号处理模块”的模拟输入端口P9; ②将“信号源及频率计模块”的模式切换开关S2置信号源方式,扫频开关S3置off,利用波形切换按钮S4产生矩形波(默认方波,即占空比为50%),利用频率调节按钮ROL1保证信号频率为500Hz; ③将“数字信号处理模块”模块的8位拨码开关调节为“00000000”; ④打开信号实验箱总电源(右侧边),打开S2、S4 两模块供电开关; ⑤用示波器分别观察测试点“TP1~TP7”输出的一次谐波至七次谐波的波形及TP8处输出的七次以上谐波的波形; ⑥根据表1,记录输入信号参数及测试结果。 5.2 矩形波信号的分解 ①按下“信号源及频率计模块”的频率调节按钮ROL1约1秒钟后,数码

矩形脉冲信号的分解实验报告

信号与系统实验报告学院:电子信息与电气工程学院 班级: 13级电信<1>班 学号: 20131060104 姓名:李重阳

实验六 矩形脉冲信号的分解 一、实验目的 1. 分析典型的矩形脉冲信号,了解矩形脉冲信号谐波分量的构成; 2. 观察矩形脉冲信号通过多个数字滤波器后,分解出各谐波分量的情况。 二、实验原理 1. 信号的频谱与测量 信号的时域特性和频域特性是对信号的两种不同的描述方式。对于一个时域的周期信号)t (f ,只要满足狄利克莱(Dirichlet)条件,就可以将其展开成三角形式或指数形式的傅里叶级数。 例如,对于一个周期为T 的时域周期信号)t (f ,可以用三角形式的傅里叶级数求出它的各次分量,在区间)1 ,1(T t t +内表示为: )s i n c o s 1 (0 )(t n n b t n n n a a t f Ω+Ω∑∞ =+ =-----(1) 即将信号分解成直流分量及许多余弦分量和正弦分量,研究其频谱分布情况。 A A (c) 图6-1 信号的时域特性和频域特性 信号的时域特性与频域特性之间有着密切的内在联系,这种联系可以用图6-1来形象地表示。其中图6-1(a)是信号在幅度--时间--频率三维座标系统中的图形;图6-1(b)是信号在幅度--时间座标系统中的图形即波形图;把周期信号分解得到的各次谐波分量按频率的高低排列,就可以得到频谱图。反映各频率分

量幅度的频谱称为振幅频谱。图6-1(c)是信号在幅度--频率座标系统中的图形即振幅频谱图。反映各分量相位的频谱称为相位频谱。在本实验中只研究信号振幅频谱。周期信号的振幅频谱有三个性质:离散性、谐波性、收敛性。测量时利用了这些性质。从振幅频谱图上,可以直观地看出各频率分量所占的比重。测量方法有同时分析法和顺序分析法。 同时分析法的基本工作原理是利用多个滤波器,把它们的中心频率分别调到被测信号的各个频率分量上。当被测信号同时加到所有滤波器上,中心频率与信号所包含的某次谐波分量频率一致的滤波器便有输出。在被测信号发生的实际时间内可以同时测得信号所包含的各频率分量。在本实验中采用同时分析法进行频谱分析,如图6-2所示。 图6-2 用同时分析法进行频谱分析 其中,P801出来的是基频信号,即基波;P802出来的是二次谐波;P803的 是三次谐波,依此类推。 2. 矩形脉冲信号的频谱 一个幅度为E ,脉冲宽度为τ,重复周期为T 的矩形脉冲信号,如图6-3所示。 图6-3 周期性矩形脉冲信号 T

数字逻辑电路实验仪器仪表的使用与脉冲信号的实验报告

数电实验报告 电子科学系班级实验日期2017年5月16日 组员姓名: 实验一数字逻辑电路实验仪器仪表的使用与脉冲信号的一. 实验目的 1.学会数字电路实验装置的使用方法 2.学会双踪数字示波器的使用方法 3.掌握脉冲信号的测量方法 二.主要仪器仪表、材料 数字逻辑电路实验装置、双踪数字示波器、数字万用表、74LS04反相器(标记引脚图见图1.1) 图1.1 74LS0引脚图 三.实验内容及步骤 1.脉冲信号周期和幅值的测量 将数字双踪示波器的第一通道Y1端连接到1KHZ的测试方波信号(用于检测垂直和水平电路的基本功能),Y1置0.5V档、Y2置1V 档。调整示波器相应的开关和旋钮,在示波器上显示出稳定的Y1、Y2两路信号。分别用示波器的0.2ms、0.5ms、1ms时间档测量及记录波形,填表1.1。 表1.1

2.直流电平测量 (1)用示波器测量逻辑电平:示波器的第一通道Y1端连接数字逻辑电路实验装置的逻辑电平,分别用0.5V、1V、2V、5V幅度档测量并记录,填入表1.2。 表1.2 (2)用示波器测量单脉冲:示波器Y1输入端连接数字逻辑电路实验装置的单脉冲,1V幅度档测量并记录,填表1.3。 (3用数字万用表测量单脉冲、逻辑电平:数字万用的5V直流电压档分别测量并记录数字逻辑电路实验装置的单脉冲、逻辑电平信号,填表1.4。 表1.4

3.逻辑门电路传输延时时间t pd的测量 平均传输延迟时间tpd是衡量门电路开关速度的参数。它是指输出波 形边沿的0.5Vm点相对于输入波形对应边沿的0.5Vm点的时间延迟。通常将从输入波上沿中点到输出波下沿中点的时间延迟称为导通延迟时间tpdL,从输入波下沿中点到输出波上沿中点的时间延迟称为截止延迟时间tpdH。如图1.2所示,门电路的导通延迟时间为tpdL,截止延迟时间为tpdH,则平均传输延迟时间为:tpd=12(tpdL+tpdH)。 图1.2门电路的导通延迟时间与截止延迟时间用74LS04六反相器(非门)按图1.3接线,输入100KHZ的连续脉冲,用双踪数字示波器测量输入与输出信号的相位差,并计算每个门的平均传输延迟时间t pd的值。图1.3 四.回答问题: 简述示波器和数字逻辑电路实验装置的功能和使用方法。 答:①示波器是一种电子测量仪器,可用来观测电流波形、测定频率、电压波形等,主要由电子管放大器、扫描振荡器、阴极射线管等组成。使用方法,步骤一:选择Y轴耦合方式。根据被测电信号频率,将Y

实验4 矩形脉冲信号的分解

实验4 矩形脉冲信号的分解 一、实验目的 1. 分析典型的矩形脉冲信号,了解矩形脉冲信号谐波分量的构成; 2. 观察矩形脉冲信号通过多个数字滤波器后,分解出各谐波分量的情况。 二、实验原理 1. 信号的频谱与测量 信号的时域特性和频域特性是对信号的两种不同的描述方式。对于一个时域的周期信号)t (f ,只要满足狄利克莱(Dirichlet)条件,就可以将其展开成三角形式或指数形式的傅里叶级数。 例如,对于一个周期为T 的时域周期信号)t (f ,可以用三角形式的傅里叶级数求出它的各次分量,在区间)1,1(T t t +内表示为: )sin cos 1 (0)(t n n b t n n n a a t f Ω+Ω∑∞ =+=-----(1) 即将信号分解成直流分量及许多余弦分量和正弦分量,研究

其频谱分布情况。 A A(c) 图4-1 信号的时域特性和频域特性 信号的时域特性与频域特性之间有着密切的内在联系,这种联系可以用图4-1来形象地表示。其中图4-1(a)是信号在幅度--时间--频率三维座标系统中的图形;图4-1(b)是信号在幅度--时间座标系统中的图形即波形图;把周期信号分解得到的各次谐波分量按频率的高低排列,就可以得到频谱图。反映各频率分量幅度的频谱称为振幅频谱。图4-1(c)是信号在幅度--频率座标系统中的图形即振幅频谱图。反映各分量相位的频谱称为相位频谱。在本实验中只研究信号振幅频谱。周期信号的振幅频谱有三个性质:离散性、谐波性、收敛性。测量时利用了这些性质。从振幅频谱图上,可以直观地看出各频率分量所占的比重。测量方法有同时分析法和顺序分析法。

东南大学数字电路实验第4章时序逻辑电路

东南大学电工电子实验中心 实验报告 课程名称:数字逻辑电路设计实践 第 4 次实验 实验名称:基本时序逻辑电路 院(系):信息科学与工程学院专业:信息工程姓名:学号: 实验室: 实验组别: 同组人员:无实验时间: 评定成绩:审阅教师:

时序逻辑电路 一、实验目的 1.掌握时序逻辑电路的一般设计过程; 2.掌握时序逻辑电路的时延分析方法,了解时序电路对时钟信号相关参数的基本要求; 3.掌握时序逻辑电路的基本调试方法; 4.熟练使用示波器和逻辑分析仪观察波形图,并会使用逻辑分析仪做状态分析。 二、实验原理 1.时序逻辑电路的特点(与组合电路的区别): ——具有记忆功能,任一时刻的输出信号不仅取决于当时的输出信号,而且还取决于电路原来的值,或者说还与以前的输入有关。 2.时序逻辑电路的基本单元——触发器(本实验中只用到D触发器) 触发器实现状态机(流水灯中用到) 3.时序电路中的时钟 1)同步和异步(一般都是同步,但实现一些任意模的计数器时要异步控制时钟端) 2)时钟产生电路(电容的充放电):在内容3中的32768Hz的方波信号需要自己通过 电路产生,就是用到此原理。 4.常用时序功能块 1)计数器(74161) a)任意进制的同步计数器:异步清零;同步置零;同步置数;级联 b)序列发生器 ——通过与组合逻辑电路配合实现(计数器不必考虑自启动) 2)移位寄存器(74194) a)计数器(一定注意能否自启动) b)序列发生器(还是要注意分析能否自启动) 三、实验内容 1.广告流水灯 a.实验要求 用触发器、组合函数器件和门电路设计一个广告流水灯,该流水等由8个LED组成,工作时始终为1暗7亮,且这一个暗灯循环右移。 ①写出设计过程,画出设计的逻辑电路图,按图搭接电路。 ②将单脉冲加到系统时钟端,静态验证实验电路。 ③将TTL连续脉冲信号加到系统时钟端,用示波器和逻辑分析仪观察并记录时钟脉冲 CLK、触发器的输出端Q2、Q1、Q0和8个LED上的波形。 b.实验数据 ①设计电路。 1)问题分析 流水灯的1暗7亮对应8个状态,故可采用3个触发器实现;而且题目要求输出8个信号控制8个灯的亮暗,故可以把3个触发器的输出加到3-8译码器的控制端,对应的8个译码器输出端信号控制8个灯的亮暗。

实验3-信号的频域分析

一,实验目的四,心得体会 了解信号频谱和信号频域,掌握其特性。 一,实验原理 实验主要分为四个部分,分别分析了连续和离散信号的周期、非周期情况下特性。 1.连续周期信号的频谱分析 首先手算出信号的傅里叶级数,得出信号波形,然后通过代码画出信号波形图。 2.连续非周期信号的频谱分析 先由非周期信号的时域信号得到它的频谱X(w),再通过MATLAB 求出其傅里叶变换并绘出图形。 X=fourier(x) x=ifourier(x) ①符号运算法 syms t ②数值积分法 quad(fun,a,b) ③数值近似法 3.离散周期信号的频谱分析 X=fft(x) 4.离散非周期信号的频谱分析 可以化为两个相乘的矩阵,从而由MATLAB实现。

三,实验内容 (1)已知x(t)是如图周期矩形脉冲信号。 1).计算该信号的傅里叶级数。 2).利用MATLAB绘出由前N次谐波合成的信号波形,观察随着N的变化合成信号波形的变化规律。 3).利用MATLAB绘出周期矩形脉冲信号的频谱,观察参数T和τ变化时对频谱波形的影响。 思考下列问题: ①什么是吉伯斯现象?产生吉伯斯现象的原因是什么? ②以周期矩形脉冲信号为例,说明周期信号的频谱有什么特点。 ③周期矩形脉冲信号参数τ/T的变化,其频谱结构(如频谱包络形状、过零点、频谱间隔等)如何变化? (2)已知x(t)是如图所示矩形脉冲信号。 1).求该信号的傅里叶变幻。 2).利用MATLAB绘出周期矩形脉冲信号的频谱,观察参数T和τ变化时对频谱波形的影响。 3).让矩形脉冲宽度始终等于一,改变矩形脉冲宽度,观察矩形脉冲信号时域波形和频谱随矩形脉冲宽度的变化趋势。 ①比较矩形脉冲信号和周期矩形脉冲信号的频谱,两者之间有何异同。 ②让矩形脉冲的面积始终等于一,改变矩形脉冲的宽度,观察矩形脉冲信号时域波形和频谱波形随矩形脉冲宽度的变化趋势。

脉冲与数字电路课程教学大纲

《脉冲与数字电路》教学大纲 遵化职教中心刘秀敏一.课程性质和任务 本课程是通信工程、电子信息工程、测控技术与仪器、自动化、生物医学工程等专业的一门重要技术基础课。其作用与任务是:使学生熟悉基本脉冲与数字电路工作原理,掌握脉冲与数字电路的分析方法和设计方法,为以后深入学习和从事有关数字电路领域的工作打下基础。本课程在培养学生读图能力、根据需要选用基本单元电路和常用集成电路的能力、定量估算简单单元电路和电路参数能力等方面起重要作用。 二.课程教学目标: 通过课堂讲授、实验、习题等重要环节,要求学生在能力培养方面达到如下要求: 1、知识目标 要求能阅读常用的大、中、小规模集成块组成的数字电路逻辑图2、能力目标 有选用基本单元电路和常用集成电路的能力: 能根据需要从集成电路手册中选用合适的集成电路,有定量估算简单单元电路和电路参数(如工作状态、高低电平、负载能力等)的能力,能基本解决单元电路之间的相互连接问题。 三.教学内容和要求 脉冲电路部分 1.晶体二极管、三极管的开关特性: 2.二极管开关特性;开关时间;分区等效电路;三极管的开关特性;开关时间;分段线性模型及等效电路;三极管倒相器开关特性;正常工作条件;负载特性;开关时间。

3.脉冲波形变换电路: 二极管限幅器工作原理;三极管限幅器;二极管、三极管电平箝位器。 脉冲波形产生电路: 4.集基耦合双稳态触发电路;射集耦合双稳态触发电路;单稳态触发电路:工作原理;波形分析;参数估算;自激多谐振荡器:工作原理;波形分析;参数估算。 数字电路分析设计基础 基本概念:数字信号,数字电路,数字系统;数制:二、八、十、十六进制、任意进制;常用的几种代码:BCD码格雷码原、反、补码;逻辑代数的基本运算:与、或、非运算,逻辑代数中的基本公式,逻辑代数中的基本定理,逻辑函数及其表示方法 数制转换:二、八、十、十六进制间的转换 代码转换:十进制与BCD码之间的转换,原、反、补码间相互的转换 逻辑函数的化简:公式法化简卡诺图法化简单输出、多输出逻辑函数化简 第二部分组合逻辑电路 基本概念:正逻辑与负逻辑,线与、总线的概念 了解二极管、三极管的开关特性、MOS、TTL基本逻辑门的工作原理逻辑功能 了解门电路的主要外特性:传输特性输入特性输出特性开关时间特性等了解集电极开路门(OC门)和三态门(TS门)掌握组合逻辑电路的分析和设计方法组合逻辑电路的险象及其判断、消除方法 了解常用的组合逻辑电路:编码器与译码器数据选择器数据

数字逻辑电路实验指导书(2016)

Xuzhou Institute of Technology 数字逻辑电路实验指导书 使用班级:15级计算机专业 2016年9月

目录 学生实验守则 (3) 电工电子实验室安全制度 (4) 实验报告要求 (5) 实验一 THD-1数字电路箱的使用 (6) 实验二 TTL集成门电路 (8) 实验三组合逻辑电路设计 (11) 实验四综合实验(组合电路) (14) 实验五译码器、显示器 (15) 实验六触发器 (18) 实验七计数器及其应用 (23) 实验八 555定时器 (26) 实验九移位寄存器 (30) 实验十综合实验(时序电路) (33) 附录1 V-252型双踪示波器 (34) 附录2 EE1641B型函数信号发生器 (38) 附录3 SX2172型交流毫伏表 (40) 附录4 VC9801+型数字万用表 (42) 附录5 EWB电子仿真软件 (44)

学生实验守则 一、参加实验时应衣冠整洁。进入实验室后应保持安静,不要大声喧哗和打闹,妨碍他人学习和实验。不准吸烟,不准随地吐痰,不准乱扔纸屑与杂物。 二、进行实验时必须严格遵守实验室的规章制度和仪器操作规程。爱护仪器设备,节约实验器材,未经许可不得乱动实验室的仪器设备。 三、注意人身安全和设备安全。若仪器出现故障,要立即切断电源并立即向指导教师报告,以防故障扩大。待查明原因、排除故障之后才可继续进行实验。 四、要以严格、认真的科学态度进行实验,结合所学理论,独立思考,分析研究实验现象和数据。 五、实验完毕后必须收拾整理好自己使用的仪器设备,保持实验台整洁,填写实验仪器使用记录。在归还实验仪器后,才能离开。 六、违反实验室规章制度和仪器设备操作规程造成事故、导致仪器设备损坏者,将视情节轻重按实验室设备管理制度处理及赔偿。

《脉冲与数字电路》实验教案

实验一集成门电路 一、实验目的 1.学习测试“与非”门电路的电压传输特性和逻辑功能。 2.了解“与非”门组成的其它逻辑门。 二、实验原理 “与非”门是门电路中应用较多的一种,它的逻辑功能是:全“1”出“0”,有“0”出“1”。即只有当全部输入端都接高电平“1”时,输出端才是低电平“0”,否则,输出端为高电平“1”。图1-1是一个具有3个输入端的“与非”门逻辑图。根据手册规定,“与非”门的高低电平和其他电参数有一定的规范值,(见表1-1)。若不符合,则表明该“与非”门不能使用。 图1-1 图1-2 检验“与非”门应按表1-1规定的测试条件进行。在实际使用时,有时可用万用表对“与非”门进行简易检验。以TTL“与非”门为例,当接通5V直流电源后,先让各个输入端接高电平,用万用表测量其输出端的电压。然后把各个输入端依次接地,测量输出端的电压,根据测量数据是否符合规范值则可判别这个“与非”门好否。 集成“与非”门的电压传输特性,指的是“与非”门输出电压u0随输入电压u i变化的关系曲线,如图1-2所示。图中A点相应的输入电压称为关门电平U off,B点相应的输入电压称为开门电平U ON。

? ? 3 图1-3 传输特性的测量方法很多,最简单的方法是把直流电压通过电位器分压加在与非门的输入端,如图1-4所示,用万用表逐点测出对应的输入,输出电压,然后绘制成曲线。为了读数容易,在调节u i 过程中即可先监视输出电压的变化,再读出U i 来,否则在开门电平和关门电平之间变化的电压不易读出来。 为了在示波器上观察到电压传输特性,可按图1-3接线,可把输出电压u 0接入示波器的y 输入端,输入电压U i 可由函数信号发生器输出的100Hz 正弦波通过二极管半波整流后得到,同时把这个输入信号送入示波器的x 轴,作为扫描电压,调节u i 大小可在示波器显示屏上观察到一条完整的电压传输 特性曲线。(注意,这时示波器的x 轴选择开放放在“外接x ”) “与非”门可以组成其他基本逻辑电路。图1-5是由三个“与非”门组成的“或”门电路,它的逻辑表达式为 F = A + B 图1-4 图1-5

矩形脉冲信号频谱分析

矩形脉冲信号频谱分析

小组成员: 刘鑫 龙宇 秦元成 王帅 薛冬寒 梁琼健 一、傅里叶分析方法与过程 周期信号的分解 1、三角形式 周期为T 的周期信号,满足狄里赫利(Dirichlet )条件(实际中遇到的所有周期信号都符合该条件),便可以展开为傅里叶级数的三角形式,即: ∑∑∞ =∞ =Ω+Ω+=110sin cos 21 )(n n n n t n b t n a a t f (1) ?-=Ω=2 2 ,2,1cos )(2T T n dt t n t f T a n Λ (2)

?-=Ω=2 2 ,2,1sin )(2T T n dt t n t f T b n Λ (3) 式中: T π2= Ω 为基波频率,n a 与 n b 为傅 里叶系数。 其中 n a 为n 的偶函数, n b 为n 的奇函数。 将上式中同频率项合并可写成: ∑∞ =+Ω+=++Ω++Ω+=1022110)cos 21 ... )2cos()cos(21 )(n n n t n A A t A t A A t f ???( 式中: ) arctan(... 3,2,1,2 2 0n n n n a b n b a A a A n n -==+==? (5)

n n n n n n A b A a A a ??sin cos 0 0-=== (6) 2.指数形式 由于 2 cos jx jx e e x -+= (7) 三角函数形式可以写为 t jn j n n t jn j n n t n j n t n j n e e A e e A A e e A A t f n n n n Ω--∞=Ω∞=+Ω-∞ =+Ω∑∑∑++=++=????1 10)(1)(0212121] [2 1 21)( (8) 将上式第三项中的n 用-n 代换,并考虑到 为n 的偶函数, 为n 的奇函数 则上式可写为: t jn j n n t jn j n n t jn j n n t jn j n n e e A e e A A e e A e e A A t f n n n n Ω∞ --=Ω∞=Ω--∞-=-Ω∞=∑∑∑∑++=++=-????1 101 1021 2121212121)( (9)

周期矩形脉冲信号的分析

For personal use only in study and research; not for commercial use 周期矩形脉冲信号的分析 假设周期矩形脉冲信号f(t)的脉冲宽度为τ,脉冲幅度为E,重复周期为T,如下图所示 这种信号的表示为 1.求f(t)的复数振幅和展开成傅里叶级数 此等式是三角傅里叶级数展开式,由此作出单边谱。 上式为指数傅里叶展开式,由此画出双边谱。 2.画频谱图 由复振幅的表达式可知,频谱谱线顶点的联线所构成的包络是抽样函数 。 1)找出谐波次数为零的点(即包络与横轴的交点) 包络线方程为,与横轴的交点由下式决定: 若这些频率恰好基波频率恰好是基波频率的整数倍,则相应的谐波为零。所以,包络线与横轴的交点应满足两个条件:一是谐波条件;二是谐波为零的条件。 2)粗略求出各次谐波的振幅值 由的表达式可知,当时,最大值为,即当时,第一个零点内含有二条谱线,依次类推,就大致画出了振幅频谱图。 3)相位的确定

将代入可知,,当角度在第一、二象限时为正实数,即相位为零;当角度在第三、四象限时为负实数,即相位为π。 3.频谱特点分析 1)频谱是离散的,两谱线间的距离为基波频率,脉冲周期越大,谱线越密。 2)由知:各分量的大小与脉幅成正比,与脉宽成正比,与周期成反比。当E变大时,τ变大,则各次谐波的幅度愈大;T变大,则谐波幅度愈小。 3)各谱线的幅度按包络线变化,当时,谱线的包络经过零值。 4)主要能量在第一过零点内。主带宽度为:

仅供个人用于学习、研究;不得用于商业用途。 For personal use only in study and research; not for commercial use. Nur für den pers?nlichen für Studien, Forschung, zu kommerziellen Zwecken verwendet werden. Pour l 'étude et la recherche uniquement à des fins personnelles; pas à des fins commerciales. толькодля людей, которые используются для обучения, исследований и не должны использоваться в коммерческих целях. 以下无正文 For personal use only in study and research; not for commercial use

数字电路数字时钟课程实验报告

? 数字时钟设计实验报告 一、设计要求: 设计一个24小时制的数字时钟。 要求:计时、显示精度到秒;有校时功能。采用中小规模集成电路设计。 发挥:增加闹钟功能。 二、设计方案: } 由秒时钟信号发生器、计时电路和校时电路构成电路。 秒时钟信号发生器可由振荡器和分频器构成。 计时电路中采用两个60进制计数器分别完成秒计时和分计时;24进制计数器完成时计时;采用译码器将计数器的输出译码后送七段数码管显示。 校时电路采用开关控制时、分、秒计数器的时钟信号为校时脉冲以完成校时。 三、电路框图: 图一 数字时钟电路框图 四、电路原理图: (一)秒脉冲信号发生器 秒脉冲信号发生器是数字电子钟的核心部分,它的精度和稳定度决定了数字钟的质量。由振荡器与分频器组合产生秒脉冲信号。 * 振荡器: 通常用555定时器与RC 构成的多谐振荡器,经过调整输出1000Hz 脉冲。 分频器: 分频器功能主要有两个,一是产生标准秒脉冲信号,一是提供功能 扩展电路所需要的信号,选用三片74LS290进行级联,因为每片为1/10分频器,三片级联好获得1Hz 标准秒脉冲。其电路图如下: 图二 秒脉冲信号发生器 (二)秒、分、时计时器电路设计 / 秒、分计数器为60进制计数器,小时计数器为24进制计数器。 60进制——秒计数器 / 译码器 译码器 时计数器 (24进制) 分计数器 (60进制) 秒计数器 ] 校 时 电 路 秒信号发生器 >

秒的个位部分为逢十进一,十位部分为逢六进一,从而共同完成60进制计数器。当计数到59时清零并重新开始计数。秒的个位部分的设计:利用十进制计数器CD40110设计10进制计数器显示秒的个位。个位计数器由0增加到9时产生进位,连在十位部计数器脉冲输入端CP,从而实现10进制计数和进位功能。利用74LS161和74LS11设计6进制计数器显示秒的十位,当十位计数器由0增加到5时利用74LS11与门产生一个高电平接到个位、十位的CD40110的清零端,同时产生一个脉冲给分的个位。其电路图如下: 图三 60进制--秒计数电路 [ 60进制——分计数电路 分的个位部分为逢十进一,十位部分为逢六进一,从而共同完成60进制计数器。当计数到59时清零并重新开始计数。秒的个位部分的设计:来自秒计数电路的进位脉冲使分的个位加1,利用十进制计数器CD40110设计10进制计数器显示秒的个位。个位计数器由0增加到9时产生进位,连在十位部计数器脉冲输入端CP,从而实现10进制计数和进位功能。利用74LS161和74LS11设计6进制计数器显示秒的十位,当十位计数器由0增加到5时利用74LS11与门产生一个高电平接到个位、十位的CD40110的清零端,同时产生一个脉冲给时的个位。其电路图如下: 图四 60进制--分计数电路 24进制——时计数电路 来自分计数电路的进位脉冲使时的个位加,个位计数器由0增加到9是产生进位,连在十位计数器脉冲输入端CP,当十位计到2且个位计到3是经过74LS11与门产生一个清零信号,将所有CD40110清零。其电路图如下: ;

数字逻辑电路实验

1.1 数电实验仪器的使用及门电路逻辑功能的测试 1.1.1 实验目的 (1)掌握数字电路实验仪器的使用方法。 (2)掌握门电路逻辑功能的测试方法。 1.1.2 实验设备 双踪示波器一台 数字电路实验箱一台 万用表一块 集成芯片:74LS00、74LS20 1.1.3 实验原理 图1.1是TTL系列74LS00(四2输入端与非门)的引脚排列图。 其逻辑表达式为:=? Y A B 图1.2 74LS20引脚排列图图1.2是TTL系列74LS20(双4输入端与非门)的引脚排列图。 Y A B C D 其逻辑表达式为:=??? 与非门的输入中任一个为低电平“0”时,输出便为高电平“1”。只有当所有输入都为高电平“1”时,输出才为低电平“0”。对于TTL逻辑电路,输入端如果悬空可看作逻辑“1”,但为防止干扰信号引入,一般不悬空。对于MOS逻辑电路,输入端绝对不允许悬空,因为MOS电路输入阻抗很高,受外界电磁场干扰的影响大,悬空会破坏正常的逻辑功能,因此使用时一定要注意。一般把多余的输入端接高电平或者和一个有用输入端连在一起。 1.1.4 实验内容及步骤 (1)测量逻辑开关及电平指示功能 用导线把一个数据开关的输出端与一个电平指示的输入端相连接,将数据开关置“0”位,电平指示灯应该不亮。将数据开关置“1”位,电平指示灯应该亮。以此类推,检测所有的数据开关及电平指示功能是否正常。

(2)检测脉冲信号源 给示波器输入脉冲信号,调节频率旋钮,可观察到脉冲信号的波形。改变脉冲信号的频率,示波器上的波形也应随之发生变化。 (3)检测译码显示器 用导线将四个数据开关分别与一位译码显示器的四个输入端相连接,按8421码进位规律拨动数据开关,可观察到译码显示器上显示0~9十个数字。 (4)与非门逻辑功能测试 ①逻辑功能测试 将芯片74LS20中一个4输入与非门的四个输入端A、B、C、D分别与四个数据开关相连接,输出端Y与一个电平指示相连接。电平指示的灯亮为1,灯不亮为0。根据表1.1中输入的不同状态组合,分别测出输出端的相应状态,并将结果填入表中。 表1.2 将芯片74LS00中一个2输入与非门的A输入端接频率为1kHz脉冲信号,B输入端接数据开关,输出端Y接示波器。用双踪示波器同时观察A输入端的脉冲波形和输出端Y的波形,并注意两者之间的关系。按表1.2中的不同输入方式测试,将结果填入表中。 1.1.5 预习要求与思考题 (1)阅读实验原理、内容及步骤。 (2)了解集成芯片引脚的排列规律。 (3)TTL集成电路使用的电源电压是多少? (4)TTL与非门输入端悬空相当于输入什么电平?为什么? (5)如何处理各种门电路的多余输入端。 1.1.6 实验报告及要求 (1)画出规范的测试电路图及各个表格。

相关文档