文档库 最新最全的文档下载
当前位置:文档库 › NBT 47013.3-3-2015第三部分 超声检测(正式版)P143-169页

NBT 47013.3-3-2015第三部分 超声检测(正式版)P143-169页

NBT 47013.3-3-2015第三部分 超声检测(正式版)P143-169页
NBT 47013.3-3-2015第三部分 超声检测(正式版)P143-169页

超声波检测仪校验

№:×××××-×共×页×××××非金属超声波检测仪校验 校验报告 ×××××××工程检测有限公司

×年×月×日 试验: 编写: 审核: 批准:

1、目的 校验检测设备,保证试验检测的准确性和稳定性。 2、校验依据 CECS21:2000《超声法检测混凝土缺陷技术规程》 3、被校仪器名称编号 ××××非金属超声波检测仪 仪器编号:×××××× 4、超声波检测仪的校验 4.1方法:超声仪声时计量检验按“时—距”法测量空气声速的实测值v s,并与空气声速标准计算值v c相比较二者之间的相对误差不大于±0.5%,即可定为合格。 图1 19℃所测空气声速的“时—距”图 4.2步骤: 4.2.1将一对平面换能器置于桌面上如图2,并在换能器下面垫以海

发射换能器 接收换能器 刻度尺 泡沫塑料 水平桌面 棉或泡沫塑料并保持两个换能器的轴线重合及辐射面相互平行,同时换能器的辐射面相互对准; 图2 换能器移动示意图 4.2.2将换能器,接于超声仪器上,并以间距为50、100、150、200、250、300、350、400、450、500mm 依次放置在空气中,在保持首波幅度一致的条件下,读取各间距所对应的声时值t1、t2、t3……tn。; 4.2.3测点数应不少于10个。 4.2.4以测距li 为纵坐标,以声时读数ti 为横坐标,绘制“时-距”坐标图(,或用回归分析法求出li 与ti 之间的回归直线方程l=a+bt (式中a 、b 为待求的回归系数)。 坐标图中直线AB 的斜率“Δl/Δt ”或直线方程的回归系数“b ”即为空气声速的实测值v s (精确至0.1m/s)。 测量空气的温度Tk (准确至0.5℃)按下式计算的空气声速标准值v c 相比较, v c =331.4Tk .00367.01 (3.3.1) 式中 331.4-0℃时空气的声速(m/s ); v c --温度为Tk 度的空气声速(m/s ); Tk--被测空气的温度(℃)

超声波检测笔试试题(含答案)

超声波检测笔试试题(含答案)

笔试考卷 单位:姓名: 评分:日期: 一是非判断题(在每题后面括号内打“X”号表示“错误”,画“○”表示正确) (共20题,每题1.5分,共30分) 1.质点完成五次全振动所需要的时间,可以使超声波在介质中传播五个波长的距离(0) 2.超声波检测时要求声束方向与缺陷取向垂直为宜(0) 3.表面波、兰姆波是不能在液体内传播的(0) 4.纵波从第一介质倾斜入射到第二介质中产生的折射横波其折射角达到90°时的纵波入射角称为第一临界角(X) 5.吸收衰减和散射衰减是材料对超声能量衰减的主要原因(0) 6.我国商品化斜探头标称的角度是表示声轴线在任何材料中的折射角(X) 7.超声波探头的近场长度近似与晶片直径成正比,与波长成反比(0) 8.根据公式:C=λ·f 可知声速C与频率f成正比,同一波型的超声波在同一材料中传播时高频的声波传播速度比低频大(X) 9.一台垂直线性理想的超声波检测仪,在线性范围内其回波高度与探头接收到的声压成正比例(0) 10.在人工反射体平底孔、矩形槽、横孔、V形槽中,回波声压只与声程有关而与探头折射角度无关的是横孔(0) 11.用sinθ=1.22λ/D公式计算的指向角是声束边缘声压P1与声束中心声压P0之比等于0%时的指向角(0) 12.水平线性、垂直线性、动态范围属于超声波探头的性能指标(X) 13.入射点、近场长度、扩散角属于超声波检测仪的性能指标(X) 14.在超声波检测中,如果使用的探测频率过低,在探测粗晶材料时会出现林状回波(X) 15.钢板探伤中,当同时存在底波和伤波时,说明钢板中存在小于声场直径的缺陷(0)

DJUS-05非金属超声波仪

产品名称:DJUS-05非金属超声波仪 依据标准: 《超声回弹综合法检测混凝土强度技术规程》………………CECS02:2005 《超声法检测混凝土缺陷技术规程》……………………… CECS21:2000 《建筑基桩检测技术规程》…………………………………JGJ106 2003 《公路工程基桩动测技术规程》…………………… JTG/T F81-01-2004 《岩土工程勘察规范》………………………………… GB500212001《回弹法、超声回弹综合法检测泵送混凝土强度技术规程》DBJ/T01-78-2003 应用范围: DJUS-05非金属超声仪主要用于混凝土等非金属结构质量无破损检测,可用于超声透射法基桩完整性检测,综合法检测混凝土抗压强度,结构混凝土缺陷探查,非金属产品(如石材、陶瓷、耐火砖等)内在质量检测,岩体动力学参数测定。 仪器特点: 1、超大TFT彩色无按键触摸式液晶屏,Windows系统平台下专为用户设计的操作界面,易学易用。可做笔记本电脑使用。 2、快速准确的声时、波幅自动与手动判读相结合,精确显示声时波速值。充

分发挥检测人员实测经验。 3、支持电火花、超磁致伸缩换能器等外触发源。 4、无缺陷混凝土对测最大穿透厚度大于10米,电火花震源单次激励穿透距离大于50米。 5、双通道测桩系统,双向深度数值直观显示,可同步记录、实时显示换能器位置,方便复测。 6、采用工业级微处理器控制系统,突出仪器的可靠性和稳定性。 7、针对恶劣工作环境设计的抗磨工具包和专用箱,携带方便、满足野外长期工作。 1、超声回弹综合法检测砼强度软件界面(测强)

2、超声法检测砼内部缺陷位置示意图(测缺)

非金属超声波检测仪使用说明书

非金属超声波检测仪使用说明书非金属超声波检测仪主要用于检测混凝土的强度、裂缝深度、混凝土匀质性、损伤层厚度、混凝土厚度、桩身完整性、结构内部缺陷、钢管混凝土内部缺陷。功能特点 声参量自动判读、实时动态波形显示; 接收灵敏度高(对微弱信号识别能力高,可准确检测缺陷大小和范围); 体积小、重量轻、携带方便、双通道、可扩展性强; 大容量充电电池――持久续集航,检测无忧; 智能处理软件――实用、方便、功能强大; 技术指标: 非金属超声测桩仪 应用领域 自动测桩系统主要用于跨孔声波透射法桩身完整性的自动检测,其他功能与超声检测仪完全相同。 超声透射法基桩、连续墙完整性快速检测; 超声-回弹综合法检测混凝土抗压强度; 超声法检测混凝土裂缝深度、不密实区域及蜂窝空洞、结合面质量、表面损伤层厚度、钢管混凝土内部缺陷; 超声法单孔一发双收测井; 耐火材料质量检测; 地质勘查、岩体、混凝土等非金属材料力学性能检测。 依据标准 声波检测仪国家计量检定规程----------------------------------------------JJG 990-2004超声回弹综合法检测混凝土强度技术规程-----------------------------CECS 02 2005 超声法检测混凝土缺陷技术规程----------------------------------------CECS 21:2000 建筑基桩检测技术规程---------------------------------------------------JGJ 106 —2003公路工程基桩动测技术规程----------------------------------------JTG/T F81-012004 岩土工程勘察规范-------------------------------------------------------GB50021—2001 建筑抗震设计规范-------------------------------------------------------GB50011—2001

混凝土超声波检测实验

混凝土超声波检测实验 一、实验目的: 学习超声波检测仪的使用,掌握混凝土超声波检测的基本原理和方法。掌握首波声时、振幅、频率测定的基本方法。 二、实验仪器及装置: CTS-35A非金属超声波检测仪、超声换能器、混凝土试块。 三、实验原理: 超声波检测技术是利用超声波在物体传播中的反射、绕射和衰减等物理特性,测定物体内部缺陷的一种无损检测方法。 混凝土超声波缺陷检测,目前主要采用“穿透法”,即用发射换能器发射超声波,让超声波在所检测的混凝土中传播,然后由接收换能器接收,它将携带有关混凝土材料性能和内部结构等信息。 超声波在混凝土中传播的速度与混凝土的组成成分,混凝土弹性性质,内部结构的孔隙、密实度等因素有关。混凝土弹性模量高、强度高、混凝土致密,超声波在混凝土中传播的速度也高,因此随混凝土强度不同,超声波传播的声速不同。 超声波在所检测的混凝土传播,遇到空洞、裂缝、疏松等缺陷部位时,超声波振幅和超声波的高频成分发生衰减。超声波传播中碰到混凝土的内部缺陷时,由于超声波的绕射、反射和传播路径的复杂化,不同波的叠加会使波形发生畸变。因此当超声波穿过缺陷区时,其声速、振幅、波形和频率等参数发生变化。 目前对混凝土的超声波检测主要是检测结构混凝土的强度,混凝土的密实度、有无空洞、裂缝等缺陷。 四、实验内容和步骤: 1.根据首波声时判定混凝土试块的强度。 由于混凝土试块的不均匀性,在每个混凝土试块的不同部位进行测试,取其平均值。 表1 混凝土强度与波速关系参考表 混凝土试块强度C25 C30 C35 C40 波速(m/s) 3500-3800 3700-4000 3900-4200 4100-4500 2.混凝土浅裂缝的检测 用平测法(斜测法)测量浅裂缝的位置及深度,如图1所示。 混凝土试块 图1 平测法测量浅裂缝位置及深度示意图

超声波检测中的波形识别

实践经验 超声检测中的波形识别与缺陷定性 吴德新,杨小林 (中国人民解放军空军第一航空学院,信阳 464000) IDENTIFICATION OF WAVEFORMS AN D DEFECTS IN U LTRASONIC INSPECTION WU De 2xin ,YANG Xiao 2lin (The First Aeronautical Institute of the Chinese PLA Air Force ,Xinyang 464000,China ) 中图分类号:TG 115.28 文献标识码:B 文章编号:100026656(2002)0720312203 超声检测技术中对缺陷评定的三大关键内容是缺陷的定位、定量和定性。缺陷定位与定量方法已较 成熟,而对缺陷定性仍存在许多实际困难。目前,在原位检测中应用最广泛的是A 型超声脉冲反射式检测仪,根据其示波屏显示的缺陷回波静态波形与动态波形,再结合具体产品或材料特点和制造工艺等来评估缺陷的性质。缺陷的超声波反射特性取决于缺陷的取向和几何形状、相对超声波传播方向的长度和厚度、缺陷的表面粗糙度、缺陷内含物以及缺陷性质等,还与所用超声检测系统特性有关,因此,超声检测中获得缺陷的超声响应是一个综合响应。如何观察波形并把反映缺陷性质的有用信息从综合响应中分离出来,这对缺陷的定性评定尤为重要。 1 脉冲干扰噪声的识别与波形分析 1.1 脉冲噪声的来源 在超声波探伤中,脉冲干扰噪声的来源很广泛。首先是检测仪器,质量较差的仪器工作时性能不稳定,自身会产生脉冲干扰噪声。在超声波探伤现场,如果电源的输出不稳定将会干扰检测仪器,引起脉冲噪声。多种仪器(如探伤仪、示波屏、频谱仪和计算机等)组合或同一地点多台不同检测仪器联机运行(如超声与涡流组合探伤)时,仪器之间也会互相干扰而产生脉冲噪声。此外,强烈的机械振动与冲击也会导致脉冲干扰噪声的产生[1]。1.2 脉冲噪声的特征分析 (1)偶然性 在超声波探伤中出现的脉冲噪声 收稿日期:2001201225 无规则可循,不可重复,具有强烈的偶然性。由于脉冲噪声的产生原因多种多样,因此其出现的时间间隔数量、幅度及频率等均随机变化且多种多样。 (2)满幅性 超声波探伤仪示波屏上的脉冲噪声幅度很大,常达饱和状态。图1为水浸法探伤中出现的电脉冲干扰噪声。其中S 为工件的界面回波,P 1~P 4为饱和脉冲噪声,n 1和n 2属脉冲噪声,但其来源可能与饱和脉冲噪声不同 。 图1 探伤仪示波屏上的脉冲干扰噪声 (3)单峰性 超声波探伤中的缺陷回波信号是 由多次反射波组成的。但在实践中发现,示波屏上 观察到的波形实质是这些反射波的包络,而脉冲噪声则是孤立的单峰。因此,各脉冲噪声之间不能形成缺陷波F 那样的包络(图2)。 (4)频率范围广 采用傅里叶变换方法,将超声波探伤信号进行离散化处理,可得到离散频谱 x (k )= ∑N -1 n =0 x (n )w kn N  0≤k ≤n -1 将上式用于图1所示的原始信号,可得图3所示的频谱。由此可见,脉冲噪声频率分布很广,不只 是一个中心频率,产生的机理不同,就有不同的中心 ? 213?第24卷第7期2002年7月 无损检测ND T Vol.24 No.7J uly 2002

超声法检测混凝土缺陷作业指导书

作业指导书 批准人: 颁布日期: 实施日期: 审核: 编写:

目录 1适用范围 ............................... 错误!未定义书签。 2 检测目的............................... 错误!未定义书签。 3 检测依据............................... 错误!未定义书签。 4 检测设备............................... 错误!未定义书签。5抽检数量 ............................... 错误!未定义书签。 6 检测前准备............................. 错误!未定义书签。7检测方法 ............................... 错误!未定义书签。8检测步骤 ............................... 错误!未定义书签。9检测分析处理 ........................... 错误!未定义书签。10检测报告 .............................. 错误!未定义书签。

超声法检测混凝土缺陷 一、适用范围 本作业指导书适用于超声法检测混凝土的缺陷。缺陷检测系指对混凝土内部空洞和不密实区的位置和范围、裂缝深度、表面损伤层厚度、不同时间浇注的混凝土结合面质量、钢管混凝土中的缺陷进行检测。 二、检测目的 采用带波形显示功能的超声波检测仪,测量超声脉冲波在混凝土中的传播速度(简称声速),首波幅度(简称波幅)和接收信号主频率(简称主频)等声学参数并根据这些参数及其相对变化,判断混凝土中的缺陷情况。 三、检测依据 《超声法检测混凝土缺陷技术规程》CECS21:2000; 《建筑结构检测技术标准》GB/T 50344-2004。 四、检测设备 超声波检测仪。

桥梁隧道专项试验检测仪器

桥梁隧道专项试验检测仪器 一、桥梁 1.结构混凝土:回弹仪、取芯机、压力机、碳化深度测量装置、钢筋位置及保护层测定仪、非金属超声波检测仪、读数显微镜、钢筋锈蚀测量仪、混凝土电阻率测量仪、氯离子含量测定仪或化学滴定装置 2.桥梁结构及构件:静态应变采蜡设备、动态应变采蜡与分析设备、全站仪、挠度测试设备、水准仪、测振传感器、温度测量装置 3.地基基础:承载板、水准仪、测斜仪、静动力触探仪、百米钻机(配标准贯入试验设备、泥浆泵、岩芯管钻头、取样器等)、压力机 4.基桩:非金属超声波检测仪、低应变仪、承载力测试装置、高应变仪 5.施工监测与控制:静态应变采蜡设备、动态应变采蜡与分析设备、全站仪、挠度测试设备、水准仪、测振传感器、温度测量装置 6.运营期结构安全监测:静态应变采蜡设备、动态应变采蜡与分析设备、全站仪、挠度测试设备、水准仪、测振传感器、索力计、温度测量装置、GPS测量系统7.钢筋:万能材料试验机、游标卡尺 8.预应力钢绞线:大行程万能试验机、松弛试验机、引伸仪 9.锚具:锚具试验系统、洛氏硬度计、疲劳试验机 10.橡胶支座:≥5000kN压力机、剪切侧向加载系统、老化箱、游标卡尺 11.球型支座:≥5000kN压力机、剪切侧向加载系统、游标卡尺、厚度塞尺 12.盆式支座:≥5000kN压力机、游标卡尺、厚度塞尺 13.伸缩缝:钢直尺、游标卡尺、厚度塞尺 14.波纹管:钢直尺、游标卡尺 15.线形、几何尺寸:全站仪(或经纬仪、测距仪)、水准仪、钢尺 16.索力测量:振动测试系统、锚索计 17.钢结构(含索)防护涂装检测:涂层厚度仪 18.高强螺栓扭矩:超声测力计、扭力扳手 19.钢结构无损探伤:金属超声波探伤仪、射线探伤机、磁探机 二、隧道 1.隧道现场施工监控量测:自动安平水准仪、隧道断面测量系统、频率读数计、锚杆

超声波测试混凝土的基本方法

超声波测试混凝土的基本方法 声波在均匀的固体介质中传播时,特别是在金属中定向传播过程中,实际上并没有什么衰减,而在金属与空气界面上则几乎全被反射回来。这就是利用声波来检测金属零部件均匀性和零件内是否有气孔、裂缝、铸造等缺陷的物理基础。而混凝土超声探测亦是根据这一原理来研究混凝土的结构形态。目前比较成功的方法有以下几种类型: (1)用超声波通过混凝土来判断混凝土内部结构的方法,叫透射法或穿透法; (2)用声波所产生的回波信号来研究混凝土内部结构及裂缝位置及波速叫反射法; (3)用声波的界面滑行波来研究岩体的下伏界面速度及界面位置的方法叫折射法; (4)用钻孔来了解混凝土内波速及结构特征随深度的变化,称为孔中测定法。 下面分别介绍各种方法工作的特点及使用条件. 〔I〕透射波(直达波)法: 混凝土超声波透射法,是一种简单而效果又是最好的探测方法?采用透射法发收、换能器机-电,电-机转换效率高,因而在混凝土中的穿透能力相对较强,传播距离相对较长,可以扩大探测范围。透射波法可以获得较反射波法大几倍,较折射波法大几十倍的能量,因而波形单纯、清楚、干扰较小,初至清晰,各类波形易于辨认。透射波法要求发射探头和接受探头之间的距离必须能够准确丈量,否则计算出来的误差值较大,反而影响了测量的精度。 当被测对象较破碎,或存在张裂缝时岩体对声波的衰减系数较大,以及做大距离测试, 可采用锤击法。这时接收仍可采用单片弯曲式换能器接收,其谐振频率以10千赫左右为宜。因为在混凝土上加板的激发频率主频约在数千赫。鉴于这时所测声时值较大,发射到接收的系统延时值在数微秒,可忽略,故不再计较t o的值。 〔U〕反射波(回波)法 用发射、接收换能器检测混凝土质量。超声波在混凝土中传播时,所遇到的每个波阻抗面上,都将发生反射、透射现象,在有几个波阻抗面存在时,则在每个界面上都将发生反射和透射。这样我们在混凝土表面上可以观测到一系列依次到达的反射波如图1所示, 反射波的强度不仅与入射波的强度有关外,而且决定界面的反射系数,即决定两种介质的声阻抗。声波在介质中传播过程中,由于波前的发散作用和凝滞及阻尼等吸收作用,波内稀疏部分与压缩部分中间之热传导及辐射,以及反射波形成过程中都会使入射波的振幅随着传播的距离增加而迅速衰减,在均匀同性介质中,振幅随距离按指数规律衰减。在各向异性介质中,振幅一方面要随距离衰减外,而且随着节理、层理、界面曲率、混凝土结构的破碎程度、裂缝的宽度和长度及与波传播的方向等因素有关,无一定规律的衰减,在计算时,这要看诸影响因素中起主导作用的是什么,抓住主要矛盾,再考虑其它因素。 混凝土不均匀或者由界面破碎等波阻抗面的不同所造成的反射波,当波阻抗面距离小于波形振动的延续面时,则往往造成两个波形振动带的干涉使之产生叠加,反射波多层薄层分辩率最好的位置

噪声、超声、次声

噪声、超声、次声 1、有关噪声问题 (1)答:现实生活中噪声主要来自:例如:运行着的各种交通运输工具发出的声音,工厂、建筑、工地上各种机器和设备发出的声音,学校中课间同学们的喧哗声,家里日光灯镇流器,电风扇、空调发出的声音等都是噪声的来源。 声音的强偌划分是: 一般来说,噪声在40dB以下的环境,算是安静的;60dB以下,还算比较安静;80dB以上就算吵闹了,会对人的健康产生有害的影响.一个人假如长期生活在噪声强度是85dB~90dB 的环境中,就会得“噪声病”出现头昏脑胀,失眠多梦,浑身无力,食欲不振,记忆减退,或者诱发高血压,心脏病,神经官能症等.噪声太强,比如强到120dB以上,可能使人的耳朵“暂聋”,就是暂时失去听觉;强到140dB,甚至可以使人永久失去听觉,变成聋子. 现在一些工业发达的国家,深深感到噪声的危害,已经把它列为公害之首.法律规定,繁华区室外的噪声,白天不能超过55dB,夜间不能超过45dB.和噪声做斗争,已经越来越成为科学上的一项重要任务. 噪声的危害:噪声被列为当代社会的主要污染之一,其危害表现在:使人心烦意乱,神经紧张,损坏人的听觉,影响人的身心健康、学习、生活和工作。若长期在80-----100Hz的噪声环境中工作和学习,听觉就会迟钝,耳朵变聋。噪声还能诱发某些动物的多种疾病,甚至导致死亡。 (2)答:我生活的环境存在的污染是:工厂、建设、工地上的机器和设备发出的声音。 我的看法:在城市的市区内禁止汽车等交通工具鸣叫喇叭,综合研究城市建设和布局发展的规划,把生产强噪声的工厂、企业搬迁出人口密集的居民区,文化教育和卫生区。 (3)答:我生活的环境中除了噪声污染外还存在水污染和大气污染。 我的建议:向有关部门反映。经济建设和环境保护协调发展。预防为主,预治结合,综合治理。谁开发谁保护,谁污染谁治理。大家共同保护环境。 2、有关超声问题 (1)答:人耳能听到的声波频率范围是200Hz-----20000Hz。 超声波的划分:高于20kHz的声波叫超声波。

超声波传感器

超声波传感器 超声波传感器是利用超声波的特性研制而成的传感器。超声波是一种振动频率高于声波的机械波,由换能晶片在电压的激励下发生振动产生的,它具有频率高、波长短、绕射现象小,特别是方向性好、能够成为射线而定向传播等特点。超声波对液体、固体的穿透本领很大,尤其是在阳光不透明的固体中,它可穿透几十米的深度。超声波碰到杂质或分界面会产生显著反射形成反射成回波,碰到活动物体能产生多普勒效应。因此超声波检测广泛应用在工业、国防、生物医学等方面。 以超声波作为检测手段,必须产生超声波和接收超声波。完成这种功 能的装置就是超声波传感器,习惯上称为超声换能器,或者超声探头。 以超声波作为检测手段,必须产生超声波和接收超声波。完成这种功能的装置就是超声波传感器,习惯上称为超声换能器,或者超声探头。 超声波探头主要由压电晶片组成,既可以发射超声波,也可以接收超声波。小功率超声探头多作探测作用。它有许多不同的结构,可分直探头(纵波)、斜探头(横波)、表面波探头(表面波)、兰姆波探头(兰姆波)、双探头(一个探头反射、一个探头接收)等。 超声探头的核心是其塑料外套或者金属外套中的一块压电晶片。构成晶片的材料可以有许多种。晶片的大小,如直径和厚度也各不相同,因此每个探头的性能是不同的,使用前必须预先了解它的性能。 组成部分 超声波探头主要由压电晶片组成,既可以发射超声波,也可以接收超声波。小功率超声探头多作探测作用。它有许多不同的结构,可分直探头(纵波)、斜探头(横波)、表面波探头(表面波)、兰姆波探头(兰姆波)、双探头(一个探头反射、一个探头接收)等。 性能指标

超声探头的核心是其塑料外套或者金属外套中的一块压 超声波传感器 电晶片。构成晶片的材料可以有许多种。晶片的大小,如直径和厚度也各不相同,因此每个探头的性能是不同的,我们使用前必须预先了解它的性能。超声波传感器的主要性能指标包括: 工作频率 工作频率就是压电晶片的共振频率。当加到它两端的交流电压的频率和晶片的共振频率相等时,输出的能量最大,灵敏度也最高。 工作温度 由于压电材料的居里点一般比较高,特别是诊断用超声波探头使用 超声波传感器 功率较小,所以工作温度比较低,可以长时间地工作而不失效。医疗用的超声探头的温度比较高,需要单独的制冷设备。[1] 灵敏度 主要取决于制造晶片本身。机电耦合系数大,灵敏度高;反之,灵敏度低。 主要应用 超声波传感技术应用在生产实践的不同方面,而医学应用是其

RS-ST01C非金属超声测试仪操作规程

RS-ST01C非金属超声测试仪操作规程 一、使用前的准备工作 1.连接换能器 2.连接电源 3.开机 二、操作方法 (一)零声时测试 基桩检测的系统零声时测试方法有两种,实测法和公式推算法: 1.实测法: 1)分别将径向接收和发射换能器与声波仪器主机连接好,把两节与现场基桩预埋管同规格的钢管,等高紧靠着置于水中,将接收和发射探头分别置入钢管中间,保持等高; 2)在仪器采集软件界面右边的主菜单里选择【状态】,按下旋钮弹出状态参数对话框。将延时时间和系统声时设置为0; 3)选择主菜单的【采样】,按下旋钮弹出采样菜单,选择采样菜单的【采样】,按下旋钮开始采样,调出正确的首波(即首波的波峰或波谷超过判读门限,且不超出测点波形区域),屏幕底出现声时值即为基桩检测系统零声时 T o (为仪器系统延迟与声测管及藕合水层声时修正值之和); 4)按下旋钮,停止采样,将此声时值输入状态参数对话框中的系统声时; 5)此后所测的测点声时值将扣除系统声时,T T总T o o 2.推算法: 1)选择一个合适的水槽,如养护池,并加进适量的清水(实验用水温20C), 水深超过40cm,取一匀直的木板,在其上面以100mm为间隔等距离标注11个点,将其置于养护池相对的两条边上,并保持水平;2)将RS-ST01C型非金属声波检测仪的零声时置为0卩s,以换能器的轴线为准,沿木条依次采集收发间距 100mm~1000mm 的各点的声时值,其间应让探头远离养护池的四壁,并保持等 高;

3)数据的处理,采用的直径为d 换的径向探头,所以各点的有效收发距离为 l i (L i d 换)mm ,回归直线方程I a bt (式中a 、b 为待求的回归系数)。以 测距h 为纵坐标,以声时读数ti 为横坐标,绘制“时-距”坐标图,对该组数据采 用最小二乘法的线性回归,计算出仪器系统延迟时间 t o ; t 0 4)声测管及藕合水层声时修正值 t' t' 5) 系统零声时:T o t o t' 6) 水温降低,水中声波的速度也会有所降低,贝U t'增大;反之则t'减小。 匚)采样 1.在采样菜单条上右旋至【菜单】项,确认;这样就切换到了主菜单,光 标停留在【参数】项。 在【参数】项确认;弹出现场工作参数菜单,标题是“请输入现场工作参数”, 左旋选中【工地】项,确认;弹出一模拟键盘,输入您的工地名、日期、模式、 文件、序号、移动步距和收发间距等(只能由数字、英文字母和下划线构成), 输入完毕,保存。 2?在主菜单中右旋至【调整】项,确认;弹出一个调整菜单,光标停留在 【零声时】项,如图所示,确认;弹出模拟键盘,输入合适的零声时(一般在 18 卩s 左右),确认;返回到主菜单。 3?在“采样”项上确认,仪器进入采样状态,波形显示区上出现采样得到 的波形。左右旋转光电旋钮,会减小或增加波形的显示倍数(不影响发射和接收 能量,即声幅的大小,在波形显示区右上角有放大倍数显示) 通过对放大倍数的 调整,使首波波幅在判读门限之外,波形显示区边界以内。 4?取得的波形后,下压旋钮确认,退出采样状态,换能器停止工作,采样 菜单 弹出,光标停留在【存贮】项上。 5.在采样菜单“存贮”项上确人;在系统参数区下方弹出一个红色提示条, 告知您刚才存贮点的波速、点号,并提示您下一点的深度,光标停留在“采样” 项上。 d 钢内d 换 v 水

超声波检测说明

声波透射法检测说明 一、检测仪器 NM-4A型非金属超声检测分析仪(半自动型测桩仪) 用途:用于混凝土强度检测、混凝土结构内部缺陷和裂缝深度检测、匀质性、损伤层厚度检测、混凝土基桩完整性检测及混凝土厚度检测等。 技术指标: 声时测读精度:士0.05 — 幅度测读范围:0 ?177dB 放大器带宽:5Hz?500kHz 接收灵敏度:<10 av 最大米样长度:詬4k 信号米集方式:连续信号、瞬态信号 扩展功能:可扩展为冲击回波混凝土厚度测试仪 通道数:双通道 正常混凝土或岩土最大穿透距离:8~10m; 声波透射法桩基检测时,手工连续提升换能器,自动记录和储存测 试数据; 测桩专用径向换能器:全不锈钢的探头,75米长电缆线,导电滑环 (集流环)接头,使电缆能随测随放(收),电 缆线缠绕在伸缩式的小车上,移动方便,电缆线 上的标记清晰耐久; 主机:专用微机系统 显示器:6"640 >480 DSTN 通用接口:串口、并口、USB 口 供电方式:1、AC:220\± 10%;DC:12V (交直流一用) 2、外置式大谷量铅酸电池,一次充电可连续工作

8-10小时; 工作温度:0 ?40C 工作湿度:< 80% 整机重量: 1.8kg 整机体积;245mr^ 300mr^ 85mm 、检测依据标准: 《超声回弹综合法检测强度技术规程》CECS 02:88 《超声法检测混凝土缺陷技术规程》CECS 21:2000 《公路工程基桩动测技术规程》JTG/T F81-01-2004 《超声法检测混凝土缺陷技术规程》CECS 21:2000 《建筑基桩检测技术规范》JGJ106-2003三、声波透射法检测基桩完整性的工作原理 混凝土灌注桩声波透射法检测的工作原理是:在被测桩内预埋若干根竖向相互平行的声测管作为检测通道,将超声脉冲发射换能器与接收换能器置于,声测管中,管中注满清 水作为耦合剂,由仪器的发射换能器发射超声脉冲,穿过待测的桩体混凝土,并经接收换能器被仪器所接收,判读出超声波穿过混凝土的声时、接收波首波的波幅以及接收波主频等参数。超声脉冲信号在混凝土的传播过程中因发生绕射、折射、多次反射及不同的吸收衰减,使接收信号在混凝土中传播的时间、振动幅度、波形及主频等发生变化,这样接收信号就携带了有关传播介质(即被测桩身混凝土)的密实缺陷情况、完整程度等信息。由仪器的数据处理与判断分析软件对接收信号的各种声参量进行综合分析,即可对桩身混凝土的完整性进行检测,判断桩基缺陷的程度并确定其位置。 四、检测方法及工作参数

超声法检测混凝土缺陷题库-最新版本

“超声法检测混凝土缺陷”题库 Ⅰ、单选题 1、基本概念: 1、超声波频率为50kHz,波速为4500m/s,波长为( )。 (A)9m(B)90cm(C)9cm(正确) (D)9mm 2、超声波频率越高,( )。 (A)在混凝土中传播速度越快(B)在混凝土中传播距离越远 (C)在混凝土中传播速度越慢(D)在混凝土中传播距离越短[正确] 3、在混凝土中传播的超声波是一种( )。 (A)机械振动波[正确] (B)电磁波 (C)不能在液体中传播的波(D)不能在气体中传播的波 4、用于发射超声波的换能器在工作的时候,其内部的晶片产生的变化是( )。 (A)将机械能转化为电能(B)将电能转化为机械振动[正确] (C)将机械能转化为辐射(D)将辐射转化为机械能 5、用于接收超声波的换能器在工作的时候,其内部的晶片产生的变化是( )。 (A)将机械能转化为电能[正确] (B)将电能转化为机械振动 (C)将机械能转化为辐射(D)将辐射转化为机械能 6、超声换能器的工作原理是基于其( ) (A)光电效应(B)压电效应[正确] (C)电磁感应(D)涡流感应 7、超声波从固体进入液体或气体中时,只有( )能继续传播。 (A)横波(B)表面波(C)纵波[正确] (D)剪切波 8、超声波在真空中( )。 (A)速度比空气中慢(B)速度比空气中快(C)不能传播[正确] (D)衰减很大 9、超声波在水中的速度比空气中的( )。 (A)快[正确] (B)慢(C)取决于声波频率(D)取决于温度 10、超声波在空气中的速度比混凝土中的( )。 (A)快(B)慢[正确] (C)取决于声波频率(D)取决于温度 11、空气中的超声波速度随着温度上升( )。 (A)上升[正确] (B)下降(C)不变(D)取决于频率 2、《超声法检测混凝土缺陷技术规程》(CECS21:2000) 12、超声法检测混凝土缺陷所采用的超声波频率一般为( )。(2.1.1) (A)20Hz~250kHz (B) 20kHz~250kHz[正确] (C)20kHz~250MHz (D) 20MHz~250MHz 13、在进行不密实区、空洞或混凝土结合面质量检测时,对于工业与民用建筑,测点间距宜为( )。(6.2.1) (A)50mm (B)500mm (C)100mm~300mm[正确] (D)400mm 14、通常情况下进行上部结构梁柱构件超声法检测时,应优先选用( )换能器。(3.2.1) (A)圆管式(B)高频(C)平面[正确] (D)径向 15、检测不密实区和空洞时构件的被测试范围应( )有怀疑的区域。(6.1.2) (A)大于[正确] (B)小于(C)约等于(D)等于 16、超声波的主频是指在被接收的超声脉冲波各频率成份的( )分布中最大的频率值。 (2.1.6) (A)速度(B)波长(C)幅度[正确] (D)相位 17、依据CECS21:2000规范要求,用于混凝土缺陷检测的超声波检测仪声时最小分度应不

超声波检测二级试题库(UT)(含答案)(三)

无损检测 超声波试题 (UT) 第三部分 5.11 无缝钢管缺陷分布的方向有;() A、平行于钢管轴线的径向分布 B 、垂直于钢管轴线的径向分布 C、平行于钢管表面的层状分布 D 、以上都可能 5.12 小口径钢管超探时探头布置方向为:()A、使超声 沿周向射入工件以探测纵向缺陷B、使超声沿轴向射入工件 以探测横向缺陷C、以上二者都有 D、以上二者都没有 5.13 小口径无缝钢管探伤中多用聚焦探头 . 其主要目的是:() A、克服表面曲率引起超声散焦 B 、提高探伤效率 C、提高探伤灵敏度 D 、以上都对 5.14 钢管原材料超探试样中的参考反射体是:() A、横孔 B 、平底孔 C 、槽 D 、竖孔 5.15 管材横波接触法探伤时. 入射角的允许范围与哪一因素有关() A、探头楔块中的纵波声速 B 、管材中的纵横波声速 C、管子的规格 D 、以上全部 5.16 管材周向斜角探伤与板材斜角探伤显著不同的地方是() A、内表面入射角等于折射角 B 、内表面入射角小于折射角 C、内表面入射角大雨折射角 D 、以上都可能 5.17 管材水漫法探伤中 . 偏心距 x 与入射角α的关系是()。 (rR 为管材的内外半径) . .

5.18 管材自动探伤设备中 . 探头与管材相对运动的形式是()A、探头旋转 . 管材直线前进 B 、探头静止 . 管材螺旋前进C、管材旋转 . 探头直线移动 D 、 以上均可 5.19 下面有关钢管水浸探伤的叙述中 . 哪点是错误的()A、使用水浸 式纵波探头 B 、探头偏离管材中心线C、无缺陷时 . 荧光屏上只显示始 波和 l ~2 次底波D、水层距离应大于钢中一次波声程的 1/ 2 5.10 钢管水浸聚焦法探伤中. 下面有关点聚焦方法的叙述中. 哪条是错误的?() A、对短缺陷有较高探测灵敏度 B 、聚焦方法一般采用圆柱面声透镜 C、缺陷长度达到一定尺寸后. 回波幅度不随长度而变化 D、探伤速度较慢 5.21 钢管水浸聚焦法探伤时 . 下面有关线聚焦方式的叙述中 . 哪条是正确的?()A、探伤速度轻 快 B 、回波幅度随缺陷长度增大而增高C、聚焦方法一般采用圆柱面透镜或瓦片型晶片D、以上全部 5.22 使用聚焦探头对管材探伤 . 如聚焦点未调到与声束中心线相垂直的管半径上. 且偏差较大距离 . 则会引起() A、盲区增大 B 、在管中折射发散 C、多种波型传播 D 、同波脉冲变宽 6.1 锻件的锻造过程包括:() A、加热形变 . 成型和冷却 B、加热 . 形变 C、形变 . 成型 D 、以上都不全面 6.2 锻件缺陷包括:() A、原材料缺陷 B 、锻造缺陷 C、热处理缺路 D、以上都有 6.3 锻件中的粗大晶粒可能引起:() A、底波降低或消失 B 、噪声或杂波增大 C、超声严重衰减 D 、以上都有 6.4 锻件中的白点是在锻造过程中哪个阶段形成:() A、加热 B 、形变 C 、成型 D 、冷却 6.5 轴类锻件最主要探测方向是:() A、轴向直探头探伤 B 、径向直探头探伤 C、斜探头外圆面轴向探伤 D、斜探头外圆面周向探伤 6.6 饼类锻件最主要探测方向是:() A、直探头端面探伤 B 、直探头翻面探伤 C、斜探头端面探伤 D 、斜探头侧面探伤 6.7 筒形锻件最主要探测方向是:() A、直探头端面和外圆面探伤 B 、直探头外圆面轴向探伤 C、斜探头外四面周向探伤 D、以上都是 6.8 锻件中非金属夹杂物的取向最可能的是:() A、与主轴线平行 B 、与锻造方向一致 C、占锻件金属流线一致 D 、与锻件金属流线垂直 6.9 超声波经液体进入具有弯曲表面工件时 . 声束在工件内将会产生:() A、与液体中相同的声束传播 B 、不受零件几何形状的影响 C、凹圆弧面声波将收敛 . 凸圆弧面卢波将发散 D、与 C 的情况相反 . .

超声法检测混凝土缺陷作业指导书

作业指导书 (超声法检测混凝土缺陷) 秦皇岛市瑞开建筑检测有限公司 超声法检测混凝土缺陷作业指导书 1、使用仪器技术要求: a.超声波检测仪应进行鉴定 b.仪器的声时范围应为0.5~9999μs,测读精度为0.1μs c.仪器的放大器频率响应宜为10~200kHZ,200~500kHZ两频段。 d.仪器宜具有示波屏显示及手动游标测读功能。 e.仪器应能适用于温度为-10℃~+40℃、相对湿度不大于80%、电源电压波动为220V±22V的环境中且能连续4h小时正常工作。 f.换能器宜采用厚度振动形式压电材料。 g.换能器的频率宜在50~100kHZ范围以内。 h.换能器实测频率与标称频率相差应不大于±10% 2、测试前应具备的相关资料: a.工程名称及设计、施工、建设单位名称。 b.检测目的与要求。 c.结构或构件名称、施工图纸及要求的混凝土强度等级及混凝土的相关资料。d.模板类型、混凝土浇灌和养护情况以及混凝土龄期。 e.结构或构件存在的质量问题。 3、测位的布置及相关检测要求: a.依据检测要求和测试条件确定缺陷测试部位。

b.在满足首波幅度测读精度得条件下,应选用较高频率的换能器。c.测区避开钢筋密集区和预埋件。 d.换能器应通过耦合剂与混凝土测试表面保持紧密结合,耦合层不得夹杂泥砂或空气。 e.测试面应清洁、平整、干燥,不应有接缝、饰面层、浮浆和油垢,并避开蜂窝、麻面部位,必要时可用砂轮片清除杂物和磨平不平整处,并擦净残留粉尘。 f.检测时应避免超声传播路径与附近钢筋轴线平行,如无法避免,应使两个换能器连线与该钢筋的最短距离不小于超声测距的1/6。 g.检测中出现可疑数据时应及时查找原因,必要时进行复测校核或加密测点补测。 4、裂缝深度检测: 4.1测试要求: a.被测裂缝中不得有积水或泥浆。 4.2单面平测法: 4.2.1测试条件: a.结构的裂缝部位只有一个可测表面,估计裂缝深度又不大于500mm。 b.平测时应在裂缝的被测部位,以不同的测距,按跨缝和不跨缝布置测点(布置测点时应避开钢筋的影响)进行检测。 4.2.2检测步骤:

非金属超声波检测仪

RSM-SY7系列基桩多跨孔超声波自动循测仪-SY7(T)基桩多跨孔超声波自动循测仪(一)RSM(三通道) (二)-SY7(F)基桩多跨孔超声波自动循测仪 RSM (四通道) 用途: 1.基桩超声波透射法完整性检测 2.混凝土裂缝深度检测 3.混凝土超声回弹综合法强度检测 4.地质勘察岩体纵波波速测试 5.隧道岩体松动圈检测 6.非金属材料动弹力学参数测试 符合: ﹡《建筑基桩检测技术规范JGJ106-2003》 ﹡《公路工程基桩动测技术规程JTG/TF81-01-2004》 ﹡《铁路工程基桩无损检测规范TB 10218-2008》 ﹡《超声回弹综合法检测混凝土强度技术规程CECS02:2005》 ﹡《超声法检测混凝土缺陷技术规程CECS21:2000》 》﹡《铁路工程结构混凝土强度检测规程TB10426-2004 技术特点: 1、国际首创四通道自发自收基桩剖面全组合超声波检测,已申请多项发明专利 2、自发自收电路设计,无需更换探头对应声测管的位置,一次提升完成六剖全组合测 试,大幅提高检测速度,大大减轻现场检测人员工作强度 3、三或四个独立可控收发通道,多管基桩声波透射检测效率更高 4、每个剖面测试波形各自可控调节增益延迟 5、采用超大真彩液晶显示屏,现场可同时清晰的观测6个剖面测试波形、波列、波速、. 波幅等信息,测试过程中整桩质量一目了然可调,无漏点,无需重复测试测点移距5~50cm6、60m/mim自动计数提升装置连接方便、快捷,最大提升速度 可达7、 、仪器采用金属外壳,结构牢固,耐用8 标准配置: 数量序号备注名称 SY7 (T)/SY7 (F)台1 采集仪1深度计数器及连接电缆2套 2 纵向跨孔单发单收传感器)

超声波检测重点练习题

超声波检测复习题(第6、7、8、9章) 一、判断题 4.4.串列法探伤适用于检查垂直于探测面的平面缺陷() 4.5“灵敏度”意味着发现小缺陷的能力,因此超声波探伤灵敏度越高越好。() 4.6所谓“幻影回波”是由于探伤频率过高或材料晶粒粗大引起的。() 4.7当量法用来测量大于声束截面的缺陷尺寸。() 4.8半波高度法用来测量小于声束截面的缺陷的尺寸。() 4.9串列式双探头法探伤即为穿透法。() 4.11曲面工件探伤时,探伤面曲率半径愈大,耦合效果愈好。()4.12实际探伤中,为个提高扫查速度减少杂波的干扰,应将探伤灵敏度适当的降低。() 4.13采用当量法确定的缺陷尺寸一般小于缺陷的实际尺寸。()4.14只有当工件中缺陷在各个方向的尺寸均大于声束截面时,才能采用测长法确定缺陷长度。() 4.15绝对灵敏度法测量缺陷指示长度时,侧长灵敏度高,测得的缺陷长度大。() 4.16当工件内存在较大的内应力时,将使超声波的传播速度及方向发生变化。() 4.17超声波倾斜入射至缺陷表面时,缺陷反射波高随入射角的增大而增高。() 5.1钢板探伤时,通常只根据缺陷波情况判定缺陷。()

5.2当钢板中缺陷大于声束截面时,由于缺陷多次反射波互相干涉容易产生“叠加效应”() 5.3厚钢板探伤中,若出现缺陷的多次反射波,说明缺陷的尺寸一定较大。() 5.4较薄钢板中采用底波多次法检测时,如出现“叠加效应”则说明缺陷一定较大() 5.5复合钢板探伤时,可从母材一侧探伤,也可从复合材料一侧探伤。() 5.9钢管做手工接触法周向探伤时,应从顺、逆时针两个方向各探伤一次。() 5.10钢管水浸探伤时,水中加入适量活性剂是为了调节水的声阻抗,改善透声性。() 5.12用斜探头对大口径钢管做接触法周向探伤时,其跨距比同厚度平板大。() 6.1对轴类锻件,一般来说以纵波直探头从径向探测效果最佳。()6.2使用斜探头对轴类锻件作圆柱面轴向探测时,探头应从正、反两个方向扫查。() 6.3对饼形锻件,采用直探头作径向探测是最佳的探伤方法。()6.5锻件探伤中,如缺陷引起底波明显下降或消失时,说明锻件中存在较严重的缺陷。() 6.6锻件探伤时,如缺陷被探伤人员判定为白点,则应按密集缺陷评定锻件等级。() 6.7铸钢件超声波探伤,一般以纵波直探头为主。()

超声波法检测混凝土缺陷作业指导书

超声波法检测混凝土缺陷作业指导书 一、测试原理和方法 超声测缺陷的基本原理,是通过超声波(纵波)在混凝土中传播的不同参数反映混凝土的质量。即利用超声波在混凝土中传播的声时、振幅、波形这三个声学参数综合判断其内部的缺陷情况。 声时—即超声波在混凝土中传播所需要的时间,如超声波在传播路径中遇有缺陷时,则要绕过缺陷,声时就会变长。 振幅—即接收信号首波振幅。混凝土内部存在缺陷时,超声波在缺陷界面上声阻抗差异显著,产生发射、散射和吸收,使接收波振幅显著降低。振幅变化大小可通过增益和衰减器的调整进行测量。 波形—即接收到的波形。混凝土内部存在缺陷时,超声波在内部传播发生变化。直达波、绕射波、反射波等各类波相继被接收。由于这些波的相位不同,因此使正常波形发生畸变。主要观察前几个周期的波形。一般情况下,正常混凝土的前几个波形振幅大,无畸变,接收波的包络线呈半圆形

见图11-1(a)。有缺陷混凝土的前几个周期波形振幅低,可能发生波形畸变,接收波的包络线呈喇叭形,见图11-1(b)。 11-1 接受图形 常用的测试方法大致分为以下几种: 1平面测试(用厚度振动式换能器) (1)对测法:一对发射(T)和接收(R)换能器,分别置于被测结构相互平行的两个表面,且两个换能器的轴线位于同一直线上。 (2)斜测法:一对发射和接收换能器分别置于被测结构的两个表面,但两个换能器的轴线不在同一直线上。 (3)单面平测法:一对发射和接收换能器置于被测结构同一个表面上进行测试。

2钻孔测试(采用径向振动式换能器) (1)孔中对测:一对换能器分别置于两个对应钻孔中,位于同一高度进行测试。 (2)孔中斜测:一对换能器分别置于两个对应钻孔中,但不在同一高度而是在保持一定高程差的条件下进行测试。 (3)孔中平测:一对换能器置于同一钻孔中,以一定的高程差同步移动进行测试。 二、仪器设备 1.超声波仪 超声波仪应满足下列要求: (1)具有波形清晰、显示稳定的示波装置。 (2)声时最小分度为OAS,, (3)具有最小分度为 1dB的衰减系统。 (4)接收放大器频响范围10~500kHz,总增益不小于80dB,接收灵敏度(在信噪比为3:1时)不大于50μV。 (5)电源电压波动范围在标称值,10%的情况下能正常工作。

相关文档
相关文档 最新文档