文档库 最新最全的文档下载
当前位置:文档库 › 矩阵的有定性及其应用-7页文档资料

矩阵的有定性及其应用-7页文档资料

矩阵的有定性及其应用-7页文档资料
矩阵的有定性及其应用-7页文档资料

矩阵的有定性及其应用

摘 要:

矩阵的有定性是矩阵论中的一个重要概念, 二次型的正定(负定)、半正定(半负定)统称为二次型及其矩阵的有定性,而在本文中,主要讨论阐述的是实矩阵的正定性,半正定性以及它们的实际应用.本文在介绍实矩阵的正定性,半正定性的定义及其判别方法后,简单的举了一些实例来阐述实矩阵正定性及半正定性的应用.全文分三章,第一章,矩阵的正定性及半正定性的定义.在第二章,正定性矩阵和半正定性矩阵的判别方法,第三章,在本文的最后给出了几个正定性矩阵的应用实例.

关键字:矩阵 实矩阵 正定性 半正定性 应用

一、二次型有定性的概念

设P 是一个数域, ij a P ∈, n 个文字12,,,n x x x L 的二次齐次多项式

称为数域P 上的一个n 元二次型, 简称二次型. 当ij a 为实数时, 称f 为实二次型. 当ij a 为复数时, 称f 为复二次型. 如果二次型中只含有文字的平方项, 即 称f 为标准型.

定义1二次型12(,,,)n f x x x =L 可唯一的表示成

其中, 12(,,,)n x x x x '=L , ()ij n n A a ?=为对称矩阵, 称上式二次型的矩阵形式, 称A 为二次型的矩阵(都是对称矩阵), 称A 的秩为二次型f 的秩. 定义2 具有对称矩阵A 之二次型,AX X f T =

(1) 如果对任何非零向量X , 都有0>AX X T (或0

(2) 如果对任何非零向量X , 都有0≥AX X T (或0≤AX X T )

成立,且有非零向量0X ,使000=AX X T

,则称AX X f T =为半正定(半负定)二次型,矩阵A 称为半正定矩阵(半负定矩阵).

二次型的正定(负定)、半正定(半负定)统称为二次型及其矩阵的有定性.不具备有定性的二次型及其矩阵称为不定的.

二次型的有定性与其矩阵的有定性之间具有一一对应关系.因此,二次型的正定性判别可转化为对称矩阵的正定性判别.

二、矩阵正定性及半正定性的一些判定方法

1)矩阵正定性的一些判别方法

定理 1设A 为正定矩阵,若B A ≌)(合同与B A ,则B 也是正定矩阵.

定理2 对角矩阵),,,(21n d d d diag D Λ=正定的充分必要条件是),,2,1(0n i d i Λ=>. 定理3 对称矩阵A 为正定的充分必要条件是它的特征值全大于零. 定理4 A 为正定矩阵的充分必要条件A 的正惯性指数.n p =

定理5 矩阵A 为正定矩阵的充分必要条件矩阵是:存在非奇异矩阵C , 使C C A T =.即E A 与合同。

推论1 若A 为正定矩阵, 则0||>A .

定理6 秩为r 的n 元实二次型AX X f T =, 设其规范形为 则:

(1) f 负定的充分必要条件是,0=p 且.n r = (即负定二次型,其规范形为

2

2221n z z z f ----=Λ)

(2) f 半正定的充分必要条件是.n r p <= (即半正定二次型的规范形为n r z z z f r <+++=,22

221Λ)

(3) f 半负定的充分必要条件是,0=p .n r < (即n r z z z f r <----=,22

2

21Λ) (4) f 不定的充分必要条件是.0n r p ≤<< (即22122221r p p z z z z z f ---+++=+ΛΛ)

定义2 n 阶矩阵)(ij a A =的k 个行标和列标相同的子式

称为A 的一个k 阶主子式.而子式

称为A 的k 阶顺序主子式.

定理7 n 阶矩阵)(ij a A =为正定矩阵的充分必要条件是A 的所有顺序主子式),,2,1(0||n k A k Λ=>.

注:(1) 若A 是负定矩阵,则A -为正定矩阵,。

(2) A 是负定矩阵的充要条件是:).,,2,1(,0||)1(n k A k k Λ=>-其中k A 是A 的k 阶顺序主子式.

(3) 对半正定(半负定)矩阵可证明以下三个结论等价: a. 对称矩阵A 是半正定(半负定)的;

b. A 的所有主子式大于(小于)或等于零;

c. A 的全部特征值大于(小于)或等于零. 以上是几种常规的判别正定矩阵的方法,在这里还要介绍一种利用矩阵分解法判定矩阵正定性的方法:

先给出几个引理及其证明, 然后在此基础上逐步得到一种形式较简便的判断实对称矩阵是否正定的方法, 并推出了将n 阶实对称矩阵A 分解为特殊三角矩阵与对角矩阵的乘积的具体计算公式。

引理 1 任一正定对称矩阵的顺序主子矩阵也是正定对称矩阵。

证:

设 n 阶正定实对称矩阵为A,它的s 阶顺序主子矩 阵为A S (1≤s ≤n)易知 A S 是一对称方阵。再设X 是任一s 维零实向量, N 维向量 Y=[X',O'].易X'A S X=Y'AY 因为A 是正定实对称矩阵并且Y ≠0,从而有X ‘A S X=Y ’AY>0又X 是任一s 维非零实向量,所以知A S 也是正定对称矩阵。 引理 2 设 s(或t)特殊下(或上) 三角方阵 P 左(或右)

乘一个s×t 阶矩阵A 得矩阵B,则矩阵A, B 的r 阶(1≤r ≤ sin( m, n) )顺序主子式相等。

引理 3 设n 阶对称矩阵A 的顺序主子式均不为零,则存在特殊下三角方针P 和主对角线上元素均不为零的对角矩阵D 使得A=PDP'

由以上三个引理立刻得到下面非常有用的结论:

定理 n 阶实对称矩阵A 正定的充要条件是存在特殊上或下三角方阵P, 主对角线上元素均为正数的对角矩阵D,使得A=PDP'

证明 先证必要性.因为A 是n 阶正定实对称矩阵,由引理1知,它的各阶顺序主子矩阵也是正定对称矩阵.又任一正定实对称矩阵都是非奇异的,所以A 的各阶顺序主子式均不为零并且均大于零。

由引理3知,对于对称矩阵A 一定存在特殊下三角方阵P,主对角线上元素均不为零的对角矩阵D,使得A=PDP'

并由引理2知D 的主对角线上所有元素d i >0( i=1,2 ,n)

再证充分性.假设对n 阶实对称矩阵A,存在一特殊下三角方阵P 以及主对角一上元素均为正数的对角矩阵D,使得A=PDP'

则因D 的主对角线上元素d i >0( i=1,2,… ,n),从而由引理2知A 的各阶顺序主子式均大一地零,所以知A 是一n 阶正定实对称矩阵。

由此定理可得到一种判定一 n 阶实对称矩阵A 是否正定的方法:

将 A 分解成上述定理中形式, 即 A=PDP'然后, 观察 D 的主对角线是否全为正数.若是, 则 A 正定;又由引理2知,若

D 的主对角线上元素全为负数, 则 A 负定。

2)矩阵半正定性的一些判别方法

1.n 阶对称矩阵A 是半正定矩阵的充分必要条件是A 的正惯性指数等于它的秩。 2. n 阶对称矩阵A 是半正定矩阵的充分必要条件是A 的特征值全大于等于零,但至少有一个特征值等于零。

3.n 阶对称矩阵A 是负定矩阵的充分必要条件是A 的各阶主子式全大于等于零,但至少有一个主子式等于零。

注:3中指的是主子式而不是顺序主子式,实际上,只有顺序主子式大于等于零并不能保证A 是半正定的。

三、矩阵正定性及半正定性的应用

实矩阵的正定性及半正定性在实际生活中及理论研究中都有着重要的实际应用,以下是

对实矩阵正定性及半正定性应用的一些简单介绍:

1)一些基本例子

例1 设M 是n 阶实对称矩阵, 则必存在正实数t, 使得tI+M 为正定阵,其中I 是单位矩阵。 证明:矩阵正定的充要条件:

对任意x 不等于0向量,有X'MX>0,X'(TI+M)X = TX'X+X'MX ,

在所有的X 中选一个X,使X'MX 的值最小,X'MX = -MAX,其中 MAX>0,而这时对应的X'X 的值为K,且K 肯定大于0,

又K,MAX 都是常数,则必存在常数T,使TK-MAX>0,即X'(TI+M)X=TX'X+X'MX>0 故TI + M 正定. 例 2 设二次型

问λ取何值时, f 为正定二次型? 解 f 的矩阵为

f 正定的充要条件是A 的顺序主子式全大于零. 事实上, A 的顺序主子式为: 于是, f 正定的充要条件是02>A 且03>A . 联解不等式组: 可得12<<-λ.

当12<<-λ时, f 正定.

2)在实际问题中经常要遇到求三元以上函数的极值问题,对此可由二次型的正定性加以解决.

定义3 设n 元函数12()(,,)n f X f x x x =L 在12(,,,)T n

n X x x x R =∈L 的某个邻域内有一

阶、二阶连续偏导数。 记1

2()()()(),,,n f X f X f X f X x x x ??

????=

??????L , ()f X ?称为函数()f X 在点12(,,,)T n X x x x =L 处的梯度.

定义4 满足0()0f X ?=的点0X 称为函数()f X 的驻点.

定义5 2222

112

122

22

21

2

()()

()()()()()

()n i j n n

n n n

f X f X f X x x x x x f X H X x x f X f X f X x x x x x ???

??? ?????? ???

? ?==

? ??? ?????? ?

????????

L

M M M L

称为函数12()(,,)n f X f x x x =L 在点n

X R ∈处的黑塞矩阵。显然()H X 是由()f X 的2n

个二阶偏导数构成的n 阶实对称矩阵.

定理8(极值存在的必要条件) 设函数()f X 在点000012(,,,)T

n X x x x =L 处存在一阶偏导数,

且0X 为该函数的极值点,则0()0f X ?=.

定理9(极值的充分条件) 设函数()f X 在点0n

X R ∈的某个邻域内具有一阶、二阶连续偏导数,且000012()()()(),,,0n f X f X f X f X x x x ??

????==

??????

L 则 : (1)当0()H X 为正定矩阵时,0()f X 为()f X 的极小值; (2)当0()H X 为负定矩阵时,0()f X 为()f X 的极大值; (3)当0()H X 为不定矩阵时,0()f X 不是()f X 的极值。

应注意的问题:

利用二次型的正定性来判断多元函数的极值虽然是一个很好的方法,但也有一定的局限性,因为充分条件对正定和负定的要求是很严格的,若条件不满足,那结论就不一定成立. 例3 求三元函数2

2

2

(,,)23246f x y z x y z x y z =++++-的极值. 解 先求驻点,由

220440660x y z f x f y f z ?=+=?

=+=??

=-=? 得1,1,1x y z =-=-=

所以驻点为0(1,1,1)P --.

再求(Hessian)黑塞矩阵

因为2,0,0,4,0,6xx xy xz yy yz zz f f f f f f ======,

所以200040006H ????=??????

,可知H 是正定的,所以(,,)f x y z 在0(1,1,1)P --点取得极小值:(1,1,1)6f --=-.

当然,此题也可用初等方法222

(,,)(1)2(1)3(1)6f x y z x y z =++++--求得极小值6-,

结果一样.

3)控制系统稳定性与正定矩阵

稳定性是控制系统最重要的问题,也是对系统最起码的要求。1877年Routh,1895年Hurwitz 分别研究了系统的稳定性与特征方程系数的关系,并分别给出了线性系统稳定性的代数判据, 至今仍有广泛应用。

若系统特征方程为

a n s n + a n - 1 s n - 1 +…+ a 1 s + a 0= 0,则系统的 Hurwitz 矩阵H 由特征方程的系数按下述规则构成:主对角线上元素为特征方程自a n - 1至a 0的系数,每行以主对角线上的系数为准,若向左,则系统的注脚号码一次下降,若向右,系数的注脚号码则一次上升,注脚号码若大于n 或者小于零,此时系数为0.

Hurw itz 判据为:系统稳定的充分必要条件是a n > 0的情况下,对角线上所有顺序主子式均大于零。当系统的Hurwitz 矩阵的阶数n 较大时,应用Hurwitz 判据比较麻烦,故它常应用于n 较小的场合。在这里我们改进了Hurwitz 判据 ,避免了计算Hurwitz 矩阵所有的顺序主子式,使其对于较大的n 也是很方便的。

4)正定矩阵在三维空间里的图形变换应用

正定矩阵在对三维空间里的图形进行线性变换时不改变图形的形状,这就是它的最大意义例如:任意一个向量x ,跟他垂直的超平面把空间分成两部分,一部分和x 在同一侧,即满足和x 的内积为正的那侧,一部分在异侧,内积为负。由定义,正定的线性变换把任意一个向量x 都变到x 的同侧。如果它有实特征值,必定是正数,否则的话它会把这特征向量变到另侧。

一个线性变换把一组幺正基e1,...,en 变到另一组向量v1,...,vn ,这n 个新向量的端点和原点一起构成一个多面体。这多面体的体积就是线性变换的行列式。对正定变换来说,其行列式为正,所以这个多面体非退化,且v1,...,vn 确定的定向和e1,...,en 确定的定向相同。补充:不会保持形状不变.保持不变的必须是等距,就是说,必须是正交变换O(n).正定变换一般最常见的情况是正定对称变换.正定对称变换最常见的情况是用来定义内积.即定义 = x'Ay 为x,y 的内积.欧氏空间的内积用I 来定义,即=x'y 。

5)利用半正定二次型的性质证明不等式

定理10 二次型半正定的充分必要条件是它的标准型的所有系数都是非负的.

证明 充分性 设222

121122(,,,)n n n f x x x a x a x a x =+++L L . 若12,,,0n a a a ≥L ,则

12(,,,)0n f x x x ≥L , 即二次型是半正定的.

必要性 若二次型是半正定的, 而对于某个i 有0i a <, 则令10,η=20,,η=L 1i η=

,0n η=L 这时可以找到变量12,,,n x x x L 的一组适当值12,,,n x x x '''L ,使得

则与此假设矛盾,所以0,1,2,,i a i n ≥=L . 定理

11 设实二次型12(,,,)T

n f x x x X AX =L , 若P 为实可逆方阵

12(,,,)()T T n g y y y Y P AP Y =L ,则12(,,,)T n f x x x X AX =L 半正定等价于12(,,,)()T T n g y y y Y P AP Y =L 半正定; 换句话说, 经过非退化线性变换后, 半正定的二

次型仍然是半正定的.

证明 由X PY =有1

Y P X -=, 并且易知00X Y ≠≠等价于, 于是, 对任意的0Y ≠, 则0X ≠, 因此 则12(,,,)n g y y y L 半正定.

反之, 10,0X Y P X -?≠=≠, 因此, ()()()0T T T T

X AX RY A RY Y P AP Y ==≥. 则12(,,,)n g x x x L 半正定.

定义6 形如子式

的K 级子式称为矩阵()ij n n A a ?=的K 级主子式, 其中121k i i i n ≤≤≤≤≤L . 定理11实二次型12(,,,)n f x x x L =11

n n

T ij i

j

i j a x x

X AX ===∑∑半正定的充要条件是矩阵A 的一

切K 级主子式非负.

证明 必要性 设二次型12(,,,)n f x x x L 11

n

n

ij i

j

i j a x x

===

∑∑是半正定的, 则存在对角矩阵

T D C AC =. 其中C 是变二次型的标准型的变量变换矩阵, 12(,,,)n D diag a a a =L . 再

由定理1知, 0i a ≥. 因此, 2

12det det det det (,,,)(det )0T n A B D B a a a B ==≥L . 又

已知其中1

B C -=, 同时, 若二次型12(,,,)n f x x x L 是半正定的, 则所有二次型

11,(,,)(0,0,,0,0,0)k k k i i i i f x x f x x =L 都是半正定的, 因此所有k 级主子式非负.

充分性 已知A 的一切k 级主子式非负, 设1A 为A 的I 级顺序主子式, 则对于任意正实数

ε, 有

111212122211

2

l l l l ll a a a a a a A E a a a εεεε

+++=

+L L M M L M L

(2.4.1)

其中(1)k a k l ≤≤.由(2.4.1)式知, 0l A E ε+>, 又1k n ≤≤, 所以矩阵A E ε+的一切顺序主子式全都大于零, 所以矩阵A E ε+是正定矩阵.

设λ为A 的特征值, 则0A E λ-=, 所以()0A E E ελε+-+=,所以, λε+是矩阵

A E ε+的特征值, 因为矩阵A E ε+是正定矩阵, 所以, 0λε+>, 取δ为任意小的正数, 则0λ≥, 再根据定理: 矩阵A 是半正定的充要条件是A 的特征值非负. 所以, A 为半正

定矩阵.

6)利用二次型半正定性证明不等式.

其证明思路是: 首先构造二次型, 然后利用二次型半正定性的定义或等价条件, 判断该二次型(矩阵)为半正定, 从而得到不等式.

例3(Cauchy 不等式)设,(1,2,,)i i a b i n =L 为任意实数, 则 证明 记2

2

222121

2

1

122

11

1

1

(,)()

()2()()n

n n n

i i i

i i i i i i i f x x a x b x a x a b x x b x =====

+=++∑∑∑∑ 因为对于任意12,x x , 都有12(,)0f x x ≥, 故关于12,x x 的二次型12(,)f x x 是半正定的.因而定理1知, 该二次型矩阵的行列式大于或等于0, 即 故得2

221

1

1

(

)

()()n

n

n

i i i i i i i a b a b ===≤?∑∑∑.

例4 证明 221

1

()n

n i

i i i n

x

x ==≥∑∑

证明 记22121

1

(,,,)()n

n

n i

i i i f x x x n

x

x X AX =='=-=∑∑L , 其中

将矩阵A 的第2,3,…,n 列分别加到第一列,再将第2,3,…, n 行减去第1行,得

于是A 的特征值为0, ,,,n n L 由定理可知, A 为半正定矩阵, 即二次型是半正定的, 从而得12(,,,)0n f x x x ≥L , 即

结论得证.

例5 设,,αβγ是一个三角形的三个内角, 证明对任意实数,,x y z ,都有

证明 记222

()2cos 2cos 2cos f X X AX x y z xy xz yz αβγ'

==++---, 其中1

cos cos (,,),cos 1cos ,,cos cos()cos cos 1X x y z A αβαγαβγπγαββγ--????'==--++==-+??

??--??

对A 做初等行变换得: A ~1cos cos 0sin sin 000αβαβ--????-??

????

, 于是A 的特征值为0,

1, sin α, 从而得二次型()f X 是半正定的, 即对于任意实数,,x y z ,()f X 0≥, 得证. 例6 设A 为n 阶半正定矩阵, 且A 0≠, 证明1A E +>.

证明 设A 的全部特征值为(1,2,,)i i n λ=L , 则A E +的全部特征值为

1i λ+(1,2,,)i n =L . 因为A E +为实对称矩阵, 所以存在正交矩阵T , 使得

由于A 为半正定矩阵, 且0A ≠, 则A E +是半正定的, 且其中至少有一个00i λ>, 同时

至少有一个等于零. 故0

1

(1)11n

i

i i A E λλ

=+=

+≥+>∏, 结论得证.

参考文献

[1] 王萼方《高等代数》(第三版)高等教育出版社

[2] 陈公宁《矩阵理论与应用》北京: 高等教育出版社, 1990

[3] 陈大新《矩阵理论》上海: 上海交通大学出版社, 2019

[4] 孟道骥《高等代数与解析几何》科学出版社

[5] 李宏伟等编《线性代数学习辅导与习题解析》科学出版社

[6] Gene Howard Golub &Charles F. van Loan 《Matrix Computation》

致谢

矩阵理论中的矩阵分析的实际应用论文

矩阵分析在同步捕获性能研究新应用 摘要:该文提出了一种利用概率转移矩阵计算捕获传输函数的方法,通过将以往分析方法中的流程图转换为概率转移矩阵,仅需知道一步转移概率矩阵,利用现代计算机编程语言(如MAPLE,MATLAB等)的符号运算功能,即可得到捕获系统的传输函数:通过对传输函数求导,可计算平均捕获时间。矩阵分析方法可完整地计算出捕获系统的传输函数,可弥补流程图方法在分析传统连续搜索捕获方案的传输函数时所忽略的项;可纠正流程图方法在分 析非连续搜索捕获方案的传输函数时所引起的误差。 关键词:CDMA;矩阵分析;传输函数;流程图;捕获 A Novel Acquisition Performance Evaluation Approach Based on Matrix Analysis Abstract:A novel acquisition performance analysis approach is proposed based on matrix analysis.Given the first step transition probability matrix,the transfer function of acquisition system can be obtained by utilizing the symbol operation function of computer programming such as MAPLE,MATLAB and so on,and the mean acquisition time can be computed by differentiating the transfer function.The transfer function of acquisition system can be computed perfectly by matrix analysis,it not only complements the items neglected in that of conventional serial acquisition scheme but also corrects the error items in that of nonconsecutive acquisition scheme.

信息论基础理论与应用考试题及答案

信息论基础理论与应用考试题 一﹑填空题(每题2分,共20分) 1.信息论研究的目的就是要找到信息传输过程的共同规律,以提高信息传输的 (可靠性)﹑(有效性)﹑保密性和认证性,使信息传输系统达到最优化。 (考点:信息论的研究目的) 2.电视屏上约有500×600=3×510个格点,按每点有10个不同的灰度等级考虑,则可组成5 31010?个不同的画面。按等概计算,平均每个画面可提供的信息量约为(610bit /画面)。 (考点:信息量的概念及计算) 3.按噪声对信号的作用功能来分类信道可分为 (加性信道)和 (乘性信道)。 (考点:信道按噪声统计特性的分类) 4.英文电报有32个符号(26个英文字母加上6个字符),即q=32。若r=2,N=1,即对信源S 的逐个符号进行二元编码,则每个英文电报符号至少要用 (5)位二元符号编码才行。 (考点:等长码编码位数的计算) 5.如果采用这样一种译码函数,它对于每一个输出符号均译成具有最大后验概率的那个输入符号,则信道的错误概率最小,这种译码规则称为(最大后验概率准则)或(最小错误概率准则)。 (考点:错误概率和译码准则的概念) 6.按码的结构中对信息序列处理方式不同,可将纠错码分为(分组码)和(卷积码)。 (考点:纠错码的分类) 7.码C={(0,0,0,0),(0,1,0,1),(0,1,1,0),(0,0,1,1)}是((4, 2))线性分组码。 (考点:线性分组码的基本概念) 8.定义自信息的数学期望为信源的平均自信息量,即(11()log ()log ()()q i i i i H X E P a P a P a =??==-????∑)。

矩阵变换及应用开题报告

鞍山师范学院 数学系13届学生毕业设计(论文)开题报告 课题名称:浅谈矩阵的变换及其应用 学生姓名:李露露 专业:数学与应用数学 班级:10级1班 学号:30 指导教师:裴银淑 2013年12月26日

一、选题意义 1、理论意义: 矩阵是数学中的一个重要内容,是线性代数核心。矩阵的变换是矩阵中一种十分重要的运算,它在解线性方程组求逆矩阵及矩阵理论的探讨中都可起到非常重要的作用。很多复杂、繁琐的问题经过变换都可以化为简单、易于解决的问题。因此,矩阵变换是研究代数问题的一个重要工具。 2、现实意义: 矩阵变换在物理、力学、信号与信息处理、通信、电子、系统、控制、模式识别、土木、电机、航空航天等众多学科中式最富创造性和灵活性,并起着不可代替的作用。 二、论文综述 1、国内外有关研究的综述: 矩阵不仅是个数学学科,而且也是许多理工学科的重要数学工具,因此国内外有许多有关于矩阵的研究。英国数学家西尔维斯特首先使用了“矩阵”一词,他与矩阵论的创立者凯莱一起发展了行列式理论。1858年,凯莱发表了关于矩阵的第一篇论文《矩阵论的研究报告》。自此以后,国内外有了许多关于矩阵的研究。在张贤达所著的《矩阵分析与应用》一书中,就有关于矩阵变换的内容,在第一章中有关于矩阵初等变换的内容,并有初等变换在矩阵方程中的应用,在第四章中也提到了Householder变换和Givens旋转。美国著名的约翰斯.霍普金斯大学的RogerA.Horn和威廉姆和玛丽学院的CharlesR.Johnson联合编著的《矩阵分析》也有关于矩阵变换的内容,此书主要涉及的是矩阵变换的应用。国内外关于矩阵变换的研究都取得了很大的进展,为矩阵知识所涉及的各个领域都作出了巨大贡献。 2 、本人对以上综述的评价:

矩阵论答案

习题 一 1.(1)因 cos sin sin cos nx nx nx nx ?? ? ? -?? cos sin sin cos x x x x ????-??= cos(1) sin(1)sin(1) cos(1)n x n x n x n x ++?? ??-++?? ,故由归纳法知 cos sin sin cos n nx nx A nx nx ?? =??-?? 。 (2)直接计算得4 A E =-,故设4(0,1,2,3)n k r r =+=,则4(1)n k r k r A A A A ==-,即只需算出23,A A 即可。 (3)记J=0 1 0 1 1 0 ?????? ?????????? ,则 , 112211111 () n n n n n n n n n n n n n n i i n i n n i n n n a C a C a C a C a C a A aE J C a J a C a a -----=-????????=+==?? ???????? n ∑。 2.设11 22 (1,0),0 a A P P a A E λλ-??===?? ?? 则由得 2 1112111 1 1 210 0 0 a λλλλλλλ?? ????==?????????????? 1时,不可能。 而由2 112222 0 0 000 0 0 a λλλλλλ?? ????==?????????????? 1时,知1i λ=±所以所求矩阵为1i PB P -, 其中P 为任意满秩矩阵,而 1231 0 1 0 1 0,,0 10 1 0 1B B B -??????===?????? --?????? 。 注:2 A E =-无实解,n A E =的讨论雷同。 3.设A 为已给矩阵,由条件对任意n 阶方阵X 有AX=XA ,即把X 看作2 n 个未知数时线 性方程AX -XA=0有2 n 个线性无关的解,由线性方程组的理论知其系数矩阵为零矩阵,

信息论基础理论与应用考试题及答案

信息论基础理论与应用考试题及答案

信息论基础理论与应用考试题 一﹑填空题(每题2分,共20分) 1.信息论研究的目的就是要找到信息传输过程的共同规律,以提高信息传输的 (可靠性)﹑(有效性)﹑保密性和认证性,使信息传输系统达到最优化。 (考点:信息论的研究目的) 2.电视屏上约有500×600=3×510个格点,按每点有10个不同的灰度等级考虑, 则可组成5 31010?个不同的画面。按等概计算,平均每个画面可提供的信息量约 为(610bit /画面)。 (考点:信息量的概念及计算) 3.按噪声对信号的作用功能来分类信道可分为 (加性信道)和 (乘性信道)。 (考点:信道按噪声统计特性的分类) 4.英文电报有32个符号(26个英文字母加上6个字符),即q=32。若r=2,N=1, 即对信源S 的逐个符号进行二元编码,则每个英文电报符号至少要用 (5)位 二元符号编码才行。 (考点:等长码编码位数的计算) 5.如果采用这样一种译码函数,它对于每一个输出符号均译成具有最大后验概 率的那个输入符号,则信道的错误概率最小,这种译码规则称为(最大后验 概率准则)或(最小错误概率准则)。 (考点:错误概率和译码准则的概念) 6.按码的结构中对信息序列处理方式不同,可将纠错码分为(分组码)和(卷 积码)。 (考点:纠错码的分类) 7.码C={(0,0,0,0),(0,1,0,1),(0,1,1,0),(0,0,1,1)}是((4, 2))线性分组码。 (考点:线性分组码的基本概念) 8.定义自信息的数学期望为信源的平均自信息量,即(11()log ()log ()()q i i i i H X E P a P a P a =??==-????∑)。

矩阵分解及其应用

《线性代数与矩阵分析》课程小论文 矩阵分解及其应用 学生姓名:****** 专业:******* 学号:******* 指导教师:******** 2015年12月

Little Paper about the Course of "Linear Algebra and Matrix Analysis" Matrix Decomposition and its Application Candidate:****** Major:********* StudentID:****** Supervisor:****** 12,2015

中文摘要 将特定类型的矩阵拆解为几个矩阵的乘机称为矩阵的分解。本文主要介绍几种矩阵的分解方法,它们分别是矩阵的等价分解、三角分解、谱分解、奇异值分解和 Fitting 分解等。矩阵的分解理论和方法是矩阵分析中重要的部分,在求解矩阵的特征值、解线性方程组以及实际工程中有着广泛的运用。因此,本文将介绍矩阵等价分解、三角分解、奇异值分解的理论运用以及三角分解的工程运用。 关键词:等价分解,三角分解,奇异值分解,运用

Abstract Many particular types of matrix are split into the product of a matrix of several matrices, which is called decomposition of matrix. In this paper, we introduce some methods of matrix decomposition, which are equivalent decomposition, triangular decomposition, spectral decomposition, singular value decomposition, Fitting decomposition and so on. The decomposition theory and method of matrix is an important part of matrix analysis, which is widely used in solving the characteristic value, solving linear equations and the practical engineering. In this paper, we will introduce the theory of matrix equivalence decomposition, triangular decomposition, singular value decomposition and the engineering application of triangular decomposition. Key words:Equivalent Decomposition, Triangular Decomposition, Singular Value Decomposition, Application

矩阵分析试题中北大学33

§9. 矩阵的分解 矩阵分解是将一个矩阵分解为比较简单的或具有某种特性的若干矩阵的和或乘积,这是矩阵理论及其应用中常见的方法。由于矩阵的这些特殊的分解形式,一方面反映了原矩阵的某些数值特性,如矩阵的秩、特征值、奇异值等;另一方面矩阵分解方法与过程往往为某些有效的数值计算方法和理论分析提供了重要的依据,因而使其对分解矩阵的讨论和计算带来极大的方便,这在矩阵理论研究及其应用中都有非常重要的理论意义和应用价值。 这里我们主要研究矩阵的三角分解、谱分解、奇异值分解、满秩分解及特殊矩阵的分解等。 一、矩阵的三角分解——是矩阵的一种有效而应用广泛的分解法。 将一个矩阵分解为酉矩阵(或正交矩阵)与一个三角矩阵的乘积或者三角矩阵与三角矩阵的乘积,这对讨论矩阵的特征、性质与应用必将带来极大的方便。首先我们从满秩方阵的三角分解入手,进而讨论任意矩阵的三角分解。 定义1 如果(1,2,,)ii a i n = 均为正实数,()(,1,2,1;∈<=- ij a C R i j i n 1,2,),=++ j i i n 则上三角矩阵 1112 1222000?? ? ? = ? ? ?? n n nn a a a a a R a 称为正线上三角复(实)矩阵,特别当1(1,2,,)ii a i n == 时,R 称为单位上三角复(实)矩阵。

定义2如果(1,2,,)ii a i n = 均为正实数,()(,1,2,1;∈>=- ij a C R i j i n 1,2,),=++ j i i n 则下三角矩阵 11212212000?? ? ? = ? ? ?? n n nn a a a L a a a 称为正线下三角复(实)矩阵,特别当1(1,2,,)ii a i n == 时,L 称为单位下三角复(实)矩阵。 定理1设,?∈n n n A C (下标表示秩)则A 可唯一地分解为 1=A U R 其中1U 是酉矩阵,R 是正线上三角复矩阵;或者A 可唯一地分解为 2=A LU 其中2U 是酉矩阵,L 是正线下三角复矩阵。 推论1设,?∈n n n A R 则A 可唯一地分解为 1=A Q R 其中1Q 是正交矩阵,R 是正线上三角实矩阵;或者A 可唯一地分解为 2=A LQ 其中2Q 是正交矩阵,L 是正线下三角实矩阵。 推论2 设A 是实对称正交矩阵,则存在唯一的正线上三角实矩阵R ,使得 =T A R R 推论3设A 是正定Hermite 矩阵,则存在唯一的正线上三角复矩阵R ,使得 =T A R R

矩阵理论与应用(张跃辉)(上海交大)第二章参考答案

第二章习题及参考解答 注:第27题(2)(3)错(可将“证明”改为证明或否定),第28题可不布置。第50题(含)以后属于附加内容,没有参考解答。 1.证明子空间判别法:设U是线性空间V的一个非空子集.则U是子空间??对任 意λ∈F,α,β∈U,有α+β∈U与λα∈U. 证明:必要性是显然的,下证充分性。设U关于加法“+”与数乘均封闭。则U中加法“+”的结合律与交换律以及数乘与“+”的分配律、1α=α均自动成立,因为U?V.由 于U关于数乘封闭,而0=0α∈U,?α=?1α∈U,因此U是子空间。 2.证明子空间的下述性质。(1)传递性:即若U是V的子空间,W是U的子空间,则W 也是V的子空间; (2)任意多个(可以无限)子空间的交集仍是子空间,且是含于这些子空间的最大子空间; 特别,两个子空间U与W的交U∩W仍是子空间. 证明:(1)由子空间判别法立即可得。 (2)由子空间判别法可知任意多个(可以无限)子空间的交集仍是子空间,且若某个子空 间含于所有这些子空间,则该子空间必然含于这些子空间的交。 3.(1)设V是线性空间,U与W是V的两个子空间.证明: dim(U+W)=(dim U+dim W)?dim(U∩W). (2)设V是有限维线性空间.证明并解释下面的维数公式: dim V=max{m|0=V0?V1?···?V m?1?V m=V,V i是V i+1的真子空间} 证明:(1)设dim U=s,dim W=t,dim(U∩W)=r.任取U∩W的一组基α1,α2,···,αr.由于U∩W是U与W的公共子空间,故U∩W的基是U与W的线性无关的向量组,因此 可以扩充成U或W的基.设 α1,α2,···,αr,βr+1,βr+2,···,βs(0.0.1) 与 α1,α2,···,αr,γr+1,γr+2,···,γt(0.0.2) 分别是U与W的基.我们证明 α1,α2,···,αr,βr+1,βr+2,···,βs,γr+1,γr+2,···,γt(0.0.3) 是U+W的一组基.为此需要证明该向量组线性无关,且U+W的任何向量均可由这些向量 线性表示. 设 k1α1+k2α2+···+k rαr+b r+1βr+1+···+b sβs+c r+1γr+1+···+c tγt=0.(0.0.4) 12

矩阵论在电路中的应用

矩阵论在电路分析中的应用 随着科学技术的迅速发展,古典的线性代数知识已不能满足现代科技的需要,矩阵的理论和方法业已成为现代科技领域必不可少的工具。诸如数值分析、优化理论、微分方程、概率统计、控制论、力学、电子学、网络等学科领域都与矩阵理论有着密切的联系,甚至在经济管理、金融、保险、社会科学等领域,矩阵理论和方法也有着十分重要的应用。当今电子计算机及计算技术的迅速发展为矩阵理论的应用开辟了更广阔的前景。因此,学习和掌握矩阵的基本理论和方法,对于工科研究生来说是必不可少的。全国的工科院校已普遍把“矩阵论”作为研究生的必修课。 对于电路与系统专业的研究生,矩阵论也显得尤为重要。本文以电路与系统专业研究生的必修课《电网络分析与综合》为例,讲解矩阵论的重要作用。 在电路分析中,对于一个有n个节点,b条支路的电路图, 每条支路的电压和电流均为未知,共有2b个未知量。根据KCL 我们可以列出(b-1)个独立的方程,根据KVL我们也可以列出 (b-n+1)个独立的方程,根据每条支路所满足的欧姆定律,我 们还可以可以列出b个方程;总共2b个方程要解出b个支路电 流变量和b个支路电压变量。当b的数值比较大时,传统的解数学方程组的方法已经不再适用了,因此我们需要引入矩阵来帮助我们求解电路。 一. 电网络中最基本的三个矩阵图 1 1.关联矩阵

在电路图中,节点和支路的关联性质可以用关联矩阵][ij a A =来表示。 选取一个节点为参考节点后,矩阵A 的元素为: ?????-+=个节点无关联条支路与第第方向指向节点个节点相关联,且支路条支路与第第方向离开节点个节点相关联,且支路条支路与第第i j i i j i i j a ij 0 1 1 图1中电路图的关联矩阵为 ????????????= 0 1- 0 1- 1- 0 0 1- 0 0 0 1 1 0 0 0 0 0 0 1- 1-0 0 1- 1 0 0 1 A 2. 基本回路矩阵 在电路图中,基本回路和支路的关联性质可以用基本回路矩阵][ij f b B =来表示。当选定电路图中的一个树,额外再增加一个连枝的时候,就会形成一个基本回路。选取基本回路的方向与它所关联的连枝方向一致,矩阵f B 的元素为: ?? ???-+=个回路无关联条支路与第第反方向和基本回路方向相个回路相关联,且支路条支路与第第同方向和基本回路方向相个回路相关联,且支路条支路与第第i j i j i j b ij 0 1 1 图1中电路图的基本回路矩阵为 ???? ??????=1 0 0 1- 1 0 0 0 1 0 1- 1 1- 1 0 0 1 0 1- 1 1-f B 3. 基本割集矩阵 在电路图中,基本割集和支路的关联性质可以用基本割集矩阵][ij f q Q =来表示。当选

上海交大研究生矩阵理论答案

n k r n n 1 2 习题 一 1.( 1)因 cosnx sin nx sin nx cosnx cosx sin x sin x = cosx cos(n sin(n 1)x 1)x sin( n cos(n 1)x 1)x ,故由归纳法知 cosnx sin nx A 。 sin nx cosnx ( 2)直接计算得 A 4 E ,故设 n 4 k r (r 0,1,2,3) ,则 A n A 4 k A r ( 1) A , 即 只需算出 A 2, A 3 即可。 0 1 0 1 ( 3 )记 J= ,则 , 1 0 n 1 n 1 2 n 2 n a C n a C n a C n a n C 1 a n 1 C n 1a A n (aE J ) n n C i a i J n i i 0 n n a n 。 C 1a n 1 a n 2. 设 A P 1 a 2 P 1(a 1,0),则由A 2 E 得 a 1时, 1 1 1 1 0 1 2 1 2 1 0 2 不可能。 1 而由 a 1 0时, 2 1 知 1 所以所求矩阵为 PB P 1 , 其中 P 为任意满秩矩阵,而 i i 2 2 2 1 0 1 0 1 0 B 1 , B 2 , B 3 。 0 1 0 1 1 注: A 2 E 无实解, A n E 的讨论雷同。 3. 设 A 为已给矩阵,由条件对任意 n 阶方阵 X 有 AX=XA ,即把 X 看作 n 2 个未知数时线 性方程 AX XA=0 有 n 2 个线性无关的解, 由线性方程组的理论知其系数矩阵为零矩阵, 1

矩阵论的实际应用(朱月)

“矩阵论”课程研究报告科目:矩阵理论及其应用教师:舒永录 姓名:朱月学号:20140702057t 专业:机械工程类别:学术 上课时间:2014 年9月至2014年12 月 考生成绩: 阅卷评语: 阅卷教师(签名)

相关变量的独立变换 摘要:用矩阵的理论及方法来处理实际生活中或现代工程中的各种问题已 越来越普遍。在工程中引进矩阵理论不仅是理论的表达极为简洁,而且对理论的实质刻画也更为深刻,这一点是毋庸置疑的。本文将矩阵论的知识用于解决实用机械可靠性设计问题。 正文 一、问题描述 在建立机械系统可靠性模型时,一般总假设个元素间关于强度相互独立。但是实际中,各元素间关于应力和强度又往往是相关的,并且这种相关性有时会对系统的可靠度产生显著影响。对于一些随机变量之间不是完全相关,但也不是完全独立的情况,就要进行相关变量的独立变换。 二、方法简述 设系统的基本变量为),,(21n x x x X ,??,各变量之间相关,则随机变量x 的 n 维正态概率密度函数为[1] )1()()(21exp ||2()(1 2 12 ? ??--???-=---X X T X X n X C X C X f μμπ) 式中 ?? ? ???????????=2321232212131212 ),cov(),cov(),cov(),cov(),cov(),cov(),cov(),cov(),cov(21n X n n n n X n X X x x x x x x x x x x x x x x x x x x C σσσ 称为随机变量X 的协方差矩阵。矩阵中的任意元素),cov(j i x x 是变量i x 与变 量j x 的协方差,|C X |是协方差矩阵的行列式,1 -X C 是协方差矩阵的逆矩阵,X ,X μ及 )X X μ-(是n 维列向量 ?? ? ?? ?????--=-????? ?????=?? ??? ?????=n n X n X n x x X x x μμμμμμ 1111, , X

上海交大研究生矩阵理论答案

|讪 而由a = 0时, 〔0 其中P 为任意满秩矩阵,而 注:A = -E 无实解,A n =E 的讨论雷同。 性方程AX -XA=0有n 2 个线性无关的解,由线性方程组的理论知其系数矩阵为零矩阵, 习题 -cosnx sin nx[ 1-("因[L sinnxcosnx 丄sin C0SX sin x = COs(n 1)x sin(n 1)x ,故由归纳法知 x cosx f-sin(n 1)x cos(n 1)x A n cosnx sin nx '-sinnx cosnx (2)直接计算得 A 4 - -E ,故设 n =4k r(r =0,1,2,3),则 A n = A 4k A r =(-1)k A r ,即 只需算出A 2, A 3即可。 (3 )记 J= ,则 a n C :a n n i i n _i_ A =(aE J) = 6 C n a J i =0 n 』亠2 n _2 C n a C ;a nJ n a III c :〕 III c^a C : a n 」 n a 2?设 A =P F a 1 -0 /一 2 _ P’yo),则由 A 2 =E 得 冷0 1 〔0 1 一 ,B 2 = 【0 -0] ,艮 0] 。 -1 i 0 -k 0 1 2 _0 所以所求矩阵为PB i P’ , 3?设A 为已给矩阵,由条件对任意 n 阶方阵 X 有AX=XA ,即把X 看作n 个未知数时线

通过直接检验即发现 A 为纯量矩阵。a n ? a n 1 ■ 11( ? = 0 5.先证A 或B 是初等到阵时有 AB *=B *A * ,从而当A 或B 为可逆阵时有 AB 、B *A *。 考虑到初等变换 A 对B 的n 阶子行列式的影响及 A 二A‘即可得前面提到的结果。 下设PAQ = E r 0 ,(这里P , Q 满秩),则由前讨论只需证下式成立即可: 〔0。」 6 .由 r(A)二 r(A —)及 AX 二 0= (AX)—AX = 0,即 AX = 0 与 A —AX = 0 同解,此即所 求证。 7.设其逆为 a j ,则当I 固定时由可逆阵的定义得 n 个方程 .i 1 . 1 2 . 1 n-1 ? a

有限元法理论及应用参考答案

有限元法理论及应用大作业 1、试简要阐述有限元理论分析的基本步骤主要有哪些? 答:有限元分析的主要步骤主要有: (1)结构的离散化,即单元的划分; (2)单元分析,包括选择位移模式、根据几何方程建立应变与位移的关系、根据虚功原理建立节点力与节点位移的关系,最后得到单元刚度方程; (3)等效节点载荷计算; (4)整体分析,建立整体刚度方程; (5)引入约束,求解整体平衡方程。 2、有限元网格划分的基本原则是什么?指出图示网格划分中不合理的地方。 题2图 答:一般选用三角形或四边形单元,在满足一定精度情况,尽可能少一些单元。 有限元划分网格的基本原则: 1.拓扑正确性原则。即单元间是靠单元顶点、或单元边、或单元面连接 2.几何保持原则。即网络划分后,单元的集合为原结构近似 3.特性一致原则。即材料相同,厚度相同 4.单元形状优良原则。单元边、角相差尽可能小 5.密度可控原则。即在保证一定精度的前提下,网格尽可能的稀疏一些。(a)(b)中节点没有有效的连接,且(b)中单元边差相差很大。 (c)中没有考虑对称性,单元边差很大。 3、分别指出图示平面结构划分为什么单元?有多少个节点?多少个自由度?

题3图 答:(a )划分为杆单元, 8个节点,12个自由度。 (b )划分为平面梁单元,8个节点,15个自由度。 (c )平面四节点四边形单元,8个节点,13个自由度。 (d )平面三角形单元,29个节点,38个自由度。 4、什么是等参数单元?。 答:如果坐标变换和位移插值采用相同的节点,并且单元的形状变换函数与位移插值的形函数一样,则称这种变换为等参变换,这样的单元称为等参单元。 5、在平面三节点三角形单元中,能否选取如下的位移模式,为什么? (1). ?????++=++=2 65432 21),(),(y x y x v y x y x u αααααα (2). ?????++=++=2 65242 3221),(),(y xy x y x v y xy x y x u αααααα 答:(1)不能,因为位移函数要满足几何各向同性,即单元的位移分布不应与人为选取的 坐标方位有关,即位移函数中的坐标x,y 应该是能够互换的。所以位移多项式应按巴斯卡三角形来选择。 (2)不能,位移函数应该包括常数项和一次项。

矩阵理论试题

矩阵理论2007年考试 一、判断题(40分)(对者打∨,错者打?) 1、设,n n A B C ?∈的奇异值分别为120n σσσ≥≥≥> ,'''120n σσσ≥≥≥> , 如果'(1,2,,)i i i n σσ>= ,则22||||||||A B ++>. ( ) 2、设n n A C ?∈为正规矩阵,则矩阵的谱半径2()||||r A A =. ( ) 3、设n n C A ?∈可逆,n n C B ?∈,若对算子范数有1||||||||1A B -?<,则B A +可逆. ( ∨ ) 4、设323121000a a A a a a a -?? ?=- ? ?-?? 为一非零实矩阵,则2221123()a a a A --++为A 的一个广义逆矩阵. ( ) 5、设A 为m n ?矩阵,P 为m 阶酉矩阵, 则P A 与A 有相同的奇异值. ( ) 6、设n n A C ?∈,且A 的所有列和都相等,则()r A A ∞=. ( ) 7、如果12(,,,) T n n x x x x C =∈,则1||||min i i n x x ≤≤=是向量范数. ( ) 8、0010140110620 118A ??????=?????? 至少有2个实特征值. ( ) 9、设,n n A C ?∈则矩阵范数m A ∞与向量的1-范数相容. ( ) 10、设n n A C ?∈是不可逆矩阵,则对任一自相容矩阵范数 有1I A -≥, 其中I 为单位矩阵. ( ) 二、计算与证明(60分) 1. (10分)设矩阵n n A C ?∈可逆, 矩阵范数||||?是n C 上的向量范数||||v ?诱导出的算子范数, 令()L x Ax =, 证明: ||||1 1||||1max ||()||||||||||min ||()||v v v x v y L x A A L y =-==?. 证明: 根据算子范数的定义, 有||||1max ||()||||||x L x A ==, 1 1100||||1||||10||||||||111||||max max ||||||||||||min ||||min ||()||min ||||y A x x y y y y A x y A Ay x Ay Ay L y y --=-≠≠==≠=====,

信息论基础理论与应用测验题及答案

信息论基础理论与应用测验题及答案

————————————————————————————————作者:————————————————————————————————日期:

信息论基础理论与应用考试题 一﹑填空题(每题2分,共20分) 1.信息论研究的目的就是要找到信息传输过程的共同规律,以提高信息传输的 (可靠性)﹑(有效性)﹑保密性和认证性,使信息传输系统达到最优化。 (考点:信息论的研究目的) 2.电视屏上约有500×600=3×510个格点,按每点有10个不同的灰度等级考虑,则可组成5 31010?个不同的画面。按等概计算,平均每个画面可提供的信息量约为(610bit /画面)。 (考点:信息量的概念及计算) 3.按噪声对信号的作用功能来分类信道可分为 (加性信道)和 (乘性信道)。 (考点:信道按噪声统计特性的分类) 4.英文电报有32个符号(26个英文字母加上6个字符),即q=32。若r=2,N=1,即对信源S 的逐个符号进行二元编码,则每个英文电报符号至少要用 (5)位二元符号编码才行。 (考点:等长码编码位数的计算) 5.如果采用这样一种译码函数,它对于每一个输出符号均译成具有最大后验概率的那个输入符号,则信道的错误概率最小,这种译码规则称为(最大后验概率准则)或(最小错误概率准则)。 (考点:错误概率和译码准则的概念) 6.按码的结构中对信息序列处理方式不同,可将纠错码分为(分组码)和(卷积码)。 (考点:纠错码的分类) 7.码C={(0,0,0,0),(0,1,0,1),(0,1,1,0),(0,0,1,1)}是((4,2))线性分组码。 (考点:线性分组码的基本概念) 8.定义自信息的数学期望为信源的平均自信息量,即 (11()log ()log ()()q i i i i H X E P a P a P a =?? ==-??? ?∑) 。

矩阵理论其应用大作业

矩阵奇异值分解在图像压缩上的应用 摘要 矩阵的奇异值理论提出至今己经有很长的一段时间。奇异值分解理论由Beltrami和Jordan于十九世纪七十年代提出至今,由于其内在的一些良好特性,奇异值分解正成为应用数学和数学模型领域的一个极有价值的工具。奇异值分解在很多领域得到了应用,它在数据挖掘及搜索引擎中被用来对数据库文件进行规类,近年来,它在图像压缩方面的应用也越来越受到相关学者的重视。 关键字:图像压缩;奇异值分解

第一章总论 数字图像处理技术中的数字图像压缩,或者叫图像编码。二维形式呈现的数字图像,其信息量很大,给传输、处理、储存、显示等都带来了不少的问题。另一方面,图像中又有很多冗余信息,根据香农(Shannon)的率失真理论。无论在传输或者储存时,都可对数字图像进行一定方式编码,删除其中冗余信息,实现不失真压缩,或在容许失真限度内进行有失真压缩,以换取更大的压缩率。对于供人观看的图像,如电视信号,这时人是通信系统中的一环,人的视觉特征,如掩盖效应,对灰度分辨率和空间分辨率的有限性等,也可以用来为压缩服务。数字图像以数据矩阵形式储存在存储器中,这就使得通过操作数据矩阵的方式压缩图像成为可能。事实上矩阵的奇异值本身具有可降维的特性,若能合理的利用矩阵奇异值的这一特性,SVD方法在图像压缩领域必将会有广阔的应用前景。 矩阵的奇异值分解(SVD)目前在信号处理、模式分析等领域得到了较为广泛的应用。由于数字图像矩阵通常是由数据量较大的阵列矩阵所构成,这就给基于SVD变换的算法构造添加了很大的难度,所以SVD变换目前在数据压缩领域得到的应用还不是很多,从SVD变换算法的研究着手,研究大矩阵奇异值的分布情况以及他们在图像恢复时所起到的作用,并在此基础上展开对SVD变换算法在数据压缩领域应用的研究,构造能将SVD变换实际应用到数据压缩领域的快速、高效的算法是十分必要的。

矩阵论考试试题(含答案)

矩阵论试题 一、(10分)设函数矩阵 ()??? ? ??-=t t t t t A sin cos cos sin 求:()?t dt t A 0和(()?2 0t dt t A )'。 解:()?t dt t A 0=()???? ? ??-????t t t t tdt tdt dt t dt t 0 sin cos cos sin =??? ? ??---t t t t cos 1sin sin cos 1 (()?2 t dt t A )'=()??? ? ? ?-=?22 22 2sin cos cos sin 22t t t t t t t A 二、(15分)在3R 中线性变换σ将基 ????? ??-=1111α,????? ??-=1202α,??? ?? ??-=1013α 变为基 ????? ??-=0111β,????? ??-=1102β,??? ? ? ??-=2303β (1)求σ在基321,,ααα下的矩阵表示A ; (2)求向量()T 3,2,1=ξ及()ξσ在基321,,ααα下的坐标; (3)求向量()()ξσξ及T 3,2,1=在基321,,βββ下的坐标。 解:(1)不难求得: ()2111ααβασ-== ()32122αααβασ++-== ()321332αααβασ++-==

因此σ在321,,ααα下矩阵表示为 ??? ? ? ??---=110211111A (2)设()??? ?? ??=321321,,k k k αααξ,即 ??? ? ? ??????? ??---=????? ??321111021101 321k k k 解之得:9,4,10321-=-==k k k 所以ξ在321,,ααα下坐标为()T 9,4,10--。 ()ξσ在321,,ααα下坐标可得 ???? ? ??--=????? ??--????? ??---=????? ??1332239410110211111321y y y (3)ξ在基321,,βββ下坐标为 ??? ? ? ??-=????? ??--????? ??--=????? ??---61519410011111101 94101A ()ξσ在基321,,βββ下坐标为 ????? ??--=????? ??--????? ??--=????? ??---94101332230111111011332231A 三、(20分)设??? ? ? ??-=301010200A ,求At e 。 解:容易算得 ()()()()212--=-=λλλλ?A I

浅析矩阵论的发展与应用1解读

浅析矩阵论的发展和应用

摘要:矩阵是数学中的一个重要的基本概念。起初的矩阵式作为线性代数中的一个小分支慢慢发展而来的,但随着其在图论、代数、组合数学和统计上的广泛应用,使之逐渐成为数学中一个不可替代的组成部分,并发展为一个独立的分支。矩阵理论体系的形成,也推广了矩阵论在不同领域的发展和应用。本文从矩阵论发展过程的角度出发,浅析了矩阵论在不同领域的应用。关键字:矩阵论,矩阵分解,实际应用 1矩阵论的发展 “Matrix”这一词语由西尔维斯特首先使用的,但是他并没有给出明确的概念。矩阵的现代概念在19 世纪初期逐渐形成。19世纪初期,德国数学家高斯、爱森斯坦等已经使用了矩阵中的有关线性变换和矩阵乘积等的相关知识。矩阵(Matrix)的明确概念是由英国数学家凯莱在1858年在著作《关于矩阵理论的研究报告》中给出的。在这份报告中,凯莱率先将矩阵作为一个独立的数学对象加以研究,他被认为是矩阵论的创立者,并为矩阵理论的发展奠定了良好的基础。随后,弗罗伯纽斯等人逐渐完善了矩阵的理论体现形成了矩阵的现代理论[1]。 然而,矩阵理论思想的萌芽却由来已久。早在公元前1世纪的《九章算术》中[2],矩阵形式解方程组已经运用的相当成熟,但也仅仅是作为线性方程组系数的排列形式解决实际问题,并未建立起独立的矩阵理论。直到18世纪和19世纪中叶,这种排列形式在线性方程组和行列式计算中的应用日益广泛并为矩阵的发展提供了良好的条件。矩阵理论的早起的概念是独立于矩阵理论本身而存在的,它从不同的领域和思想研究中的逐步发展,并逐步形成了后来的矩阵理论。首先是在17世纪的欧洲,克莱姆和范德蒙等数学家将行列式在线性方程组的求解中做了极大的应用,并最终形成现代矩阵论中的克莱姆法则和范德蒙行列式。到18世纪末,拉格朗日、达朗贝尔等数学家将矩阵(此时矩阵的概念还没有明确提出)的维度空间从单维扩展到了四维或者n维,并提出了n个变量(12,n x x x)的二次型。直到19世纪的初期,伴随着行列式理论的蓬勃发展,与矩阵理论密切相关的线性空间、线性变换理论等也趋于成熟。但是在1844年之前n维空间的概念一直未能从代数中独立出来。在此之前,它一直被认为是符号化的算术。n维空间概念的真正脱离出来成为一个脱离空间直观的纯数学概念是以1844格拉斯曼发表的《张量演算》为节点的。19世纪初到19世纪3、40年代,以柯西、雅可比、凯莱以及哈密顿等人为代表的数学家都为矩阵理论的形成和发展做了很多突出的贡献。

矩阵论的应用

广义逆在多元分析中的应用 刘雯雯信通院学号:B098035 摘要:多元分析的一个重要内容就是研究随机向量之间的关系,在一元统计中,用相关系数来描述随机变量之间的关系,Hotelling[1]和张尧庭教授[2]先后定义了度量两个随机向量相关程度的数量指标,并称之为广义相关系数。这一章主要利用Moore-Penrose广义逆矩阵来引人了随机向量之间的相关系数—广义相关系数,并探讨了随机向量的典型相关系数和广义相关系数之间的关系。 关键词:特征值广义相关系数典型相关系数正交阵可逆矩阵 1.引言 矩阵概念和线性代数学科的引进和发展是源于研究线性方程组系数而产生的行列式的发展.莱布尼兹,微积分学的两个奠基者之一,在1693年使用了行列式,克莱姆于1750年提出了用行列式求解线性方程组的公式(即今天著名的克莱姆法则).相对比地,行列式的隐含使用最早出现在18世纪晚期拉格郎日关于双线性型的著作里.拉格郎日希望刻画多变量函数的极大值与极小值.他的方法今天以拉格郎日乘数法闻名.为此,他首先要求第一个偏导数为0,再需要关于第二个偏导数的矩阵成立一个条件.这个条件今天称之为正定或负定,尽管拉格郎日没有明显地使用矩阵. 在1800年左右,高斯发现了高斯消去法,他用此方法解决了天体计算和后来大地测量(关于测量或确定地球形状或定位地球表面一个点的应用数学分支,称之为大地测量学)计算中的最小平方问题.尽管高斯的名字相伴随从线性方程组逐次逍去变量的这项技术,但从发现的早在几个世纪前的中文手稿中解释了如何用"高斯的"消去法解带有三个未知量的三个方程构成的线性方程组.多年来,高斯消去法被认为是大地测量学,而非数学,发展的一部分.首次印刷出来的高斯—约当消去法是在W. 约当写的关于大地测量学的手册里.许多人错误地认为著名数学家 C.约当是"高斯—约当"消去法中的约当. 为了矩阵代数的丰富发展,人们既需要适当的概念,还需要适当的矩阵乘法.这两种需要在同一时间和同一地点交汇了.在1814年于英格兰,J.J.西勒维斯特首先引进了术语"Matrix",作为一列数的名称,这是胚胎的拉丁词.矩阵代数于1855年由亚瑟凯莱的工作得到了发展.凯莱研究了线性变换的合成,导致定义了矩阵乘法,使得合成变换ST的系数矩阵是S的矩阵与T的矩阵的乘积.他继续研究这些合成包括矩阵逆的代数.著名的凯莱—哈密尔顿定理断言,一个方阵是它的特征多项式的根.这个定理于1 858年在凯莱的"关于矩阵理论备忘录"的著作里给出.代表矩阵的单个字母A的使用对于矩阵代数的发展是关键的.早期的公式det(AB)=det(A)det(B)提供了矩阵代数与行列式的联系.凯莱写下了"有许多事情说明关于矩阵的理论,似乎对我而言,比行列式理论重要". 数学家们也试图发展向量代数,但没有任意维数的两个向量积的自然定义.涉及到非交换向量积(亦即VW×不一定等于WV×)的第一个向量代数由赫尔曼格拉斯曼在他的书"维数理论"(1844)提出来的.格拉斯曼的书也引进了一个列矩阵与一个行矩阵的乘积,导致了今天所谓的单纯的或秩1的矩阵.在19世纪晚期,美国数学物理学家W.吉布斯发表了关于向量分析的著名论文.在那篇论文里,吉布斯把一般的矩阵,他称之为并向量(dyadics),表示为单纯矩阵(吉布斯称为并向量(dya ds))的和.后来物理学家P.A.M.迪拉克引进了术语"行-列"(bra-ket)来表示我们现在称之为行向量乘以列向量的纯量积,术语"列-行(ket-bra)"表示一列向量乘以行向量的积,从而导致如同上

相关文档