文档库 最新最全的文档下载
当前位置:文档库 › (完整版)医学遗传学重点归纳

(完整版)医学遗传学重点归纳

(完整版)医学遗传学重点归纳
(完整版)医学遗传学重点归纳

第一章人类基因与基因组

第一节、人类基因组的组成

1、基因是遗传信息的结构和功能单位。

2、基因组是是细胞内一套完整遗传信息的总和,人类基因组包含核基因组和线粒体基因组

串联重复序列

按DNA序列的拷贝数不同,人类基因组高度重复序列

反向重复序列

重复序列短分散核元件

中度重复序列

长分散核元件

3、多基因家族是指由某一祖先经过重复和所变异产生的一组基因。

4、假基因是基因组中存在的一段与正常基因相似但不能表达的DNA序列。

第二节、人类基因的结构与功能

1、基因的结构包括:(1)蛋白质或功能RNA的基因编码序列。(2)是表达这些结构基因所需要的启动子、增强子等调控区序列。

2、割裂基因:大多数真核细胞的蛋白质编码基因是不连续的编码序列,由非编码序列将编码序列隔开,形成割裂基因。

3、基因主要由外显子、内含子、启动子、增强子、沉默子、终止子、隔离子组成。

4、外显子大多为结构内的编码序列,内含子则是非编码序列。

5、每个内含子5端的两个核苷酸都是GT,3端的两个核苷酸都是AG,这种连接方式称为GT--AG法则。

6、外显子的数目等于内含子数目加1。

7、启动子分为1类启动子(富含GC碱基对,调控rRNA基因的编码)、2类启动子(具有TATA 盒特征结构)、3类启动子(包括A、B、C盒)。

第三节、人类基因组的多态性

1、人类基因组DNA多态性有多种类型,包括单核苷酸多态性、插入\缺失多态性、拷贝数多态性。

第二章、基因突变

突变是指生物体在一定内外环境因素的作用和影响下,遗传物质发生某些变化。基因突变即可发生在生殖细胞,也可发生在体细胞。

第一节、基因突变的类型

一、碱基置换:是指DNA分子多核苷酸链中的某一碱基或碱基对被另碱基或碱基对置换、替代的突变方式,通常又称点突变。包括:

1、同义突变:替换发生后,虽然碱基组成发生变化,但新旧密码子具有完全相同的编码意义。同义突变并不产生相应的遗传学表观效应。

2、错义突变:替换发生后,编码某一氨基酸的密码子变成了编码另一种氨基酸的密码子,改变了多肽链中氨基酸种类的结构序列组成。

3、无义突变:替换后,编码某一氨基酸的密码子变成了不编码任何氨基酸的终止密码子,引起多肽链提前终止。

4、终止密码子突变:DNA分子中某一终止密码子发生单个碱基替换后,变成了具有氨基酸编码功能的遗传密码子,导致多肽链的合成非正常继续进行。

二、移码突变:是指DNA多核苷酸链中插入或缺失一个或多个碱基对,导致DNA读码序列发生移动,改变密码子的编码意义。

三、整码突变:基因组DNA多核苷酸链的密码子之间插入或缺失三或三的倍数个碱基,导致多肽链中增加或减少一个或多个氨基酸。

四、片段突变:包括缺失、重复、重组、重排。

五、动态突变:是指在DNA分子中,短串联重复序列,尤其是三核甘酸重复序列的重复次数可随着世代传递而逐代增加,这种增加达到一定程度后会产生突变效应,从而引起某些疾病。如脆性X染色体,Huntington病。

第二节、基因突变的诱发因素及作用机制

基因突变分为自发突变和诱发突变。自发突变是指在自然条件下发生的突变。诱发突变则是指在人为干涉情况下导致的基因突变。

一、物理因素:1、紫外线:作用于细胞内的DNA,导致其结构发生变化,主要表现为DNA 序列中相邻的嘧啶类碱基结合形成嘧啶二聚体。2:核辐射:引起染色体或DNA的断裂性损伤,断裂后的染色体或DNA序列片段发生重排。

二、化学因素

三、生物因素

第三节、基因突变的特性及生物学效应

基因的一般特性:多向性、重复性、可逆性、随机性、稀有性、有害性和有利性、重演性。基因的生物学效应:导致蛋白质编码区的功能异常和基因调控区的功能异常。

第四节、DNA损伤的修复

一、紫外线引起的DNA损伤的修复

1、光复活修复

2、切除修复

3、重组修复

二、电离辐射引起的DNA修复

1、超快修复

2、快速修复

3、慢速修复

DNA复制的特点:半保留、半不连续、双向多复制起点和终止点。

第三章、人类染色体

第一节、染色质

1、染色质是间期细胞核内,其主要成分是DNA和组蛋白,还有非组蛋白和少量的RNA 的线性复合结构,易被碱性染料染色。

2、常染色质:通常位于间期细胞核的中心,螺旋化程度低,呈松散状,染色较浅而均匀,具有转录活性。

3、异染色质:一般分布在核膜内层周缘和核仁周围,螺旋化程度高,不活跃。可分为兼性异染色质和结构异染色质。

4、X染色质失活假说(Lyon假说):(1)正常女性有两条X染色体,但只有一条有活性。

(2)在胚胎早期,一条失活。(3)失活的染色体是随机的。(4)生殖细胞形成时,失活的染色体可得到恢复。

5、X染色质数目比X染色体数目少1,正常男性无X染色质。例如:一个女性的核型是48,XXXX,在她间期细胞核中可见到3个X染色质,47,XXX,可见到2个。

6、Y染色质的数目与Y染色体的数目相等。例如:核型为47,XYY的个体,细胞核中有2个Y染色质。

第二节、染色体

1、根据着丝粒位置可将人类染色体分为:(1)中着丝粒染色体:着丝粒位于或靠近染色体中央。(2)亚中着丝粒染色体:着丝粒位置位于染色体纵轴的1\2--5\8,分为长短相近的两个臂。(3)近端着丝粒染色体:着丝粒靠近一端,位于染色体纵轴的7\8至末端之间,此类染色体短臂较短。

2、3种DNA关键序列(填空题):(1)自主复制DNA序列(2)着丝粒DNA序列(3)端粒DNA序列

3、Y染色体的存在对睾丸支持细胞的分化是必要的。因为该染色体上携带有男性性别决定因的关键基因---睾丸决定因子(TDF),它决定着胚胎发育过程中性腺原基细胞的分化方向。第三节、人类染色体核型

1、核型:将一个体细胞中全部染色体按其大小和形态特征,依次排列而成的图像称为核型。

2、核型分析:是将待测细胞染色体进行技术、配对、分组、并分析形态特征的过程。

3、人类染色体按照大小和着丝粒,位置分为A、B、C、D、E、F、G7个组,,从大到小依次排列,A组最大,G组最小。X染色体位于C组,Y染色体位于G组。(详情见P35表格)

4、G显带核型分析已成为目前临床常规应用的染色体病诊断的手段之一。

5、ISCN:人类细胞遗传学命名的国际体制

6、描述特定带时须写明4个内容:(1)染色体序号:(2)臂的符号:(3)区的符号:

(4)带的符号。例如:1q21:第1号染色体,长臂,2区,1带。

7、核型分析常用符号和术语:der:衍生染色体;i:等臂染色体;inv:倒位;p:短臂

q:长臂;ter:末端;del:缺失;dic:双着丝粒;ins:插入;rob:罗伯逊易位

8、人类染色体多态性:在正常健康人群中,存在着各种染色体的微小变异,包括结构、

带纹宽度和着色强度等。这种恒定而微小的变异是按照孟德尔方式遗传的,通常没有明显的表型效应或病理学意义,称为染色体多态性。可分为(1)随体区变异(2)次缢痕变异(3)Y 染色体变异。

第四章、染色体畸变与染色体病(重点)

常染色体病双雌受精

双雄受精

染色体病整倍性改变核内复制

核内有丝分裂

第四章性染色体病

染色体数目畸变

超二倍体

染色体畸变

非整倍性改变亚二倍体

染色体结构畸变

嵌合体

一、染色体畸变

(一)、染色体数目畸变

1、整倍性改变:细胞的染色体在二倍体(2n)的基础上,以单倍数(n)为基数,成倍地增

加或减少。

(1)、双雌受精:一个正常精子与一个异常二倍体(2n)卵细胞受精,形成两种3倍体卵(3n);69,XXX;69,XXY。

(2)、双雄受精:两个正常精子同时与一个正常卵细胞受精,形成3倍体受精卵。69,XXY 69,XYY。

(3)、核内复制:细胞有丝分裂时,DNA复制两次,细胞只分裂一次,形成的子细胞染色体数目加倍,形成四倍体。

(4)、核内有丝分裂:细胞有丝分裂时,染色体进行一次复制,但核膜没破裂,形成四倍体。

2、非整倍性改变:细胞的染色体在二倍体(2n)的基础上增加或减少一条或几条,所形成

的细胞或个体称为非整倍体或异倍体。

(1)、超二倍体(2n+1):在二倍体(2n)的基础上增加一条或几条染色体则构成超二倍体。

超二倍体主要是三体型。

(2)、亚二倍体(2n-1):在二倍体(2n)的基础上减少一条或几条染色体则构成亚二倍体。

亚二倍体主要是单体型。

(3)、嵌合体:在人类中,有的个体内同时存在两种或两种以上核型不同的细胞系。

PS、假二倍体(2n+1-1):细胞的染色体数目变化涉及2条及以上的染色体,有的染色体增加,有的染色体减少,增加和减少的数目相等,细胞染色体数目仍与二倍体一样,

但其染色体组成已不是正常二倍体,称为假二倍体。

3、非整倍性改变机制:包括染色体不分离和染色体丢失

(1)、染色体不分离:是指在细胞分裂的中后期,两条同源染色体或姐妹染色单体不能正常分开二同时进入某一子细胞,导致该子细胞增多一条染色体或减少一条的现象,染色

体不分离可发生在配子形成中减数分裂,或受精卵卵裂的有丝分裂过程中。受精卵卵

裂早期发生染色体不分离,可导致嵌合体的出现。

(2)、染色体丢失:在细胞分裂后期染色体移动过程中,某一染色体未能与其他染色体一起移动而进入子细胞,滞留在细胞质中而丢失。发生在减数分裂中将导致子细胞缺失一

条染色体,形成单体型,发生在受精卵卵裂中,将形成嵌合体。

(二)、染色体结构畸变

1、缺失:染色体部分片段的丢失称为末端缺失和中间缺失。

(1)、末端缺失:染色体的一条臂断裂。无着丝粒片段丢失。例如:1q21断裂后,断点至长臂末端部分丢失,简式描述为:46,XX,del(1)(q21)

(2)、中间缺失:是指一条染色体的一条臂上发生两次断裂形成三个片段,两断点之间的片段丢失。例如:3q21和3q25发生断裂,中间片段3q21---3q25丢失,简式描述为:

46,XX,del(3)(q21q25)

2、倒位:一条染色体发生两次断裂,两断点之间的片段旋转180`后重接,称为倒位。倒位

分为臂内倒位和臂间倒位。

(1)、臂内倒位:两次断裂发生在一条染色体的同一条臂上,中间片段旋转重接所行成的倒位。例如:1p22和1p34同时发生断裂,断点片段1p22--1p34发生倒位连接,简

式描述为:46,XX,inv(1)(p22p34)

(2)、臂间倒位:两次断裂分别发生在一条染色体的长臂和短臂上,中间含有着丝粒的片断旋转形成倒位。

3、易位:染色体位置发生改变称为易位。包括单向易位,相互易位,罗伯逊易位。最重要的

是罗伯逊易位。

罗伯逊易位:是指人类近端着丝粒染色体间(D\D,D\G,G\G)发生的一种涉及整条长臂或短臂的相互易位形式。两条近端着丝粒染色体在着丝粒处或附近断裂

后重新形成两条衍生染色体i,一条由两者的长臂构成,另一条由两者的短

臂构成。这种易位又称为着丝粒融合。

4、环状染色体

5、等臂染色体

二、染色体病

(一)、常染色体病

1、特点:先天性多发畸形:生长发育迟缓;智力低下;皮纹异常。

2、概念:是由于常染色体数目或结构畸变而引起的疾病。

3、主要疾病:

21三体综合症:Down综合症;G1综合症。新生儿发病率为1\800,男性多于女性,

比较常见。婴儿发病风险随母亲年龄增加而升高。

临床特征:眼:眼裂细,向上外倾斜,眼间距宽,常有斜视;耳:耳小,低耳位;

口:嘴小唇厚,舌大,常外伸,呈伸舌样痴呆;鼻:鼻梁扁平;通贯掌,

小指只有一条横褶纹;患者有先天性心脏病,甲状功能低下,免疫力低;

智力障碍。

遗传分型:

游离型:约占97%,核型为47,XX(XY),+21。发生原因:父母生殖

细胞形成的减数分裂过程中21号染色体发生了不分离,形成含2条21

号染色体的配子(n+21),与正常配子受精形成21三体受精卵。

易位型:该种类型的21三体综合症患者具有一条第21号染色体与D组或G组染

色体发生罗伯逊易位形成的衍生染色体。易位型若是同源21染色体罗氏

易位,则不能有后代。

嵌合型:核型为46,XX(XY)/47,XX(XY),+21;产生原因:受精卵在第一次有丝分裂后的某一次分裂过程中,21号染色体发生了不分离或21号染色体

丢失,形成45/47/46三种细胞系的嵌合体,但由于45这种细胞不能存活,

最终形成47/46嵌合体。

21综合症发病基因主要是21q22.1

(二)、性染色体病(临床表现,核型,产生原因)

特点:1、性腺发育不全或两性畸形;2、智力稍差或智力低下;

主要疾病:

1、Klinefelter综合症:即克氏征,在男性中为1/800,男性不育个体约有1/10为该

病患者

临床表现:睾丸发育异常,如睾丸小而质硬或隐睾;不能产生精子;第二性征发

育不良;先天性睾丸发育不全;原发小睾症;

核型及产生原因:患者中有80%--90%(游离型)的核型为47,XXY。产生原因:

双亲之一在生殖细胞形成过程中发生了性染色体不分离,形成的XX

或XY配子与正常配子受精所致。10%--15%为嵌合型,常见的有46,

XY/47,XXY,或46,XY/48,XXXY。

2、Turners综合症:即特纳综合症、先天性卵巢发育不全综合症,女婴发病率1/5000

自然流产胚胎高达7.5%,占原发性闭经的1/3.

临床表现:患者表型为女性,身材矮小,,后发迹低,盾状胸,原发性闭经,第二

性征发育不良,外生殖器幼稚。

核型及产生原因:55%(游离型)为45,X;产生原因:双亲生殖细胞形成过程

中性染色体不分离,形成无X的配子;嵌合型,46,XX/45,X;产生

原因包括受精卵早期卵裂时X染色体不分离和X染色体丢失。

3、XYY综合症:患病男性表型正常,身材高大,生殖系统发育异常,可生育,后代

大多正常,该病患者易冲动,兴奋,自我克制能力较差。

核型及产生原因:大多为47,XYY;产生原因:父亲的精子形成过程

中的第二次减数分裂时,Y染色体不分离,形成YY的精子与正常卵细

胞受精所致。

4、脆性X染色体综合征:即Martin--Bell综合症;Xq27.3为脆性部位。,主要为男性发病,发病率为1/1500--1/1000,女性为携带者:46,XfraX

临床表现:四大一低:头大,耳大,下颌大,睾丸大,智力低

《医学遗传学》期末重点复习题

2.与苯丙酮尿症不符的临床特征是(1)。 A 患者尿液有大量的苯丙氨酸 B 患者尿液有苯丙酮酸 C 患者尿液和汗液有特殊臭味 D 患者智力发育低下 E 患者的毛发和肤色较浅 3.细胞在含BrdU的培养液中经过一个复制周期,制片后经特殊染色的中期染色体()两条姊妹染色单体均深染 4.DNA分子中脱氧核糖核苷酸之间连接的化学键是()磷酸二酯键 5.HbH病患者的可能基因型是(5)。 A ――/―― B -a/-a C ――/aa D -a/aa E aacs/―― 6.下列不符合常染色体隐性遗传特征的是(4)。 A.致病基因的遗传与性别无关,男女发病机会均等 B.系谱中看不到连续遗传现象,常为散发 C.患者的双亲往往是携带者 D.近亲婚配与随机婚配的发病率均等 E.患者的同胞中,是患者的概率为1/4,正常个体的概率约为3/4 7.人类a珠蛋白基因簇定位于(5)。 A 11p13 B 11p15 C 11q15 D 16q15 E 16p13 8.四倍体的形成可能是由于(3)。

A 双雄受精 B 双雌受精 C 核内复制 D 不等交换 E 部分重复9.在蛋白质合成中,mRNA的功能是(3)。 A 串联核糖体 B 激活tRNA C 合成模板 D 识别氨基酸 E 延伸肽链10.在一个群体中,BB为64%,Bb为32%,bb为4%,B基因的频率为(4)。 A B C D E 11.一个个体中含有不同染色体数目的三种细胞系,这种情况称为(3)。 A 多倍体 B 非整倍体 C 嵌合体 D 三倍体 E 三体型 12.某基因表达的多肽中,发现一个氨基酸异常,该基因突变的方式是(5)。 A 移码突变 B 整码突变 C 无义突变 D 同义突变 E 错义突变13.一种多基因遗传病的群体易患性平均值与阈值相距越近(1)。 A 群体易患性平均值越高,群体发病率也越高 B 群体易患性平均值越低,群体发病率也越低 C 群体易患性平均值越高,群体发病率越低 D 群体易患性平均值越低,群体发病率迅速降低 E 群体易患性平均值越低,群体发病率越高 14.染色质和染色体是(4)。

医学遗传学整理复习资料

第四章单基因病 单基因病:由某一等位基因突变所引起的疾病 遗传方式:常染色体显性遗传性染色体:X连锁显性遗传从性遗传限性遗传 隐性遗传X连锁隐性遗传 Y连锁遗传 常染色体显性遗传:某种性状或疾病受显性基因控制,这个基因位于常染色体上,其遗传方式为AD 常染色体显性遗传病的系谱特点: ①患者双亲之一有病,多为杂合子 ②男女发病机会均等 ③连续遗传 完全显性:杂合子的表现型与显性纯合子相同 不完全显性(中间型显性、半显性):杂合子的表现型介于显性纯合子与隐性纯合子之间 共显性:杂合子的一对等位基因彼此间无显、隐之分,两者的作用都同时得以表现。 复等位基因(I A、I B 、i ):在群体中,同一同源染色体上同一位点的两个以上的基因。不规则显性:带致病基因的杂合子在不同的条件下,可以表现正常或表现出不同的表现型。 不外显(钝挫型):具显性致病基因但不发病的个体 外显率:一定基因型个体所形成的相应表现型比率 不同表现度:同一基因型的不同个体性状表现程度的差异 表现度:指在不同遗传背景和环境因素的影响下,相同基因型的个体在性状或疾病的表现程度上产生的差异 延迟显性:带显性致病基因的杂合子在个体发育的较晚时期,显性基因的作用才表现出来。-------------------------------------------------------------------------------------------------------------------------------- 常染色体隐性遗传:某种性状或疾病受隐性基因控制,这个基因位于常染色体上,其遗传方式为 AR 常染色体隐性遗传病的系谱特点:①患者的双亲无病,为携带者 ②男女发病机会均等 ③散发 X 连锁显性遗传:某种性状或疾病受X染色体上的显性基因所控制,其遗传方式为XD。XD遗传病系谱特点:①患者双亲之一有病,多为女性患者 ②连续遗传 ③交叉遗传(男性患者的女儿全发病) X 连锁隐性遗传:某种性状或疾病受X染色体上的隐性基因所控制,其遗传方式为XR。 交叉遗传:男性X染色体上的致病基因只能来自母亲,也必定传给女儿 XR遗传病系谱特点:①患者双亲无病②多为男性患者。③交叉遗传 从性遗传:位于常染色体上的一类基因,基因的效应随着个体性别的不同而有差异(即杂合子的表型在不同性别个体中表现不同) 限性遗传:常染色体或性染色体上的一类基因,由于性别限制,只在一种性别中表达。 (即男性表达,女性不表达。或反之。)

医学免疫学人卫版第七版重点

医学免疫学 第二章免疫器官和组织 1.Mucosal-associated lymphoid tissue(MALT) 黏膜相关淋巴组织亦称为黏膜免疫系统,主要指呼吸道、胃肠道及泌尿生殖道黏膜固有层和上皮细胞下散在的无被膜淋巴组织,以及某些带有生发中心的器官化的淋巴组织,如扁桃体、阑尾等。Lymphocyte homing 2.Lymphocyte homing 淋巴细胞归巢成熟淋巴细胞离开中枢免疫器官后,经血液循环趋向性迁移并定居于外周免疫器官或组织的特定区域,称为~。 3.Lymphocyte recirculation 淋巴细胞再循环淋巴细胞在血液、淋巴液、淋巴器官或组织间反复循环的过程,称为~。有利于传递免疫信息,动员各种免疫细胞迁移至病灶。 第三章~ 第八章 1.Antigen 抗原是指能与T细胞、B淋巴细胞的TCR或BCR结合,促使其增殖、分化, 产生抗体或致敏淋巴细胞,并与之结合,进而发挥免疫效应的物质。一般具有免疫原形和抗原性两个重要特性。 2.Epitope 抗原表位抗原分子中决定抗原特异性的特殊化学基团,称为~,又称为抗原决定 簇。是与TCR、BCR或抗体特异性结合的基本结构单位。可分为顺序表位和构象表位。 3.Cross-reaction 交叉反应抗体或致敏淋巴细胞对具有相同和相似表位的不同抗原的反 应,称为~。 4.Superantigen(SAg) 超抗原某些物质只需要极低浓度(1~10ng/ml)即可激活2%~20%T 细胞克隆,产生极强的免疫应答,这类抗原被称为~。主要有外源性和内源性两类,化学性质主要为细菌外毒素、逆转录病毒蛋白等。 5.Adjuvant 佐剂预先或与抗原同时注入体内,可增强机体对该抗原的免疫应答或改变免 疫应答类型的非特异性免疫增强物质,称为~。如卡介苗。 6.Mitogen 丝裂原可与淋巴细胞表面的相应受体结合,刺激静止的淋巴细胞转化为淋巴母 细胞和有丝分裂,激活一类淋巴细胞全部克隆,被认为是一种非特异性淋巴细胞多克隆激活剂。广泛应用于体外集体免疫功能检测。 7.Antibody 抗体是B细胞接受抗原刺激后增殖分化为浆细胞所产生的糖蛋白,主要存在 于血清等体液中,通过于相应抗原特异性结合发挥体液免疫功能。 8.Membrane attack complex(MAC) 攻膜复合物由C5b6789n组成的复合物,可插入细胞 膜,通过破坏局部磷脂双层而形成“渗漏斑”,或形成穿膜的亲水性孔道,最终导致细胞崩解。 9.Interferon(IFN) 干扰素最早发现的细胞因子,具有干扰病毒的感染和复制的功能。可分 为Ⅰ型(包括INF-α,INF-β等)和Ⅱ型(INF-γ)。 10.CD分子应用以单克隆抗体鉴定为主的方法,将来自不同实验室的单克隆抗体所识别的同 一分化抗原归为同一个分化群,简称CD。 11.cell adhension molecules(CAM) 细胞黏附分子是众多介导细胞间或细胞与细胞外基质 间相互接触和结合分子的统称。黏附分子以受体-配体结合的形式发挥作用,使细胞与细胞间或细胞与基质间发生黏附,参与细胞识别,细胞活化和信号转导,细胞的增殖分化,细胞的伸展与移动。可分为免疫球蛋白超家族、整和素家族、选择素家族等。 12.MHC 主要组织相容性复合体其主要功能是以其产物提呈抗原肽进而激活T淋巴细胞, 在启动适应性免疫应答中起重要作用。其结构十分复杂,显示多基因性和多态性,传统上分为Ⅰ、Ⅱ、Ⅲ类。Ⅰ、Ⅱ类主要参与调控适应性免疫应答,Ⅲ类主要参与调控固有免疫应答。 13.linkage disequilibrium 连锁不平衡指分属两个或两个以上基因座位的等位基因,同时出

医学遗传学总结

KEY WORD:分子技术。 1.基因工程 PCR-引物设计;限制性酶切;连接,转化,筛选,质粒提取 2.如何构建报告基因 3.基因的表达如何调控,检测方式? DNA/RNA manipulate 以Huntington disease举例: (Huntington disease Caused by expansion of a triplet encoding Glu in the 5’ end. Normal allele. 11-34 repeats; Abnormal, triplets expanded.) 【疾病研究如何着手】 查阅文献→选择模式动物 (eg. 选择果蝇。 原因:发育周期短个体小便于饲养成本低,由于研究历史长基因工具系统健全。 研究结果适用于人<13000个基因中有10000个与人同源,人类60%以上的疾病可以在果蝇中找到对应基因>) →构建报告基因 (eg. 使人的Huntington基因能在模式生物中表现出疾病表型) ①在表达基因的coding region的3’端加上GFP,作为基因表达的预告。尽量包括调控序列。通过数据库(例如BioLabs)鉴定确保序列中有promoter和核糖体结合。 ②为PCR设计引物: 大致原则: 5’端:在5’端选择约为20bp的序列,GC个数与AT个数大致相等。在之前加6bp左右的酶切位点,以及在酶切位点之前加上1~2bp的用于提高限制性内切酶效率的碱基。 3’端:大致相同,只是注意DNA序列需要【反向互补】 →连接后转化→克隆筛选→基因提取 【限制性内切酶使用注意】 DNA甲基化、star activity(用量、时间)、enzymes producing compatible ends. (star activity:指由于反应条件不同而产生的切断与原来认识序列不同的位点的现象,也就是说产生Star 活性后,不但可以切断特异性的识别位点,还可以切断非特异性的位点。产生Star活性的结果是酶切条带增多。) 【vector】 用于扩增的cloning vector和用于表达的expression vector 特点见课件。 【Inverse PCR】:用于克隆基因两侧的侧翼序列。

医学遗传学

多选: 1. 遗传病的特征: A.疾病垂直传递 B.出生时就表现出症状 C.有特定的发病年龄 D.有特定的病程 E.伴有基因突变或染色体畸变 2. 家族性疾病具有的特征: A.有家族聚集现象 B.有相同的环境因素 C.有相同的遗传环境 D.一定是遗传病 3. 哪些疾病属于单基因疾病: A.体细胞遗传病 B.线粒体遗传病 C.X连锁显性遗传病 D.性染色体病 4. 在猫中,基因BB是黑色,Bb是玳瑁色,bb是黄色,这个基因位于X染色体上,一只玳瑁雌猫与一只黑色雄猫的后代可以是: A.雌猫中黑色与玳瑁色各占一半 B.雄猫中黑色与黄色各占一半 C.雌猫只会有玳瑁色 D.雄猫只会有玳瑁色 5. 不完全连锁指的是: A.二对基因位于同一对染色体上 B.由于互换,这二对基因的位置可以有变化 C.这二对基因位置变化的频率决定于它们之间距离的远近 D.由于互换,这二对基因也可以移到另一对染色体上 6. 一个B型血的母亲生了B型血男孩和O型血女孩,父亲的血型是: A. A型 B.B型 C.AB型 D.O型 7. 父亲血型为AB型,母亲为O型,子女中基本不可能出现的血型是: A.AB型 B.B型 C.O型 D.A型

8. 父亲血型是AB型,母亲是O型,子代中的血型可能是: A.A型 B.O型 C.B型 D.AB型 9. 父亲血型是B型,母亲血型是A型,他们生了一个A型血的女儿,这种婚配型是: A.IBIB×IAIA B.IBi×IAIA C.IBIB×IAi D.IBi×IAi 10. 父亲血型为AB型,母亲血型为AB型,子女中可能有的血型是: A.A型 B.AB型 C.B型 D.O型 11. 常染色体隐性遗传病系谱的特点是: A.患者双亲一定是无病的 B.患者同胞中可能有患病的 C.患者的其他亲属中不可能有患病的 D.患者双亲可能是近亲 12. 常染色体隐性遗传病系谱的特点是: A.患者双亲常无病,但有时为近亲婚配 B.患者同胞中可能有同病患者 C.不连续传递 D.女性患者多于男性患者 13. 常染色体显性遗传病系谱的特征是: A.患者双亲中常常有一方是同病患者 B.双亲常为近亲婚配 C.同胞中的发病比例约为1/2 D.患者子女必然发病 14. X连锁隐性遗传病系谱的特点是: A.男性患者多于女性患者 B.男性患者病重,女性患者病轻 C.交叉遗传 D.男性患者的外祖父一定患病

医学遗传学知识总结

1.医学遗传学是用遗传学的理论和方法来研究人类病理性状的遗传规律及物质基础的学科 2.遗传病的类型:单基因病多基因病染色体病体细胞遗传病线粒体遗传病 3.遗传因素主导的遗传病单基因病和染色体病 4.遗传和环境因素共同作用的疾病多基因病和体细胞遗传病 5.环境因素主导的疾病非遗传性疾病 6.遗传病由遗传因素参与引起的疾病,生殖细胞或受精卵的遗传物质(染色体或基因)异常所引起的疾病,具有垂直传递的特点 7.染色质和染色体是同一物质在细胞周期不同时期的不同形态结构 8.染色体的化学组成DNA 组蛋白RNA 非组蛋白 9.染色体的基本结构单位是核小体 10.染色质的类型:常染色质异染色质 11.常染色质是间期核纤维折叠盘曲程度小,分散度大,能活跃的进行转录的染色质特点是多位于细胞核中央,不易着色,折光性强12.异染色质是间期核纤维折叠盘曲紧密,呈凝集状态,一般无转录活性的染色质特点:着色较深,位于细胞核边缘和核仁周围。13.结构性异染色质是各类细胞的整个发育过程中都处于凝集状态的染色质 14.兼性异染色质是特定细胞的某一发育阶段由原来的常染色质失去转录活性,转变成凝集状态的异染色质 15.染色体的四级结构:一级结构:核小体;二级结构:螺线管;三

级结构:超螺线管;四级结构:染色单体 16.性别决定基因成为睾丸决定因子;Y染色体上有性别决定基因:SRY 17.基因突变是指基因在结构上发生碱基对组成或排列顺序的改变 18.点突变是基因(DNA链)中一个或一对碱基改变 19.基因突变的分子机制:碱基替换移码突变动态突变 20.碱基替换方式有两种:转换和颠换 21.碱基替换可引起四种不同的效应:同义突变、错义突变、无义突变、终止密码突变 22.移码突变:在DNA编码顺序中插入或缺失一个或几个碱基对从而使自插入或缺失的那一点以下的三联体密码的组合发生改变进而使其编码的氨基酸种类和序列发生改变 23.整码突变:DNA链的密码子之间插入或缺失一个或几个密码子则合成肽链将增加或减少一个或几个氨基酸,但插入或丢失部位的前后氨基酸顺序不变动态突变:DNA分子中碱基重复序列或拷贝数发生扩增而导致的突变(脆性X综合症) 24.系谱是指某种遗传病患者与家庭各成员相互关系的图解 25.系谱分析法是通过对性状在家族后代的分离或传递方式来推断基因的性质和该性状向某些家系成员传递的概率 26.先证者是指家系中被医生或研究者发现的第一个患病个体或具有某种性状的成员 27.单基因遗传病:疾病的发生主要由一对等位基因控制,传递方式

医学遗传学复习题

一、名词解释 1、遗传病:人体生殖细胞或受精卵细胞内遗传物质改变而导致的疾病。 2、基因:是决定一定功能产物的DNA序列。 3、断裂基因:分为①编码区:外显子(exon):几段编码序列内含子(intron):无编码功能的序列②非编码区(侧翼序列):调控基因的表达(转录的起始和终止)。 4、外显子与内含子:外显子(exon):几段编码序列;内含子(intron):无编码功能的序列。 5、半保留复制:DNA复制结束后,两条模板链本身就分别成为DNA分子双链中的一条链,即在每个子代DNA分子的双链中,总是保留一条亲链的复制方式。 6、冈崎片段:以5’→3’亲链做模板时,首先在引发体的起始引发下,合成数以千计的DNA小片段,称为。 7、核小体:是由4种组蛋白(H2A\H2B\H3\H4各2个分子)组成的八聚体核心表面围以长约146bp 的DNA双螺旋所构成,此时DNA分子被压缩了6倍。 8、突变:遗传物质的变化及其所引起的表型改变称为突变 9、基因突变:基因组DNA分子在结构上发生碱基对组成或序列的改变称为基因突变 10、碱基替换:DNA分子中碱基之间互换,导致被替换部位的三联体密码意义发生改变 11、转换与颠换:嘧啶之间或嘌呤之间互换(最常见);颠换:嘧啶与嘌呤间互换 12、动态突变:串联重复的三核苷酸序列随着世代的传递而拷贝数逐代累加的突变方式称为动态突变 13、核型与核型分析:核型:一个细胞中的全部染色体,按其大小、形态特征顺序排列所构成的图象称为核型;核型分析:对构成核型的图象进行染色体数目、形态结构特征的分析称为核型分析14、单基因遗传病:如果一种遗传病的发病仅仅涉及到一对等位基因,其导致的疾病称为单基因遗传病。其遗传方式称为单基因遗传 15、携带者:带有隐性基因致病基因的杂合子本身不发病,但可将隐性致病基因遗传给后代 16、复等位基因:在同一基因座位上,有两个以上不同的成员,其相互间称为复等位基因。 17、交叉遗传:男性的X染色体及其连锁的基因只能从母亲传来,又只能传给女儿,不存在男性→男性的传递 18、半合子:虽然具有二组相同的染色体组,但有一个或多个基因是单价的,没有与之相对应的等位基因,这种合子称为半合子。 19、系谱:是从先证者或索引病例开始,追溯调查其家族各个成员的亲缘关系和某种遗传病的发病(或某种性状的分布)情况等资料,用特定的系谱符号按一定方式绘制而成的图解 20、先证者:该家族中第一个就诊或被发现的患病(或具有某种性状的)成员 21、数量性状(quantitative character):受多对等位基因控制,相对性状之间变异呈连续的正态分布,受环境因素影响。Ex: 人的身高、各种多基因病 22、质量性状(qualitative character):受一对等位基因控制,相对性状之间变异是不连续的不受环境因素影响。Ex: 抗原的有无、各种单基因病 22、易患性变异:在遗传和环境两个因素的共同作用下,一个体患某种多基因病的可能性。 23、发病阈值:由易患性所导致的多基因遗传病的最低限度。 24、遗传度:是在多基因疾病形成过程中,遗传因素的贡献大小 25、群体:广义:同一物种的所有个体,狭义:生活在某一地区同一物种的所有个体 26、医学群体遗传学:研究与疾病有关的遗传结构及其变化规律 27、染色体组:指配子中所包含的染色体或基因的总和。 28、嵌合体:指体内同时存在染色体数目不同的两种或两种以上细胞系的个体,分为同源嵌合体和异源嵌合体。 29、同源嵌合体:体内不同chr数目(核型)的细胞群起源于同一合子。 30、平衡易位:仅有位置的改变而无明显的染色体片段的增减,通常不会引起明显的遗传学效应,也叫原发易位。 31、平衡易位携带者:具有平衡易位染色体但表现正常的个体。

2018医学遗传学_考试重点整理知识点复习考点归纳总结

单基因遗传病:简称单基因病,指由一对等位基因控制而发生的遗传性疾病,这对等位基因称为主基因。上下代传递遵循孟德尔遗传定律。分为核基因遗传和线粒体基因遗传。 常染色体显性(AD)遗传病:遗传病致病基因位于1-22号常染色体上,与正常基因组成杂合子导致个体发病,即致病基因决定的是显性性状。 常染色体完全显性遗传的特征 ⑴由于致病基因位于常染色体上,因而致病基因的遗传与性别无关即 男女患病的机会均等 ⑵患者的双亲中必有一个为患者,致病基因由患病的亲代传来;双亲 无病时,子女一般不会患病(除非发生新的基因突变) ⑶患者的同胞和后代有1/2的发病可能 ⑷系谱中通常连续几代都可以看到患者,即存在连续传递的现象 一种遗传病的致病基因位于1~22号常染色体上,其遗传方式是隐性的,只有隐性致病基因的纯合子才会发病,称为常染色体隐性(AR)遗传病。 带有隐性致病基因的杂合子本身不发病,但可将隐性致病基因遗传给后代,称为携带者。 常染色体隐性遗传的遗传特征 ⑴由于致病基因位于常染色体上,因而致病基因的遗传与性别无关, 即男女患病的机会均等 ⑵患者的双亲表型往往正常,但都是致病基因的携带者 ⑶患者的同胞有1/4的发病风险,患者表型正常的同胞中有2/3的可能 为携带者;患者的子女一般不发病,但肯定都是携带者 ⑷系谱中患者的分布往往是散发的,通常看不到连续传递现象,有时 在整个系谱中甚至只有先证者一个患者 ⑸近亲婚配时,后代的发病风险比随机婚配明显增高。这是由于他们 有共同的祖先,可能会携带某种共同的基因 由性染色体的基因所决定的性状在群体分布上存在着明显的性别差异。如果决定一种遗传病的致病基因位于X染色体上,带有致病基因的女性杂合子即可发病,称为X连锁显性(XD)遗传病 男性只有一条X染色体,其X染色体上的基因不是成对存在的,在Y染色体上缺少相对应的等位基因,故称为半合子,其X染色体上的基因都可表现出相应的性状或疾病。 男性的X染色体及其连锁的基因只能从母亲传来,又只能传递给女儿,不存在男性→男性的传递,这种传递方式称为交叉遗传。 X连锁显性遗传的遗传特征 ⑴人群中女性患者数目约为男性患者的2倍,前者病情通常较轻 ⑵患者双亲中一方患病;如果双亲无病,则来源于新生突变 ⑶由于交叉遗传,男性患者的女儿全部都为患者,儿子全部正常;女 性杂合子患者的子女中各有50%的可能性发病 ⑷系谱中常可看到连续传递现象,这点与常染色体显性遗传一致 如果决定一种遗传病的致病基因位于X染色体上,且为隐性基因,即带有致病基因的女性杂合子不发病,称为X连锁隐性(XR)遗传病。(血友病A)X连锁隐性遗传的遗传特征 ⑴人群中男性患者远较女性患者多,在一些罕见的XR遗传病中,往往

医学免疫学人卫第版题库

精心整理 第一章《免疫学概论》练习题 一、单项选择题 1.免疫是指·······························································() A、机体识别和排除抗原性异物的功能 B、机体清除和杀伤自身突变细胞的功能 C、机体清除自身衰老、死亡的组织细胞的功能 D 2 A C 3 A 4 A 5 A 6 A C 7 A C 8 A C 9.关于适应性免疫的特点,下列表述错误的是··································() A、获得性 B、感染早期起主要作用 C、有免疫记忆 D、特异性 10.关于适应性免疫的特点,下列表述错误的是··································() A、可遗传 B、感染后期及防止再感染中起主要作用 C、有免疫记忆 D、特异性 11.关于适应性免疫的特点,下列表述错误的是··································() A、获得性 B、感染后期及防止再感染中起主要作用

C、无免疫记忆 D、特异性 12.属于固有免疫应答的细胞是···············································() A、T淋巴细胞 B、B淋巴细胞 C、NK细胞 D、上皮细胞 13.属于适应性免疫应答的细胞是·············································() A、单核-巨噬细胞 B、中性粒细胞 C、NK细胞 D、T、B淋巴细胞 二、填空题 1.最早接种人痘苗预防天花的国家是。 2.免疫系统由、和组成。 3 4 5 6 7 免疫 1 2 1 A C 2.T A C 3 A、肝脏 B、扁桃体 C、肠系膜淋巴结 D、脾脏 4.既可来源于髓样干细胞,又可来源于淋巴样干细胞的免疫细胞是() A、单核-巨噬细胞 B、中性粒细胞 C、NK细胞 D、树突状细胞5.淋巴结的胸腺依赖区是····················································() A、皮质区 B、髓质区 C、浅皮质区 D、深皮质区 6.脾脏的胸腺依赖区是······················································() A、红髓 B、白髓 C、脾小结 D、PALS

遗传学重点名词解释

Chapter 1 性状(character): 生物体所表现的明显的能够遗传的特征。 单位性状(unit character):一个基因或一组基因所决定的一个性状,作为一个遗传单位进行传导。 相对性状(contrasting character):遗传学中同一单位性状的相对差异。 真实遗传(true-breeding)自带性状永远与亲代性状相同的遗传方式。 纯系(pure line):能够进行真是遗传的品种。 三个假说:(1)遗传因子成对存在(颗粒遗传因子) (2)显隐性(3)分离 表型(phenotype):个体形状的外在表现。 基因型(genotype):决定个体表型的基因形式。 等位基因(allele):一个基因的不同形式,是由突变形成的。 纯合体(homozygote):基因座上有两个相同的等位基因,就这个基因座而言,这种个体或细胞成为纯合体。 杂合体(heterozygote):基因座上有两个不同的等位基因。 侧交:杂交产生的后代与隐性纯合亲本交配以检测自带个体基因型。 自由组合定律:配子形成后,同一基因的等位基因分离,非等位基因自由组合。 染色体(chromosome)常由脱氧核糖核酸、蛋白质和少量核糖核酸组成的线状或棒状物,是生物主要遗传物质的载体。 染色质(euchromatin):用碱性染料染色时着色浅的部位,是构成染色体DNA 的主体,在间期呈高度分散状态。 异染色质(heterochromatin):用碱性染色质染色时着色深的部位,又分为组成型染色质. 组成型染色质(constitutive heterochromatin): 在染色体上的大小和位置恒定,在间期时,仍保持螺旋化。如着丝粒。 兼性异染色体(facultative heterochromatin.): 起源于常染色质,在个体发育的特定阶段可转变成异染色质。如x染色体失活。 着丝粒(centromeres):每个染色体上都有一个高度浓缩的区域。 核型分析(karyotype):是指某一物种染色体的组成,通常用中期染色体的照片,铵长臂的大小或总的长度排列,用来表明物种的特点以及和亲缘种之间的进化关系。 带型(banding patterns):用特定的染料对染色体染色后,会出现深浅不一的条带,条带的位置和大小既有高度的染色体的专一性。 端粒(tele mere): 真核生物染色体的末端,有许多成串短的序列组成。 端粒的功能:稳定染色体末端结构,防止染色体间末端连接,并可补偿前导链和后滞链5’末端在消除RNA 引物后造成的空缺。 细胞周期(cell cycle):一次分裂的开始到下一次分裂的开始的这段时间。 姐妹染色单体(sister chromosome):染色体复制,着丝粒的DNA也复制,尽管仅能看到一个着丝粒。复制了的染色体是两个完全一样的拷贝。 G1 S关卡:检测细胞大小和DNA是否受损伤。 G2 M关卡:细胞进入有丝分裂之前检测细胞的生理状态。(如果DNA复制

医学免疫学人卫第8版题库

第一章《免疫学概论》练习题 一、单项选择题 1.免疫是指·······························································() A、机体识别和排除抗原性异物的功能 B、机体清除和杀伤自身突变细胞的功能 C、机体清除自身衰老、死亡的组织细胞的功能 D、机体对病原微生物的防御 2.免疫对机体是····························································() A、有害的 B、有利的 C、有利也有害 D、正常条件下有利,异常条件下有害 3.机体抵抗病原微生物感染的功能称为········································() A、免疫监视 B、免疫自稳 C、免疫耐受 D、免疫防御 4.机体免疫系统识别和清除突变细胞的功能称为································() A、免疫监视 B、免疫自稳 C、免疫耐受 D、免疫防御 5.机体免疫系统对自身正常成分耐受,清除衰老、损伤细胞的功能称为··············() A、免疫监视 B、免疫自稳 C、免疫耐受 D、免疫防御 6.关于固有免疫的特点,下列表述错误的是·····································() A、可遗传 B、感染早期起主要作用 C、无免疫记忆 D、特异性 7.关于固有免疫的特点,下列表述错误的是·····································() A、可遗传 B、感染后期及防止再感染中起主要作用 C、无免疫记忆 D、非特异性 8.关于固有免疫的特点,下列表述错误的是·····································() A、可遗传 B、感染早期起主要作用 C、有免疫记忆 D、非特异性 9.关于适应性免疫的特点,下列表述错误的是··································() A、获得性 B、感染早期起主要作用 C、有免疫记忆 D、特异性 10.关于适应性免疫的特点,下列表述错误的是··································() A、可遗传 B、感染后期及防止再感染中起主要作用 C、有免疫记忆 D、特异性 11.关于适应性免疫的特点,下列表述错误的是··································() A、获得性 B、感染后期及防止再感染中起主要作用 C、无免疫记忆 D、特异性 12.属于固有免疫应答的细胞是···············································()

(完整word版)医学遗传学重点归纳

第一章人类基因与基因组 第一节、人类基因组的组成 1、基因是遗传信息的结构和功能单位。 2、基因组是是细胞内一套完整遗传信息的总和,人类基因组包含核基因组和线粒体基因组 单拷贝序列串联重复序列 按DNA序列的拷贝数不同,人类基因组高度重复序列 反向重复序列 重复序列短分散核元件 中度重复序列 长分散核元件 3、多基因家族是指由某一祖先经过重复和所变异产生的一组基因。 4、假基因是基因组中存在的一段与正常基因相似但不能表达的DNA序列。 第二节、人类基因的结构与功能 1、基因的结构包括:(1)蛋白质或功能RNA的基因编码序列。(2)是表达这些结构基因所需要的启动子、增强子等调控区序列。 2、割裂基因:大多数真核细胞的蛋白质编码基因是不连续的编码序列,由非编码序列将编码序列隔开,形成割裂基因。 3、基因主要由外显子、内含子、启动子、增强子、沉默子、终止子、隔离子组成。 4、外显子大多为结构内的编码序列,内含子则是非编码序列。 5、每个内含子5端的两个核苷酸都是GT,3端的两个核苷酸都是AG,这种连接方式称为GT--AG法则。 6、外显子的数目等于内含子数目加1。 7、启动子分为1类启动子(富含GC碱基对,调控rRNA基因的编码)、2类启动子(具有TATA 盒特征结构)、3类启动子(包括A、B、C盒)。 第三节、人类基因组的多态性 1、人类基因组DNA多态性有多种类型,包括单核苷酸多态性、插入\缺失多态性、拷贝数多态性。 第二章、基因突变 突变是指生物体在一定内外环境因素的作用和影响下,遗传物质发生某些变化。基因突变即可发生在生殖细胞,也可发生在体细胞。 第一节、基因突变的类型

遗传学复习考试思考题重点汇总及答案

1、医学遗传学概念 答:是研究人类疾病与遗传关系的一门学科,是人类遗传学的一个组成部分。 2、遗传病的概念与特点 答:概念:人体生殖细胞(精子或卵子)或受精卵细胞,其遗传物质发生异常改变后所导致的疾病叫遗传病。 特点:遗传性,遗传物质的改变发生在生殖细胞或受精卵细胞中,包括染色体畸变和基因突变,终生性,先天性,家族性。 3、等位基因、修饰基因 答:等位基因:是位于同源染色体上的相同位置上,控制相对性状的两个基因。 修饰基因:即次要基因,是指位于主要基因所在的基因环境中,对主要基因的表达起调控作用的基因,分为加强基因和减弱基因。 4、单基因遗传病分哪五种?分类依据? 答:根据致病基因的性质(显性或隐性)和位置(在染色体上的),将单基因遗传病分为5种遗传方式。常染色体显性遗传病,常染色体隐性遗传病,X连锁隐性遗传病,X连锁显性遗传病,Y连锁遗传病。 5、什么是系谱分析?什么是系谱? 答:指系谱绘好后,依据单基因遗传病的系谱特点,对该系谱进行观察、分析和诊断遗传方式,进而预测发病风险,这种分析技术或方法称为系谱分析。 6、为什么AD病多为杂合子? 答:1遗传:患者双亲均为患者的可能性很小,所以生出纯合子的概率就很小2突变:一个位点发生突变的概率很小,两个位点都突变的概率更小 7、AD病分为哪六种?其分类依据?试举例。 答:①完全显性遗传:杂合子(Aa)表现型与患病纯合子(AA)完全一样。例:家族性多发性结肠息肉,短指 ②不完全显性遗传:杂合子(Aa)表现型介与患病纯合子(AA)和正常纯合子(aa)之间。例:先天性软骨发育不全(侏儒) ③共显性遗传:一对等位基因之间,无显性和隐性的区别,在杂合子时,两种基因的作用都表现出来。例:人类ABO血型,MN血型和组织相容性抗原 ④条件显性遗传:杂合子在不同条件下,表型反应不同,可能显性(发病),也可隐性(不发病),这种遗传方式叫显性遗传,这种遗传现象叫不完全外显或外显不全。例:多指(趾) ⑤延迟显性遗传: 基因型为杂合子的个体在出生时并不发病,一定年龄后开始发病。例:遗传性小脑性运动共济失调综合征,遗传性舞蹈病 ⑥从(伴)性显性遗传:位于常染色体上的致病基因,由于性别差异而出现男女分布比例或基因表达程度上的差异。例:遗传性斑秃 8、试述不完全显性遗传和不完全外显的异同。 相同点:1、都属于AD,具有AD的共同特点; 2、患者主要为杂合子; 不同点:1、不完全显性遗传是一种遗产方式;不完全外显是一种遗传现像; 2、不完全显性遗传中杂合子全部都发病,但病情轻于患病纯合子; 不完全外显中杂合子部分发病,只要发病,病情与患病纯合子一样; 9、试述AR病的特点 答:1、患者多为Aa婚配所出生的子女,患者的正常同胞中2/3为携带者; 2、病的发病率虽不高,但携带者却有相当数量;

医学遗传学(本科)期末复习资料

医学遗传学本科期末复习资料 一、名词解释 1、核型:是指一个体细胞中的全部染色体,按其大小、形态特征顺序排列所构成的图象。 2、基因表达:是指生命过程中,储存在基因中的遗传信息,通过转录和翻译,转变成蛋白质或酶分子,形成生物体特定性状的过程。 3、转录:是以DNA为模板,在RNA聚合酶作用下合成RNA的过程。 4、基因诊断:利用DNA 重组技术在分子水平上检测人类遗传病的基因缺陷以诊断疾病。 5、不规则显性:是指带有显性基因的杂合体由于某种原因不表现出相应症状,因此在系谱中出现隔代遗传的现象。 6、等位基因:是指位于一对同源染色体上相同位点的不同形式的基因。 7、错义突变:是指DNA中单个碱基置换后,其所在的三联体遗传密码子变成编码另一种氨基酸的遗传密码子,导致多肽中相应的氨基酸发生改变。 8、近婚系数:指近亲婚配的两个个体可能从共同祖先得到同一基因,婚后又把同一基因传给他们的子女的概率。 9、罗伯逊易位:又称着丝粒融合。当两条近端着丝粒染色体在着丝粒或其附近某一部位发生断裂后,二者的长臂构成一大的染色体,而其短臂构成一个小的染色体,这种易位即为罗伯逊易位。 10、联会:在减数分裂前期I 偶线期,同源染色体互相靠拢,在各相同的位点上准确地配对,这个现象称为联会。 11、分子病:是指基因突变造成蛋白质分子结构或合成量异常所引起的疾病。 12、减数分裂:是生殖细胞精子或卵细胞发生过程中进行的一种特殊有丝分裂,只发生在精子和卵细胞发生的成熟期。 13、遗传性酶病:由于基因突变导致酶蛋白缺失或酶活性异常所引起的遗传性代谢紊乱,称为遗传性酶病。 14、携带者:表型正常但带有致病基因的杂合子,称为携带者。 15、基因:是特定的DNA片段,带有遗传信息,可通过控制细胞内RNA和蛋白质(酶)的合成,进而决定生物的遗传性状。 16、系谱:是指某种遗传病患者与家族各成员相互关系的图解。 17、基因治疗:是指运用DNA重组技术修复患者细胞中有缺陷的基因,使细胞恢复正常功能,达到治疗疾病的目的。 18、断裂基因:指编码序列不连续,被非编码序列分隔成嵌合排列的断裂形式的基因。 19、交叉遗传:X连锁遗传中男性的致病基因只能从母亲传来,将来只能传给女儿,不存在男性向男性的传递,称为交叉遗传。 20、细胞周期:即细胞增值周期,是指细胞从一次分裂结束时开始,到下一次分裂结束时为止所经历的全过程。 21、外显率:是指一定基因型的个体在特定环境中形成相应表现型的百分率。 22、假二倍体:在染色体畸变时,有时核型中某些号染色体数目偏离正常,其中有的增加,有的减少,而增加和减少的染色体数目相等,或某些染色体的结构存在异常,这样,染色体的总数虽为二倍体,但这不是正常的二倍体,则称为假二倍体。 23、孟德尔群体:生活在一定空间范围内,能够相互交配并能产生具有生殖能力的后代的许多同种个体,称为孟德尔群体。 24、亲缘系数:指近亲的两个个体在一定基因座位上具有共同祖先的同一等位基因的概率,又称血缘系数。 25、基因频率:指群体中某一基因座位上某特定基因出现的数目与该位点上可能出现的全部等位基因总数的比率。 二.填空题(25道) 1.人类近端着丝粒染色体的随体柄部次缢痕与核仁_形成有关,称为核仁组织区。 2.Xq27代表X染色体长臂2区7带。核型为46,XX,del(2)(q35)的个体表明其体内的染色体发生了末端缺失。 3.基因突变可导致蛋白质发生结构(质)或数量(量)变化。

《医学免疫学》人卫第9版教材--高清彩色_41-80

第四章抗体31 解,产生不同的水解片段(见水解片段部分)。不同类或亚类的Ab絞链区不尽相同,例如IgGl、IgG2、 IgG4和IgA的絞链区较短,而IgG3和IgD的絞链区较长。IgM和IgE无皎链区。 二、抗体的辅助成分 除上述基本结构外,某些类别的Ab还含有其他辅助成分,如J链和分泌片。 (—)J 链 J链(joining chain)是由124个氨基酸组成,富含半胱氨酸的酸性糖蛋白(图4-3),分子量约15kD, 由浆细胞合成,主要功能是将单体Ab分子连接为二聚体或多聚体。2个IgA单体由J链连接形成二 聚体,5个IgM单体由二硫键相互连接,并通过二硫键与J链连接形成五聚体。IgGJgD和IgE常为单 体,无J链。 IgM 分泌型IgA 图4-3抗体分子的J链和分泌片 分泌型IgA(SIgA)二聚体和IgM五聚体均由J链将其单体Ab分子连接为二聚体或五聚体。分泌片(SP,图中橙色球 组成的肽链)为一含糖肽链,是多聚免疫球蛋白受体(plgR)的胞外段,其作用是辅助SIgA由黏膜固有层,经黏膜上 皮细胞转运,分泌到黏膜表面,并保护S I g A皎链区免遭蛋白水解酶降解 (二)分泌片 分泌片(secretory piece, SP)又称分泌成分(secretory component, SC )(图4-3),是分泌型IgA 分 子上的辅助成分,分子量约为75kD,为含糖的肽链,由黏膜上皮细胞合成和分泌,并结合于IgA二聚 体上,使其成为分泌型IgA(SIgA)。分泌片具有保护SIgA.的饺链区免受蛋白水解酶降解的作用,并 介导SIgA二聚体从黏膜下通过黏膜上皮细胞转运到黏膜表面。 三、抗体分子的水解片段 在一定条件下,抗体分子肽链的某些部分易被蛋白酶水解为各种片段(图 4.4)。木瓜蛋白酶(papain)和胃蛋白酶(pepsin)是最常用的两种蛋白水解酶,借此可研究Ab的结构和功能,分离和纯 化特定的Ab多肽片段。 (一)木瓜蛋白酶水解片段 木瓜蛋白酶从钗链区的近N端,将Ab水解为2个完全相同的抗原结合片段(fragment of antigen binding,Fab)和1 个可结晶片段(fragment crystallizable,Fc)(图4-4)。Fab 由V L^C L和V H^C H 1 结构域 组成,只与单个抗原表位结合(单价)o Fc由一对C/和C H3结构域组成,无抗原结合活性,是Ab与 效应分子或细胞表面Fc受体相互作用的部位。 (二)胃蛋白酶水解片段 胃蛋白酶在絞链区的近C端将Ab水解为1个F(ab>片段和一些小片段pFc,(图4-4)o

协和医学遗传学基础考试总结(个人整理)

1.医学遗传学(Medical Genetics):是遗传学与医学相结合而产生的一门研究人类病理性状的遗传规 律和物质基础的一门学科。其研究对象为人类遗传病,研究遗传病发生机理、传递方式、诊断、治疗、预后、再发风险和预防方法,从而控制遗传病在一个家庭中的再发,降低它在人群中的危害,提高人口素质。 2.遗传病(inherited disease):由于遗传物质改变导致的人类疾病 3.基因(Gene):是位于染色体上具有遗传效应的DNA片段 4.基因型(Genotype):个体一定基因位点上等位基因的组成 5.表现型(phenotype):一定基因型的生物体所表现的形态、机能、行为和生化等表现 6.遗传病的分类: 根据在疾病形成过程中遗传因素和环境因素所起作用的大小,将人类疾病分为四大类: 1.遗传因素决定发病,看不到特定环境因素的作用,如短指(趾) 2.基本由遗传因素决定发病,但需要一定的环境因素诱发,如苯丙酮尿症等 3.遗传因素和环境因素都起作用 4.基本上是环境因素决定发病,与遗传因素无关。 7.遗传病的特征: (1)家族聚集性:遗传病往往表现为家族聚集性,但家族聚集的疾病并非都为遗传病,如坏血病等。 (2)先天性:遗传病多数为先天性疾病,但先天疾病并非都为遗传病,如由于母亲感染风疹病毒引起的胎儿白内障。 (3)遗传物质突变。 (4)垂直传递。 (5)终生性。 细胞分裂周期:连续分裂的细胞,从一次细胞分裂结束开始,到下次细胞分裂结束为止所经历的全过程,叫做一个细胞分裂周期,一个细胞分裂周期所需要的时间叫做细胞周期时间。细胞周期可分为间期和有丝分裂期。 突变Mutation致病突变Disease-causing mutation Exon外显子Intron内含子 核型:一个体细胞中全部染色体系统排列所构成的图像 核型分析:将一个细胞的全部染色体按照染色体的大小、着丝粒位置及其他特征配对、排列,以确认其是否具有正常的核型组成的过程。 染色体组(chromosome set):人类等二倍体生物的每一个正常的精子或卵子的全部染色体。 亚二倍体(hypodiploid): 染色体数目少于二倍体数。缺失一条染色体的那对染色体将构成单体型(monosomy)。典型病例为45,X的女性性腺发育不全(Turner综合征)。 相互易位(平衡易位)(reciprocal translocation):两条染色体发生断裂后形成的两个断片,相互交换连接而形成两条衍生的染色体。 罗伯逊易位(robertsonian translocation):近端着丝粒染色体着丝粒处发生断裂,在着丝粒处重接,也称着丝粒融合(centric fusion)。 1. 三倍体形成的原因? 1)双雄受精(dindry):受精时同时有两个精子入卵受精,可形成69,XXX;69,XXY;69XYY。 2)双雌受精(digyny):卵子发生第二次减数分裂时,次级卵母细胞由于某种原因,其第二极体的那一染色体组没有排出卵外,而仍留在卵内这样的与一个正常的精子受精后,即可形成核型为69,XXX或69,XXY 的受精卵。 2. 四倍体形成的原因? 1)核内复制(endoreduplication): 在一次细胞分裂时,染色体不是复制一次,而是复制两次。每个染色体形成4条,染色体两两平行排列在一起,经过正常的分裂中期、后期和末期后,形成的两个子细胞均为四倍体细胞。 核内复制与四倍体形成是癌细胞较常见的染色体异常特征之一。 2)核内有丝分裂(endomitosis): 是在进行细胞分裂时,染色体正常地复制一次,但至分裂中期时,核膜仍未破裂、消失,也无纺锤丝

相关文档
相关文档 最新文档