文档库 最新最全的文档下载
当前位置:文档库 › 壳聚糖_氧化石墨烯复合材料结构和性能研究_陈建光

壳聚糖_氧化石墨烯复合材料结构和性能研究_陈建光

壳聚糖_氧化石墨烯复合材料结构和性能研究_陈建光
壳聚糖_氧化石墨烯复合材料结构和性能研究_陈建光

第20卷第1期重庆电子工程职业学院学报Vol.20No.12011年1月Journal of Chongqing College of Electronic Engineering

Jan.2011

石墨烯不仅价格低廉,而且具有片层结构和良好的热稳定性和导电性。用石墨烯来改善聚合物的性能具有较大的潜力[1-3]。Ruoff 等用化学方法先后合成出石墨烯/聚合物导电纳米复合材料[4]和无支撑的氧化石墨烯纸[5],掀起了氧化石墨烯应用研究的热潮。与石墨烯相比,氧化石墨烯(GO )不仅含有羟基、环氧基、羰基、羧基等多种官能团,同时还能被小分子或者聚合物插层,或剥离[6,7],能有效改善复合物材料的性能。Wu 等[8]将氧化石墨烯片层加入聚合物提高了导电性能,Kai [9]等通过填充氧化石墨烯改善聚合物的热稳定性和力学性能。

本研究通过氧化天然石墨粉制备GO [10],以流延法成功制得壳聚糖(CS )基复合材料(CS/GO-n )。通过X-衍射、力学性能测试和吸湿性能测试,探讨GO 的含量对CS 基复合材料的结构和性能的影响。

1实验部分1.1

原料与仪器

石墨粉购于上海华谊集团华原化工有限公司。过硫

酸钾(K2S2O8)、五氧化二磷(P2O5)和双氧水(H2O2)由成都科龙化学试剂厂提供;硫酸,盐酸购于重庆川东化学试剂厂;壳聚糖(平均分子量大于30万,脱乙酰度大于

90%),购自中国南通新程生物工业有限公司;36%乙酸

(分析纯),购自重庆茂业化工公司;蒸馏水。

集热式恒温加热磁力搅拌器(DF-101S ,郑州);高功率数控超声波清洗器(KQ-400KDV ,昆山);旋片真空泵(2XZ-4,浙江);多管架自动平衡离心机(TDZ5-WS ,长沙);电热鼓风干燥箱(CS101-2A ,重庆);真空干燥箱(DZF-6020,上海)。XD-3X 射线粉末衍射仪(北京普析通用仪器责任有限公司);Sansi6500型微电子万能力学实验机(深圳),

1.2氧化石墨烯(GO )的制备

采用Hummers 法从天然的石墨粉氧化制备GO[10]。

1.3CS/GO-n 复合材料的制备

流延法制备CS/GO-n 复合材料:壳聚糖溶于2%(体积比)的醋酸溶液制得2wt%的溶液,将一定量的GO 粉末(0.2,0.4,0.6,0.8,1.0,1.5wt%,相对于壳聚糖基体)溶解在70mL 的水中,超声分散1.5h 之后,逐滴滴加到壳聚糖醋酸溶液中,60℃下恒温搅拌5h ,减压脱泡后在玻璃板上流延成膜,50℃下干燥12小时,并将其编号为

CS/GO-n (n 代表GO 相对于CS 的质量百分含量),常温

下置于相对湿度为43%的干燥器中。样品编号及其含量列于表1中。

表1

CS/GO-n 复合材料编号

2结果与讨论

2.1X-衍射分析

图1为GO 及CS/GO-n 复合材料的X 衍射衍射图谱

(XRD )图。在GO 的谱图中,2θ=11.1○处出现了一强的衍射峰,层间距为0.8nm ,与文献报道值相一致[11]。纯壳聚糖膜(CS/GO-0)在2θ=11.4°、18.3°出现两个强衍射峰,在

2θ=8.3°、16.1°、22.9°出现三个较弱的衍射峰,同文献报道

一致[12]。CS/GO-n 复合材料的XRD 图谱与纯壳聚糖的衍射图谱相似,且在复合材料中没有出现GO 的特征衍射峰。可能是由于低的添加量,同时也充分说明GO 均匀分散在基体中,与壳聚糖基体之间形成较强的相互作用有效地限制了石墨烯的聚集。再者,GO 的添加量对复合材料XRD 图谱没有多大影响。

收稿日期:2010-12-11

作者简介:陈建光(1981—),男,山西保德人,广东省汕头市公安消防支队龙湖大队工作,主要从事防火灭火材料研究。

壳聚糖/氧化石墨烯复合材料结构和性能研究

陈建光

(广东省汕头市公安消防支队龙湖大队,广东汕头515041)

要:流延法制备了壳聚糖/氧化石墨烯复合材料。X-衍射表明壳聚糖和氧化石墨烯之间形成强烈的相互作

用;力学性能测试结果表明,当氧化石墨烯含量仅为0.6wt%时,壳聚糖基复合材料的拉伸强度提高到64.4MPa ,断裂伸长率提高到38.8%,与壳聚糖基体相比,分别提高了101%和61.7%。

关键词:壳聚糖;氧化石墨烯;性能中图分类号:O433.1

文献标识码:A

文章编号:1674-5787(2011)01-0153-02

Code

CS/GO-0CS/GO-1CS/GO-2CS/GO-3CS/GO-4CS/GO-5CS/GO-6CS/GO (wt%)

0.2

0.4

0.6

0.8

1.0

1.5

图1GO粉末,PS/GO-n复合材料的X衍射图2.2力学性能分析

图2为CS/GO-n复合材料的力学性能随GO含量增加的变化曲线。从图2中可以看出,添加的GO的可有效改善复合材料的力学性能。随着GO含量的增加,CS/GO 复合材料的拉伸强度(σb)和断裂伸长率(εb)均逐渐增大,且在含量仅为0.6%时均达到最大值(64.4MPa和38.8%),与壳聚糖基体相比分别提高了101%和61.7%,表明GO与壳聚糖基体之间强的相互作用提高了复合材料的性能,并在壳聚糖基体中起到增强增韧的协同作用。

图2CS/GO-n复合材料的力学性能随

GO含量变化的曲线

2.3吸湿性能分析

图3为CS/GO-n复合材料在相对湿度98%的环境中的吸湿性能(Mu)曲线。从图中可以看出,CS/GO-n复合材料的吸湿值要低于CS基体的吸湿值。CS/GO复合材料的Mu值随着含量的增加逐渐降低,且在GO的含量为1.5 wt%时,Mu降到最低值66.2%。GO与壳聚糖基质之间强的相互作用有效的抑制了水分子在复合材料中的扩散。

图3CS/GO-n复合材料的吸湿性能曲线3结论

采用流延法制备壳聚糖(CS)和氧化石墨烯(GO)的复合材料。XRD表明CS和GO之间形成强的相互作用有效地限制了石墨烯的聚集,从而有效改善复合材料的力学性能和降低复合材料的吸水性。实验结果说明氧化石墨烯是一类优良的聚合物填充剂。

参考文献:

[1]Jiang L,Shen X P,Wu J L,Shen K C.Preparation and

Characterization of Graphene/Poly(vinyl alcohol).

Nanocomposites,2010,118,275–279.

[2]Kim H,Macosko C W.Processing-property relationships of

polycarbonate/graphene composites.Polymer,2009,50,3797–3809.

[3]Wei T,Luo G L,Fan Z J,Zheng C,Yan J,Yao C Z,Li W F,

Zhang C.Preparation of graphene nanosheet/polymer composites using in situ reduction–extractive dispersion.Carbon,2009, 47,2296–2299.

[4]Stankovich S,Dikin D A,Dommett G H B,Dommett G H B,

Kohlhaas K M,Zimney E J,Stach E A,Piner R D,Nguyen S T, Ruoff R S.Graphene-based composite materials.Nature,2006, 442,282-286.

[5]Dikin D A,Stankovich S,Zimney E J,Piner R D,Dommett G H

B,Evmenenko G,Nguyen S T,Ruoff R S.Preparation and characterization of graphene oxide paper.Nature.2007,448, 457-460.

[6]Matsuo Y,Tahara K,Sugie Y.Structure and thermal properties

of poly(ethylene oxide)-intercalated graphite oxide.Carbon, 1997,35,113–120.

[7]Liu P G,Gong K C,Xiao P,Xiao M.Preparation and

characterization of poly(vinyl acetate)-intercalated graphite oxide composite.Journal of Materials Chemistry,2000,10,933–935.

[8]Wu J,Tang Q,Sun H,Lin J,Ao H,Huang M,Huang Y.

Conducting?lm from graphite oxide nanoplatelets and poly (acrylic acid)by layer-by-layer https://www.wendangku.net/doc/764382550.html,ngmuir,2008, 24,4800–4805.

[9]Kai W H,Hirota Y,Hua L,Inoue Y.Thermal and mechanical

properties of a poly(epsilon-caprolactone)/graphite oxide composite.Journal of Applied Polymer Science2008,107,1395–400.

[10]Hummers W S,Richard E J R.Preparation of graphitic oxide.

Journal of the American Chemical Society,1958,80,1339–1339.

[11]Han D L,Yan L F,Chen W F,Li W.Preparation of chitosan/

graphene oxide composite?lm with enhanced mechanical strength in the wet state.Carbohydrate Polymers,2010,doi:

10.1016/j.carbpol.2010.08.038

[12]Tang C,Xiang L,Su J,Wang K,Yang C,Zhang Q,Fu Q.

Largely improved tensile properties of chitosan film via unique synergistic reinforcing effect of carbon nanotube and clay.The Journal of Physical Chemistry B,2008,112,3876-3881.

责任编辑李燕

重庆电子工程职业学院学报第20卷154

氧化石墨烯的结构及应用

氧化石墨烯的结构及应用 2004年,英国曼彻斯特大学物理学家安德烈?海姆(Andre Geim)和康斯坦丁?诺沃肖洛夫(Konstantin Novoselov)成功地从石墨中分离出一层碳原子构成的石墨烯,两人也因“在二维石墨烯材料的开创性实验”,共同获得2010年诺贝尔物理学奖。自此,石墨烯由于其突出的导热性、室温高速载流子迁移率、透光性和力学性能等,同时具有完美的量子隧道效应、半整数的量子霍尔效应、从不消失的电导率等一系列性质,受到了世界各界的广泛关注,也成为科研领域的新兴宠儿。 氧化石墨烯是石墨粉末经化学氧化后的产物,它是一种性能优异的新型碳材料,具有较高的比表面积和表面丰富的官能团。氧化石墨烯复合材料包括聚合物类复合材料以及无机物类复合材料更是具有广泛的应用前景,因为成为研究的又一重点。 一、氧化石墨烯的分子结构 石墨被强氧化剂氧化,氧原子进入到石墨层间,结合л电子,使层面内的二键断裂,并以C=O,C-OH, -COOH等官能团与密实的碳网面中的碳原子结合,形成共价键型石墨层间化合物。氧化石墨烯的理想结构组成为C400H,也有文献报道其组成为C X+(OH)Y-(H20)2,其中C、H、O等各元素的含量随氧化程度不同而发生改变,一般范围为C7O4H2-C24O13H9,目前,普遍认为氧化石墨是一个准二维固体物质。氧化石墨烯由尺寸不定的未被氧化的芳香“岛”组成,而这些“岛”则被含有醇羟基、环氧基团和双键的六元脂环所分开,芳香环、双键和环氧基团使得碳原子点阵格式近乎处于同一平面,仅有连接到羟基基团的碳原子有较轻微的四面体构型畸变,导致了一些层面的卷翘。官能团处于碳原子点阵格子的上下,形成了不同密度的氧原子分布。 干燥的氧化石墨在空气中稳定性较差,很容易吸潮而变成水合氧化石墨,层间距也会随其含水量的高低而有所不同。随含水量的增加,层间距从0.6nm增加到1.1nm,从而导致X射线(100)衍射峰的位置的变化。 鉴于氧化石墨烯在石墨烯材料领域中的地位,许多科学家试图对氧化石墨烯的结构进行详细和准确的描述,以便有利于石墨烯材料的进一步研究,虽然已经利用了计算机模拟、拉曼光谱,核磁共振等手段对其结构进行分析,但由于种种原因(不同的制备方法,实验条件的差异以及不同的石墨来源对氧化石墨烯的结构都有一定的影响),氧化石墨烯的精确结构还无法得到确定。 二、氧化石墨烯的制备方法 氧化石墨烯的制备方法主要有Brodie、Staudenmaier和Hummers三种方法,它们都是用无机强质子酸(如浓硫酸、发烟硝酸或它们的混合物)处理原始石墨,将强酸小分子插入石墨层问,再用强氧化剂(如KMnO4、KC104等)对其进行氧化。 1、Brodie法 1898年Brodie采用发烟HNO3体系,以KC103为氧化剂,反应体系的温度需先维持在0℃,然后,不断搅拌反应20-24h。洗涤后获得的氧化石墨的氧化程度较低,需进行多次氧化处理以提高氧化程度,反应时间相对较长。该法的优点是其氧化程度可利用氧化时间进行控制,合成的氧化石墨结构比较规整。但因采用KC103作氧化剂,有一定的危险性。

氧化石墨烯的制备及表征

氧化石墨烯的制备及表征 文献综述 材料0802班 李琳 200822046

氧化石墨烯的制备及表征 李琳 摘要:石墨烯(又称单层石墨或二维石墨)是单原子厚度的二维碳原子晶体,被认为是富勒烯、碳纳米管和石墨的基本结构单元[1]。石墨烯可通过膨胀石墨经过超声剥离或球磨处理来制备[2,3],其片层厚度一般只能达到30~100 nm,难以得到单层石墨烯(约0.34 nm),并且不容易重复操作。所以寻求一种新的、容易和可以重复操作的实验方法是目前石墨烯研究的热点。而将石墨氧化变成氧化石墨,再在超声条件下容易得到单层的氧化石墨溶液,再通过化学还原获得,已成为石墨烯制备的有效途径[4]。通过述评氧化石墨及氧化石墨烯的制备、结构、改性及其与聚合物的复合,展望了石墨烯及其复合材料的研究前景。 关键词:氧化石墨烯,石墨烯,氧化石墨,制备,表征 Oxidation of graphite surfaces preparation and Characterization LI Lin Abstrat:Graphite surfaces (also called single graphite or 2 d graphite )is the single atoms thickness of the 2 d carbon atoms crystal, is considered fullerenes, carbon nanotubes and graphite basic structure unit [1].Graphite surfaces can through the expanded graphite after ultrasonic stripping or ball mill treatment topreparation [2,3], a piece of layer thickness normally only up to 30 to 100 nm, hard to get the single graphite surfaces (about 0.34 nm), and not easy to repeated operation. So to search a new, easy to operate and can be repeated the experiment method of the graphite surfaces is the focus of research. And will graphite oxidization into oxidation graphite, again in ultrasonic conditions to get the oxidation of the single graphite solution, again through chemical reduction get, has become an effective way of the preparation of graphite surfaces [4]. Through the review of graphite oxide and oxidation graphite surfaces of the preparation, structure, modification of polymer and the

石墨烯聚乳酸复合材料

Preparation of Polylactide/Graphene Composites From Liquid-Phase Exfoliated Graphite Sheets Xianye Li,1Yinghong Xiao,2Anne Bergeret,3Marc Longerey,3Jianfei Che1 1Key Laboratory of Soft Chemistry and Functional Materials,Nanjing University of Science and Technology, Nanjing210094,China 2Jiangsu Collaborative Innovation Center of Biomedical Functional Materials,Jiangsu Key Laboratory of Biomedical Materials,College of Chemistry and Materials Science,Nanjing Normal University, Nanjing210046,China 3Materials Center,Ales School of Mines,30319Ales Cedex,France Polylactide(PLA)/graphene nanocomposites were pre-pared by a facile and low-cost method of solution-blending of PLA with liquid-phase exfoliated graphene using chloroform as a mutual solvent.Transmission electron microscopy(TEM)was used to observe the structure and morphology of the exfoliated graphene. The dispersion of graphene in PLA matrix was exam-ined by scanning electron microscope,X-ray diffrac-tion,and TEM.FTIR spectrum and the relatively low I D/I G ratio in Raman spectroscopy indicate that the structure of graphene sheets(GSs)is intact and can act as good reinforcement fillers in PLA matrix.Ther-mogravimetric analysis and dynamic mechanical analy-sis reveal that the addition of GSs greatly improves the thermal stability of PLA/GSs nanocomposites.More-over,tensile strength of PLA/GSs nanocomposites is much higher than that of PLA homopolymer,increasing from36.64(pure PLA)up to51.14MPa(PLA/GSs-1.0). https://www.wendangku.net/doc/764382550.html,POS.,35:396–403,2014.V C2013Society of Plastics Engineers INTRODUCTION Polylactide(PLA),a renewable,sustainable,biode-gradable,and eco-friendly thermoplastic polyester,has balanced properties of mechanical strength[1],thermal plasticity[2],and compostibility for short-term commod-ity applications[3,4].It is currently considered as a promising polymer for various end-use applications for disposable and degradable plastic products[5–8].Never-theless,improvement in thermal and mechanical proper-ties of PLA is still needed to pursue commercial success. To achieve high performance of PLA,many studies on PLA-based nanocomposites have been performed by incorporating nanoparticles,such as clays[9,10],carbon nanotubes[11–13],and hydroxyapatite[14].However, research on PLA-based nanocomposites containing gra-phene sheets(GSs)or graphite nanoplatelets has just started[15–17].GSs exhibit unique structural features and physical properties.It has been known that GSs have excellent mechanical strength(Young’s modulus of1,060 GPa)[18],electrical conductivity of104S/cm[19],high specific surface area of2,630m2/g[20],and thermal sta-bility[21].Polymer nanocomposites based on graphene show substantial property enhancement at much lower fil-ler loadings than polymer composites with conventional micron-scale fillers,such as glass[22]or carbon fibers [23],which ultimately results in lower filler ratio and simple processing.Moreover,the multifunctional property enhancement of nanocomposites may create new applica-tions of polymers. However,the incorporation of graphene into PLA matrix is restricted by cost and yield.Although the weak interactions that hold GSs together in graphite allow them to slide readily over each other,the numerous weak bonds make it difficult to separate GSs homogeneously in sol-vents and polymer matrices[24].Many methods have been reported for exfoliation of graphite,such as interca-lation with alkali metals[25]or oxidation in strong acidic conditions[26–29].Recently,exfoliation of graphite in liquid-phase was found to be able to give oxide-free GSs with high quality and yield at relatively low cost[30–35]. Correspondence to:Y.H.Xiao;e-mail:yhxiao@https://www.wendangku.net/doc/764382550.html, or J.F.Che; e-mail:xiaoche@https://www.wendangku.net/doc/764382550.html, Contract grant sponsor:Specialized Research Fund for the Doctoral Program of Higher Education of China;contract grant number: 20123219110010;contract grant sponsor:Natural Science Foundation of Jiangsu Province of China;contract grant number:BK2012845;contract grant sponsors:Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD),contract grant sponsor:Financial support for short visit from Ales School of Mines,France. DOI10.1002/pc.22673 Published online in Wiley Online Library(https://www.wendangku.net/doc/764382550.html,). V C2013Society of Plastics Engineers POLYMER COMPOSITES—2014

壳聚糖_氧化石墨烯复合材料结构和性能研究_陈建光

第20卷第1期重庆电子工程职业学院学报Vol.20No.12011年1月Journal of Chongqing College of Electronic Engineering Jan.2011 石墨烯不仅价格低廉,而且具有片层结构和良好的热稳定性和导电性。用石墨烯来改善聚合物的性能具有较大的潜力[1-3]。Ruoff 等用化学方法先后合成出石墨烯/聚合物导电纳米复合材料[4]和无支撑的氧化石墨烯纸[5],掀起了氧化石墨烯应用研究的热潮。与石墨烯相比,氧化石墨烯(GO )不仅含有羟基、环氧基、羰基、羧基等多种官能团,同时还能被小分子或者聚合物插层,或剥离[6,7],能有效改善复合物材料的性能。Wu 等[8]将氧化石墨烯片层加入聚合物提高了导电性能,Kai [9]等通过填充氧化石墨烯改善聚合物的热稳定性和力学性能。 本研究通过氧化天然石墨粉制备GO [10],以流延法成功制得壳聚糖(CS )基复合材料(CS/GO-n )。通过X-衍射、力学性能测试和吸湿性能测试,探讨GO 的含量对CS 基复合材料的结构和性能的影响。 1实验部分1.1 原料与仪器 石墨粉购于上海华谊集团华原化工有限公司。过硫 酸钾(K2S2O8)、五氧化二磷(P2O5)和双氧水(H2O2)由成都科龙化学试剂厂提供;硫酸,盐酸购于重庆川东化学试剂厂;壳聚糖(平均分子量大于30万,脱乙酰度大于 90%),购自中国南通新程生物工业有限公司;36%乙酸 (分析纯),购自重庆茂业化工公司;蒸馏水。 集热式恒温加热磁力搅拌器(DF-101S ,郑州);高功率数控超声波清洗器(KQ-400KDV ,昆山);旋片真空泵(2XZ-4,浙江);多管架自动平衡离心机(TDZ5-WS ,长沙);电热鼓风干燥箱(CS101-2A ,重庆);真空干燥箱(DZF-6020,上海)。XD-3X 射线粉末衍射仪(北京普析通用仪器责任有限公司);Sansi6500型微电子万能力学实验机(深圳), 1.2氧化石墨烯(GO )的制备 采用Hummers 法从天然的石墨粉氧化制备GO[10]。 1.3CS/GO-n 复合材料的制备 流延法制备CS/GO-n 复合材料:壳聚糖溶于2%(体积比)的醋酸溶液制得2wt%的溶液,将一定量的GO 粉末(0.2,0.4,0.6,0.8,1.0,1.5wt%,相对于壳聚糖基体)溶解在70mL 的水中,超声分散1.5h 之后,逐滴滴加到壳聚糖醋酸溶液中,60℃下恒温搅拌5h ,减压脱泡后在玻璃板上流延成膜,50℃下干燥12小时,并将其编号为 CS/GO-n (n 代表GO 相对于CS 的质量百分含量),常温 下置于相对湿度为43%的干燥器中。样品编号及其含量列于表1中。 表1 CS/GO-n 复合材料编号 2结果与讨论 2.1X-衍射分析 图1为GO 及CS/GO-n 复合材料的X 衍射衍射图谱 (XRD )图。在GO 的谱图中,2θ=11.1○处出现了一强的衍射峰,层间距为0.8nm ,与文献报道值相一致[11]。纯壳聚糖膜(CS/GO-0)在2θ=11.4°、18.3°出现两个强衍射峰,在 2θ=8.3°、16.1°、22.9°出现三个较弱的衍射峰,同文献报道 一致[12]。CS/GO-n 复合材料的XRD 图谱与纯壳聚糖的衍射图谱相似,且在复合材料中没有出现GO 的特征衍射峰。可能是由于低的添加量,同时也充分说明GO 均匀分散在基体中,与壳聚糖基体之间形成较强的相互作用有效地限制了石墨烯的聚集。再者,GO 的添加量对复合材料XRD 图谱没有多大影响。 收稿日期:2010-12-11 作者简介:陈建光(1981—),男,山西保德人,广东省汕头市公安消防支队龙湖大队工作,主要从事防火灭火材料研究。 壳聚糖/氧化石墨烯复合材料结构和性能研究 陈建光 (广东省汕头市公安消防支队龙湖大队,广东汕头515041) 摘 要:流延法制备了壳聚糖/氧化石墨烯复合材料。X-衍射表明壳聚糖和氧化石墨烯之间形成强烈的相互作 用;力学性能测试结果表明,当氧化石墨烯含量仅为0.6wt%时,壳聚糖基复合材料的拉伸强度提高到64.4MPa ,断裂伸长率提高到38.8%,与壳聚糖基体相比,分别提高了101%和61.7%。 关键词:壳聚糖;氧化石墨烯;性能中图分类号:O433.1 文献标识码:A 文章编号:1674-5787(2011)01-0153-02 Code CS/GO-0CS/GO-1CS/GO-2CS/GO-3CS/GO-4CS/GO-5CS/GO-6CS/GO (wt%) 0.2 0.4 0.6 0.8 1.0 1.5

关于石墨烯的总结

一.石墨烯常用修饰方法总结 石墨烯是由一层密集的、包裹在蜂巢晶体点阵上的碳原子组成,是世界上最薄的二维材料,其厚度仅为0.35 nm。这种特殊结构蕴含了丰富而新奇的物理现象,使石墨烯表现出许多优异性质。 结构完整的石墨烯是由不含任何不稳定键的苯六元环组合而成的二维晶体,化学稳定性高,其表面呈惰性状态,与其他介质(如溶剂等)的相互作用较弱,并且石墨烯片与片之间有较强的范德华力,容易产生聚集,使其难溶于水及常用的有机溶剂,这给石墨烯的进一步研究和应用造成了极大的困难。为了充分发挥其优良性质,并改善其成型加工性(如提高溶解性、在基体中的分散性等),必须对石墨烯进行有效的功能化。通过引入特定的官能团,还可以赋予石墨烯新的性质,进一步拓展其应用领域。功能化是实现石墨烯分散、溶解和成型加工的最重要手段。 从功能化的方法来看。主要分为共价键功能化和非共价键功能化两种。 1. 石墨烯的共价功能化 石墨烯的共价键功能化是目前研究最为广泛的功能化方法。尽管石墨烯的主体部分由稳定的六元环构成,但其边沿及缺陷部位具有较高的反应活性,可以通过化学氧化的方法制备石墨烯氧化物(Grapheneoxide)。由于石墨烯氧化物中含有大量的羧基、羟基和环氧键等活性基团,可以利用多种化学反应对石墨烯进行共价键功能化。 1.1 石墨烯的聚合物功能化 (1)聚乙二醇(PEG)具有优异的生物相容性和亲水性,被广泛应用于多种不同的功能化纳米材料,以提高这些材料的生物相容性,减小其对生物分子及细胞的非特定的约束力,也改善了体内的药物代谢动力学,以实现更好的肿瘤靶向性治疗[1,2,3-5]。2008年,Dai 等使用六臂星型氨基聚乙二醇的端氨基与纳米石墨烯片边缘的羧基通过亚胺催化酰胺形成反应,制备PEG 修饰纳米石墨烯片,得到的产物在用于体外给药和生物成像的生理溶液中显示了优良的分散性和稳定性[2]。 (2)除了PEG外,还有其他的被用来共价功能化GO的亲水大分子。刘庄工作组,将氨基修饰的DEX与GO通过共价键键合,得到了具有生物相容性的材料,这种材料大大提高了GO生理溶解性的稳定性[6]。Bao et al.

水热合成Fe2O3石墨烯纳米复合材料及其电化学性能研究

常熟理工学院学报(自然科学)Journal of Changshu Institute Technology (Natural Sciences )第26卷第10Vol.26No.102012年10月Oct.,2012 收稿日期:2012-09-05 作者简介:季红梅(1982—),女,江苏启东人,讲师,工学硕士,研究方向:无机功能材料.水热合成Fe 2O 3/石墨烯纳米 复合材料及其电化学性能研究 季红梅1,于湧涛2,王露1,王静1,杨刚1 (1.常熟理工学院化学与材料工程学院,江苏常熟215500;2.吉林石化公司研究院,吉林吉林132021) 摘要:利用水热法成功合成了Fe 2O 3/石墨烯(RGO )锂离子电池负极材料.导电性能良好的石墨烯网络起到连接导电性能极差的Fe 2O 3和集流体的作用.电化学性能测试表明,180℃下得到的 Fe 2O 3/RGO 具有良好的比容量和循环稳定性.在不同倍率充放电过程中,初始放电比容量为1023.6mAh/g (电流密度为40mA/g ),电流密度增加到800mA/g 时,放电比容量维持在406.6 mAh/g ,大于石墨的理论放电比容量~372mAh/g.在其他较高的电流密度下比容量均保持基本不变.该Fe 2O 3/RGO 有望成为高容量、低成本、低毒性的新一代锂离子电池负极材料.关键词:Fe 2O 3;石墨烯;负极材料中图分类号:TM911文献标识码:A 文章编号:1008-2794(2012)10-0055-05 自从P.Poizot [1]等报道过渡金属氧化物可以作为锂离子电池负极材料这一研究后,金属氧化物负极便逐渐引起人们的重视.铁的氧化物具有比容量大、倍率性能好和安全性能高等优点,且原料来源丰富、价格低廉、环境友好,因此是一类很有发展潜力的动力锂离子电池负极材料.Fe 2O 3作为一种常温下最稳定的铁氧化合物,理论容量为1005mAh/g ,远高于石墨类材料的理论比容量,已经成为锂离子电池负极材料的一个研究热点.近年来,石墨烯由于其高的电传导性,大的比表面积,良好的化学稳定性和柔韧性而被尝试用于与活性锂离子电池负极材料复合,提升材料的电化学性能.比如,Cui Y [2]课题组在溶剂热条件下两步法得到Mn 3O 4与石墨烯的复合材料,改善了Mn 3O 4的比容量和循环性能.Co 3O 4,Fe 3O 4等金属氧化物材料与石墨烯复合也有被研究,本课题组在石墨烯和金属氧化物材料复合方面也做了大量的工作[3].本文通过水热法一步合成Fe 2O 3/石墨烯纳米复合材料,并研究了其电化学性能,合成过程中采用三乙烯二胺提供反应的碱性环境,并控制Fe 2O 3的粒子生长.1 实验 1.1试剂和仪器 三乙烯二胺(C 6H 12N 2);无水三氯化铁(FeCl 3);石墨;硝酸钠(NaNO 3);浓硫酸(H 2SO 4);高锰酸钾(KMnO 4);双氧水(H 2O 2)和盐酸(HCl ),以上试剂均为分析纯.实验用水为去离子水.日本理学H-600型透射电子显微镜;日本理学D/max2200PC 型X 射线衍射仪;德国Bruker Vector 22红外光谱仪;日本JEOL-2000CX 透射电镜;美国Thermo Scientific Escalab 250Xi 光电子能谱仪;LAND 电池

选择性还原氧化石墨烯

文章编号: 1007?8827(2014)01?0061?06 选择性还原氧化石墨烯 徐 超1, 员汝胜1, 汪 信2 (1.福州大学光催化研究所福建省重点实验室?国家重点实验室培育基地,福建福州350002; 2.南京理工大学教育部软化学与功能材料重点实验室,江苏南京210094) 摘 要: 还原氧化石墨烯已被广泛用于制备基于石墨烯的材料三目前,还原处理方法均是尽可能地将氧化石墨烯中的功能团去除,恢复石墨烯的电子结构三由于氧化石墨烯中氧基功能团(如羟基二羧基及环氧基)不同的反应活性,氧化石墨烯是可能通过分步的方法进行还原三利用醇溶剂如乙醇二乙二醇二丙三醇还原氧化石墨烯,并采用不同分析手段对样品进行表征三结果发现,在一定条件下这些醇可选择性地还原氧化石墨烯三经这些醇的处理后,氧化石墨烯中环氧功能团被大部分去除,而其他的功能团如羟基和羧基仍被保留三这种选择性去除氧化石墨烯表面功能团的方法可利于有效地控制氧化石墨烯的还原程度二获得具有特定功能团的石墨烯衍生物,从而扩大这类材料的使用范围三 关键词: 氧化石墨烯;氧化功能团;醇;选择性还原 基金项目:国家自然科学基金(21201036,21077023);福建省自然科学基金(2010J01035,2012J01039). 作者简介:徐 超,博士,讲师.E?mail:cxu@https://www.wendangku.net/doc/764382550.html, Selective reduction of graphene oxide XU Chao1, YUAN Ru?sheng1, WANG Xin2 (1.Research Institute of Photocatalysis,Fujian Provincial Key Laboratory of Photocatalysis??State Key Laboratory Breeding Base,Fuzhou University,Fuzhou350002,China; 2.Key Laboratory for Soft Chemistry and Functional Materials of Ministry Education,Nanjing University of Science and Technology,Nanjing210094,China) Abstract: The reduction of graphene oxide has been widely used to control the properties of graphene?based materials.Traditional methods thoroughly remove oxygenated functional groups in graphene oxides.We show that ethanol,ethylene glycol and glycerol can se?lectively reduce epoxy groups in graphene oxide while hydroxyl and carboxyl groups remain unchanged.Hydrazine hydrate can reduce ox?ygen functional groups except carboxyl groups.These selective removals can be used to control the reduction degree of graphene oxides and their properties.The electrical conductivity of the reduced graphene oxides with different types of oxygen functional groups varied sig?nificantly and increased with the degree of reduction. Keywords: Graphene oxide;Oxygenated functional groups;Alcohols;Selective reduction CLC number: TQ127.1+1Document code: A Received date:2013?07?10; Revised date:2013?12?22 Corresponding author:XU Chao,Ph.D,Lecturer.E?mail:cxu@https://www.wendangku.net/doc/764382550.html, Foundation items:National Natural Science Foundation of China(21201036,21077023);Natural Science Foundation of Fujian Province (2010J01035,2012J01039). English edition available online ScienceDirect(http:∕∕https://www.wendangku.net/doc/764382550.html,∕science∕journal∕18725805). DOI:10.1016/S1872?5805(14)60126?8 1 Introduction Graphene oxide(GO),utilized as precursor for a large?scale production of graphene?based materials,has attracted a great deal of attention in recent years[1?5]. GO sheets are electrically insulating,owing to their oxygenated functional groups(hydroxyl,carboxyl and epoxy groups)on surface,which usually need further treatments to restore the electrical conductivity for spe?cific applications[6].A lot of methods,such as chemi?cal reduction[7?9],laser irradiation[10,11],microwave ir?radiation[12,13],photocatalysis[14,15],solvothermal re?duction[16,17],have been explored to remove these atta?ched groups thoroughly and to recover graphene net?works of sp2bonds. Actually,researchers recently have found that the reduction degree of graphene oxide or oxidation degree of graphene has certain influences on their properties,such as electrical conductivity,catalysis activity and semi?conductive band positions[18?20]. Among these research work,the reduction degree of  第29卷 第1期 2014年2月新 型 炭 材 料 NEW CARBON MATERIALS Vol.29 No.1 Feb.2014

石墨烯复合材料的研究及其应用

石墨烯复合材料的研究及其应用 任成,王小军,李永祥,王建龙,曹端林 摘要:石墨烯因其独特的结构和性能,成为物理化学和材料学界的研究热点。本文综述了石墨烯复合材料的结构和分类,主要包括石墨烯-纳米粒子复合材料、石墨烯-聚合物复合材料和石墨烯-碳基材料复合材料。并简述石墨烯复合材料在催化领域、电化学领域、生物医药领域和含能材料领域的应用。 关键词:石墨烯;复合材料;纳米粒子;含能材料 Research and Application of Graphene composites ABSTRACT: Graphene has recently attracted much interest in physics,chemistry and material field due to its unique structure and properties. This paper reviews the structure and classification of graphene composites, mainly inclouding graphene-nanoparticles composites, graphene-polymer composites and graphene-carbonmaterials composites. And resume the application of graphene composites in the field of catalysis, electrochemistry, biological medicine and energetic materials. Keywords: graphene; composites; nanoparticles; energetic materials 石墨烯自2004年曼彻斯特大学Geim[1-3]等成功制备出以来,因其独特的结构和性能,颇受物理化学和材料学界的重视。石墨烯是一种由碳原子紧密堆积构成的二维晶体,是包括富勒烯、碳纳米管、石墨在内的碳的同素异形体的基本组成单元。石墨烯的制备方法主要有机械剥离法,晶体外延法,化学气相沉积法,插层剥离法以及采用氧化石墨烯的高温脱氧和化学还原法等[4-10]。与碳纳米管类似,石墨烯很难作为单一原料生产某种产品,而主要是利用其突出特性与其它材料体系进行复合.从而获得具有优异性能的新型复合材料。而氧化石墨烯由于其特殊的性质和结构,使其成为制备石墨烯和石墨烯复合材料的理想前驱体。本文综述了石墨烯复合材料的结构、分类及其在催化领域、电化学领域、生物医药领域和含能材料领域的应用。

高分子_石墨烯纳米复合材料研究进展

高分子/石墨烯纳米复合材料研究进展 高秋菊1,夏绍灵1,2* ,邹文俊1,彭 进1,曹少魁2 (1.河南工业大学材料科学与工程学院,郑州 450001;2.郑州大学材料科学与工程学院,郑州 450052 )收稿:2012-01-09;修回:2012-04- 24;基金项目:郑州科技攻关项目(0910SGYG23258- 1);作者简介:高秋菊(1984—),女,硕士研究生,主要从事高分子复合材料的研究。E-mail:gaoqiuj u2008@yahoo.com.cn;*通讯联系人,Tel:0371-67758722;E-mail:shaoling _xia@haut.edu.cn. 摘要: 石墨烯以其优异的力学、光学、电学和热学性能,得到日益广泛的关注和研究。本文介绍了石墨烯的结构、性能和特点,并对石墨烯的改性方法进行了概括。本文着重综述了高分子/石墨烯纳米复合材料的研究现状和进展,并介绍了高分子/石墨烯纳米复合材料的三种制备方法,即原位插层聚合法、溶液插层法和熔融插层法。此外,还对高分子/石墨烯纳米复合材料的应用前景进行了展望,并对石墨烯复合材料研究存在的问题和未来的研究方向进行了讨论。 关键词:石墨烯;高分子;纳米复合材料;研究进展 引言 石墨烯是以sp2 杂化连接的碳原子层构成的二维材料, 其厚度仅为一个碳原子层的厚度。这种“只有一层碳原子厚的碳薄片”,被公认为目前世界上已知的最薄、最坚硬、最有韧性的新型材料。石墨烯具 有超高的强度,碳原子间的强大作用力使其成为目前已知力学强度最高的材料。石墨烯比钻石还坚硬, 强度比世界上最好的钢铁还高100倍[1] 。石墨烯还具有特殊的电光热特性, 包括室温下高速的电子迁移率、 半整数量子霍尔效应、自旋轨道交互作用、高理论比表面积、高热导率和高模量、高强度,被认为在单分子探测器、集成电路、场效应晶体管等量子器件、功能性复合材料、储能材料、催化剂载体等方面有广泛 的应用前景[ 2] 。石墨烯是一种疏松物质,在高分子基体中易团聚,而且石墨烯本身不亲油、不亲水,在一定程度上也限制了石墨烯与高分子化合物的复合,尤其是纳米复合。因而,很多学者对石墨烯的改性进行了大量的研究,以提高石墨烯和高分子基体的亲和性,从而得到优异的复合效应。 1 石墨烯的改性方法 1.1 化学改性石墨烯 该方法基于改性Hummers法[3] 。首先,由天然石墨制得石墨氧化物, 再通过几种化学方法获得可溶性石墨烯。其化学方法包括:氧化石墨在稳定介质中的还原[4]、通过羧基酰胺化的共价改性[5] 、还原氧化石墨烯的非共价功能化[ 6]、环氧基的亲核取代[7]、重氮基盐的耦合[8] 等。此外,还出现了对石墨烯的氨基化[9]、酯化[10]、异氰酸酯[11] 改性等。用化学功能化的方法对石墨烯进行改性,不仅可以提高其溶解性 和加工性能,还可以增强有机高分子间的相互作用。1.2 电化学改性石墨烯 利用离子液体对石墨烯进行电化学改性已见报道[12] 。用电化学的方法,使石墨变成用化学改性石 墨烯的胶体悬浮体。石墨棒作为阴极,浸于水和咪唑离子液的相分离混合物中。以10~20V的恒定电 · 78· 第9期 高 分 子 通 报

石墨烯的氧化还原法制备及结构表征

实验目的: (1)了解石墨烯的结构和用途。 (2)了解氧化后的石墨烯比纯石墨烯的性能有何提升 (3)了解Hummers法的原理 一、实验原理: 天然石墨需要进行先氧化,得到氧化石墨,再经过水合肼的作用下还原,才能得到在水相条件下稳定分散的石墨烯。 石墨的氧化过程采用浓硫酸和高锰酸钾这两种强氧化剂,氧化过程中先加浓硫酸,搅拌均匀后再加高锰酸钾,氧化过程从石墨的边沿进行,然后再到中间,氧化程度与持续时间有关。氧化过程中要增加石墨的亲水性,以便于分散,分散一般使用超声分散法。 氧化后的氧化石墨烯需要进行离心处理,使得pH值在6到7之间,目的是洗去氧化石墨烯的酸性,根本原因是研究表明氧化石墨烯和石墨烯在碱性条件下可以形成稳定的悬浮液。 氧化石墨烯的还原有多种方法,化学还原和热还原等,化学还原采用水合肼,热还原采用作TGA后,加热到200℃,一般大部分的含氧官能团都能除去。 二、实验内容: 1、利用氧化还原法制备石墨烯 2、对制得的石墨烯进行结构表征 三、实验过程: 实验利用Hummers法进行实验: 1、在三颈瓶外覆盖冰块,制造冰浴环境,并在三颈瓶内放入搅拌磁石; 2、将冰状天然石墨4g和硝酸钠2g倒入三颈瓶中; 3、将92ml浓硫酸倒入三颈瓶中; 4、开启磁力搅拌器,把溶液搅拌均匀后再缓慢加入高锰酸钾12g,在冰浴环境下搅拌3h; 5、升温至35℃,保持搅拌0.5h或1h,此时是对石墨片层中间进行氧化作用,氧化程度与持续时间有关; 6、加入去离子水184ml,缓慢滴加,保持温度低于100℃,升温至90℃,保温3h,溶液变红; 7、加300ml去离子水和30%的双氧水溶液10ml,使得高锰酸钾反应掉,静置一晚,倒掉上层清液; 8、对溶液进行离心操作7-8次,使得pH值在6-7; 9、减压蒸馏,进行还原反应得到石墨烯; 10、对得到的产物进行结构表征。

石墨烯复合材料

石墨烯复合材料 石墨烯是单层碳原子通过sp2杂化形成的蜂窝点阵结构,属于二维原子晶体,此独特的空间结构,给石墨烯带来了优异的电学、力学、热学和比表面积大等性质。但是二维石墨烯由于片层之间具有较强的π-π作用和范德华力,使得石墨烯容易聚集形成石墨,限制了石墨烯在各个领域中的应用。因此,为了防止石墨烯的聚集和拓展石墨烯的应用,科研工作者将石墨烯与高分子或者无机纳米粒子进行复合,从而得到具有优异性能的复合材料。石墨烯的复合材料具有化学稳定性高、比表面积大,易回收等特点,在环境治理方面受到了科学家的青睐。 一、石墨烯复合材料的分类和制备 1、石墨烯-高分子复合材料 石墨烯-高分子复合材料,石墨烯的独特的结构和性能,对于改善高分子的导电性、热性能和吸附能力等方面有非常大的应用价值。制备石墨烯-高分复合材料最直接的方法是将高分子溶液与石墨烯的溶液混合,其中高分子和填充物在溶剂中的溶解能力是保证最佳分散度的重要因素。因此,在溶液混合时,可以将石墨基质表面功能化来提高它在多种溶剂中的溶解度。例如,异氰酸

苯酯修饰的GO在在聚苯乙烯的DMF溶液中表现出了较好的溶解度。 2、石墨烯-无机纳米粒子复合材料 无机纳米粒子存在着易于团簇的问题,并且选择合适的载体也是其广泛应用需要解决的问题。石墨烯具有多种优异的性能,并且具有较大的比表面积,可以成为无机纳米材料的载体。无机纳米粒子可以将易于团簇的石墨烯片层分开,防止团簇,从而两者形成石墨烯-无机纳米粒子新型的复合材料,这些材料广泛的应用于检测、催化和气体存储等方面。目前已报道的有负载的金属纳米粒子Ag、Au、氧化物纳米粒子ZnO和Fe3O4等。 3、其它石墨烯复合材料 石墨烯不仅仅可以和高分子、无机纳米材料复合,还可以同时结合高分子、纳米粒子和碳基材料中的一种或者两种,形成多元的含有石墨烯的复合材料。这类材料具有多功能性,用于超级电容器或者传感器等。 二、石墨烯复合材料在水治理的应用 1、吸附作用 碳材料中活性碳和碳纳米管被广泛的应用于水净化领域,将石墨烯与其它化合物进行复合,这些复合材料在吸附污染物上有非常高的效率,可以应用于染料、多芳香环烃和汽油的吸附。比如利用磁性-壳聚糖-石墨烯的复合材料可以大大提高去除溶液中的亚甲基蓝的效率,吸附能力达到

相关文档