文档库 最新最全的文档下载
当前位置:文档库 › 2019时水吸收二氧化硫填料塔的设计课程设计报告.doc

2019时水吸收二氧化硫填料塔的设计课程设计报告.doc

2019时水吸收二氧化硫填料塔的设计课程设计报告.doc
2019时水吸收二氧化硫填料塔的设计课程设计报告.doc

目录

1.课程设计目的 (1)

2.课程设计题目描述和要求 (1)

3.课程设计报告内容 (4)

3.1基础物性数据 (4)

3.1.1液相物性数据 (4)

3.1.2气相物性数据 (5)

3.1.3气液相平衡数据 (6)

3.2物料衡算 (6)

3.3塔径计算 (7)

3.3.1塔径的计算 (8)

3.3.2泛点率校核: (8)

3.3.3填料规格校核: (9)

3.3.4液体喷淋密度得校核: (9)

3.4填料层高度的计算 (9)

3.4.1传质单元数的计算 (9)

3.4.2传质单元高度的计算 (10)

3.4.3填料层高度的计算 (11)

3.5填料塔附属高度的计算 (11)

3.6液体分布器计算 (12)

3.6.1液体分布器的选型 (12)

3.6.2布液计算 (13)

3.7其他附属塔内件的选择 (13)

3.7.1填料支承装置的选择 (13)

3.7.2填料压紧装置 (16)

3.7.3塔顶除雾器 (17)

3.8吸收塔的流体力学参数计算 (17)

3.8.1吸收塔的压力降 (17)

3.8.2吸收塔的泛点率 (18)

3.8.3气体动能因子 (18)

3.9附属设备的计算与选择 (18)

3.9.1离心泵的选择与计算 (18)

3.9.2吸收塔主要接管尺寸选择与计算 (20)

工艺设计计算结果汇总与主要符号说明 (24)

4.总结 (26)

参考文献 (27)

1. 课程设计目的

化工原理课程设计是学生学过相关基础课程及化工原理理论与实验后,进一步学习化工设计的基础知识,培养工程设计能力的重要教学环节。通过该环节的实践,可使学生初步掌握单元操作设计的基本程序与方法,得到工程设计能力的基本锻炼。化工原理课程设计是以实际训练为主的课程,学生应在过程中收集设计数据,在教师指导下完成一定的设备设计任务,以达到培养设计能力的目的。单元过程及单元设备设计是整个过程和装备设计的核心和基础,并贯穿于设计过程的始终,从这个意义上说,作为相关专业的本科生能够熟练地掌握典型的单元过程及装备的设计过程和方法,无疑是十分重要的。

2.课程设计题目描述和要求

2.1 设计题目描述

(1) 设计题目

二氧化硫填料吸收塔及周边动力设备与管线设计

(2) 设计内容

根据所给的设计题目完成以下内容:

(1)设计方案确定;

(2)相关衡算;

(3)主要设备工艺计算;

(4)主要设备结构设计与算核;

(5)辅助(或周边)设备的计算或选择;

(6)制图、编写设计说明书及其它。

(3) 原始资料

,废气的处理量为1000m3/h,设计一座填料吸收塔,用于脱除废气中的SO

2

为9%(摩尔分率),采用清水进行逆流吸收。要求塔吸收效率达其中进口含SO

2

94.9%。吸收塔操作条件:常压 101.3Kpa ;恒温,气体与吸收剂温度:303K 清水取自1800米外的湖水。示意图参见设计任务书。

⒈设计满足吸收要求的填料塔及附属设备;

⒉选择合适的流体输送管路与动力设备(求出扬程、选定型号等),并核算离心泵安装高度。 2.2 设计要求

设计时间为两周。设计成果要求如下: 1. 完成设计所需数据的收集与整理 2. 完成填料塔的各种计算 3. 完成动力设备及管线的设计计算 4. 完成填料塔的设备组装图

5. 完成设计说明书或计算书(手书或电子版打印均可)

目录、设计题目任务、气液平衡数据、L/G 、液泛速度、塔径、K Y a (或K X a 的计算、H OL 、N OL 的计算、动力设备计算过程(包括管径确定)等。 3.课程设计报告内容

吸收塔的工艺计算

3.1 基础物性数据 3.1.1 液相物性数据

对低浓度吸收过程,溶液的物性数据可近似取水的物性数据。由手册查得,30℃时水的有关物性数据如下: 密度3/7.995m Kg =水ρ【1】 黏度s Pa ??=-6105.801水μ【1】

表面张力为0.07122N/m L σ=【1】

SO2在水中的扩散系数为922.210/L D m s -=?【1】 3.1.2 气相物性数据 混合气体的平均摩尔质量为

29=空气M Kg/mol 【1】 64=二氧化硫M Kg/mol 【1】

15.3209.06491.029111__

=?+?=?+-?=y M y M M 二氧化硫空气)(kg/kmol

混合气体的密度为 3__

/293.1m Kg RT

P

M V =?=

ρ 混合气体的黏度可近似取为空气的黏度,查资料【1】得30℃空气的黏度为

=0.0000186pa s G μ?【1】

查得SO2在空气中的扩散系数为 521.46910/G D m s -=?【1】

3.1.3气液相平衡数据 查资料【5】:

O

KgH KgSO 22100 C A (kmol/m 3)

310?x

H (kmol/kp a *

m 3)

y

*

A

P (kpa) 5.01 0.742 13.90 0.0123 0.595 60.27 2.50 0.379 6.98 0.0132 0.284 28.77 1.50 0.230 4.20 0.0138 0.164 16.61 1.00 0.154 2.80 0.0146 0.104 10.54 0.70 0.108 1.96 0.0156 0.068 6.93 0.50 0.077 1.40 0.0160 0.047 4.80 0.30 0.047 0.84 0.0179 0.026 2.62 0.20

0.031

0.56

0.0197

0.016

1.57

0.15 0.023 0.42 0.0213 0.011 1.08 0.10

0.016

0.28

0.0254

0.006

0.63

01698.0 H 平均溶解度系数

C A -------------30度时二氧化硫在水中的平衡浓度,单位为kmol/m 3

x ----------------------30度时二氧化硫在水中溶解平衡时的摩尔分数

H---------------30度时二氧化硫在水中达到平衡时的溶解度系数,单位为kmol/kp a *m 3

y----------------30度时气相中二氧化硫的摩尔分数

*

A

P --------------30度时气相中二氧化硫的平衡分压,单位为 kpa

由以上的y 和x ,以x 的值为横坐标,y 的值为纵坐标作平衡曲线,如图1.1:

00.1

0.2

0.30.4

0.5

0.6

0.7

5

10

15

x/1000

y

系列1

3.2物料衡算

进口气体的体积流量G'=1000m 3/h

二氧化硫的摩尔分数为y 1=0.0

进塔气相摩尔比为 Y 1=y 1/1-y 1=0.09/(1-0.09)=0.0989 效率 211/94.9%Y Y η=-=

出塔气相摩尔比 Y 2= ()11Y η-=0.00504 进塔惰性气相流

G=(G'/22.4)?(1-y 1)?273/303=(1000/22.4)?(1-0.09)?273/303=36.603kmol/h 空气的体积流量 V G =G'?(1-y 1)=1000?0.91=910m 3/h 出口液体中溶质与溶剂的摩尔比 X 2=0

由图 1.1平衡曲线可以读出y 1=0.09所对应的溶质在液相中的摩尔分数*

1x

=0.00252

对应的液相中溶质与溶剂的摩尔比为00253.000252

.0100252

.01*

1*

1*1

=-=-=x x X 最小液气比 099.37)(2

*

12

1min =--=X X Y Y G L 【1】 取液气比

649.55)(5.1min ==G

L

G L 【1】 故 L=G ?55.649=2036.920kmol/h 操作线方程:2Y X G

L

Y += 【1】 代入数据得:00504.0649.55+=X Y

3.3塔径计算

该流程的操作压力及温度适中,避免二氧化硫腐蚀,故此选用mm 25=φ型的塑料鲍尔环填料。

其主要性能参数为:

比表面积 32/209m m a t =【4】 空隙率 33/90.0m m =ε【4】 形状修正系数 ψ=1.45【4】

填料因子平均值 p φ=232 m 1

-【4】

A=0.0942 【4】 K=1.75【4】

3.3.1 塔径的计算

吸收液的密度近似看成30度水的密度:3/7.995m Kg L ==水ρρ

30度时空气的密度3/165.1m Kg =空气ρ 【1】 3/927.2m Kg =二氧化硫ρ【1】

3__

/293.1m Kg RT

P

M V =?=

ρ k m o l Kg M /18=水 采用Eckert 关联式计算泛点气速: 气相质量流量为:

,273/303V W G G G ρρ=?+-??空气二氧化硫()

910 1.16590 2.927273/3031297.5/Kg h =?+??= 液相质量流量为:

h Kg M L W L /56.366641892.2036=?=?=水

选用mm 25=φ型的塑料鲍尔环 A=0.0942 【4】 K=1.75【4】

32/209m m a t = 33/90.0m m =ε

8/14/12.032

)()(]))(([L

V V L L L V t F g W W K A a g u l ρρμρρε-=【4】 代入数值得:s m u F /77.0= 取空塔气速:s m u u F /462.06.0,== 塔径m u G D 875.04

,

,

==

π

【1】

圆整塔径,取 D=0.9m

则算得'22

1000/3600

0.437/0.7850.7850.9G u m s D =

==? 3.3.2泛点率校核:

'22

1000/36000.437/0.7850.7850.9

G u m s D ===?

0.437100%56.75%(50%~85%)0.77

F u u =?=为经验值,所以在允许范围之内 3.3.3填料规格校核:

0.93615()d 0.025

D ==>合格 【4】 3.3.4液体喷淋密度校核:

填料表面的润湿状况是传质的基础,为保持良好的传质性能,每种填料应维持一定的液体润湿速率(或喷淋密度)。 依Morris 等推荐,d<75mm 的环形及其它填料的最小润湿速率(

W

L )min 为

()

320.08m /m h ?

最小喷淋密度()()32min min 0.0820916.72/W t U L a m m h =?=?=?

喷淋密度32min 2

36.823

57.91/()0.94

V L U m m h U π=

==?>Ω? 经以上校核可知,填料塔直径选用D=900mm 合理。 3.4 填料层高度的计算 3.4.1 传质单元数的计算

由图1.1曲线可以读出以下9个点所对应的y 和x : 点数序号

y Y *x

X* X X

X f -=

*

1

8 9% 0.09890 0.00245 0.002456 0.001687 1300.393 7 8% 0.08696 0.00222 0.002220 0.001472 1336.898 6 7% 0.07527 0.00197 0.001970 0.001262 1412.429 5 6% 0.06383 0.00172 0.001723 0.001056 1499.250 4 5% 0.05263 0.00146 0.001462 0.000889 1745.201 3 4% 0.04167 0.00123 0.001232 0.000658 1742.16 2

3%

0.03093

0.00097

0.000971

0.000465

1980.198

1 2% 0.02041 0.00073 0.000730 0.000276 2202.643 0 0.457%

0.00504

0.00024

0.000241

4168.404

由辛普森积分法有:000277

.08

000241.0002456.08*0*8=-=-=X X ξ 96.3254.428680000923.0)..........424(3

32180=?=+++++=

f f f f f N OL ξ

m

*x -----------------与y 对应的平衡液相中的溶质的摩尔分数

*X -----------------与Y 对应的平衡液相中的溶质与溶剂的摩尔比

OL N -----------------传质单元数,单位 m

3.4.2传质单元高度的计算

查资料【5】有:s

Pa s m D s m D m

N m N G L G L C ??=?=?=?=?=-----52925231086.1/102.2,,/10469.1/10122.7,,/1033μσσ

气相总传质单元高度采用修正的恩田关联式计算:

,2,,20.750.10.050.2

21exp[ 1.45()()()()]W C L t L L t L t L L L L t a W a W W a a g a σσμρρσ-=--

液体质量通量

,2236664.5657662.28/()0.94

L L W W Kg m h π===?Ω

气体质量通量

,

22

1297.52040.58/()0.94

V G W W Kg m h π===?Ω

23208.96/W a m m =代入数值得:

气膜吸收系数:

,,

0.71/320.237()()()

0.23732.715.220.000001220.0001439/()G G t G G

t G G G W a D

k a D RT kmol m s pa μμρ==???=??

液膜吸收系数:

,,

2/30.51/3

0.0095()()()

0.009520.910.000870.3050.0000527/L L L L

W L L L L

W g k a D m s

μμμρρ-==???=

,, 1.11,,0.41

1.4,

1

2.2,

10.04530.01280.5[19.5(0.5)]0.0552[1 2.6(

0.5)]0.0129G G W L L W F

G G F L L F

k a k a s k a k a s u u u k a k a s u u k a k a s u ψψ----====>=+-==+-=故继续修正:

1

10.01284

11.25L G l L

OL L K a s H k a k a

V H m K a -==+=

3.4.3填料层高度的计算

由 1.25 3.96 4.95OL OL Z H N m =?=?=

填料有效高度取: Z ’=1.3Z=6.435m

设计取填料层高度为 ' 6.435m

Z =

3.5 填料塔附属高度的计算

塔的附属高度主要包括塔的上部空间高度,安装液体分布器所需的空间高

度,塔的底部空间高度等。

塔的上部空间高度是为使随气流携带的液滴能够从气相中分离出来而留取的高度,可取1.2m (包括除沫器高度)。设塔定液相停留时间为10s ,则塔釜液所占空间高度为

()

22

1036664.56/3600995.710/=0.16m 0.7850.7850.9

L W D ρ???=??水 考虑到气相接管的空间高度,底部空间高度取为0.5米,那么塔的附属空间高度可以取为1.7m 。吸收塔的总高度为h 1.7 6.4358.135m =+= 3.6 液体分布器计算

液体分布器可分为初始分布器和再分布器,初始分布器设置于填料塔内,用于将塔顶液体均匀的分布在填料表面上,初始分布器的好坏对填料塔效率影响很大,分布器的设计不当,液体预分布不均,填料层的有效湿面积减小而偏流现象和沟流现象增加,即使填料性能再好也很难得到满意的分离效果。因而液体分布器的设计十分重要。特别对于大直径低填料层的填料塔,特别需要性能良好的液体分布器。

液体分布器的性能主要由分布器的布液点密度(即单位面积上的布液点数),各布液点均匀性,各布液点上液相组成的均匀性决定,设计液体分布器主要是决定这些参数的结构尺寸。对液体分布器的选型和设计,一般要求:液体分布要均匀;自由截面率要大;操作弹性大;不易堵塞,不易引起雾沫夹带及起泡等;可用多种材料制作,且操作安装方便,容易调整水平。

液体分布器的种类较多,有多种不同的分类方法,一般多以液体流动的推动 力或按结构形式分。若按流动推动力可分为重力式和压力式,若按结构形式可分为多孔型和溢流型。其中,多孔型液体分布器又可分为:莲蓬式喷洒器、直管式多孔分布器、排管式多孔型分布器和双排管式多孔型分布器等。溢流型液体分布器又可分为:溢流盘式液体分布器和溢流槽式液体分布器。

根据本吸收的要求和物系的性质可选用重力型排管式液体分布器,布液孔数应应依所用填料所需的质量分布要求决定,喷淋点密度应遵循填料的效率越所需的喷淋点密度越大这一规律。 3.6.1液体分布器的选型

800D mm ≥时,建议采用盘式分布器(筛孔式) 3.6.2液体分布器的选择:

按Eckert 建议值,275060cm D mm ?时,每塔截面设一个喷淋点, 按分布点几何均匀与流量均匀的原则,进行布点设计。

设计结果为:盘式分布器(筛孔式):【5】分布盘直径:600mm【5】

分布盘厚度:4mm【5】

3.6.3布液计算

H

g

n

d

L

o

S

?=2

4

φ

π

()

015

.0

16

.0

81

.9

2

58

.0

136

14

.3

3600

2.

998

/

31

.

85348

4

2

4

160

,

58

.0

2/1

2/1

=

??

?

?

?

?

?

?

?

?

?

?

?

=

?

?

?

?

?

?

?

=

=

?

=

H

g

n

L

d

mm

H

S

φ

π

φ

设计取

mm d15

=

3.7 其他附属塔内件的选择

3.7.1填料支承装置的选择

填料支承装置的作用是支承填料以及填料层内液体的重量,同时保证气液两

相顺利通过。支承若设计不当,填料塔的液泛可能首先发生在支承板上。为使气体能顺利通过,对于普通填料塔,支承件上的流体通过的自由截面积为填料面的

50%以上,且应大于填料的空隙率。此外,应考虑到装上填料后要将支承板上的截面堵去一些,所以设计时应取尽可能大的自由截面。自由截面太小,在操作中会产生拦液现象。增加压强降,降低效率,甚至形成液泛。由于填料支承装置本身对塔内气液的流动状态也会产生影响,因此作为填料支承装置,除考虑其对流体流动的影响外,一般情况下填料支承装置应满足如下要求:

(1) 足够的强度和刚度,以支持填料及所持液体的重量(持液量),并考虑填料空隙中的持液量,以及可能加于系统的压力波动,机械震动,温度波动等因素。 足够的开孔率(一般要大于填料的空隙率),以防止首先在支撑处发生液泛;为使气体能顺利通过,对于普通填料塔,支承件上的流体通过的自由截面积为填料面的50%以上,且应大于填料的空隙率。此外,应考虑到装上填料后要将支承板上的截面堵去一些,所以设计时应取尽可能大的自由截面。自由截面太小,在操作中会产生拦液现象。增加压强降,降低效率,甚至形成液泛[12]。

结构上应有利于气液相的均匀分布,同时不至于产生较大的阻力(一般阻力不大于20Pa ); 结构简单,便于加工制造安装和维修。 要有一定的耐腐蚀性。

因栅板支承板结构简单,制造方便,满足题目各项要求,故选用栅板支承板。

栅板两块 查资料【5】(单位:mm) D R s h ? t 880

440

650?

25

栅板1:(单位:mm )

1l

1L

1n

2l

3l

连接板长度 270 880 10 250 7

270

栅板2:(单位:mm )

l 1n 2l 3l

连接板长度 303 10 250 9

260

如图:

支承板

支撑圈两块 查资料【5】

)(1mm D

)(2mm D

厚度(mm )

894 794

8

升气管式再分布器

3.7.2填料压紧装置

为保证填料塔在工作状态下填料床能够稳定,防止高气相负荷或负荷突然变动时填料层发生松动,破坏填料层结构,甚至造成填料损失,必须在填料层顶部设置填料限定装置。填料限定可分为类:一类是将放置于填料上端,仅靠自身重力将填料压紧的填料限定装置,称为填料压板;一类是将填料限定在塔壁上,称为床层限定板。填料压板常用于陶瓷填料,以免陶瓷填料发生移动撞击,造成填料破

碎。床层限定板多用于金属和塑料填料,以防止由于填料层膨胀,改变其开始堆积状态而造成的流体分布不均匀的现象。一般要求压板和限制板自由截面分率大于70%。

本任务由于使用塑料填料,故选用床层限定板。

3.7.3塔顶除雾器

由于气体在塔顶离开填料塔时,带有大量的液沫和雾滴,为回收这部分液相,经常需要在顶设置除沫器。根据本吸收塔的特点,此处用丝网除雾器:]5[2341mm D =

3.8吸收塔的流体力学参数计算

3.8.1 吸收塔的压力降

气体通过填料塔的压强降,对填料塔影响较大。如果气体通过填料塔的压强降大,则操作过程的消耗动力大,特别是负压操作更是如此,这将增加塔的操作费用。气体通过填料塔的压力降主要包括气体进入填料的进口及出口压力降,液体分布器及再分布器的压力降,填料支撑及压紧装置压力降以及除沫器压力降等。

填料层压降的计算

可以利用Eckert 通用关联图计算压强降; 横坐标为

018.1)7

.995293.1(3600/5.12973600/56.36664)(5

.05.0===

L V L Wv W X ρρ 又查散装填料压降填料因子平均值】【42321

-=Φm P

操作空塔气速u=0.437m/s

0056.0)(2

.02=Φ=L L

V p g u Y μρρψ纵坐标

s m K

u G

G

L /09.0=-=ρρρ

1L

ρψρ--------Φ==水

液体密度校正系数, 其它塔内件的压力降∑

?P

较小,在此可忽略

4/159.81147.15/147.15 6.435946.910P Z Pa m P Pa

?=?=?=?=查资料【】总压降

3.8.2 吸收塔的泛点率校核

泛点率

0.437100%56.75%(50%~85%)0.77

F u u =?=为经验值,所以在允许范围之内 3.8.3 气体动能因子 吸收塔内气体动能因子为

()0.530.437 1.1650.4717//G F u m s kg m ρ??==?=????

气体动能因子在常用的范围内。

3.9 附属设备的计算与选择 3.9.1

取液体流速为 u=2.0m/s

m

u V d s m u s

Pa h

m W V L

L L L L 08.02

4

14.3360082

.364

3600/2105.801/82.367

.99556.36664,

,63=??=??

=

=??====-π

μρ估算管内径为取管内液体流速

2

6

88.54180.52.01/36004

0.0805 2.01995.7201009.66

801.5100.351,/0.35/80.50.0043

L

e L mm mm d mm

V u m s

d du R mm d ?πρμεε-?===????===?===选用水煤气管【】,内径管内实际流速钢管粗糙度【】相对粗糙度

,,22

0.028,

300,

90352704200.28.3430.211.5411.54 2.01()0.028(30070420)20.080529.815.38(e

e

e

e f l d l d

l d

l m l m l l u H d g m λλ===?====++=+∑∑==?+++?

?=查得摩擦系数【1】截止阀(全开):【1】两个度弯头:【1】

带滤水器的底阀(全开):【1】

吸入管伸进水里总管长管路的压头损失

水柱)

原料泵的选择

对1--1和2--2截面列伯努力方程得:

m g

u H Z H H g

u g P Z H g u g P Z f f 72.1321.032.534.82222

2

22211

1=++=+

∑+?=∑+++=+++

ρρ

选用IS80---65---125型泵【1】 汽蚀余量:3.0~~3.5m 【1】

30度时水的饱和蒸汽压

,,

22,

3,4.2411101.314.2 4.2 2.01()0.028(42035) 2.9220.080529.81(101.3 4.241)10 3.5 2.92 3.52995.79.81

3.52,V e f V

f g P kPa P kPa l m l l u H m d d g P P H h H m

g m λρ===∑∑=+=?++?=?--?=-?-∑=--=?允

【】【】

取吸入管长,吸入管压头损失

泵的最大允许安装高度:泵的实际安装高度应小于这 1.8,1m m 里取即安装在离地面处

由于本设计中吸收剂使用的是水,因而,采用清水泵(可用于输送各种工业用水以及物理性质、化学性质类似于水的其他液体)既简单又使用。通过计算可知,吸收塔所要求的压头不是很高,所以采用普通的单级单吸式即可,本设计中选用

的型号为IS125-100-200,其具体参数如下: 转速n/(r/min) 流量/m3/h

扬程H/m

效率 %/η 轴功率/kW 电机功率/kW

必须汽蚀余量m NUSH r /)(

质量

(泵/底座)/kg 1450 100 12.5 76 4.48 7.5 2.5 100/66 远

90度弯头三个,进水管伸进水里m l 0.1,,=,总管长l=1802.8+1.0=1803.8m

19

.187338105.8017.99545.1104.0/45.1104.04

14.3360018

.444360010415114102.04

3600,/5.1/18.4482.362.12.16

2

21

13=???===??=

??=

=?=?

===?==-L e V

V

L V du R s

m d q u mm d mm mm m u q d s m u h m V q μρπφπ

管内流速内经】的焊接钢管【选用直径为估算管内径为去管内流速

钢管绝对粗糙度:

化工原理课程设计---水吸收氨气-资料

《化工原理》课程设计水吸收氨气填料塔设计 学院医药化工学院 专业化学工程与工艺 班级 姓名姚 学号 090350== 指导教师蒋赣、严明芳 2011年12月25日

目录 前言 (1) 1. 水吸收氨气填料塔工艺设计方案简介 (4) 1.1任务及操作条件 (4) 1.2设计案的确定 (4) 1.3填料的选择 (4) 2. 工艺计算 (6) 2.1 基础物性数据 (6) 2.1.1液相物性的数据 (6) 2.1.2气相物性的数据 (6) 2.1.3气液相平衡数据 (6) 2.1.4 物料衡算 (7) 2.2 填料塔的工艺尺寸的计算 (7) 2.2.1 塔径的计算 (7) 2.2.2 填料层高度计算 (9) 2.2.3 填料层压降计算 (12) 2.2.4 液体分布器简要设计 (13) 3. 辅助设备的计算及选型 (15) 3.1 填料支承设备 (15) 3.2填料压紧装置 (16) 3.3液体再分布装置 (16) 4. 设计一览表 (17) 5. 后记 (18) 6. 参考文献 (10) 7. 主要符号说明 (10) 8. 附图(工艺流程简图、主体设备设计条件图)

前言 在炼油、石油化工、精细化工、食品、医药及环保等部门,塔设备属于使用量大应用面广的重要单元设备。塔设备广泛用于蒸馏、吸收、萃取、洗涤、传热等单元操作中。所以塔设备的研究一直是国内外学者普遍关注的重要课题。 在化学工业中,经常需要将气体混合物中的各个组分加以分离,其主要目的是回收气体混合物中的有用物质,以制取产品,或除去工艺气体中的有害成分,使气体净化,以便进一步加工处理,或除去工业放空尾气中的有害成分,以免污染空气。吸收操作是气体混合物分离方法之一,它是根据混合物中各组分在某一种溶剂中溶解度不同而达到分离的目的。 塔设备按其结构形式基本上可分为两类;板式塔和填料塔。以前在工业生产中,当处理量大时多用板式塔,处理量小时采用填料塔。近年来由于填料塔结构的改进,新型的、高负荷填料的开发,既提高了塔的通过能力和分离效能又保持了压降小、性能稳定等特点。因此,填料塔已经被推广到大型气、液操作中,在某些场合还代替了传统的板式塔。如今,直径几米甚至几十米的大型填料塔在工业上已非罕见。随着对填料塔的研究和开发,性能优良的填料塔必将大量用于工业生产中。 综合考察各分离吸收设备中以填料塔为代表,填料塔技术用于各类工业物系的分离,虽然设计的重点在塔体及塔内件等核心部分,但与之相配套的外部工艺和换热系统应视具体的工程特殊性作相应的改进。例如在DMF回收装置的扩产改造项目中,要求利用原常压塔塔顶蒸汽,工艺上可以在常压塔及新增减压塔之间采用双效蒸馏技术,达到降低能耗、提高产量的双重效果,在硝基氯苯分离项目中;改原多塔精馏、两端结晶工艺为单塔精馏、端结晶流程,并对富间硝基氯苯母液进行精馏分离,获得99%以上的间硝基氯苯,既提高产品质量,又取得了降低能耗的技术效果。 过程的优缺点:分离技术就是指在没有化学反应的情况下分离出混合物中特定组分的操作。这种操作包括蒸馏,吸收,解吸,萃取,结晶,吸附,过滤,蒸发,干燥,离子交换和膜分离等。利用分离技术可为社会提供大量的能源,化工产品和环保设备,对国民经济起着重要的作用。为了使1填料塔的设计获得满足分离要

水吸收氨气填料塔设计概述

化工原理课程设计 课程名称: _ 化工原理 设计题目: __水吸收空气中氨填料塔的工艺设计____ 院系: ___化学与生物工程学院__________ 学生姓名: _____王永奇__________ 学号: ____200907117________ 专业班级: __化学工程与工艺093_ 指导教师: ______张玉洁_________

化工原理课程设计任务书 一、设计题目:水吸收空气中的氨填料塔的工艺设计 二、设计条件 1.生产能力:每小时处理混合气体4500Nm/h; 2.设备型式:填料塔 3.操作压力:101.3KPa 4.操作温度:298K 5.进塔混合气中含氨8%(体积比) 6.氨的回收率为99% 7.每年按330天计,每天24小时连续生产 8.建厂地址:兰州地区 9.要求每米填料的压降都不大于103Pa 三、设计步骤及要求 1. 确定设计方案 (1)流程的选择 (2)初选填料类型 (3)吸收剂的选择 2.查阅物料的物性数据 (1)溶液的密度、粘度、表面张力、氨在水中的扩散系数 (2)气相密度、粘度、表面张力、氨在空气中的扩散系数 (3)氨在水中溶解的相平衡数据 3.物料衡算 (1)确定塔顶、塔底的气液流量和组成 (2)确定泛点气速和塔径 (3)校核D/d>8~10 (4)液体喷淋密度校核:实际的喷淋密度要大于最小的喷淋密度。 4.填料层高度计算 5.填料层压降校核

如果不符合上述要求重新进行以上计算 6.填料塔附件的选择 (1)液体分布装置 (2)液体在分布装置 (3)填料支撑装置 (4)气体的入塔分布 7.计算结果列表(见下表) 四、设计成果 1. 设计说明书(A4) (1)内容包括封面、任务书、目录、正文、参考文献、附录 (2)格式必须严格按照兰州交通大学毕业设计的格式打印。 2.精馏塔工艺条件图(2号图纸)(手绘) 五、时间安排 (1)第十九周---第二十二周 (2)第二十二周的星期五(7月20日)下午两点本人亲自到指定地点交设计成果,最迟不得晚于星期五的十八点钟。 六、设计考核 (1)设计是否独立完成; (2)设计说明书的编写是否规范 (3)工艺计算与图纸正确与否以及是否符合规范 (4)答辩 七、参考资料 1.《化工原理课程设计》贾绍义柴成敬天津科学技术出版社 2.《现代填料塔技术》王树盈中国石化出版社 3.化工原理夏清天津科学技术出版社

水吸收二氧化硫填料塔

化工原理课程设计 设计名称水吸收SO2-空气混合气填料塔的设计学院能源与环境学院 班级环境131 学号 201301144120 姓名高鹏垒 指导教师石凤娟 2016年1月 22 日

化工原理课程设计任务书 一、设计题目 水吸收SO 2-空气混合气填料塔的设计:试设计一座填料吸收塔,用20℃的清水吸收 SO 2-空气混合气中的 SO 2。已知入口空气中含SO 2的摩尔分率为0.05,操作压力为 101.3KPa,相对湿度为70%。要求SO 2的回收率为96%。采用清水进行吸收,吸收剂的用 量为最小用量的1.5倍。 二、设计操作条件 (1)入塔炉气流量:1200(1800)+n*10=1400h m /3 (说明: n 为学号尾数后两位) (2)常压101.3KPa 。 (3)操作温度20℃。 三、填料类型 选用聚丙烯阶梯环填料,填料规格自选。 四、工作日 每年300天,每天24h 连续运行。 五、厂址 河南省周口市。 六、设计内容 (1)填料塔的物料衡算; (2)填料塔的工艺尺寸计算; (3)填料层压降的计算; (4)液体分布器简要设计; (5)填料塔接管尺寸计算; (6)绘制生产工艺流程图(A2号图纸) (7)绘制填料塔装配图(A1号图纸) (8)对设计过程的评述和有关问题的讨论。

摘要: 介绍了吸收技术的基本知识;叙述了水吸收SO2的设计方案和流程;根据操作条件设计出符合要求的填料塔,包括塔设备的工艺尺寸计算、填料选择及辅助设备的选型和计算。 关键字:课程设计SO2吸收填料塔

目录 一、前言 0 1、吸收技术概况 0 2、吸收在工业生产中的应用 (1) 3、吸收设备 (1) 二、填料塔设计 (2) 1、吸收剂的选择 (2) 2、吸收流程的选择 (3) 2.1 气体吸收过程分类 (3) 2.2吸收装置的流程 (4) 3、吸收塔设备及填料的选择 (5) 3.1 吸收塔设备 (5) 3.2 填料的选择 (5) 4、吸收剂再生方法的选择 (6) 5、操作参数的选择 (7) 5.1操作温度的确定 (7) 5.2操作压力的确定 (7) 三、填料塔工艺设计计算 (8) 1、基础物性数据 (8) 1.1液相物性数据 (8) 1.2气相物性数据 (8) 1.3气液两相平衡时的数据 (8) 2、物料衡算 (9) 3、填料塔的工艺尺寸计算 (10) 3.1塔径的计算 (10) 考虑到填料塔内部的压力降,塔的操作压力为101.3KPa (10) 3.2泛点率校核和填料规格 (11) 填料规格校核............................................................... 11 阶梯环的径比要求:d D >8 .................................................... 11 3.3液体喷淋密度校核 . (11) 4、填料层高度计算 (12) 4.1传质单元数的计算 (12) 4.2传质单元高度的计算 (12) 4.3填料层高度的计算 (14) 5、填料塔附属高度的计算 (14) 6、液体分布器的简要设计 (15) 6.1液体分布器的选型 (15) 6.2分布点密度及布液孔数的计算 (16) 6.3塔底液体保持管高度的计算 (17) 7、其它附属塔内件的选择 (17) 7.1 填料支撑板 (17) 7.2 填料压紧装置与床层限制板 (17)

化工原理 水吸收氨填料塔设计

广东石油化工学院化工原理课程设计 题目: 水吸收氨填料塔的设计 指导教师: 李燕 成绩评阅教师

目录 第一节前言 (4) 1.1 填料塔的主体结构与特点 (4) 1.2 填料塔的设计任务及步骤 (4) 1.3 填料塔设计条件及操作条件 (4) 第二节填料塔主体设计方案的确定 (5) 2.1 装置流程的确定 (5) 2.2 吸收剂的选择 (5) 2.3填料的类型与选择 (5) 2.3.1 填料种类的选择 (5) 2.3.2 填料规格的选择 (5) 2.3.3 填料材质的选择 (6) 2.4 基础物性数据 (6) 2.4.1 液相物性数据 (6) 2.4.2 气相物性数据 (6) 2.4.3 气液相平衡数据 (7) 2.4.4 物料横算 (7) 第三节填料塔工艺尺寸的计算 (8) 3.1 塔径的计算 (8) 3.2 填料层高度的计算及分段 (9) 3.2.1 传质单元数的计算 (9) 3.2.3 填料层的分段 (11) 3.3 填料层压降的计算 (12) 第四节填料塔内件的类型及设计 (12) 4.1 塔内件类型 (12) 4.2 塔内件的设计 (12) 4.2.1 液体分布器设计的基本要求: (12) 4.2.2 液体分布器布液能力的计算 (13) 注: 1填料塔设计结果一览表 (13) 2 填料塔设计数据一览 (13)

3 参考文献 (15) 4 对本设计的评述或有关问题的分析讨论 (15)

第一节 前言 1.1 填料塔的主体结构与特点 结构: 图1-1 填料塔结构图 填料塔不但结构简单,且流体通过填料层的压降较小,易于用耐腐蚀材料制造,所以她特别适用于处理量肖,有腐蚀性的物料及要求压降小的场合。液体自塔顶经液体分布器喷洒于填料顶部,并在填料的表面呈膜状流下,气体从塔底的气体口送入,流过填料的空隙,在填料层中与液体逆流接触进行传质。因气液两相组成沿塔高连续变化,所以填料塔属连续接触式的气液传质设备。 1.2 填料塔的设计任务及步骤 设计任务:用水吸收空气中混有的氨气。 设计步骤:(1)根据设计任务和工艺要求,确定设计方案; (2)针对物系及分离要求,选择适宜填料; (3)确定塔径、填料层高度等工艺尺寸(考虑喷淋密度); (4)计算塔高、及填料层的压降; (5)塔内件设计。 1.3 填料塔设计条件及操作条件 1. 气体混合物成分:空气和氨 2. 空气中氨的含量: 5.0% (体积含量即为摩尔含量) 液体 捕沫器 填料压板 塔壳填料 填料支承板液体再分布器填料压板填料支承板气体 气体 液体

111水吸收二氧化硫填料吸收塔设计说明书完整版

吉林化工学院 化工原理课程设计 题目处理量为3100m3/h水吸收二氧化硫过程填料吸收塔的设计 教学院 专业班级 学生姓名 学生学号 指导教师 2011 年 12 月 5 日

课程设计任务书 1、设计题目:处理量为2550~3200m3/h水吸收二氧化硫过程填料吸收塔的设计 。 矿石焙烧炉送出的气体冷却到20℃后送入填料塔中,用20℃清水洗涤洗涤除去其中的SO 2入塔的炉气流量为3100m3/h,其中进塔SO2的摩尔分率为0.05,要求SO2的吸收率为95%。吸收塔为常压操作,因该过程液气比很大,吸收温度基本不变,可近似取为清水的温度。吸收剂的用量为最小用量的1.5倍。 2、工艺操作条件: (1)操作平均压力常压 (2)操作温度t=20℃ (3)选用填料类型及规格自选。 3、设计任务: 完成吸收塔的工艺设计与计算,有关附属设备的设计和选型,绘制吸收系统的工艺流程图和吸收塔的工艺条件图,撰写设计说明书。 处理量为3100m3/h水吸收二氧化硫过程填料吸收塔的设计 化工原理教学与实验中心 2011年11月

目录 摘要.................................................................................................................................IV 第一章绪论. (1) 1.1 吸收技术概况 (1) 1.2 吸收设备发展 (1) 1.3 吸收在工业生产中的应用 (3) 第二章吸收塔的设计方案 (4) 2.1 吸收剂的选择 (4) 2.2 吸收流程选择 (5) 2.2.1 吸收工艺流程的确定 (5) 2.2.2 吸收工艺流程图及工艺过程说明 (6) 2.3 吸收塔设备及填料的选择 (7) 2.3.1 吸收塔设备的选择 (7) 2.3.2 填料的选择 (8) 2.4 吸收剂再生方法的选择 (10) 2.5 操作参数的选择 (11) 2.5.1 操作温度的确定 (11) 2.5.2 操作压强的确定 (11) 第三章吸收塔工艺条件的计算 (12) 3.1 基础物性数据 (12) 3.1.1 液相物性数据 (12) 3.1.2 气相物性数据 (12) 3.1.3 气液两相平衡时的数据 (12) 3.2 物料衡算 (12) 3.3 填料塔的工艺尺寸计算 (13)

化工原理课程设计水吸收氨气填料塔设计

《化工原理》课程设计 ——水吸收氨气填料塔设计学院 专业 班级 姓名 学号 指导教师 2012年12月11 日

设计任务书 水吸收氨气填料塔设计 (一)设计题目 试设计一座填料吸收塔,采用清水吸收混于空气中的氨气。混合气体的处理量为____3200____m3/h,其中含氨为____8%____(体积分数),混合气体的进料温度为25℃。要求: ①塔顶排放气体中含氨低于____0.04%____(体积分数); (二)操作条件 (1)操作压力:常压 (2)操作温度:20℃ (3)吸收剂用量为最小用量的倍数自己确定 (三)填料类型 聚丙烯阶梯环吸收填料塔 (四)设计内容 (1)设计方案的确定和说明 (2)吸收塔的物料衡算; (3)吸收塔的工艺尺寸计算; (4)填料层压降的计算; (5)液体分布器简要设计; (6)绘制液体分布器施工图 (7)吸收塔接管尺寸计算; (8)设计参数一览表; (9)绘制生产工艺流程图(A3号图纸); (10)绘制吸收塔设计条件图(A3号图纸); (11)对设计过程的评述和有关问题的讨论。

目录 前言 ............................................................................................................. 错误!未定义书签。第一节填料塔主体设计方案的确定.................................................. 错误!未定义书签。 1.1装置流程的确定 .................................................................................. 错误!未定义书签。 1.2 吸收剂的选择.................................................................................. 错误!未定义书签。 1.3 课程设计任务 .................................................................................... 错误!未定义书签。 1.4 填料的类型与选择 ............................................................................. 错误!未定义书签。 1.4.1 填料种类的选择 .............................................................................. 错误!未定义书签。 1.4.2 填料规格的选择 .............................................................................. 错误!未定义书签。 1.4.3 填料材质的选择 .............................................................................. 错误!未定义书签。 1.5 基础物性数据....................................................................................... 错误!未定义书签。 1.5.1 液相物性数据................................................................................. 错误!未定义书签。 1.5.2 气相物性数据 .............................................................................. 错误!未定义书签。 1.5.3 气液相平衡数据............................................................................ 错误!未定义书签。 1.5.4 物料横算............................................................................................. 错误!未定义书签。第二节填料塔工艺尺寸的计算 ........................................................... 错误!未定义书签。 2.1 塔径的计算 ........................................................................................... 错误!未定义书签。 2.2 填料层高度的计算及分段............................................................... 错误!未定义书签。 2.3填料层压降计算: .............................................................................. 错误!未定义书签。第三节填料塔内件的类型及设计 .................................................. 错误!未定义书签。

水吸收氨气过程填料吸收塔的设计说明

课程设计任务书 一、设计题目:水吸收氨气过程填料吸收塔的设计; 试设计一座填料吸收塔,采用清水吸收混于空气中的氨气。混合气体的处理量为2600m3/h,其中含氨为7%(体积分数),混合气体的进料温度为25℃。要求:氨气的回收率达到98%。(20℃氨在水中的溶解度系数为H=0.725kmol/(m3.kPa) 二、工艺操作条件: (1)操作平均压力常压 (2)操作温度 : t=20℃ (3)吸收剂用量为最小用量的倍数自己确定 (4)选用填料类型及规格自选。 三、设计容 (1)设计方案的确定和说明 (2)吸收塔的物料衡算; (3)吸收塔的工艺尺寸计算; (4)填料层压降的计算; (5)液体分布器简要设计; (6)绘制液体分布器施工图 (7)吸收塔接管尺寸计算; (8)设计参数一览表; (9)绘制生产工艺流程图(A4号图纸); (10)绘制吸收塔设计条件图(A4号图纸); (11)对设计过程的评述和有关问题的讨论。

目录 1. 设计方案简介 (1) 1.1设计方案的确定 (1) 1.2填料的选择 (1) 2. 工艺计算 (1) 2.1 基础物性数据 (1) 2.1.1液相物性的数据 (1) 2.1.2气相物性的数据 (1) 2.1.3气液相平衡数据 (1) 2.1.4 物料衡算 (1) 2.2 填料塔的工艺尺寸的计算 (2) 2.2.1 塔径的计算 (2) 2.2.2 填料层高度计算 (3) 2.2.3 填料层压降计算 (6) 2.2.4 液体分布器简要设计 (7) 3. 辅助设备的计算及选型 (8) 3.1 填料支承设备 (8) 3.2填料压紧装置 (8) 3.3液体再分布装置 (8) 4. 设计一览表 (9) 5. 后记 (9) 6. 参考文献 (9) 7. 主要符号说明 (10) 8. 附图(工艺流程简图、主体设备设计条件图)

毕业论文水吸收二氧化硫填料塔设计

水吸收二氧化硫填料塔设计 作者陈福茂 单位港口航道与近海工程学院专业港口航道与海岸工程学号1303010317

摘要:本设计的目的在于除去工业放空尾气中的有害物质。尾气的初始条件为:20℃,常压下,体积流量为2500m3/h混合气(空气+SO2),其中SO2体积分数5%,出塔SO2含量为0.25%。设计方案:用水吸收SO2属中等溶解度的吸收过程,为提高传质效率,选用逆流吸收流程。因用水作为吸收剂,且SO2不作为产品,故属用纯溶剂吸收过程。对于水吸收SO2的过程,操作温度及操作压力较低,工业上通常选用塑料散装填料。在塑料散装填料中,塑料阶梯环填料的综合性能较好,故此选用DN38聚丙烯阶梯环填料。根据以上条件本设计的结果如下:塔径D=1.2m;填料层高度h=5000mm;填料设计层压降△P=107.91×5=539.55Pa。 关键词:水,二氧化硫,填料塔吸收塔 Water Absorption of Sulfur Dioxide in a Packed Tower Abstract:The absorption of the design aims to remove harmful substances in the exhaust of industrial venting. The sulfur dioxide absorption water, design and operating conditions for the task is: At the temperature of 20 and under the atmospheric pressure,the gas mixture (air + SO2)in the amount of procesing : 2500m3/h, volume fraction of sulfue dioxide in the inlet gas mixture:5﹪, emissions (sulfur dioxide by volume) : 0.25﹪. Design scheme: The sulfur dioxide absorption water, to belong to medium solubility absorption process, in order to improve the mass transfer efficiency, choose counter-current absorption process, because water absorbent do, and sulfur dioxide, not as products, so the pure solvents. Choice of filler: the process of water absorption of SO2, the operating temperature and operating pressure is low, the industry usually use plastic bulk packing. In the plastic bulk packing, plastic ladder ring packing performance is better, therefore the DN38 polypropylene ladder ring packing is being choiced. The design of the tower diameter is 1.2m, packing layer height is 5000mm, packing design pressure drop is 539.55Pa. Key Words: H2O; SO2;Packed Tower

化工原理课程设计(水吸收氨填料吸收塔设计)(正式版)分解

《化工原理》课程设计水吸收氨气过程填料塔的设计 学院 专业制药工程 班级 姓名 学号 指导教师 2013 年 1 月 15 日

目录 设计任务书 (4) 第一节前言 (3) 1.1 填料塔的有关介绍 (4) 1.2 塔内填料的有关介绍............................. 错误!未定义书签。第二节填料塔主体设计方案的确定 .. (5) 2.1 装置流程的确定 (5) 2.2 吸收剂的选择 (5) 2.3 填料的类型与选择 (7) 2.4 液相物性数据 (6) 2.5 气相物性数据 (8) 2.6 气液相平衡数据 (7) 2.7 物料横算 (7) 第三节填料塔工艺尺寸的计算 (8) 3.1 塔径的计算 (8) 3.2 填料层高度的计算及分段 (9) 3.2.1 传质单元数的计算 (10) 3.2.2 传质单元高度的计算 (10) 3.2.3 填料层的分段 (11) 第四节填料层压降的计算 (12) 第五节填料塔内件的类型及设计 (13) 第六节填料塔液体分布器的简要设计 (13) 参考文献 (15) 对本设计的评述及心得 (15) 附表: 附表1填料塔设计结果一览表 (15) 附表2 填料塔设计数据一览 (15) 附件一:塔设备流程图 (17)

设计任务书 (一)、设计题目:水吸收氨气过程填料吸收塔的设计 试设计一座填料吸收塔,用于脱除混于空气中的氨气。混合气体的处理量为7500 m3/h,其中含氨气为5%(体积分数),要求塔顶排放气体中含氨低于0.02%(体积分数)。采用清水进行吸收,吸收剂的用量为最小用量的1.5倍。 (二)、操作条件 (1)操作压力常压 (2)操作温度 20℃. (三)填料类型 选用聚丙烯阶梯环填料,填料规格自选。 (四)工作日 每年300天,每天24小时连续进行。 (五)厂址 厂址为衡阳地区 (六)设计内容 1.吸收塔的物料衡算; 2.吸收塔的工艺尺寸计算; 3.填料层压降的计算; 4.液体分布器简要设计 5.吸收塔接管尺寸计算; 6.绘制吸收塔设计条件图; 7.对设计过程的评述和有关问题的讨论。 (七)操作条件 20℃氨气在水中的溶解度系数为H=0.725kmol/(m3?kPa)。

化工原理课程设计---用水吸收二氧化硫常压填料塔

摘要 在化工生产中,气体吸收过程是利用气体混合物中,各组分在液体中溶解度或化学反应活性的差异,实现气液混合物的分离。在化学工业中,经常需将气体混合物中的各个组分加以分离,其目的是: ① 回收或捕获气体混合物中的有用物质,以制取产品; ② 除去工艺气体中的有害成分,使气体净化,以便进一步加工处理;或除去工业放空尾气中的有害物,以免污染大气。吸收操作仅为分离方法之一,它利用混合物中各组分在液体中溶解度或化学反应活性的差异,实现气液混合物的分离。 一般说来,完整的吸收过程应包括吸收和解吸两部分。在化工生产过程中,原料气的净化,气体产品的精制,治理有害气体,保护环境等方面都要用到气体吸收过程。填料塔作为主要设备之一。二氧化硫填料吸收塔,以水为溶剂,经济合理,净化度高,污染小。此外,由于水和二氧化硫反应生成硫酸,具有很大的利用。 本次化工原理课程设计,我设计的题目是:炉气处理量为h m 34200炉气吸过程填料吸收塔设计。本次任务为用水吸收二氧化硫常压填料塔。具体设计条件如下: 1、混合物成分:空气和二氧化硫; 2、二氧化硫的含量:08.0(摩尔分率) 3、操作压强;常压操作 4、进塔炉气流量:h m 34200 5、二氧化硫气体回收率:%98 吸收过程视为等温吸收过程。 关键词:吸收、填料塔、二氧化硫、低浓度。

The Abstract In the chemical production, gas absorption process is using the mixture of gases, the components in liquid or chemical reaction activity of solubility differences. In the chemical industry, gas absorption purpose is to: (1) recovery or capture gas mixture of the useful materials in order to making products; 2) remove the harmful process gas composition, make gas purification, so as to further processing;in order to avoid the atmospheric pollution. Generally speaking, the complete absorption process should include absorption and desorption two parts. In the chemical production process, the raw material of the gas purification, protect the environment, to use gas absorption process. As one of the main equipment packed tower. Sulfur dioxide packing absorption tower, water solvent, reasonable economy, purification degree is high, the pollution is small. In addition, because water and sulfur dioxide reacts sulfuric acid, have a lot of use. The principles of chemical engineering course design,My design task is the sulfur dioxide absorption water atmospheric packed tower. The specific design conditions as follows: 1, mixture composition: air and sulfur dioxide; 2, sulfur dioxide levels in: (Moore points rate) 3, operating pressure; Atmospheric pressure operation 4, into the tower furnace gas flow: 5, sulfur dioxide gas recovery: The absorption process as the isothermal absorption process. Keywords: absorption, packed tower, sulfur dioxide, low concentration.

水吸收氨气填料塔设计样本

东南大学成贤学院 课程设计报告 题目填料吸收塔的设计 课程名称化工原理课程设计 专业制药工程 班级 学生姓名 学号 设计地点东南大学成贤学院 指导教师 设计起止时间:2012 年8月28日至2012 年9 月14 日

目录 课程任务设计书 (3) 第一节吸收塔简介 (4) 1.1 吸收技术概况 (4) 1.2 吸收设备--填料塔概况 (4) 1.3 典型的吸收过程 (5) 第二节填料塔主体设计方案的确定 (6) 2.1 装置流程的确定 (6) 2.2 吸收剂的选择 (6) 2.3 填料的类型与选择 (7) 2.3.1填料种类的选择 (7) 2.3.2 填料规格的选择 (8) 2.3.3 填料材质的选择 (8) 第三节填料塔工艺尺寸的计算 (10) 3.1 基础物性数据 (10) 3.1.1 液相物性数据 (10) 3.1.2 气相物性数据 (10) 3.1.3 气液相平衡数据 (10) 3.2 物料衡算及校核 (11) 3.2.1水吸收氨气平衡关系 (11) 3.2.2绘制X-Y图 (11) 3.2.3物料衡算 (16) 3.3 塔径的计算及校核 (18) 3.3.1塔径的计算 (18) 3.3.2塔径的校核 (20) 3.4 填料层高度的计算及分段 (20) 3.4.1填料层高度的计算 (20) 3.4.2 填料层的分段 (23) 3.5 填料层压降的计算 (23) 第四节其他辅助设备的计算与选择 (24) 4.1 吸收塔的主要接管尺寸计算 (24) 4.2 气体进出口的压降计算 (24)

4.3 离心泵的选择与计算 (24) 附件一: 1.计算结果汇总 (26) 2.主要符号及说明 (27) 3.参考文献 (28) 4. 个人小结 (28) 附件二: 1.填料塔设备图 (30) 2.塔设备流程图 (31) 3.埃克特通用压降关联图 (32) 4.X-Y关系图(见计算过程)

化工原理课程设计℃时水吸收二氧化硫填料塔的设计完整版

化工原理课程设计℃时水吸收二氧化硫填料塔 的设计 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

《化工原理》 课程设计报告 题目:处理量为1000m3/h清水吸收二氧化硫填料吸收塔设计 系别:环境科学与工程学院 专业班级:环境工程11(2)班 姓名:陈新林 学号: 指导教师:郑育英 (课程设计时间:2013年12月30日——2014年1月5日) 广东工业大学 目录 1.课程设计目的 (1) 2.课程设计题目描述和要求 (1) 3.课程设计报告内容 (4) 塔径计算 (7) 塔径的计算 (8) (8)

(9) (9) 填料层高度的计算 (9) 传质单元数的计算 (9) (10) (11) 填料塔附属高度的计算 (11) 2 (13) 4.总结 (26) 参考文献 (27)

1. 课程设计目的 化工原理课程设计是学生学过相关基础课程及化工原理理论与实验后,进一步学习化工设计的基础知识,培养工程设计能力的重要教学环节。通过该环节的实践,可使学生初步掌握单元操作设计的基本程序与方法,得到工程设计能力的基本锻炼。化工原理课程设计是以实际训练为主的课程,学生应在过程中收集设计数据,在教师指导下完成一定的设备设计任务,以达到培养设计能力的目的。单元过程及单元设备设计是整个过程和装备设计的核心和基础,并贯穿于设计过程的始终,从这个意义上说,作为相关专业的本科生能够熟练地掌握典型的单元过程及装备的设计过程和方法,无疑是十分重要的。 2.课程设计题目描述和要求 设计题目描述 (1) 设计题目 二氧化硫填料吸收塔及周边动力设备与管线设计 (2) 设计内容 根据所给的设计题目完成以下内容: (1)设计方案确定; (2)相关衡算; (3)主要设备工艺计算; (4)主要设备结构设计与算核; (5)辅助(或周边)设备的计算或选择; (6)制图、编写设计说明书及其它。 (3) 原始资料 设计一座填料吸收塔,用于脱除废气中的SO ,废气的处理量为1000m3/h,其 2 为2%(摩尔分率),采用清水进行逆流吸收。要求塔吸收效率达98%。中进口含SO 2 吸收塔操作条件:常压:;恒温,气体与吸收剂温度:303K 清水取自1800米外的湖水。示意图参见设计任务书。 ⒈设计满足吸收要求的填料塔及附属设备; ⒉选择合适的流体输送管路与动力设备(求出扬程、选定型号等),并核算离心泵安装高度。 设计要求 设计时间为一周。设计成果要求如下: 1.完成设计所需数据的收集与整理 2.完成填料塔的各种计算

最终版_化工原理课程设计(水吸收氨填料吸收塔设计)

水吸收氨课程设计 目录 第一节前言 (5) 1.1 填料塔的主体结构与特点 (5) 1.2 填料塔的设计任务及步骤 (5) 1.3 填料塔设计条件及操作条件 (5) 第二节填料塔主体设计方案的确定 (6) 2.1 装置流程的确定 (6) 2.2 吸收剂的选择 (6) 2.3填料的类型与选择 (6) 2.3.1 填料种类的选择 (6) 2.3.2 填料规格的选择 (6) 2.3.3 填料材质的选择 (7) 2.4 基础物性数据 (7) 2.4.1 液相物性数据 (7) 2.4.2 气相物性数据 (7) 2.4.3 气液相平衡数据 (8) 2.4.4 物料横算 (8) 第三节填料塔工艺尺寸的计算 (9) 3.1 塔径的计算 (9) 3.2 填料层高度的计算及分段 (10) 3.2.1 传质单元数的计算 (10) 3.2.3 填料层的分段 (12) 3.3 填料层压降的计算 (12) 第四节填料塔内件的类型及设计 (13)

4.1 塔内件类型 (13) 4.2 塔内件的设计 (13) 4.2.1 液体分布器设计的基本要求: (13) 4.2.2 液体分布器布液能力的计算 (13) 注:14 1填料塔设计结果一览表 (14) 2 填料塔设计数据一览 (14) 3 参考文献 (16) 4 后记及其他 (16) 附件一:塔设备流程图 (17) 附件二:塔设备设计图 (17)

化工学院关于专业课程设计的有关要求(草案)专业课程设计是学生学完专业基础课及专业课之后,进一步学习工程设计的基础知识,培养学生工程设计能力的重要教学环节,也是学生综合运用相关课程知识,联系生产实际,完成以单元操作为主的一次工程设计的实践。为了加强我院本科学生专业课程设计这一重要实践教学环节的规范化管理,保证专业课程设计工作有序进行及教学质量,特制定专业课程设计的有关要求并请遵照执行。 一、选题要求 选题应以单元操作的典型设备为对象,进行单元操作过程中相关的设备与工艺设计,尽量从科研和生产实际中选题。为了保证专业课程设计的质量和工作量,选题要求1人1题。 二、设计说明书文本要求 (一)、字数要求:2000字以上 (二)、打印要求:用A4纸打印;左边距3厘米、右边距2厘米、上边距3厘米、下边距2.5厘米;行距20磅;页码居中 字体、字号要求(包括装订顺序): 1、封面 由学院统一制定格式 2、设计任务书 3、目录(宋体、4号),其余(宋体、小4号) 4、正文(宋体、小4号字)、一级标题(宋体、3号字、加粗)、二级标题(宋体、4号字、加粗) 正文内容主要包括:概述与设计方案简介;设计条件及主要物性参数表;工艺设计计算(内容较多,应根据设计计算篇幅适当划分为若干小节,使之条理清晰);辅助设备的计算及选型;设计结果汇总表(物料衡算表,设备操作条件及结构尺寸一览表);设计评述(设计的评价及学习体会)。 5、参考文献(宋体、5号字)

化工原理课后习题答案第七章吸收习题解答

第七章 吸 收 7-1 总压101.3 kPa ,温度25℃时,1000克水中含二氧化硫50克,在此浓度范围内亨利定律适用, 通过实验测定其亨利系数E 为4.13 MPa , 试求该溶液上方二氧化硫的平衡分压和相平衡常数m 。(溶液密度近似取为1000kg/m 3) 解:溶质在液相中的摩尔分数:50 640.0139100050 1864 x ==+ 二氧化硫的平衡分压:* 3 4.13100.0139kPa=57.41kPa p Ex ==?? 相平衡常数:634.1310Pa 40.77101.310Pa E m P ?== =? 7-2 在逆流喷淋填料塔中用水进行硫化氢气体的吸收,含硫化氢的混合气进口浓度为5%(质量分数), 求填料塔出口水溶液中硫化氢的最大浓度。已知塔内温度为20℃,压强为1.52×105 Pa ,亨利系数E 为48.9MPa 。 解:相平衡常数为:6 5 48.910321.711.5210 E m P ?===? 硫化氢的混合气进口摩尔浓度:1534 0.04305953429 y = =+ 若填料塔出口水溶液中硫化氢达最大浓度,在出口处气液相达平衡,即: 41max 0.0430 1.3410321.71 y x m -= ==? 7-3 分析下列过程是吸收过程还是解吸过程,计算其推动力的大小,并在x - y 图上表示。 (1)含 NO 2 0.003(摩尔分率)的水溶液和含NO 2 0.06 (摩尔分率) 的混合气接触,总压为101.3kPa ,T=15℃,已知15℃时,NO 2水溶液的亨利系数E =1.68×102 kPa ;(2)气液组成及温度同(1),总压达200kPa (绝对压强)。 解:(1)相平衡常数为:513 1 1.6810Pa 1.658101.310Pa E m P ?===? * 1 1.658 0.0030.00498 y m x ==?=

水吸收氨气填料塔

《化工原理》课程设计 设计题目:水吸收氨填料塔设计专业班级: 学生姓名: 学号: 指导教 起止日期:

前言 在炼油、石油化工、精细化工、食品、医药及环保等部门,塔设备属于使用量大应用面广的重要单元设备。塔设备广泛用于蒸馏、吸收、萃取、洗涤、传热等单元操作中。所以塔设备的研究一直是国内外学者普遍关注的重要课题。 在化学工业中,经常需要将气体混合物中的各个组分加以分离,其主要目的是回收气体混合物中的有用物质,以制取产品,或除去工艺气体中的有害成分,使气体净化,以便进一步加工处理,或除去工业放空尾气中的有害成分,以免污染空气。吸收操作是气体混合物分离方法之一,它是根据混合物中各组分在某一种溶剂中溶解度不同而达到分离的目的。 氨是化工生产中极为重要的生产原料,但是其强烈的刺激性气味对于人体健康和大气环境都会造成破坏和污染。因此,为了避免化学工业产生的大量的含有氨气的工业尾气直接排入大气而造成空气污染,需要采用一定方法对于工业尾气中的氨气进行吸收,本次课程设计的目的是根据设计要求采用填料吸收塔吸收的方法来净化含有氨气的工业尾气,使其达到排放标准。设计采填料塔进行吸收操作是因为填料可以提供巨大的气液传质面积而且填料表面具有良好的湍流状况,从而使吸收过程易于进行而且,填料塔还具有结构简单、压降低、填料易用耐腐蚀材料制造等优点,从而可以使吸收操作过程节省大量人力和物力。 利用混合气体中各组分在同一种液体(溶剂)中溶解度差异而实现组分分离的过程称为气体吸收气体吸收是一种重要的分离操作,它在化工生产中主要用来达到以下几种目的:分离混合气体以获得一定的组分;除去有害组分以净化气体;制备某种气体的溶液。一个完整的吸收分离过程,包括吸收和解吸两个部分。典型过程有单塔和多塔、逆流和并流、加压和减压等。 第一章概述

相关文档
相关文档 最新文档