文档库 最新最全的文档下载
当前位置:文档库 › 大肠杆菌的基因型

大肠杆菌的基因型

大肠杆菌的基因型
大肠杆菌的基因型

大肠杆菌基因型及遗传符号说明系列一DXY

大肠杆菌基因型及遗传符号说明系列一 点击次数:982 作者:佚名发表于:2009-09-27 00:00转载请注明来自丁香园 来源:丁香园 实验室的一般大肠杆菌拥有4288条基因,每条基因的长度约为950bp,基因间的平均间隔为118bp (基因Ⅷ)。E.coli基因组中还包含有许多插入序列,如λ-噬菌体片段和一些其他特殊组份的片段,这些插入的片段都是由基因的水平转移和基因重组而形成的,由此表明了基因组具有它的可塑造性。 利用大肠杆菌基因组的这种特性对其进行改造,使其中的某些基因发生突变或缺失,从而给大肠杆菌带来可以观察到的变化,这种能观察到的特征叫做大肠杆菌的表现型(Phenotype),把引起这种变化的基因构成叫做大肠杆菌的基因型(Genotype)。具有不同基因型的菌株表现出不同的特性。 分子克隆中常用的大肠杆菌及其遗传标记按Demerec等1966年提出的命名原则,采用的菌株所有的基因都假定处于野生型状态,除非在基因型上另外注明。 大肠杆菌基因型的表示方法(Demerec, et, al. 1966): 一、一般规则: 1、根据基因产物或其作用产物的英文名称的第一个字母缩写成3个小写斜体字母来表示。例如:D NA Adenine Methylase→dam。 2、不同的基因座,其中任何一个突变所产生的表型变化可能相同,其表示方法是在3个小写斜体字母后加上一个斜体大写字母来表示区别。例如:Recombination→recA、recB、recC。 3、突变位点应通过在突变基因符号后加不同数字表示。如supE44(sup基因座E的44位突变)。

如果不知道几个等位基因中哪一/几个发生了功能性突变,则用连字符“ -”代替大写字母,如trp-31。 4、细菌的基因型中应该包含关于其携带的质粒或附加体的的信息。这些符号包括菌株携带的质粒或附加体、质粒或附加体上的突变基因座和突变位点。其基因符号应与基因座的表示符号明显区别,符号的第一个字母大写、不斜体并位于括号内;质粒或附加体上的突变基因座和突变位点的基因符号的表示方法与染色体上突变基因座、突变位点的符号相同。 5、对于携带附加体的菌株的完整基因型描述应包括附加体的状态(游离或整合)。以F因子为例,F-:F因子缺失;F+:自主性F因子,不携带任何遗传可识别染色体片段;F':携带有遗传可识别细菌染色体片段的自主性F因子;Hfr:整合到染色体上的F因子(high frequency of recombination)。当这些质粒或噬菌体片段变异或缺失时,用()“或”/“等以区别。例如:/F' [traD3 6、proAB、lac I q、lacZ. M 15] 6、某个基因或某个领域缺失时,在其基因型前面加上“ ”表示。例如:lac-proAB基因缺失时它的基因型表示为(lac-proAB)。 7、由于某种基因的变异导致大肠杆菌可以明显观察到特征变化,有时也用其表现型代替基因型进行表示。例如:某些抗药性的获得或丧失,用如下方式表示:Streptomycin抗性→Str +或Str r,Ampicilli n敏感性→ Amp-。(第一个字母要大写,“+”或“r”表示有抗性,“-”表示无抗性或敏感)。 8、根据某些特异性蛋白的变异及其导致的结果变化进行表示。例如:TH2菌株上有一种基因型表示如下:hsdS20 (rB-、mB-),其中S20代表特异性识别蛋白发生变异,()中的rB-、mB-表示由于 S20的变异而导致B株来源的hsdR和hsdM的功能缺失。 9、蛋白质的名称与对应的基因或等位基因相同,但不用斜体,且首字母大写,如,UvrA、UvrB。 二、基因符号和意义(见表1)

大肠杆菌的基因型 Takara公司

,-*+ .1/0 2TVOVSV INRTKJMQRPRLU JHTHPRL RQPNQK3X``]GFFaaaE`VYV_VEW\ZEW[cbegdfih u u @=47>< :9?\JA6_3w uqz -*~x Jv Ih EKB ^O A 2ms 4t u s ^t /c O 46msnt /c|46u E `lr >z c 1H /r H6E ~J.H w N G [J *i.p ,5/c r 9U {OH :3a Z OA_v I3/cU~{y *wshf 2~m D q {m D 3y N ^shf C/r H6_0E ~U \.H y kl ^J ~m D q {m D /c NP N:8J.H TG [C a 6T J }0{w l }0{v Je KS]r `M ^cG { v I d9^y .5`M JA6_3ynO 6fP I69:3a y i -@.5`MN C a w D a 6T JA6_3r A6_3C aS 60y *-,6y @w JP99@cG r ~xvl 2MUS\ZRX[Q`X\[3 JQ]]\_X`X\[A =@ZX[ e K {/|zr v I /@BOL B 73EKB `h A y q U |6e3s Q v Ih EKB J T S`h ^O kM y u^2O R EKB Y [6mY J 7]e K r N /|zr v I J.H o 4\Jv I3`u T u HT EKB J `h 1K,5y +:2V EKB J {N 6y R EKB J d p O 8r ~xvm 2MUS\ZRX[Q`X\[3 JQ]]\_X`X\[A >9ZX[ e K {/|zs v I /@BOL B 73EKQ_U lk lwQA P J A a ;v y R /|zr J EKB `h AO \b l>,k M r EKQ_U ?p h;EKB J +:l +;y k lwQA P ?pD ;EKB J >+y U EKB J `h l mY 7]^Ur `>kM r /|zs v I J.H G [N EKB `h l 7]e KX]y +Y 9ZX[ e K {/|zt v I /@j _A y xk lwQA P y BOL B 73Jk lJQA y +:A w BOL A y qB l /|zr 5/|zs o /@J A .o 0M kM y U EKB J `h wY [6mY J 7]^Ur kM r /|zt v I J.H G [EKB `h e KS]y +Y w T EKB J {N 6r 876;547>< wu{2EKB QTU[X[U ZU`WbYQ_U3 JQ]]\_X`X\[A ?

基因工程及其在大肠杆菌生产人干扰素中的应用

基因工程及其在大肠杆菌生产人干扰素中的应用 一、课程设计目的 了解工业生产中的新型育种技术并比较不同育种技术的优势; 学习理解基因工程育种技术及其操作原理; 研究基因工程育种技术在人干扰素生产中的创新。 二、课程设计题目描述与要求 本文介绍一种二十世纪七十年代发展起来的一种新型生物技术——基因工程,介绍其在育种中的应用。文中重点介绍了基因工程育种的一般步骤,以及近年来出现的运用基因工程进行定向育种的主要新技术:基因的定点突变,易错PCR,DAN重排及基因组重排。之后,应用基因工程育种技术重组大肠杆菌BL21(pBAI)生产人干扰素a2b, 通过优化补料分批培养时葡萄糖的流加策略,提高了hIFNa2b的表达量和表达速率。不同的葡萄糖流加方式有各自的优点,采用恒速流加葡萄糖的方式,hIFNa2b的表达量达到6 540 mg/L,高于目前已知文献中hIFNa2b的最高表达量5 200 mg/L。

三、课程设计报告内容 引言 基因工程是二十世纪七十年代发展起来的一种新型生物技术,其发展从根本上改变了生物技术的研究和开发应用模式。1972年美国的Berg和Jackson等人将猿猴病毒基因组SV 40DNA、λ噬菌体基因以及大肠杆菌半乳糖操纵子在体外重组获得成功。翌年,美国斯坦佛大学的Cohen和Boyer等人在体外构建出含有四环素和链霉素连个抗性基因的重组质粒分子,将之导入大肠杆菌后,该重组质粒得以稳定复制,并赋予受体细胞相应的抗生素抗性,由此宣告了基因工程的诞生。在二十世纪八十年代以来,随着大批大批成果的出现及应用,基因工程带来了一场新的革命。 利用这些技术,可以直接地、有针对性地在DNA分子水平上改造生物的遗传性状。通过转入外源基因,微生物和动、植物细胞可以产生出自身原来没有的蛋白质。同样,利用重组DNA技术,也可以使一些原来存在量极低但有重要工业或医学用途的小分子(抗生素)或蛋白质之外的大分子物质得以大量生产。特别是随着重组DNA技术的完善和发展,以基因水平为核心的现代分子定向育种技术越来越受到工业微生物育种学家的关注,并展示了良好的应用前景。 1、基因工程育种 基因工程育种是在基因水平上,运用人为方法将所需的某一供体生物的遗传物质提取出来,在离体条件下用适当的工具酶进行切割后,与载体连接,然后导入另一细胞,使外源遗传物质在其中进行正常复制和表达引,与前几种育种技术相比,基因工程育种技术是人们在分子生物学指导下的一种自觉的、能像工程一样可预先设计和控制的育种新技术,它可实现超远缘杂交,因而是最新最有前途的一种育种新技术。基因工程技术的全部过程一般包括目的基因DNA片段的取得、DNA片段与基因载体的体外连接、外源基因转入宿主细胞和目标基因的表达等主要环节。 1.1 基因工程育种的一般步骤是: (1)目的基因的获得:一般通过化学合成法、物理化学法(包括密度梯度离心法、单链酶法、分子杂交法)、鸟枪无性繁殖法、酶促合成法(逆转录法)、Norther

基因在大肠杆菌、酵母中的高效的表达技巧

第四章基因在大肠杆菌、酵母中的高效的表达 前言 基因表达是指结构基因在生物体中的转录、翻译以及所有加工过程。 基因工程主要目标之一是生产常规方法难以生产的大量蛋白质产物—即实现基因的高效表达。 基因高效表达研究是指外源基因在某种细胞中的表达活动,即剪切下外源基因片段,拼接到另一个基因表达体系中,使其能获得原生物活性又可高产的表达产物。 第一节基因的表达系统与表达策略 一、最佳的基因表达体系: ⑴目的基因的表达产量高; ⑵表达产物稳定; ⑶生物活性高; ⑷表达产物容易分离纯化。 二、宿主细胞的选择 (一)适合目的基因表达的宿主细胞的要求: 1、容易获得较高浓度的细胞; 2、能利用易得廉价原料; 3、不致病、不产生内毒素; 4、发热量低、需氧低、适当的发酵温度和细胞形态; 5、容易进行代谢调控; 6、容易进行DNA重组技术操作; 7、产物的产量、产率高, 8、产物容易提取纯化。 (二)宿主细胞分为两大类: 1、原核细胞:常用有大肠杆菌、枯草芽胞杆菌、链霉菌等; 2、真核细胞:常用有酵母、丝状真菌、哺乳动物细胞等。 大肠杆菌目前仍是基因工程研究中采用最多的原核表达体系。 优越性: ①对大肠杆菌的基础生物学、分子遗传学等背景知识和基因表达的调控机理已有了深刻了解。 ②有各类菌株和载体系列。 ③目前以实现多种基因的高效表达。表达基因产物形式多样:细胞内不溶性表达(包含体)、细胞内可溶性表达、细胞周质表达等。 ④易培养,成本低。 缺点: ①大肠杆菌中的表达不存在信号肽,产品多为胞内产物,提取困难。 ②因分泌能力不足,真核蛋白质常形成不溶性的包含体,表达产物需经变性复性才恢复活性。

大肠杆菌的基因型

[Z]_\^a` 7T B9.W +o mirzwv p Bn A`=C:VG 470p YunJ o JU dq B b 4288Yn A j mirzwv n A`V i w b G 0K*N 15q M t .]+kD Hd 9|Fhj_`SB D H q O |*N B D HG \F n A B aE \;dn AX`L ,0B q F 4|>4n A`*G i B -c N.j 0E 9.W +n A`B OW j .J F y -V N q XF V B @|n A M Tn {m KU q 5LZ9.W +:.-<_+@B {h q OW C _+@B j P v b 9.W +B |x +c DOMSTXZUM+qu B G OW {hBn A ^0v b 9.W +Bn A+o ?MSTXZUM dj *G ~m n A+B +Y |x 3~m B j .j O |~m n A+j .B +YM n A \1B 4|d T ,V *G `OB DE t R j 9.W +n A+B |[PN G Mv q W s 1r [~n A ,u m F cE ,u B C r?/BD 9Y _Af *0O Y ~k _A.|[j 1M s =C::LMSPSM BMXOZQIWM n oms j 2r{@n A ~m q ?S Bwa {mV q E F cE waB C r?/B HO Y _A~k er R 9Y9*_A.|[J }j 1M s EMKTRJPSIXPTS n vpnd i vpne i vpnf j 3r @Yn A m @Y 7J KUV q M F n A+HA]o U 2p d ]+k *ND H q >O |U 2m ]+kD H {@m KUV q E kc dl m k /l C h\g xvmgac i uvtde i rmn i V i rmnlyj_b hj 5r FH @W n A B {@?S 9.W +-<>w _+@j P {h q G V 8E F |x +;l n A+y -|[j 1M s @|,5.BlAm PU q E Mv P Z |[s FXVMUXTRZKPS ,.n kxv ;m kxv W q :RUPKPQQPS =X .n dsu H lARsnh U 2j

大肠杆菌基因工程菌常用类型

1、大肠杆菌DH5a菌株 DH5a是世界上最常用的基因工程菌株之一。由于DH5α是DNA酶缺陷型菌株,有利于基因克隆,保存质粒,但该菌株的蛋白酶没有缺陷,表达的蛋白容易被降解,因此通常不作为表达菌株。E.coli DH5a在使用pUC系列质粒载体转化时,可与载体编码的β-半乳糖苷酶氨基端实现α-互补。可用于蓝白斑筛选鉴别重组菌株。 基因型:F-,φ80dlacZΔM15,Δ(lacZYA-argF)U169,deoR,recA1,endA1,hsdR17(rk-,mk+),phoA,supE44,λ-,thi-1,gyrA96,relA1 2、大肠杆菌BL21(DE3) 菌株 该菌株用于高效表达克隆于含有噬菌体T7启动子的表达载体(如pET系列)的基因。T7噬菌体RNA聚合酶位于λ噬菌体DE3区,该区整合于BL21的染色体上。该菌适合表达非毒性蛋白。 基因型:F-,ompT,hsdS(rBB-mB-),gal,dcm(DE3) 3、大肠杆菌BL21(DE3) pLysS菌株 该菌株含有质粒pLysS,因此具有氯霉素抗性。PLysS含有表达T7溶菌酶的基因,能够降低目的基因的背景表达水平,但不干扰目的蛋白的表达。该菌适合表达毒性蛋白和非毒性蛋白。 基因型:F-,ompThsdS(rBB-mB-),gal,dcm(DE3,pLysS,Camr 4、大肠杆菌JM109菌株 该菌株在使用pUC系列质粒载体进行DNA转化或用M13 phage载体进行转染时,由于载体DNA产生的LacZa多肽和JM09编码的LacZΔM15进行α-互补,从而显示β-半乳糖苷酶活性,由此很容易鉴别重组体菌株。 基因型:recA1,endA1,gyrA96,thi-1,hsdR17,supE44,relA1,Δ(lac-proAB)/F’[traD36,proAB+,lacIq,lacZΔM15] 5、大肠杆菌TOP10菌株 该菌株适用于高效的DNA克隆和质粒扩增,能保证高拷贝质粒的稳定遗传。 基因型:F- ,mcrAΔ(mrr-hsd RMS-mcrBC),φ80 ,lacZΔM15,△lacⅩ74,recA1 ,araΔ139Δ(ara-leu)7697,galU,galK,rps,(Strr) endA1,nupG 6、大肠杆菌HB101菌株 该菌株遗传性能稳定,使用方便,适用于各种基因重组实验。 基因型:supE44,hsdS20(rB-mB-),recA13,ara-14,proA2,lacY1,galK2,rpsL20,xyl-5,mtl-1,leuB6,thi-1 7.XL10-Gold菌株:所制备的感受态细胞是目前转化效率最高的感受态细胞,缺失几乎所有已知的限制酶切系统;同时缺失核酸内切酶(endA),提高了质粒DNA的产量和质量;重组酶缺陷型(recA)减少插入片段的同源重组概率,保证了插入DNA的稳定性,提高感受态转化效率及大质粒转化能力的宿主菌基因型。

植物基因在大肠杆菌中的原核表达

植物基因在大肠杆菌中的原核表达 通过大肠杆菌表达目的基因大量获得重组蛋白是一个方便快捷的方法。植物中克隆的目的基因被克隆到特异设计的质粒载体上,受噬菌体T7强启动子控制;表达由宿主细胞提供的T7 RNA聚合酶诱导。 当需要表达蛋白时,在细菌培养基中加入IPTG来启动表达。不同载体在邻近克隆位点处具有编码不同的多肽“标签”的序列,在定位、检测或纯化目的蛋白时提供方便。 以pET-32a(+)为例,介绍将目的基因克隆进载体并进行表达获得重组蛋白的过程,从而熟悉根据自己的要求采用不同的载体进行原核表达的全过程。 1.准备工作(试剂配置和器材准备) 1)操作流程示意图 主要步骤操作 ①制备pET-32a(+)载体用限制性酶消化,去磷酸化后胶纯化回收 ②制备插入DNA PCR装入质粒后进行限制性消化,再回收 ③插入片段克隆到pET-32a(+)载体插入片段与pET连接,转化 ④转化表达宿主菌BL21 转化带有T7RNA聚合酶基因的菌株 ⑤诱导表达目的蛋白 SDS-PAGE,Western 印迹、定量分析确定目的蛋白 ⑥放大试验纯化目的蛋白放大试验,制备粗提物,亲和纯化,切除融合标签 2)配制生长培养基如LB,和100mM IPTG,50μg/ml 卡那霉素存储液。 3)宿主菌的保存。长期存放菌株和pET重组子应保存于甘油中。 4)感受态细胞的制备,参照其它试验手册。 2.操作步骤 [1] 制备载体 1)载体消化和胶纯化 3μg pET载体 3μl 10×限制性内切酶buffer 10-20U 两种酶(是否共用buffer; 酶体积不要超过反应体系的10%) 3μl 1mg/ml乙酰BSA(根据需要 补足水到30μl

大肠杆菌基因型列表111

A listed gene name means that gene carries a loss of function mutation, a Δ preceding a gene name means the gene is deleted. If a gene is not listed, it is not known to be mutated. Prophages present in wt K-12 strains (F, λ, e14, rac) are listed only if ab sent. E. coli B strains are naturally lon- and dcm-. F- = Does not carry the F plasmid F+ = Carries the F plasmid. The cell is able to mate with F- through conjugation. F'[ ] = Carries an F plasmid that has host chromosomal genes on it from a previous recombination event. This cell can also mate with F- through conjugation. Chromosomal genes carried in the F plasmid are listed in brackets. rB/K+/- = The (B/K) defines the strain lineage. The +/- indicates whether the strain has or hasn't got the restriction system. mB/K+/- = The (B/K) defines the strain lineage. The +/- indicates whether the strain has or hasn't got the modification (methylation) system. hsdS = Both restriction and methylation of certain sequences is deleted from the strain. If you transform DNA from such a strain into a wild type strain, it will be degraded. hsdR = For efficient transformation of cloned unmethylated DNA from PCR amplifications INV( ) = chromosomal inversion between locations indicated ahpC = mutation to alkyl hydroperoxide reductase conferring disulfide reductase activity ara-14 = cannot metabolize arabinose araD = mutation in L-ribulose-phosphate 4-epimerase blocks arabinose metabolism cycA = mutation in alanine transporter; cannot use alanine as a carbon source dapD = mutation in succinyl diaminopimelate aminotransferase leads to succinate or (lysine + methionine) requirement Δ( ) = chromosomal deletion of genes between the listed genes (may include unlisted genes!) dam = adenine methylation at GATC sequences abolished; high recombination efficiency; DNA repair turned on dcm = cytosine methylation at second C of CCWGG sites abolished deoR = regulatory gene that allows constitutive expression of deoxyribose synthesis genes; permits uptake of large plasmids. See Hanahan D, US Patent 4,851,348. ***This has been called into question, as the DH10B genome sequence revealed that it is deoR+. See Durfee08, PMID 18245285. dnaJ = one of the chaparonins inactivated; stabilizes some mutant proteins dut1 = dUTPase activity abolished, leading to increased dUTP concentrations, allowing uracil instead of thymine incorporation in DNA. Stable U incorporation requires ung gene mutation as well. endA1 = For cleaner preparations of DNA and better results in downstream applications due to the elimination of non-specific digestion by Endonuclease I (e14) = excisable prophage like element containing mcrA gene; present in K-12 but missing in many other strains galE = mutations are associated with high competence, increased resistance to phage P1 infection, and 2-deoxygalactose resistance. galE mutations block the production of UDP-galactose, resulting in truncation of LPS glycans to the minimal, "inner core". The exceptional competence of DH10B/TOP10 is thought to be a result of a reduced interference from LPS in the binding and/or

常用大肠杆菌及其基因型

Commonly used strains https://www.wendangku.net/doc/739227361.html,/wiki/E._coli_genotypes 1.AG1 endA1 recA1 gyrA96 thi-1 relA1 glnV44 hsdR17(r K - m K +) 2.AB1157 thr-1, araC14, leuB6(Am), Δ(gpt-proA)62, lacY1, tsx-33, qsr'-0, glnV44(AS), galK2(Oc), LAM-, Rac-0, hisG4(Oc), rfbC1, mgl-51, rpoS396(Am), rpsL31(strR), kdgK51, xylA5, mtl-1, argE3(Oc), thi-1?Bachmann BJ: Derivation and genotypes of some mutant derivatives of Escherichia coli K-12. Escherichia coli and Salmonella typhimurium. Cellular and Molecular Biology (Edited by: F C Neidhardt J L Ingraham KB Low B Magasanik M Schaechter H E Umbarger). Washington, D.C., American Society for Microbiology 1987, 2:1190-1219. See CGSC#1157 3.BL21 E. coli B F- dcm ompT hsdS(r B - m B -) gal [malB+] K-12 (λS) ?The "malB region" was transduced in from the K-12 strain W3110 to make the strain Mal+λS. See Studier et al. (2009) J. Mol. Biol. 394(4), 653 for a discussion of the extent of the transfer. ?Stratagene E. coli Genotype Strains 4.BL21(AI) F– ompT gal dcm lon hsdS B (r B - m B -) araB::T7RNAP-tetA ?an E. coli B strain carrying the T7 RNA polymerase gene in the araB locus of the araBAD operon q. ?Transformed plasmids containing T7 promoter driven expression are repressed until L-arabinose induction of T7 RNA polymerase.

外源基因在大肠杆菌中表达简略实验步骤

目的基因在大肠杆菌中的诱导表达 一般程序如下:获得目的基因-准备表达载体-将目的基因插入表达载体中(测序验证)-转化表达宿主菌-诱导靶蛋白的表达-表达蛋白的分析-扩增、纯化、进一步检测。 [主要试剂] 1、LB培养基。 2、100mM IPTG(异丙基硫代-β-D-半乳糖苷):2.38g IPTG溶于100ml ddH2O 中,0.22μm滤膜抽滤,-20℃保存。 [操作步骤] 1、通过PCR方法获得目的基因:以含目的基因的克隆质粒为模板,按基因序列设计一对引物(在上游和下游引物分别引入不同的酶切位点,本实验中为BamHⅠ和HiindⅢ),PCR循环获得所需基因片段。 PCR反应体系为: 模板(含R基因的重组质粒)1μl 上游引物PR11μl 下游引物1μl dNTP(2.5mmol/L)5μl 10×PCR buffer(含Mg2+)10μl Taq酶1μl ddH2O补至100μl PCR反应条件为:94℃变性3min;94℃变性3min、52℃复性40sec、72℃延伸1min,30个循环;最后72℃延伸8min。 2、构建重组表达载体 (1)载体酶切:将表达质粒pRSETA用限制性内切酶(同引物的酶切位点)

进行双酶切,酶切产物行琼脂糖电泳后,用凝胶回收Kit或冻融法回收载体大片段。 (2)R基因PCR产物双酶切后回收,在T4 DNA连接酶作用下连接入载体。连接反应体系为: pRSETA1μl R基因片段3μl T4 DNA连接酶(5U/μl)1μl 5×buffer2μl ddH2O补至10μl 3、获得含重组表达质粒的表达菌种 (1)将连接产物转化大肠杆菌DH5α,根据重组载体的标志(抗Amp)作筛选,挑取单斑,碱裂解法小量抽提质粒,双酶切初步鉴定。 (2)测序验证目的基因的插入方向及阅读框架均正确,进入下步操作。否则应筛选更多克隆,重复亚克隆或亚克隆至不同酶切位点。 (3)以此重组质粒DNA转化表达宿主菌BL21(DE3)的感受态细胞。 4、诱导表达 1、挑取含重组质粒的菌体单斑至2ml LB(含Amp50μg/ml)中37℃过夜培养。 2、按1∶100比例稀释过夜菌,一般将1ml菌加入到含100mlLB培养基的300ml 培养瓶中, 37℃震荡培养至OD600≌0.5-0.8(最好0.6,大约需3hr)。 3、取部分液体作为未诱导的对照组,余下的加入IPTG诱导剂至终浓度1mM 作为实验组,两组继续于37℃、200rpm震荡培养3hr。 4、分别取菌体1ml,,离心12000g×30s收获沉淀,用100μl 1%SDS重悬,混匀,70℃10min。 5、离心12000g×1min,取上清作为样品,可做SDS-PAGE等分析。 6 5500rpm 15min 收集细胞

E.coli genotypes 大肠杆菌基因型手册

From OpenWetWare 1 Nomenclature & Abbreviations 2 Methylation Issues in E. coli 3 Commonly used strains 3.1 AG1 3.2 AB1157 3.3 BL21(AI) 3.4 BL21(DE3) 3.5 BL21 (DE3) pLysS 3.6 BNN93 3.7 BW26434, CGSC Strain # 7658 3.8 C600 3.9 C600 hflA150 (Y1073, BNN102) 3.10 CSH50 3.11 D1210 3.12 DB3.1 3.13 DH1 3.14 DH5α 3.15 DH10B (Invitrogen) 3.16 DH12S (Invitrogen) 3.17 DM1 (Invitrogen) 3.18 ER2566 (NEB) 3.19 ER2267 (NEB) 3.20 HB101 3.21 HMS174(DE3) 3.22 IJ1126 3.23 IJ1127 3.24 JM83 3.25 JM101 3.26 JM103 3.27 JM105 3.28 JM106 3.29 JM107 3.30 JM108 3.31 JM109 3.32 JM109(DE3) 3.33 JM110 3.34 JM2.300 3.35 LE392 3.36 Mach1 3.37 MC1061 3.38 MC4100 3.39 MG1655 3.40 OmniMAX2

3.41 Rosetta(DE3)pLysS 3.42 Rosetta-gami(DE3)pLysS 3.43 RR13.44 STBL2 (Invitrogen)3.45 STBL43.46 SURE (Stratagene)3.47 SURE2 (Stratagene)3.48 TOP10 (Invitrogen)3.49 Top10F' (Invitrogen)3.50 W31103.51 XL1-Blue (Stratagene)3.52 XL2-Blue (Stratagene)3.53 XL2-Blue MRF' (Stratagene)3.54 XL1-Red (Stratagene)3.55 XL10-Gold (Stratagene)3.56 XL10-Gold KanR (Stratagene)4 Other genotype information sources 5 References A listed gene name means that gene carries a loss of function mutation, a Δ preceding a gene name means the gene is deleted. If a gene is not listed, it is not known to be mutated. Prophages present in wt K-12 strains (F, λ, e14, rac) are listed only if absent. E. coli B strains are naturally lon- and dcm-. F - = Does not carry the F plasmid F + = Carries the F plasmid. The cell is able to mate with F - through conjugation. F'[ ] = Carries an F plasmid that has host chromosomal genes on it from a previous recombination event. This cell can also mate with F - through conjugation. Chromosomal genes carried in the F plasmid are listed in brackets. r B/K +/- = The (B/K) defines the strain lineage. The +/- indicates whether the strain has or hasn't got the restriction system. m B/K +/- = The (B/K) defines the strain lineage. The +/- indicates whether the strain has or hasn't got the modification (methylation) system. hsdS = Both restriction and methylation of certain sequences is deleted from the strain. If you transform DNA from such a strain into a wild type strain, it will be degraded. hsdR = For efficient transformation of cloned unmethylated DNA from PCR amplifications INV( ) = chromosomal inversion between locations indicated ahpC = mutation to alkyl hydroperoxide reductase conferring disulfide reductase activity ara-14 = cannot metabolize arabinose araD = mutation in L-ribulose-phosphate 4-epimerase blocks arabinose metabolism cycA = mutation in alanine transporter; cannot use alanine as a carbon source dapD = mutation in succinyl diaminopimelate aminotransferase leads to succinate or (lysine +methionine) requirement Δ( ) = chromosomal deletion of genes between the listed genes (may include unlisted genes!)dam = adenine methylation at GATC sequences abolished; high recombination efficiency; DNA repair turned on dcm = cytosine methylation at second C of CCWGG sites abolished 通常dam/dcm都是默认的,无需标注,只有dam -、dcm -才有必要标出来,那是被迫使用某些酶切位点时才用来扩增质粒的特殊菌株。

相关文档