文档库 最新最全的文档下载
当前位置:文档库 › 数学物理方程-谷超豪

数学物理方程-谷超豪

数学物理方程-谷超豪
数学物理方程-谷超豪

成都理工大学数学物理方程试题

《数学物理方程》模拟试题 一、填空题(3分10=30分) 1.说明物理现象初始状态的条件叫( ),说明边界上的约束情况的条件叫( ),二者统称为 ( ). 2.三维热传导齐次方程的一般形式是:( ) . 3 .在平面极坐标系下,拉普拉斯方程算符为 ( ) . 4.边界条件 是第 ( )类边界条件,其中为边界. 5.设函数的傅立叶变换式为,则方程的傅立叶变换 为 ( ) . 6.由贝塞尔函数的递推公式有 ( ) . 7.根据勒让德多项式的表达式有= ( ). 8.计算积分 ( ) . 9.勒让德多项式的微分表达式为( ) . ?f u n u S =+??)(σS ),(t x u ),(t U ω2 2 222x u a t u ??=??=)(0x J dx d )(3 1)(3202x P x P +=?-dx x P 2 1 12)]([)(1x P

10.二维拉普拉斯方程的基本解是() . 二、试用分离变量法求以下定解问题(30分):1. 2.? ? ? ? ?? ? ? ? < < = ? ? = = = > < < ? ? = ? ? = = = = 3 0,0 , 3 ,0 0 ,3 0, 2 3 2 2 2 2 2 ,0 x t u x x t x x u t u t t x u u u ? ? ? ? ?? ? ? ? = = = > < < ? ? = ? ? = = = x t x x u t u u u u t x x 2 ,0 ,0 ,4 0, 4 2 2

3. ???? ? ????<<=??===><<+??=??====20,0,8,00,20,162002022 222x t u t x x u t u t t x x u u u

数学物理方程第二版答案解析(平时课后知识题作业任务)

数学物理方程第二版答案 第一章. 波动方程 §1 方程的导出。定解条件 4. 绝对柔软逐条而均匀的弦线有一端固定,在它本身重力作用下,此线处于铅垂平衡位置,试导出此线的微小横振动方程。 解:如图2,设弦长为l ,弦的线密度为ρ,则x 点处的张力)(x T 为 )()(x l g x T -=ρ 且)(x T 的方向总是沿着弦在x 点处的切线方向。仍以),(t x u 表示弦上各点在时刻t 沿垂直于x 轴方向的位移,取弦段),,(x x x ?+则弦段两端张力在u 轴方向的投影分别为 )(sin ))(();(sin )(x x x x l g x x l g ?+?+--θρθρ 其中)(x θ表示)(x T 方向与x 轴的夹角 又 . sin x u tg ??=≈θθ 于是得运动方程 x u x x l t u x ???+-=???)]([22ρ∣x u x l g x x ??--?+][ρ∣g x ρ 利用微分中值定理,消去x ?,再令0→?x 得 ])[(2 2x u x l x g t u ??-??=??。 5. 验证 2 221),,(y x t t y x u --= 在锥2 22y x t -->0中都满足波动方程 222222y u x u t u ??+??=??证:函数2221),,(y x t t y x u --=在锥2 22y x t -->0内对变量t y x ,,有

二阶连续偏导数。且 t y x t t u ?---=??-2 3 222)( 22 52222 32222 2) (3) (t y x t y x t t u ?--+---=??- - )2()(2 2223 222y x t y x t ++?--=- x y x t x u ?--=??- 23 222)( ()() 225222232222 23x y x t y x t x u - ---+--=?? ( )()222 252222y x t y x t -+- -=- 同理 ()()222 25 2222 22y x t y x t y u +---=??- 所以 ()() .22 22 2225222222 2t u y x t y x t y u x u ??=++--=??+ ??- 即得所证。 §2 达朗贝尔公式、 波的传抪 3.利用传播波法,求解波动方程的特征问题(又称古尔沙问题) ??? ? ???==??=??=+=-).()(0022222x u x u x u a t u at x at x ψ? ())0()0(ψ?= 解:u(x,t)=F(x-at)+G(x+at) 令 x-at=0 得 )(x ?=F (0)+G (2x ) 令 x+at=0 得 )(x ψ=F (2x )+G(0)

数学物理方程有感

书本个人总结: 由于物理学,力学和工程技术等方面的许多问题都可以归结为偏微分方程的定解问题,而在数学物理方程这门课上,我们的主要任务便是求解这些定解问题,也就是说在已经列出的方程与定解条件之后,怎样去求既满足方程又满足定解条件的解。 而我们的常用的解决偏微分方程的方法的统一思路是将一个偏微分方程的求解设法转化成一个常微分方程问题的求解。 而我们在学习过程中接触到的常用方法有:分离变量法,行波法,积分变换法和拉普拉斯方程的格林函数法 第二章: 本章主要介绍了分离变量法,介绍了有界弦的自由振动,有限长杆上的热传导,圆域内的二维拉普拉斯方程的定解问题等泛定方程和边界条件都是齐次的偏微分方程的求解,还介绍了非齐次方程的解法,非齐次边界条件的处理等等。 A . 其中泛定方程和边界条件都是齐次的偏微分方程的求解步骤,取有界弦的自由振动的方程求解作为例子,定解问题为: 第一步:分离变量 目标:分离变量形式的非零解)()(),(t T x X t x u = 结果:函数)(x X 满足的常微分方程和边界条件以及)(t T 满足的常微分方程 条件:偏微分方程和边界条件都是齐次的 第二步:求解本征值问题 利用0)()(''=+x X x X λ和边界条件0)0(=X 和0)(=l X 求出本征值和本函数: 本征值: 本征函数: 第三步:求特解,并叠加出一般解 ? ??????====<<>??=??) ()0,(),()0,(,0),(),0(0 ,0 ,22222x x u x x u t L u t u L x t x u a t u t ψ?0 )(2 )(''=+t T a t T λ ,3,2,1 2)(==n l n n πλx l n πsin (x)X n =x l n at l n D at l n C t x u n n n πππsin )cos sin (),(1∑∞ =+=

数学物理方程期末考试试题(A)答案

孝感学院

解:设)()(t T x X u =代于方程得: 0''=+X X λ,0)1(''2=++T a T λ(8’) x C x C X λλsin cos 21+=,t a C t a C T 22211sin 1cos λλ+++= 由边值条件得: 22)( ,0l n C πλ== l x n t a A t a B u n n n πλλcos )1sin 1cos (221+++=∑∞= ?= l n dx l x n x l B 0cos )(2π?,?+=l n dx l x n x a l A 02cos )(12πψλ(15’) 证明:设代入方程: ?? ???====-=).(),(),(),0()(02102t g t l v t g t v x v v a v t xx t ? 设21,v v 都是方程的解设21v v v -=代入方程得: ?? ???====-=0),(,),0(0002t l v t v v v a v t xx t 由极值原理得0=v 唯一性得证。(8’)由 ≤-21v v ετ≤-2 1v v ,稳定性得证由u e v ct -=知u 的唯一性稳定性 得证。(15’)

解:设),(ηξp 是第一象限内一点,在该点放置单位点电荷,其对称点),(ηξ-p 格林函数: 22)()(1ln 21),,,(ηξπηξ-+-= y x y x G 22)()(1ln 21ηξπ++--y x (8’) ] )[(22220ηξπη+-=??-=??=x y G n G y 方程的解:dx x x f u ?+∞∞-+-=22)()(),(ηξπ ηηξ(15’) 五、证明下列初边值问题解的唯一性.(20分) ),,,()(2t z y x f u u u a u zz yy xx tt =++- ),,,(0z y x u t ?== ),,,(0 z y x u t t ψ== ).,,,(t z y x g u =Γ 其中,),,(,0Ω∈>z y x t Γ为Ω的边界. 解:设21,u u 都是方程的解设21u u u -=代入方程得: 0)(2=++-zz yy xx tt u u u a u 00==t u 00 ==t t u .0=Γu 设dxdydz u u u a u t E z y x t ])([21)(22222???Ω +++= =dt t dE )(dxdydz u u u u u u a u u zt z yt y xt x tt t ])([22???Ω +++ dxdydz u u u a u u zz yy xx tt t ])([[2 2??? Ω++-= 0=(10’)

数学物理方程总结

数学物理方程总结 Revised by Jack on December 14,2020

浙江理工大学数学系 第一章:偏微分方程的基本概念 偏微分方程的一般形式:221 1 (,,, ,,,)0n u u u F x u x x x ???=??? 其中12(,,...,)n x x x x =是自变量,12()(,,...,)n u x u x x x =是未知函数 偏微分方程的分类:线性PDE 和非线性PDE ,其中非线性PDE 又分为半线性PDE ,拟线性PDE 和完全非线性PDE 。 二阶线性PDE 的分类(两个自变量情形): 2221112222220u u u u u a a a a b cu x x y y x y ?????+++++=?????? (一般形式 记为 PDE (1)) 目的:可以通过自变量的非奇异变换来化简方程的主部,从而据此分类 (,) (,)x y x y ξξηη=?? =? 非奇异 0x y x y ξξηη≠ 根据复合求导公式最终可得到: 22211122222 20u u u u u A A A A B Cu ξξηηξη ?????+++++=??????其中: 考虑22111222( )2()0z z z z a a a x x y y ????++=????如果能找到两个相互独立的解 那么就做变换(,) (,)x y x y ξφηψ=??=? 从而有11220A A == 在这里要用到下面两个引理: 引理1:假设(,)z x y φ=是方程22111222( )2()0z z z z a a a x x y y ????++=???? (1)的特解,则关系式(,)x y C φ=是常微分方程:22111222()2()0a dy a dxdy a dx -+= (2)的一般积分。 主

数学物理方程 答案 谷超豪

第一章. 波动方程 §1 方程的导出。定解条件 1.细杆(或弹簧)受某种外界原因而产生纵向振动,以u(x,t)表示静止时在x 点处的点在时刻t 离开原来位置的偏移,假设振动过程发生的张力服从虎克定律,试证明),(t x u 满足方程 其中ρ为杆的密度,E 为杨氏模量。 证:在杆上任取一段,其中两端于静止时的坐标分别为 x 与+x x ?。现在计算这段杆在时刻t 的相对伸长。在时刻t 这段杆两端的坐标分别为: 其相对伸长等于 ),()],([)],([t x x u x x t x u x t x x u x x x ?+=??-+-?++?+θ 令 0→?x ,取极限得在点x 的相对伸长为x u ),(t x 。由虎克定律,张力),(t x T 等于 其中)(x E 是在点x 的杨氏模量。 设杆的横截面面积为),(x S 则作用在杆段),(x x x ?+两端的力分别为 于是得运动方程 tt u x x s x ???)()(ρx ESu t x =),(x x x x x ESu x x |)(|)(-?+?+ 利用微分中值定理,消去x ?,再令0→?x 得 若=)(x s 常量,则得 22)(t u x ??ρ=))((x u x E x ???? 即得所证。 2.在杆纵向振动时,假设(1)端点固定,(2)端点自由,(3)端点固定在弹性支承上,试分别导出这三种情况下所对应的边界条件。 解:(1)杆的两端被固定在l x x ==,0两点则相应的边界条件为 (2)若l x =为自由端,则杆在l x =的张力x u x E t l T ??=) (),(|l x =等于零,因此相应的边界条件为 x u ??|l x ==0 同理,若0=x 为自由端,则相应的边界条件为 x u ??∣00==x (3)若l x =端固定在弹性支承上,而弹性支承固定于某点,且该点离开原来位置的 偏移由函数)(t v 给出,则在l x =端支承的伸长为)(),(t v t l u -。由虎克定律有 x u E ??∣)](),([t v t l u k l x --==

最新数学物理方程期末考试试题及答案

数学物理方程期末考试试题及答案 一、求解方程(15分) ?????===-=+=-. )()(0002x u x u u a u at x at x xx tt ψ? 其中)0()0(ψ?=。 解:设? ??+=-at x at x ηξ=则方程变为: 0=ξηu ,)()(at x G at x F u ++-=(8’)由边值条件可得: )()0()2(),()2()0(x G x F x x G F ψ?=+=+ 由)0()0(ψ?=即得: )0()2 ()2( ),(?ψ?--++=at x at x t x u 。 二、利用变量分离法求解方程。(15分) ?????==≥==∈=-====)(,)(, 0,0,),(,00002x u x u t u u Q t x u a u t t t l x x xx tt ψ? 其中l x ≤≤0。0>a 为常数 解:设)()(t T x X u =代于方程得: 0''=+X X λ,0''2=+T a T λ(8’) x C x C X λλsin cos 21+=,at C at C T λλsin cos 21+= 由边值条件得:

21)( ,0l n C πλ== l x n at A at B u n n n πλλsin )sin cos (1+=∑∞= ?=l n dx l x n x l B 0sin )(2π?,?=l n dx l x n x an A 0sin )(2πψπ 三.证明方程02=--cu u a u xx t )0(≥c 具有狄利克雷边界条件的初边值问题解的唯一性与 稳定性. (15分) 证明:设u e v ct -=代入方程: ?? ???====-=).(),(),(),0()(02102t g t l v t g t v x v v a v t xx t ? 设21,v v 都是方程的解设21v v v -=代入方程得: ?? ???====-=0),(,),0(0002t l v t v v v a v t xx t 由极值原理得0=v 唯一性得证。(8’)由 ≤-21v v ετ≤-2 1v v ,稳定性得证由u e v ct -=知u 的唯一性稳定性 得证。 四.求解二维调和方程在半平面上的狄利克雷问题(15分). ,0,0>=++=?z u u u u zz yy xx ).(0x f u z == 解:设),,(ζηξp 是上半平面内一点,在该点放置单位点电荷,其对称点 ),,(?ηξ-p 格林函数: 222)()()(141 ),,,(?ηξπ ηξ-+-+--=z y x y x G 222)()()(141 ?ηξπ++-+-+z y x

含有阻尼项的弦振动方程及其仿真

含有阻尼项的弦振动方程及其仿真 内容提要: 本文通过对古典吉他的琴弦振动情况建立数学物理方程,得到一个含有阻尼项的双 曲型方程的初边值问题,对解用Matlab进行仿真。最后依据弦振动方程的结果,列举 了在这种情况下几种泛音的位置,并结合该方程,对右手给出指导。 关键词 数学物理方程,Matlab,驻波。 引言: 在弦乐器表演中常用到泛音这样的一个技巧,即左手虚按琴弦,滤掉一部分波在琴 弦上形成驻波。比如在弦的三分点进行滤波,则波长的三倍不能被弦长整除的波,将会 被滤掉。但是在拨弦乐器的教学中,关于泛音的位置一直是老师们口口相传。而且某些 泛音准确位置并不在拨弦乐器的品(山口)上,所以缺乏理论指导。 在国内的研究领域中,韩佩琪《弦乐器泛音的分析及应用》一文中只是对弹拨乐器 的空弦状态下进行求解而且忽略了空气的阻力,而且并没有结合列出的解给出演奏技巧 上的指导。而邱桂明《阻尼作用下的弦振动研究》的初边值条件并不符合乐器的条件。另外在周伟《古典吉他演奏教程》以及相关的一些吉他教学视频中只是提及了左手虚按 的位置,关于右手的位置没有给出一个指导。综上来看,国内研究领域,对定弦振动泛 音的理论研究尚处于一个盲区。然而一维双曲型微分方程的理论已经比较完善给本文提 供了理论依据,给研究带来了可行性。 一、模型建立: 如图所示:琴弦的初始状态: 1

其中h是弹拨弦与初始位置间的距离,b是弹拨点距离原点的距离,l表示弦的长度。 弦的两端是静止不动的,从而边值条件:为u(0,t)=u(l,t)=0 其中t表示振动时间。 列出方程: 其中:错误!未找到引用源。,而T表示琴弦松弛时的张力,错误!未找到引用源。表示琴弦线密度。 边值条件: 初值条件: 二、问题的求解 从物理上知道,一个复杂的振动往往可以分解成许多简单的振动的叠加。如弦振动所发出的声音可以分解成各种不同频率的单音叠加。相应于每种单音,弦振动时波形保持不变,从而当时间变化是个点的振幅做同步的变化,所以可以有如下形式: 带入到原方程会得到: 分离变量: 等式左右两边相等,左边仅是t的函数,右边仅是x的函数,左右两边要相等,只有等于同一个常数才可能。设此常数为错误!未找到引用源。。则得到两个常微分方程。 得到以下通解: 因为阻尼系数很小,所以 2

数学物理方程公式总结-14页文档资料

无限长弦的一般强迫振动定解问题 200(,)(,0)() () tt xx t t t u a u f x t x R t u x u x ?ψ==?=+∈>? =?? =? 解()()().() .0()1 11(,)(,)222x at t x a t x at x a t u x t x at x at d f d d a a ττ??ψξξατατ++----??=++-+ +??????? ???? 三维空间的自由振动的波动方程定解问题 ()22 22222220001,,,,0(,,) (,,)t t u u u a x y z t t x y z u x y z u x y z t ??==???????=++-∞<<+∞>? ????????? =????=??? 在球坐标变换 sin cos sin sin (0,02,0)cos x r y r r z r θ?θ??πθπθ=?? =≤<+∞≤≤≤≤??=? L 21()1 () (,)44M M at r S S M M u M t dS dS a t r a r ?ψππ??''?=+??????????? 乙 (r=at) 221()1() (,)44M M at at S S M M u M t dS dS a t t a t ?ψππ??''?=+??????? ???? 乙无界三维空间自由振动的泊松公式 ()sin cos ()sin sin (02,0)()cos x x at y y at z z at θ?θ??πθπθ'=+?? '=+≤≤≤≤??'=+? L 2()sin dS at d d θθ?= 二维空间的自由振动的波动方程定解问题 ()22 2222200,,,0(,)(,)t t u u u a x y t t x y u u x y x y t ?ψ==??????=+-∞<<+∞>? ???????? ?? ==??? 22000011(,,)22at at u x y t a t a ππθθππ?????= +????????? ???? 傅立叶变换

数学物理方程期末试卷

2012学年第二学期数学与物理方程期末试卷 出卷人:欧峥 1、长度为 l 的弦左端开始时自由,以后受到强度为sin A t ω的力的作用,右端系在弹性系数为k 的弹性支承上面;初始位移为(),x ?初始速度为().x ψ试写出相应的定解问题。(10分) 2、长为l 的均匀杆,侧面绝热,一端温度为0度,另一端有已知的恒定热流进入,设单位时间流入单位截面积的热量为q ,杆的初始温度分布是() 2 x l x -,试写出其定解问题。(10分) 3、试用分离变量法求定解问题(10分): .? ?? ?? ?? ??===><??? ==?????=+= ????? 5、利用行波法,求解波动方程的特征问题(又称古尔沙问题)(10分):

???????==??=??=+=-).()(002 22 2 2x u x u x u a t u at x at x ψ? ())0()0(ψ?= 6、用达朗贝尔公式求解下列一维波动方程的初值问题(10分) ?????=??=>+∞<<-∞+??=??==0 ,2sin 0,,cos 0022 2 22t t t u x u t x x x u a t u 7、用积分变换法求解定解问题(10分): ???? ???=+=>>=???==,1,10,0,1002y x u y u y x y x u 8、用积分变换法求解定解问题(10分): ?? ?==>∈=0)0,(,sin )0,(0,,2x u x x u t R x u a u t xx tt 9、用格林函数法求解定解问题(10分): 22220 0, y 0, () , .y u u x y u f x x =???+=

数学物理方法总结归纳改

数学物理方法总结 第一章 复变函数 复数的代数式:z=x+iy 复数的三角式和指数式:(cos sin )z ρ??=+和i z e ? ρ= 欧拉公式:{1sin ()21cos () 2 iz iz iz iz z e e i z e e --= -=+ 柯西-黎曼方程(或称为柯西-黎曼条件):{u u x y v v x y ??=????=-?? (其中f(z)=u+iv) 函数f(z)=u+iv 在点0z 及其领域上处处可导,则称f(z)在0z 点解析.在区域B 上每一点都解析,则称f(z)是在区域B 上的解析函数. 解析函数的性质:1.若函数f(z)=u+iv 在区域B 上解析,则12(,),(,)u x y C v x y C == (12,C C 为常数)是B 上的两组正交曲线族. 2.若函数在区域B 上解析,则u,v 均为B 上的调和函数,即 22220u v x y ??+=?? 例题: 已知某解析函数f(z)的实部2 2 (,)u x y x y =-,求虚部和这个解析函数. 解答: 由于22u x ??=2;22v y ??=-2;则22220u v x y ??+=?? 曲线积分法 u x ??=2x;u y ??=-2y.根据C-R 条件有:v x ??=2y;v y ??=2x. 于是 22dv ydx xdy =+;

(,0) (,) (0,0) (,0) (,)(,) (,0) (22)(22)(22)22x x y x x y x y x v ydx xdy C ydx xdy ydx xdy C xdy C xy C =++=++++=+=+??? ? 凑全微分显式法 由上式可知 22dv ydx xdy =+ 则易得 (2)dv d xy = 则显然 2v xy C =+ 不定积分法 上面已有 v x ??=2y;v y ??=2x 则第一式对y 积分,x 视为参数,有 2()2()v xy x xy x ??=+=+? . 上式对x 求导有 2'()v y x x ??=+?,而由C-R 条件可知 '()0x ?=, 从而 ()x C ?=.故 v=2xy+C. 2 2 2 ()(2)f z x y i xy C z iC =-++=+ 第二章 复变函数的积分 单连通区域柯西定理 如果函数f(z)在闭单连通区域B 上解析,则沿B 上任意一分段 光滑闭合闭合曲线l(也可以是B 的边界),有 ()0l f z dz =??. 复连通区域柯西定理 如果f(z)是闭复连通区域上的单值解析函数,则 1 ()()0i n l l i f z dz f z dz =+=∑?? 蜒.式中l 为区域外边界线,诸i l 为 区域内边界线,积分均沿边界线的正方向进行.即 1 ()()i n l l i f z dz f z dz ==∑??i i . 柯西公式 1() ()2l f z f dz i z απα = -?? n 次求导后的柯西公式 () 1!() ()2()n n l n f f z d i z ζζπζ+= -?? 第三章 幂级数展开

数学物理方程有感

1 书本个人总结: 由于物理学,力学和工程技术等方面的许多问题都可以归结为偏微分方程的定解问题,而在数学物理方程这门课上,我们的主要任务便是求解这些定解问题,也就是说在已经列出的方程与定解条件之后,怎样去求既满足方程又满足定解条件的解。 而我们的常用的解决偏微分方程的方法的统一思路是将一个偏微分方程的求解设法转化成一个常微分方程问题的求解。 而我们在学习过程中接触到的常用方法有:分离变量法,行波法,积分变换法和拉普拉斯方程的格林函数法 第二章: 本章主要介绍了分离变量法,介绍了有界弦的自由振动,有限长杆上的热传导,圆域内的二维拉普拉斯方程的定解问题等泛定方程和边界条件都是齐次的偏微分方程的求解,还介绍了非齐次方程的解法,非齐次边界条件的处理等等。 A . 其中泛定方程和边界条件都是齐次的偏微分方程的求解步骤,取有界弦的自由振动的方程求解作为例子,定解问题为: 第一步:分离变量 目标:分离变量形式的非零解)()(),(t T x X t x u = 结果:函数)(x X 满足的常微分方程和边界条件以及)(t T 满足的常微分方程 条件:偏微分方程和边界条件都是齐次的 第二步:求解本征值问题 利用0)()(''=+x X x X λ和边界条件0)0(=X 和0)(=l X 求出本征值和本函数: 本征值: 本征函数: 第三步:求特解,并叠加出一般解 ? ??????====<<>??=??) ()0,(),()0,(,0),(),0(0 ,0 ,22222x x u x x u t L u t u L x t x u a t u t ψ?0)(2 )(''=+t T a t T λΛ,3,2,1 2)( ==n l n n πλx l n πsin (x)X n =x l n at l n D at l n C t x u n n n πππsin )cos sin (),(1∑∞=+=

数学物理方法第05章习题

第五章 习题答案 5.1-1一长为l 的均匀细杆,0=x 端固定,另一端沿杆的轴线方向被拉长d 而静止(假定拉长在弹性限度内)。突然放手使其振动,试写出振动方程与定解条件。 解:振动方程的形式与自由杆的振动方程一样。 ()l x u a u xx tt ≤≤=-00 2 ρ Y a = 2 初始条件:()()l x x l d x U ≤≤= 00, ()00,=x U t 边界条件:()0,0=t U ()0,0=t U x (右端自由振动) 5.1-2 长为l 的弦两端固定,密度为ρ,开始时在ε<-c x 处受到冲量I 的作用,写出初始条件。 解: ()00,=x U 在ε≥-c x 处 ()00,=x U t 在ε<-c x 处 由动量定理有: [] ερ ερ2)0,(0)0,(2I x U x U I t t = ?-?= 即:()??? ??<-≥-=ε ερ εc x I c x x U t 200, 5.1-3 长为l 的均匀细杆,在振动过程中,0=x 固定,另一端受拉力0F 的作用。试写出边界条件。(横截面积S ,杨氏模量Y )。 解:()0,0=t U 2 20),(t U S S t l P F ????=?--ρεε 当0→ε时有YS F t l U x U Y S F x l x 0 0),(= ???? ?==

5.1-4线密度为ρ,长为l 的弦两端固定,在某种介质中作阻尼振动,单位长度受阻力 t u h F ??-=,试写出其运动方程。 解:如图,取微元x d ,它的两端与x 轴间的夹角分别为21αα、,两端受力分别为 ()()t x T t x x T ,,d 、+,受力分析如下: x 轴方向: ()()0cos ,cos ,d 21=-+ααt x T t x x T 21,αα很小,则()()t x T t x x T ,,d =+, 即弦上张力不变。 y 轴方向:()()2221d d d sin ,sin ,d t u x g x x F t x T t x x T ????=??=?+-+ρραα 略去重力x g d ρ 有: x t u h x x u T t u x d d d 2222???-????=??ρ 所以:02 222=???+???-??t u h x u T t u ρρ 设2 a T =ρ 有:02 =+-t xx tt u h u a u ρ 5.1-5一均匀细圆锥杆作纵振动,锥的顶点固定在0=x 处,试导出此杆的振动方程。 解:设体密度为ρ,取微元x d (s 与s '中间一段) 则质量()?? ? ????-'?+??=s x s x x m 31d 31d ρ 而2 22 d 2d x x x x x x x s s +≈??? ??+=' 故()x s s x x x x m d d 31d 2 3 ??≈??? ?? ??-+??=ρρ 纵向上由牛顿定律有:s t x P s t x x P t u m ?-'?+=???),(),d (d 22 ()s x t x u x x x x t x x u Y t u x s ???? ???????-??? ??+??+??=???),(d ,d d 222ρ 1α 2α x l ()t x x T ,d + ()t x T , ()t x u , x x x d + x s s '

数学物理方程与特殊函数-模拟试题及参考答案

成都理工大学 《数学物理方程》模拟试题 一、填空题(3分?10=30分) 1.说明物理现象初始状态的条件叫( ),说明边界上的约束情况的条件叫( ),二者统称为 ( ). 2.三维热传导齐次方程的一般形式是:( ) . 3 .在平面极坐标系下,拉普拉斯方程算符为 ( ) . 4.边界条件 f u n u S =+??)(σ是第( )类边界条件,其中S 为边 界. 5.设函数),(t x u 的傅立叶变换式为),(t U ω,则方程22 222x u a t u ??=??的傅立叶变换为 ( ) . 6.由贝塞尔函数的递推公式有 =)(0x J dx d ( ) . 7.根据勒让德多项式的表达式有)(3 1)(3 202x P x P += ( ). 8.计算积分 =? -dx x P 2 1 1 2)]([( ) . 9.勒让德多项式)(1x P 的微分表达式为( ) . 10.二维拉普拉斯方程的基本解是( ) . 二、试用分离变量法求以下定解问题(30分): 1.??? ? ? ????<<=??===><

2.???? ? ?? ??===><<<+??=??====20,0,8,00,20,16200202 2 2 22x t u t x x u t u t t x x u u u 三、用达朗贝尔公式求解下列一维波动方程的初值问题(10分) ?? ???=??=>+∞<<-∞+??=??==0 ,2sin 0,,cos 0022 2 22t t t u x u t x x x u a t u 四、用积分变换法求解下列定解问题(10分): ??? ? ???=+=>>=???==, 1, 10,0,1002y x u y u y x y x u 五、利用贝赛尔函数的递推公式证明下式(10分): )(1)()(' 0' '02x J x x J x J -= 六、在半径为1的球内求调和函数u ,使它在球面上满足 θ21cos ==r u ,即所提问题归结为以下定解问题(10分):

数学物理方程小结word

数学物理方程小结 第七章 数学物理定解问题 数学物理定解问题包含两个部分:数学物理方程(即泛 定方程)和定解条件。 §7.1数学物理方程的导出 一般方法: 第一确定所要研究的物理量u ,第二 分析体系 中的任意一个小的部分与邻近部分的相互作用,根据物理规 律, 抓住主要矛盾, 忽略次要矛盾。(在数学上为忽略高级 小量.)第三 然后再把物理量u 随时间,空间的变为通过数 学算式表示出来, 此表示式即为数学物理方程。 (一) 三类典型的数学物理方程 (1)波动方程: 0 :),(:),(:22222222==??-??=?-??→f 当无外力时t x f x u a t u 一维t r f u a t u 三维 此方程 适用于各类波动问题。(特别是微小振动情况.) (2)输运方程: 0 :).(:),(:2222==??-??=?-??→f 无外源时t x f x u a t u 一维t r f u a t u 三维 此方程 适用于热传导问题、扩散问题。

(3)Laplace 方程: . 0(:0 :).程时泊松方程退化拉氏方f f u 泊松方程u 拉氏方程t r ==?=?→ 稳定的温度和浓度分布适用的数学物理方程为Laplace 方程, 静电势u 在电荷密度为零处也满足Laplace 方 程 。 §7.2定解条件 定解条件包含初始条件与边界条件。 (1) 初始条件的个数等于方程中对时间最高次导数 的次数。例如波动方程应有二个初始条件, 一般 选初始位移u (x,o )和初始速度u t (x,0)。而输 运方程只有一个初始条件选为初始分布u (x,o ), 而Laplace 方程没有初始条件。 (2) 三类边界条件 第一类边界条件: u( r ,t)|Σ = f (1) 第二类边界条件: u n |Σ = f (2) 第三类边界条件: ( u+Hu n )|Σ= f (3) 其中H 为常数. 7.3 二阶线性偏微分方程分类

数学物理方程习题解答案

数学物理方程习题解 习题一 1,验证下面两个函数: (,)(,)sin x u x y u x y e y == 都是方程 0xx yy u u += 的解。 证明:(1 )(,)u x y = 因为322 2 22 2222 2222 22 322 222 2222 2222 222222 222222 1 1()22 () 2()()11()22()2()()0()() x xx y yy xx yy x u x x y x y x y x x x y u x y x y y u y x y x y x y y y y x u x y x y x y y x u u x y x y =-? ?=- +++-?-=-=++=-??=-+++-?-=-=++--+=+=++ 所以(,)u x y =是方程0xx yy u u +=的解。 (2)(,)sin x u x y e y = 因为 sin ,sin cos ,sin x x x xx x x y yy u y e u y e u e y u e y =?=?=?=-? 所以 sin sin 0x x xx yy u u e y e y +=-= (,)sin x u x y e y =是方程0xx yy u u +=的解。 2,证明:()()u f x g y =满足方程 0xy x y uu u u -=

其中f 和g 都是任意的二次可微函数。 证明:因为 ()()u f x g y = 所以 ()(),()()()() ()()()()()()()()0 x y xy xy x y u g y f x u f x g y u f x g y uu u u f x g y f x g y g y f x f x g y ''=?=?''=?''''-=?-??= 得证。 3, 已知解的形式为(,)()u x y f x y λ=+,其中λ是一个待定的常数,求方程 430xx xy yy u u u -+= 的通解。 解:令x y ξλ=+则(,)()u x y f ξ= 所以2 (),()x xx u f u f ξλξλ'''=?=? (),(),()xy y yy u f u f u f λξξξ'''''=?== 将上式带入原方程得2 (43)()0f λλξ''-+= 因为f 是一个具有二阶连续可导的任意函数,所以2 -430 λλ+=从而12 =3,1λλ=, 故1122(,)(3),(,)()u x y f x y u x y f x y =+=+都是原方程的解,12,f f 为任意的二阶可微函数,根据迭加原理有 12(,)(3)()u x y f x y f x y =+++为通解。 4,试导出均匀等截面的弹性杆作微小纵振动的运动方程(略去空气的阻力和杆的重量)。 解:弹性杆的假设,垂直于杆的每一个截面上的每一点受力与位移的情形都是相 同的,取杆的左端截面的形心为原点,杆轴为x 轴。在杆上任意截取位于 [,]x x x +?的一段微元,杆的截面积为s ,由材料力学可知,微元两端处的相对伸长(应 变)分别是 (,)u x t x ??与(,)u x x t x ?+??,又由胡克定律,微元两端面受杆的截去部分的拉力分别为()(,)u SE x x t x ??与()(,)u SE x x x x t x ?+?+??,因此微元受杆的截去部分的作用力的合力为:()(,)()(,)u u SE x x x x t SE x x t x x ??+?+?-??

数学物理方法知识点归纳

第一章 复述和复变函数 1.5连续 若函数)(x f 在0z 的领域(包括0z 本身)已经单值确定,并且 )()(0 lim 0 z f z f z z =→,则 称f(z)在0z 点连续。 1.6导数 若函数在一点的导数存在,则称函数在该点可导。 f(z)=u(x,y)+iv(x,y)的导数存在的条件 (i) x u ??、y u ??、x v ??、y v ??在点不仅存在而且连续。 (ii)C-R 条件在该点成立。C-R 条件为 ???? ?? ???-=????=??y y x u x y x v y y x v x y x u ),(),(),(),( 1.7解析 若函数不仅在一点是可导的,而且在该点的领域点点是可导的,则称该点是解析的。 解析的必要条件:函数f(z)=u+iv 在点z 的领域(i) x u ??、y u ??、x v ??、y v ??存在。 (ii)C-R 条件在该点成立。 解析的充分条件:函数f(z)=u+iv 在领域(i) x u ??、y u ??、x v ??、y v ??不仅存在而且连续。 (ii)C-R 条件在该点成立。 1.8解析函数和调和函数的关系 拉普拉斯方程的解都是调和函数: 22x u ??+2 2y u ??=0 ①由此可见解析函数的实部和虚部都是调和函数。但是任意的两个调和函数作为虚实两部形成的函数不一定是解析函数,因为它们不一定满足C —R 条件。 ②当知道f(z)=u(x,y)+iv(x,y)中的u(x,y)时,如何求v(x,y)? 通过C —R 条件列微分方程 第二章 复变函数的积分 2.2解析函数的积分 柯西定理:若函数f(z)在单连区域D 是解析的,则对于所有在这个区域而且在两个公共 端点A 与B 的那些曲线来讲,积分 ?B A dz z f )(的值均相等。 柯西定理推论:若函数f(z)在单连区域D 解析,则它沿D 任一围线的积分都等于零。 ?=C dz z f 0)( 二连区域的柯西定理:若f(z)在二连区域D 解析,边界连续,则f(z)沿外境界线(逆时针方向)的积分等于f(z)沿境界线(逆时针方向)的积分。 n+1连区域柯西定理: ???? ΓΓΓΓ+++=n i i i e dz z f dz z f dz z f dz z f )(....)()()(2 1 推论:在f(z)的解析区域中,围线连续变形时,积分值不变。 2.3柯西公式 若f(z)在单连有界区域D 解析,在闭区域D 的边界连续,则对于区域D 的任何一个点a ,有?Γ -= dz a z z f i a f ) (21)(π其中Γ是境界线。 2.5柯西导数公式 ξξξπd z f i n z f C n n ?+-= 1)() () (2!)( 第三章 级数 3.2复变函数项级数 外尔斯特拉斯定理:如果级数 ∑∞ =0 )(k k z u 在境 界Γ上一致收敛,那么 (i)这个级数在区域部也收敛,其值为F(z) (ii)由它们的m 阶导数组成的级数 ∑∞ =0 )()(k m k z u 在区域也收敛,而且它们的和等

数学物理方程谷超豪版第二章课后答案

第 二 章 热 传 导 方 程 §1 热传导方程及其定解问题的提 1. 一均匀细杆直径为l ,假设它在同一截面上的温度是相同的,杆的表面和周围介质发生热交换,服从于规律 dsdt u u k dQ )(11-= 又假设杆的密度为ρ,比热为c ,热传导系数为k ,试导出此时温度u 满足的方程。 解:引坐标系:以杆的对称轴为x 轴,此时杆为温度),(t x u u =。记杆的截面面积4 2 l π为S 。 由假设,在任意时刻t 到t t ?+内流入截面坐标为x 到x x ?+一小段细杆的热量为 t x s x u k t s x u k t s x u k dQ x x x x ????=???-???=?+221 杆表面和周围介质发生热交换,可看作一个“被动”的热源。由假设,在时刻t 到t t ?+在截面为x 到x x ?+一小段中产生的热量为 ()()t x s u u l k t x l u u k dQ ??--=??--=111124π 又在时刻t 到t t ?+在截面为x 到x x ?+这一小段内由于温度变化所需的热量为 ()()[]t x s t u c x s t x u t t x u c dQ t ????=?-?+=ρρ,,3 由热量守恒原理得: ()t x s u u l k t x s x u k t x s t u c x t ??--????=????11 2 24ρ 消去t x s ??,再令0→?x ,0→?t 得精确的关系: ()11 224u u l k x u k t u c -- ??=??ρ 或 ()()11 22 2112244u u l c k x u a u u l c k x u c k t u --??=--??=??ρρρ 其中 ρ c k a =2 2. 试直接推导扩散过程所满足的微分方程。 解:在扩散介质中任取一闭曲面s ,其包围的区域 为Ω,则从时刻1t 到2t 流入此闭曲面的溶质,由dsdt n u D dM ??-=,其中D 为扩散系数,得 ?????= 2 1 t t s dsdt n u D M 浓度由u 变到2u 所需之溶质为 ()()[]???????????ΩΩΩ ??=??=-=2 12 1121,,,,,,t t t t dvdt t u C dtdv t u C dxdydz t z y x u t z y x u C M 两者应该相等,由奥、高公式得: ????????Ω Ω??==????????? ??????+???? ??????+??? ??????=2 12 11t t t t dvdt t u C M dvdt z u D z y u D y x u D x M 其中C 叫做孔积系数=孔隙体积。一般情形1=C 。由于21,,t t Ω的任意性即得方程: ??? ??????+??? ? ??????+??? ??????=??z u D z y u D y x u D x t u C 3. 砼(混凝土)内部储藏着热量,称为水化热,在它浇筑后逐渐放出,放热速度和它所储藏的 水化热成正比。以()t Q 表示它在单位体积中所储的热量,0Q 为初始时刻所储的热量,则 Q dt dQ β-=,其中β为常数。又假设砼的比热为c ,密度为ρ,热传导系数为k ,求它在浇后温度u 满足的方程。 解: 可将水化热视为一热源。由Q dt dQ β-=及00Q Q t ==得()t e Q t Q β-=0。由假设,放 热速度为 t e Q ββ-0 它就是单位时间所产生的热量,因此,由原书71页,(1.7)式得 ???? ? ?-=+???? ????+??+??=??-ρρββc k a e c Q z u y u x u a t u t 20222222 2 4. 设一均匀的导线处在周围为常数温度0u 的介质中,试证:在常电流作用下导线的温度满足微分方程 ()2201224.0ρω ρωρc r i u u c P k x u c k t u +--??=?? 其中i 及r 分别表示导体的电流强度及电阻系数,表示横截面的周长,ω表示横截面面积,而k 表 示导线对于介质的热交换系数。 解:问题可视为有热源的杆的热传导问题。因此由原71页(1.7)及(1.8)式知方程取形式为 ()t x f x u a t u ,22 2+??=?? 其中()()()t x F c t x F t x f c k a ,,/,,,2 ρρ == 为单位体积单位时间所产生的热量。 由常电流i 所产生的()t x F ,1为2 2/24.0ωr i 。因为单位长度的电阻为ω r ,因此电流i 作功为

相关文档
相关文档 最新文档