文档库 最新最全的文档下载
当前位置:文档库 › 电力系统的故障模式诊断

电力系统的故障模式诊断

电力系统的故障模式诊断
电力系统的故障模式诊断

电力系统故障诊断的研究

摘要

综述了电力系统故障诊断的各种研究方法,包括专家系统、人工神经网络、优化技术、Petri 网络、粗糙集理论、模糊集理论和多代理技术等。简要分析了这些方法的特点与适用性,评述其存在的主要问题和值得改进之处。最后,以解决实际工程问题为目标,指出了该领域所需解决的关健技术问题和主要发展趋势,以促进该研究领域的进一步发展。

引言

电力系统故障诊断是通过利用有关电力系统及其保护装置的广泛知识和继电保护等信息来

识别故障的元件位置(区域)、类型和误动作的装置,其中故障元件的识别是关键问题。电力系统故障诊断研究具有重要的现实意义。随着电力系统规模的不断扩大和结构的日益复杂,大量的报警信息在短时间内涌人调度中心,远远超过运行人员的处理能力,易使调度员误判、漏判,为了适应各种简单和复杂事故情况下故障的快速、准确识别,需要电力系统故障诊断系统进行决策参考。同时,由于电力系统调度自动化水平不断提高,越来越丰富的报警信息通过各变电所的远程终端

装置(RTU),传送到各级电网调度中心,使得利用采集的实时信息进行电力系统故障诊断成为可能。另外,对于电力系统故障的仿真分析和模拟培训,也可以通过电力系统故障诊断系统来提升调度

员的经验和水平[1-6]。目前,国内外提出了许多电力系统故障诊断的技术和方法,主要有专家系统、工神经网络、优化技术、Petri网络、模糊集理论、粗糙集理论、多代理技术。

本文首先综述了电力系统故障诊断的各种研究方法,评述了这些方法中需要改进之处,并进

一步指出了该领域所需解决的关键技术问题和主要发展趋势。它们对构建电力系统故障诊断智能辅助决策系统具有重要的指导意义,对保证电力系统的安全运行、减少事故的经济损失具有重要的理论和现实意义。

电力系统故障诊断国内外研究现状

基于专家系统的诊断方法

专家系统(expert system)是发展最早,也是比较成熟的一种人工智能技术。70年代初期专家系统就引进到电力系统故障诊断领域中,因其特点与电力系统故障诊断相切合,至今为止,及与专家系统的故障诊断研究时间最长,研究也最为深入。专家系统在电力系统故障诊断中的应用可以概括为产生诊断规则,依据诊断规则,对电力系统的故障进行诊断。即把保护、断路器的动作逻辑以及运行人员的诊断经验用规则表示出来,将多条规则成为专家系统诊断故障的知识库,进而当故障发生后,将报警信息与知识库中的规则进行比较、推理,以此获得故障诊断的结论,具有直观性、实时性和有效性。此外,也可通过反向推理,有效地缩小可能故障的范围,以动作的继电保护与故障假设的符合程度计算可信度。

及与专家系统的电力系统故障诊断方法主要特点是可以直观地将保护、断路器的动作逻辑以及工作人员的诊断经验用规则的方式表达出来,并允许在知识库中添加、删除或者修改一些规则,以确保专家系统诊断方法的实时性与有效性,与此同时,还能够给出符合人类语言习惯的结论,并具备一定的解释能力。但及与专家系统的故障诊断方法也存在一些难以解决的问题:首先,专家系统建立的知识库,以及验证知识库的完备性比较困难;其次,容错能力差,缺乏有效的方法识别错误信息;此外,专家系统若应用在较复杂的电力系统中诊断故障,知识库的维护难度十分大;最终,专家系统在复杂故障诊断任务中会出现组合爆炸以及推理速度慢的问题。以上缺陷使得专家系统难以满足大规模电力系统在线故障诊断的需求,目前专家系统主要应用于中小型电力系统、变电站、以及离线故障诊断、分析中[7,8]。

基于人工神经网络的诊断方法

与专家系统相比,基于人工神经网络(ANN—artificialneuralnetwork)的故障诊断方法具有鲁棒性好、容错能力强和学习能力强等特点。目前应用于电力系统故障诊断的ANN有:基于

BP(backpropagation)算法的前向神经网络和基于径向基函数的神经网络等。文献给出了典型的故障诊断神经网络BP模型,其实现方法是:以电力系统继电保护信息作为ANN的输入,以可能发生的故障作为其输出,选择适当的样本集训练ANN。整个训练过程为:首先根据网络当前的内部表达,对输人样本进行前向计算;然后比较网络的输出与期望输出之间的误差,若误差满足条件,则训练结束,否则,将误差信号按原有的通路反向传播,逐层调整权值和阈值,如此反复,直至达到误差精度要求。文献[5]将大型输电网络分区,对各个区域分别建立基于BP算法的故障诊断网络,然后综合获得最终的故障诊断结果。

基于ANN的诊断法可克服专家系统面临的知识库维护的难题。但是,由于ANN训练的完备样本集获取困难,目前该方法只适用于中小型电力系统的故障诊断。ANN方法在故障诊断中存在的主要问题:1、大型电力系统的完备样本集获取困难;2、不擅长处理启发性知识;3、不知如何确保ANN训练时收敛的快速性和避免陷人局部最小;4、缺乏解释自身行为和输出结果的能力。基于ANN的故障诊断法由于上述缺陷的限制,不宜应用于大型电力系统[5,9-11]。

基于优化技术的电力系统故障诊断

基于优化技术(optimizationmethods)的诊断方法是一种基于数学模型的求解方法,其基本思想是将电力系统故障诊断问题描述成为O一1整数规划问题,并构造一种解析数学模型,利用优化技术寻找问题的最优解。[12]首次建立了根据保护动作和继电器信息识别故障元件的数学模型,并从诊断结果应该尽可能解释所有报警信息的角度出发,给出了故障诊断问题的适应度函数,从而将电力系统故障诊断问题转化为O一1整数规划问题。文献[13]提出了发生故障时的报警信息(即保护动作和断路器跳闸信息)对不可观测的保护(即动作信息在电力系统调度中心不可获取的保护)状态进行识别的新概念,并构造了故障诊断与不可观测的保护状态识别集成的O一1整数规划模型。

基于优化技术的诊断方法的主要特点是其诊断模型理论上是严密的,不需要引人启发式知识,用常规的算法即可实现,它比较适合所需信息比较完整的电力系统故障诊断。该方法需要改进之处主要包括:1、如何建立合理的电网故障诊断数学模型,在形成目标函数的过程中,需要考虑多级后备保护时比较困难;2、由于优化方法在寻优过程中存在随机因素,有可能会失去某些最优解;3、由于在诊断过程中必须进行迭代,从而导致速度较慢,提高诊断速度也是一个重要的研究方向[12,13]。

基于Petri网络的诊断方法

Petri网络是在构造有向图的组合模型的基础上,形成可以用矩形运算所描述的严格定义的数学对象。Petri网络是离散事件动态系统建模和分析的理想工具。电力系统故障发生属于一个离散事件的动态系统,由系统中各级电压的变化、各类保护的动作反映故障,并把切除故障的过程看做一系列事件活动的组成,而事件序列与相应实体联系在一起。动态事件主要包括实体活动(例如断路器、继电保护装置等)和信息流活动(例如信号传递、控制指令发送、各监测信号流等)。

鉴于电力系统故障动态过程描述的可行性,可用Petri网络构造电力系统诊断模型。文献「14]以输电网络中的设备为单位,首先研究了故障“切除”过程的Petri网络模型,进而对故障诊断的Petri网络模型求解。文献[15]在此基础上加入了后备保护的模型,进一步发展了基于Petri网络的故障诊断模型。文献[16]提出了嵌人冗余Petri网络方法,它在原考虑的故障类型Petri网络的基础上加人错误伴随式矩阵C,其目的是要解决由于网络中事件序列和信息流不正常时(如

保护或断路器的拒动等)的故障诊断。

基于Petri网络的诊断方法的主要特点是它可以对同时发生、次序发生或循环发生的故障演化过程进行定性和定量的分析,比较适合于变电站的故障诊断。该方法存在的不足之处主要有:1、对大规模电网基于Petri网络模型建模时,因设备增加和网络扩大会出现状态的组合爆炸;2、Petri网络方法的容错能力较差,不易识别错误的报警信息;3、基本的Petri网络不能描述时间特征要求高的行为特征,因此在复杂系统建模时,需要采用高级的Petri网络,例如谓词/变迁网、

有色时间网等[14-16]。

基于粗糙集理论的诊断方法

粗糙集理论(rough Set theory)是波兰Z.Pawlak教授于1982年提出的一种处理不完整性和不确定性问题的新型数学工具。其主要思想为:在保持根据条件属性分类能力不变的条件下,通过知识约简,除去多余的条件属性,将剩余的条件属性和决策属性导出为决策规则。此诊断方法不需要提供除条件及决策属性之外的任何先验信息,能够有效地分析和处理不确定、不一致、不完整等各种不完备数据,从中发现隐含的知识,解释潜在规律。鉴于该诊断方法的优势,已经有不少研究人员把它引人到故障诊断系统中。文献「12,13〕把粗糙集理论应用于电力系统故障诊断和警报处理,尝试应用粗糙集理论来处理因保护装置和断路器误动作、信号传输误码而造成的错误或不完整警报信号,提出的方法考虑各种可能发生的故障情况,建立决策表(类似于ANN故障诊断的训练样本集),然后实现决策表的自动化简和约简的搜索,删除多余属性后抽取出诊断规则,揭示警报信息内在冗余性。文献[14〕提出了基于粗糙集理论与二元逻辑运算相结合的属性约简算法以及改进的值约简算法,并将其应用于由断路器和保护作为条件属性、故障区域作为决策属性的诊断决策表的约简过程中,利用决策表的约简形成综合混合知识模型。文献[15〕提出和构造了4类不同的粗糙集与神经网络(NN)组合的故障诊断模型,给出了粗糙集与ANN在4类模型中实现不同的互补性、关联关系、应用机理和原则及相应的局限性。

基于粗糙集理论的诊断方法的主要特点是:它能较强地处理信息不完整和信息冗余的情形,比较适合中小型电力系统和变电站的故障诊断。该方法需要进一步改进之处有:①粗糙集方法的诊断规则的获取取决于条件属性集下各种故障情况训练样本集;②当丢失或出错的警报信息不是关键信号时,不会影响诊断结果;然而,当丢失或出错的警报信息是关键信号时,诊断结果将受到影响;③当考虑发生多重故障时,粗糙集方法将出现决策表十分庞大、甚至出现“组合爆炸”问题。基于模糊集理论的诊断方法

模糊集理论(fuzzy set theory)在电力系统故障诊断的应用分2类情况:一类认为诊断所依据的信息正确,但故障与对应的动作保护装置和断路器状态之间存在不确定的关联关系,以及用模糊隶属度对这种可能性进行描述的度量;另一类则认为诊断所依据的报警信息的可信度不为1,而

根据系统网络拓扑与故障所发生的动作保护、断路器状态赋予报警信息的可信度,再由专家系统或ANN给出故障诊断结果的模糊输出。文献[16]属前一类,认为故障与动作的保护装置之间、动作的保护装置与所控制的断路器之间可以存在不确定的关联关系,可以用模糊数学来描述它们之间的关联关系。根据可能的故障,可以寻找由故障点到报警信息可能的通路,再寻找故障点与可能动作的保护装置之间、动作的保护装置与可控制的断路器之间关联关系,合成总的模糊度,用以表示故障诊断位置可能性的度量。文献[17〕属后一类,它先对诊断模型所依据的输入信息模糊化,根据输电网络拓扑的当前情况,对保护、断路器动作行为的统计数据赋予报警信息可信度,通过ANN或专家系统诊断模型输出模糊数,再由反模糊系统去解释其输出,提供给运行人员一个语言

化的结论。

基于模糊集理论的诊断方法的主要特点是:它能处理信息的不确定性,往往需要与其他各种人工智能技术(例如专家系统、ANN等)结合在一起使用。根据对模糊系统具体应用的分析,得出尚须深人研究的问题有:①对不确定性问题用隶属度函数来描述时,应建立什么样的有效隶属函数是极其关键的问题;②大规模复杂系统的模糊模型的建立存在难度,同时,当诊断系统的结构等发生变化时,与其有关的模糊知识库或规则的模糊度也要相应修改,可维护性能较差。(郭)

基于多代理系统的诊断方法

多代理系统(MAs—multi一agentsystem)被看做是分布式人工智能的试验平台,当一个问题在多个物理上或者逻辑上能形成分解的问题求解实体时,每个子问题求解实体仅仅拥有问题求解所需的有限数据、信息和资源,不同的子问题求解实体之间必须相互交互才能最终求解问题。MAS中Agent的自治性以及各个Agent之间的合作等特征为电力系统的故障诊断提供了一种自然的建模

方式.1995年文献【】提出了将多Agent技术应用于动态电力系统环境中的故障定位。文献【】提出了一个分层故障诊断多智能体系统(MAS)模型,这些方法通过将复杂的问题分解成简单问题,运用多Agent协调求解,以实现动态电力系统中的自动故障定位,并满足一定的精度和计算速度的要求,但是未给出如何选择最优的协同方式。(王)

MAS研究的重点在于如何协调在逻辑上或物理上分离的、具有不同目标的多个Agent的行为,使其联合采取行动或求解问题,协调各自的知识、希望、意图、规划、行动,以对其信息、资源进行合理安排,最大限度地实现各自的目标和总体目标,以对更复杂、更大规模的问题的解决起到重要作用2l[〕。MAS是解决大规模电力系统故障诊断问题很有前途的发展方向。但MAS中各Agent

的知识和行为、协调与协作是有待深人解决的核心问题。(郭)

面临的问题以及发展方向

鉴于上述方法的研究现状、诊断系统的实现条件以及实际需求等各个方面的因素,为更好地研究和应用电力系统故障诊断问题,今后应重点研究以下的问题:

1、信息不完整的情况下的电力系统故障诊断方法研究。现有的很多方法均是在理想状态下对电

力系统的故障进行诊断,有时很多的条件是无法满足的,应用此类方法时,需进行一些简化假设,但是这样做可能与实际情况不相符。目前为止,对继电保护信息的不完整情况下的电力系统故障诊断问题还没有提出有效的解决办法。

2、采用单一智能方法对电力系统进行故障诊断存在很大的局限性,将多种智能方法融合进行故

障诊断,使优势互补,将成为故障诊断的必由之路。

3、随着电网技术的进步,电网结构越来越复杂、庞大,融合多种智能方法对大规模连锁故障进

行追踪和预警,实现从静态故障诊断到动态诊断是故障诊断的发展趋势。同时伴随着

Internet的发展,基于网络的故障诊断将会成为现实,通过对设备故障的远程监视以及网络化跟踪,以实现对故障的早期诊断和及时维修。

4、电力系统故障诊断的实用化研究。虽然故障诊断有不短的研究历史,也取得了不少成果,但与

需求之间还有一定距离,实用化也比较差。目前迫切需要争取电力企业的支持,依托科研机构的研究实力,开展电力系统故障诊断的实用化研究:结合电力系统的实际情况,充分重视故障综合信息的收集与整理,包括用于故障诊断的数据仓库的构建、故障综合信息的预处理和诊断知识的提取等,构建、实现区域电网的故障诊断系统,从实际应用中提炼出键问题,采用智能化诊断方法实现诊断范围内故后的分析处理,为运行、检修人员查找事故原因提供辅助分析和决策手段。

参考文献

[1] 毕天姝,倪以信,杨奇逊.人工智能技术在输电网络故障诊断中的应用述评[J].电力

系统自动化,2000(02):11-16.

[2] 陈玉林,陈允平,孙金莉,等.电网故障诊断方法综述[J].中国电力,2006(05):

27-31.

[3] 郭创新,朱传柏,曹一家,等.电力系统故障诊断的研究现状与发展趋势[J].电力系

统自动化,2006(08):98-103.

[4] 毛鹏,许扬,蒋平.输电网故障诊断研究综述及发展[J].继电器,2005(22):84-91.

[5] 曾素琼.人工智能及其在输配电网络故障诊断中的应用[J].海南大学学报(自然科学

版),2006(02):188-193.

[6] 廖志伟,孙雅明,叶青华.人工智能技术在电力系统故障诊断中应用[J].电力系统及

其自动化学报,2003(06):71-79.

[7] 杜一,张沛超,郁惟镛.基于事例和规则混合推理的变电站故障诊断系统[J].电网技

术,2004(01):34-37.

[8] 张学军,刘小冰,阎彩萍,等.基于正反向推理的电力系统故障诊断专家系统[J].山

西电力技术,1998(06):9-13+37.

[9] 毕天姝,倪以信,吴复立,等.基于新型神经网络的电网故障诊断方法[J].中国电机

工程学报,2002(02):74-79.

[10] 毕天姝,倪以信,吴复立,等.基于混合神经网络和遗传算法的故障诊断系统[J].现

代电力,2005(01):31-36.

[11] 刘超,何正友,杨健维.基于量子神经网络的电网故障诊断算法[J].电网技术,2008

(09):56-60.

[12] 文福拴,韩祯祥.基于模拟进化理论的电力系统的故障诊断[J].电工技术学报,1994

(02):57-63.

[13] 文福拴,钱源平,韩祯祥,等.利用保护和断路器信息的电力系统故障诊断与不可观

测的保护的状态识别的模型与 Tabu 搜索方法[J].电工技术学报,1998(05):1-8+51.[14] 鞠平,左英飞,文福拴,等.电力系统健康诊断[J].电力自动化设备,2004(06):

22-25.

[15] 王建元,纪延超,常群,等.Petri网络理论在电网故障诊断中的应用[J].哈尔滨理

工大学学报,2002(04):77-80.

[16] 赵洪山,米增强,杨奇逊.基于冗余嵌入Petri网技术的变电站故障诊断[J].电力系

统自动化,2002(04):32-35.

校对报告

本文档采用个人普及版写作。

本文稿采用的参考文献格式为:国标7714-2005顺序编码制。

本篇论文所有参考文献的基本数据齐全,没有发现格式错误。如果不想出现校对报告部分,请在执行“更换引文样式”时,去掉“校对报告”的复选框即可。

电力系统故障诊断的研究现状与发展趋势 郑姝康

电力系统故障诊断的研究现状与发展趋势郑姝康 发表时间:2019-06-27T16:41:24.690Z 来源:《防护工程》2019年第6期作者:郑姝康 [导读] 电力系统故障诊断是近年来十分活跃的研究课题之一。主要包括系统故障诊断和元件故障诊断两个方向,系统级故障诊断是指通过分析电网中各级各类保护装置产生的报警信息、断路器的状态变位信息以及电压电流等电气量测量的特征,根据保护、断路器动作的逻辑和运行人员的经验来推断可能的故障元件和故障类型的过程。 国网内蒙古东部电力有限公司乌兰浩特市供电分公司内蒙古兴安盟 137400 摘要:电力系统故障诊断是近年来十分活跃的研究课题之一。主要包括系统故障诊断和元件故障诊断两个方向,系统级故障诊断是指通过分析电网中各级各类保护装置产生的报警信息、断路器的状态变位信息以及电压电流等电气量测量的特征,根据保护、断路器动作的逻辑和运行人员的经验来推断可能的故障元件和故障类型的过程。 关键词:电力系统;故障;发展趋势 引言 随着我国经济的发展和用电量的急速增加,整个电力系统所承受的压力也越来越大。我们的日常生活以及工农业的生产之所以能够正常的进行都是依赖于整个电力系统能够稳定的运行。所以安全可靠的电力系统是经济发展和人们正常生活最基本的保障。但是由于我国技术条件、气候以及周围环境的影响等造成电力系统出现故障,这都是无法避免的。但是在故障发生时,快速准确的判断故障发生的位置以及找出解决的办法并保证电路能够快速的恢复正常的运行以便将这种损失降到最小是对电力工作人员最基本的要求。现在我国电力系统的发展规模越来越大,随之复杂程度也越来越高,所以出现故障的概率也越来越高。因此,我国针对于电力系统中所出现的故障进行合理的快速的诊断很重要,并且针对这方面的研究也很有意义。 1 我国电力系统中经常出现的主要故障 我国的电力系统中存在的故障主要是指电力系统中的设备不能正常的实现它的功能,并且导致整个电力系统不能按照预期的指标进行正常的工作。在整个电力系统中任何一个设备或者元件出现故障,如果不能及时的解决都会造成的很大的损失。下面介绍我国电力系统中经常出现的主要故障问题。 首先介绍的是电力系统中输电线路的故障。在人们的日常生产和生活中存在的输电线路的问题主要是由于风吹日晒等原因造成输电线外露的绝缘体的破坏,再在遇到大风天气的时候引起线路的接触造成电路的短路,虽然当输电线分离开以后这些故障会暂时的解除,但是这种输电线的故障依然存在。其次是电力设备中变压器的故障。在整个电力系统之中变压器是核心。所以如果整个电力系统中变压器出现故障,那么这对于整个电力系统造成的危害是难以估计的,变压器所出现的故障主要是由于高电场强度所引起的。关于变压器的故障诊断是很复杂的。因此,电力系统的工作人员在日常工作中要高度重视变压器中存在的各种故障隐患,这不仅是因为变压器价格成本昂贵,更重要的是变压器在整个电力系统中的重要作用。最后介绍在电力系统存在的母线故障和全厂或者全所停电。电力系统中存在的母线故障主要包括母线的短路、母线中所存在的保护误动作等等。当电力系统中核心变电站出现母线故障的时候,会造成很严重的后果。比如:在使用这个电力系统的所有的用户都会停电,这种情况造成的损失时无法估计的。还有全所的停电、系统联络的跳闸等都会造成严重的损失。 2 电力系统故障诊断的研究现状 关于电力系统故障诊断的研究,国外进行的较早,早在上个世纪八十年代,美国就已经有了对电站的一些设备的故障诊断工作在进行,也是自此之后,美国关于电力系统故障诊断的研究逐渐成为各电力研究科研机构以及各发电站的研究项目,尤其是在发电站事故诊断和性能的检测方面,美国一直掌握着最先进的研究成果和技术。 相比美国,我国的电力系统故障诊断研究起步就较晚,与美国等发达国家的电力系统故障诊断研究相比几乎晚了近20~30年,也正因为此,我国的电力系统故障诊断研究工作很多方面都是在借鉴国外的研究成果基础上进行的研究。笔者认为,我国的电力系统故障诊断研究可以分为两个阶段,首先,第一个阶段是研究的起步阶段,大概从1980年到1990年,在这近10年代的时间里,主要是对国外电力故障诊断的一些基础技术和理论知识进行了系统的学习和认识,研究内容主要包括快速傅里叶变换、谱分析、信号处理等等,通过对这些基础的理论知识和技术的研究主要是为了更好的研究在线监测系统的应用。其次,第二个阶段主要是从1990年~1999年末,这一时期我国各项事业也经历了翻天覆地的发展变化,我国的工业化发展也取得了显著地成绩,各种先进的技术逐渐产生和并用,电力故障诊断技术也取得了较快的发展,包括故障分类、模式识别、智能化专家系统和电脑计算机的应用等等,在这一时期我国对电力系统已经可以独立的进行全面的故障诊断研究,同时也摆脱咯受国外基础理论和研究成果的限制,也在研究过程中逐渐形成了与我国电力事业发展相符合的故障诊断理论和技术。再次,就是现阶段的研究,我国的研究已经基本上跟上了世界的脚步,在研究内容上也与各国基本相同,主要是对专家系统、人工神经网络、优化技术、Perti网络、模糊集理论以及粗糙集理论等。 3 电力系统故障诊断所面临的问题与研究发展方向 目前针对电力系统故障诊断研究主要呈现出以下的几种趋势: 一是信息不完整情况下的电力系统故障诊断方法研究。现在的一些方法的更重要的情况是在很多是电力系统是不能满足的,应用这些方法必须给出一些假定,举例来说假定假定状态信息不可获取继电保护均处于未动作状态,这样做与真实情况可能会不相符的,有可能引起错误的诊断结果。到目前为止,对继电保护信息不完整情况下的电力系统故障诊断还没有提出比较系统的解决方法,这是电力系统诊断领域中有待解决的主要难题之一。 二是采用单一智能方法进行诊断存在着很大的局限性。将多种智能方法融合来实行故障诊断,将会变成故障诊断的一个趋势。比如可以采用多种智能的理论来构建电网诊断模型;在诊断知识提取(故障数据信息预处理)方面引入现在研究更多的数据挖掘理论、粗糙集理论等,以适应大量地故障信息、信息冗余以及被噪音污染等特性。 三是电网系统的复杂性使得从静态故障诊断到动态诊断成为故障诊断的一个发展趋势。同时,随着Internet的发展,基于网络的故障诊断将成为现实,通过对设备状态的远程检测和网络化跟踪,可以实现故障设备的早期诊断和及时维修。 四是电网故障诊断理论的实用化方面的研究。由于诊断理论大多数是基于智能化方法的,所以实用化进程的推进不仅针对诊断领域,

电力系统练习题

第八章电力系统不对称故障的分析计算 例题: 1、图8-7所示为具有两根架空地线且双回路共杆塔的输电线路导线和地线的

2、如图8-8所示电力系统,试分别作出在k1, k2, K3点发生不对称故障时的正序、负序、零序等值电路,并写出,,120X X X ∑∑∑ 的表达式。(取0m X ≈∞)

习题: 1、什么是对称分量法?ABC分量与正序、负序、零序分量具有怎样的关系? 2、如何应用对称分量法分析计算电力系统不对称短路故障? 3、电力系统各元件序参数的基本概念如何?有什么特点? 4、输电线路的零序参数有什么特点?主要影响因素有哪些? 5、自耦变压器零序等值电路有什么特点?其参数如何计算? 6、电力系统不对称故障(短路和断线故降)时,正序、负序、零序等值电路如何 制定?各有何特点? 7、三个序网(正序、负序、零序)以及对应的序网方程是否与不对称故障的形式有关?为什么? 8、电力系统不对称故障的边界条件指的是什么? 9、试述电力系统不对称故障(短路和断线故障)的分析计算步骤. 10、如何制定电力系统不对称故障的复合序网(简单故障和经过渡电阻故障)? 11、何谓正序等效定则? 12、电力系统不对称故障时,电压和故障电流的分布如何计算? 13、为什么说短路故障通常比断线故障要严重? 14、电力系统不对称故障电流、电压经变压器后,其对称分量将发生怎样的变化?如何计算? 15、电力系统发生不对称故障时,何处的正序电压、负序电压、零序电压最高?何处最低? 16、电力系统两处同时发生复杂故障时,应怎样计算?为什么复合序网的连接必 须要经过理想移相变压器? 17、图8-34所示电力系统,在k点发生单相接地故障,试作正序、负序、零序等值电路. 18、图8-35〔a)、(b)、(c)所示三个系统.在k点发生不对称短路故障时,试画出

电力系统故障诊断算法概述

电力系统故障诊断算法概述 摘要:本文概述了目前电力系统故障诊断的算法研究现状,总结了当前的主流研究算法——专家系统法、模糊理论法、人工神经网络法、遗传算法、petri 网的方法、粗糙集理论、多代理系统、贝叶斯网络法以及近似熵算法,并对他们在电力系统故障诊断应用中存在的一些缺点做出了概括。 关键词:申力系统;故障诊断;专家系统;人工神经网络;溃传算法; 0引言 当前,电力系统在国民经济中的地位越来越突出,因而对电力系统的安全性、可靠性提出了更高的要求。现在电网的规模庞大,结构趋于复杂,区域之间的联系密切,对电力系统故障诊断的研究意义重大。电力系统故障诊断是通过各类保护装置产生的信息,基于一定的理论和经验来对故障发生的区段、故障元器件、故障性质作出快速、准确的处理。虽然国家电网的SCAD/EMS系统在电力系统故障的获取方面起到了一定的作用,但是电网故障时大量的信息远远超出了运行人员的能力,所以迫切的需要一套更加完整的智能电力系统故障诊断系统,实现对电网故障的自动快速诊断。 但是,电力系统中电力设备的种类繁多品种不一,保护装置配合的复杂性、电网结构的变化不确定性,导致了电网故障诊断是一个复杂的综合问题。近年来国内外许多学者提出了多种故障诊断的技术和方法,主要包括:专家系统法ES (Expert System)、模糊理论法ET(Fuzzy Theory)、人工神经网络法ANN (Artificial Neural Network)、遗传算法GA(Genetic Algorithms)、petri网法、粗糙集理论RST(Rough Set Theory)、多代理系统MAS(Multi-agentSystem)、贝叶斯法BN(belief network)以及近似熵算法。本文对上述方法归纳总结,阐述了各自在电力网中的故障诊断的应用,分析各种方法的特点,并对一些相关技术和方法的发展进行简要的介绍。 1电力系统故障诊断国内外研究发展现状 1.1基于专家系统的方法ES 专家系统ES(Expert System)是目前发展最早相对比较成熟的一种智能技术。它是一个智能计算机程序系统,内部含有大量的某个领域专家水平的知识与经验,具有大量的专业知识与经验的程序系统,利用人类专家的知识和解决问题的方法

电力系统故障的智能诊断综述

智能电网技术及装备专刊·2010年第8期 21 电力系统故障的智能诊断综述 李再华1 刘明昆2 (1.中国电力科学研究院,北京 100192;2.北京供电公司海淀供电分公司,北京 100086) 摘要 电力系统是人类制造的最复杂的系统,故障诊断是现代复杂工程技术系统中保障其可靠运行的非常重要的手段,故障的智能诊断是该领域的热点和难点。本文综述了电力系统故障的智能诊断技术的发展现状,总结了几种常用的智能技术在故障诊断应用中存在的若干问题以及解决这些问题的相关新技术。最后,展望了智能诊断技术的发展趋势:以专家系统为基础,融合其他先进的智能技术,以提高诊断的速度和准确度,及其对电力系统发展的适应性,逐步实现在线诊断。 关键词:电力系统;智能故障诊断;专家系统;发展趋势 Review of Intelligence Fault Diagnosis in Power System Li Zaihua 1 Liu Mingkun 2 (1.China Electric Power Research Institute ,Beijing 100192; 2. Haidian branch Company, Beijing Power Supply Company, Beijing 100086) Abstract Power system is the most complex system by man-made in the world, fault diagnosis is a kind of very important methods to ensure the reliable operation of modern complex engineering system. Intelligence fault diagnosis (IFD) is the hot and difficult subject in this field. The paper reviews the actual state of development of IFD in power system, and then summarizes some existing problems in application and new relation technology to resolve these problems. IFD technologies include expert system (ES), artificial neural network (ANN), decision-making tree (DT), data mining (DM), fuzzy theory (FT), Petri network (PN), support vector machine(SVM), bionic theory (BT), etc. To adopt these kinds of methods synthetically is very helpful to improve the intelligence of ES. At last, development trends of IFD are expected: based on ES, integrates with other advanced intelligence technologies, to heighten the speed and accuracy of fault diagnosis, and the adaptability to the development of power system, so as to realize online IFD gradually. Key words :power system ;intelligence fault diagnosis ;expert system ;development trend 1 引言 电网的发展和社会的进步都对电网的运行提出了更高的要求,加强对电网故障的诊断处理显得尤为重要。随着计算机技术、通信技术、网络技术等的发展,采用更为先进的智能技术来改善故障诊断系统的性能,具有重要的研究价值和实际意义。 故障的智能诊断技术也被称为智能故障诊断技 术,包括专家系统(Expert System ,ES )、人工神 经网络(Artificial Neural Network ,ANN )、决策树(Decision Tree ,DT )、数据挖掘(Data Mining , DM )、模糊论(Fuzzy Theory ,FT )、Petri 网理论(Petri Network Theory ,PNT )、支持向量机(Support Vector Machine ,SVM )、仿生学理论(Bionics Theory ,BT )的应用等,其中前四种技术得到了较多的研究,相对比较成熟和常用。本文对电力系统故障诊断领域的智能诊断技术的发展现状以及存在的问题进行综述,并对解决相关问题的方法进行了总结。 2 智能故障诊断技术发展现状 美国是对故障诊断技术进行系统研究最早的国家之一,1961年美国开始执行阿波罗计划后,出现了一系列设备故障,促使美国航天局和美国海军积

电力系统运行的基本要求

1.电力系统特点: 第一,电力作为电气的本质,它的生产和消费必须是同时进行的。电能的生产、输配和使用始终处于动态平衡之中。生产量和消费旦是严格平衡的。电能用户的用电量决定着电能的生产量,发电量是随着用电量的变化而变化。电能用户如何用电、何时用电及用多少电,对于电能生产都具有极大的影响;若电能供需出现不平衡,将导致电源频率出现偏差,发电控制设备正是根据这一特点来动态调节发电机出力以维持电能的供需平衡。当系统出力严重不足或故障时,频率偏差较大,低频自动减载装置便会自动甩减负荷,以维持电力系统运行的稳定性。 第二,由于发电和用电同时实现。这使得电力系统的各个环节之间具有十分紧密的相互依赖关系。因此,电力系统中任一环节或任一用户,若因设计不当、保护不完善、操作失误、电气设备故障,都会给整个系统造成不良影响。例如1965年美国纽约第一次大停电,是其东部电力系统中一个继电器的误动作引起的。 第三,电力系统中的过渡过程十分短暂。电能以电磁波形式传播,有极高的传输速度,所以,运行情况发生变化所引起的电磁方面和机电方面的过渡过程是十分迅速的。电力系统中的正常操作(如变压器、输电线路的投入或切除)是在极短时间内完成的;用户的电力设备(如电动机、电热设备等)的启停或负荷增减也是很快的;电力系统中出现的故障(如短路故障、发电机失去稳定等过程)更是极其短暂的,往往只用微秒或毫秒来计量时间。因此,不论是正常运行时所进行的调整和切换等操作,还是故障时为切除故障或为把故障限制在一定范围内以迅速恢复供电所进行的一系列操作,仅仅依靠人工操作是不能达到满意效果的,甚至是不可能的。必须采用各种自动装置来迅速而准确地完成各项调整和操作任务*电力系统的这个特点给运行、操作带来了许多复杂的课题。 第四,电能不易储藏。迄今为止尽管人们对电能的储藏进行了大量的研究,并在一些新的储藏电能方式上(如超导储能、燃料电池储能等)取得了某些突破性的进展,但是仍未能完全解决经济的、高效率的以及大容量的储能问题。 2.电力系统新特点 33台,另有11台百万千瓦机组在建;全年新增火电机组单机容量超过60万千瓦的合计容 月4日电(记者熊聪茹)“十二五”期间,中国电压等级最高的输电线路±1100千伏特高压输电工程将在新疆开工建设, 这条输电线路起点位于新疆准东西部能源基地,终点在成都,途经新疆、甘肃、青海、四川四省区,全长2600公里左右,总投资约350亿元。 4远距离一般应满足跨省和跨区域或跨国的远距离送电。

电力系统故障诊断的研究现状与发展趋势

电力系统故障诊断的研究现状与发展趋势 随着我国经济建设的发展,电力的需求越来越大,电力系统的正常运行不仅关系到城乡百姓的生活质量,也关系到地区经济的发展。因此,提高电力系统故障诊断符合社会发展需求。本文将对电力系统故障诊断技术展开探讨,电力系统故障诊断现状和发展趋势进行分析。 标签:电力系统;故障诊断;现状;发展 电力系统故障产生的原因多种多样,气候的变化和人为因素都将导致电力系统故障的出现。今年来随着经济建设的发展,电网企业规模在不断扩大,电网结构越来越复杂,各个区域的联系也越来越紧密,故障的发生几率也在不断增加。加强电力系统故障诊断是确保电网企业正常运行的有效手段。 一、电力系统故障诊断概述 随着当前电网企业规模的不断扩大和业务量的增加,电网结构越来越复杂。在复杂的电网结构中,往往会由于各种因素的影响,在运行过程中发生各类故障。由于电网企业业务覆盖范围较大,故障的发生将给地区电力运营带来重要影响,因此,加强电力系统的故障诊断成为电网企业重要工作。变压器是电力系统的重要构成之一,是电力系统故障诊断中重点环节。在变压器故障诊断中,又有内部诊断和外部诊断之分,相比较而言,内部诊断更为复杂,主要对由于局部温度过高产生的故障和绝缘性能降低產生的故障进行诊断。 二、电力系统故障诊断的研究现状 从我国改革开放以来,我国电力系统故障诊断技术也在不断研究和探索中。由于我国此类工作开展较晚,依然存在较多的困难,但是在逐渐的探索中也取得了许多骄人的成绩,形成了一些符合我国电力系统实情的故障诊断理论。 (一)专家系统 1.专家系统的特点 我国电力系统诊断中专家系统理论被广泛应用,专家系统电力故障诊断利用了计算机技术,通过计算机程序对电力系统进行检测,具有较高的智能化特点,通过人工智能在一定的规则范围下进行推理,解决以往只有在专家层面才能够解决的现实问题。 2.专家系统的应用 随着我国电力技术的不断发展,电力系统所应用的设备越来越复杂,自动化程度越来越高,给电力系统故障诊断提出了更高的要求。专家系统充分发挥了自

1、电力系统发生故障时,继电保护装置应 将故障 部分切除,电力系统出现不正常工作时,继电

1、电力系统发生故障时,继电保护装置应将故障部分切除,电力系统出现不正常工作时,继电保护装置一般应发出信号。 2、继电保护的可靠性是指保护在应动作时不拒动,不应动作时不误动。 3、瞬时电流速断保护的动作电流按大于本线路末端的最大短路电流整定,其灵敏性通常用保护范围的大小来表示。 4、距离保护是反应故障点到保护安装处的距离,并根据距离的远近确定动作时间的—种保护。 5、偏移圆阻抗继电器、方向圆阻抗继电器和全阻抗继电器中,方向圆阻抗继电器受过渡电阻的影响最大,全阻抗继电器受过渡电阻的影响最小。 6、线路纵差动保护是通过比较被保护线路首末端电流的大小和相位的原理实现的,因此它不反应外部故障。 7、在变压器的励磁涌流中,除有大量的直流分量外,还有大量的高次谐波分量,其中以二次谐波为主。 11、变压器的电流速断保护与( C )保护配合,以反应变压器绕组及变压器电源侧的引出线套管上的各种故障。 (A)过电流(B)过负荷(C)瓦斯 12、双绕组变压器纵差动保护两侧电流互感器的变比,应分别按两侧( B )选择。 (A)负荷电流(B)额定电流(C)短路电流 三、简答题(共32分) 1、何谓主保护、后备保护?何谓近后备保护、远后备保护?(8分) 答:所谓主保护是指能以较短时限切除被保护线路(或元件)全长上的故障的保护装置。(2分) 考虑到主保护或断路器可能拒动而配置的保护,称为后备保护。(2分) 当电气元件的主保护拒动时,由本元件的另一套保护起后备作用,称为近后备。(2分) 当主保护或其断路器拒动时,由相邻上一元件的保护起后备作用称为远后备。(2分) ------来源网络,仅供参考

------来源网络,仅供参考 2、有一方向阻抗继电器,若正常运行时的测量阻抗为3.530,∠?Ω要使该方向阻抗继电器在正常运行时不 动作,则整定阻抗最大不能超过多少?(设75sen ?=?)(8分) 答:为了使该方向阻抗继电器在正常运行时不动作, 其对应于30m ?=?时的动作阻抗m Z 最大不能超过3.5Ω,(3分) 又知其75sen ?=,如图所示,整定阻抗最 大不能超过 3.5/cos(7530) 4.95set Z =?-?=Ω (5分) 3、何谓比率制动特性?对具有比率制动特性的差动继电器,何谓最大制 动比、最小工作电流、拐点电流?(8分) 答:比率制动特性是指继电器的动作电流和继电器的制动电流的关系 特性。(2分) .max set I set I 4答:1、阻抗1Z =150A =。rel K I 解:1 ( (2 ( ( (122、保护1电流 III 段整定计算 (1)求动作电流 (1分) (2)灵敏度校验 近后备: 满足要求。(1分) 远后备: 满足要求。(2分) (3)动作时间: (1分) 2、如图3,已知:网络的正序阻抗Z 1=0.45Ω/km ,阻抗角65L ?=。线路上采用三段式距离保护,其第I 、II 、III 段阻抗元件均采用0°接线的方向阻抗继电器,继电器的最灵敏角65sen ?=,保护2的延时22t s III =,线路AB 、BC 的最大负荷电流均为400A ,负荷的自起动系数2,ss K =继电器的返回系数130.50.5 1.5t t s III III =++=

2019国家电网校园招聘题库参考—现代电力系统分析

2019国家电网校园招聘题库参考—现代电力系统分析 2019国家电网校园招聘尚未开始,预计将于2018年11月份开始招聘,每年招聘两批,总人数超过两万人。今天中公电网小编给大家整理一下备考2019国家电网笔试的试题资料,帮助大家备考。 1、电力系统暂态稳定分析用的逐步积分法是( ) A、时域仿真法 B、直接法 C、频域法 D、暂态能量函数法 2、( )是一个多约束的非线性方程组问题,采用牛顿法和基于线性规划原理处理函数不等式约束的方法。 A、状态估计 B、网络拓扑 C、最优潮流 D、静态安全分析 3、电力系统( )就是利用实时量测系统的冗余性,应用估计算法来检测和剔除坏数据。其作用是提高数据精度及保持数据的前后一致性,为网络提供可信的实时潮流数据。 A、网络拓扑 B、状态估计 C、静态安全分析 D、调度员潮流

4、稳定计算的数学模型是一组( )方程 A、代数 B、微分 C、长微分 D、其它三个选项都不是 5、离线计算主要应用范围( ) A、规划设计 B、运行方式分析 C、为暂态分析提供基础数据 D、安全监控 6、柔性交流输电可实现的功能是( ) A、控制潮流 B、远程调用 C、增加电网安全稳定性 D、提高电网输送容量 7、电力系统潮流计算出现病态的条件是( ) A、线路重载 B、负电抗支路 C、较长的辐射形线路 D、线路节点存在高抗 8、最优潮流常见目标函数( )

A、总费用 B、有功网损 C、控制设备调节量最小 D、投资及年运行费用之和最小 E、偏移量最小 9、静态不安全的判断准则( ) A、频率失稳 B、电压失稳 C、电压越限 D、发电机不能同步运行 10、属于分布式发电的有( ) A、建筑一体化光伏 B、大型风电厂 C、小型光伏 D、小型风电厂 11、微电网的常态运行方式有( ) A、独立运行模式 B、正常运行模式 C、联网运行模式 D、不正常运行

初中物理电路故障分析--珍藏版

一、初中物理电路故障分析 1、电压表示数为零的情况 A 电压表并联的用电器发生短路 (一灯亮一灯不亮,电流表有示数) B 电压表串联的用电器发生断路 (两灯都不亮,电流表无示数) C 电压表故障或与电压表连线发生断路 (两灯都亮,电流表有示数) 2、电压表示数等于电源电压的情况 A 电压表测量的用电器发生断路 (两灯都不亮,电流表无示数) 注:此时不能把电压表看成断路,而把它看成是一个阻值很大的电阻同时会显示电压示数的用电器,由于电压表阻值太大,根据串联电路分压作用,电压表两端几乎分到电源的全部电压,电路中虽有电流但是很微弱,不足以使电流表指针发生偏转,也不足以使灯泡发光。如果题目中出现“约”、“几乎”的字眼时,我们就锁定这种情况。 B 电路中旁边用电器发生短路 (一灯亮一灯不亮,电流表有示数) 总结:如图,两灯泡串联的电路中,一般出现的故障问题都是发生在用电器上,所以通常都有这样一个前提条件已知电路中只有一处故障,且只发生在灯泡L1或L2上。 若两灯泡都不亮,则一定是某个灯泡发生了断路,如果电压表此时有示数,则一定是和电压表并联的灯泡发生了断路,如果电压表无示数,则一定是和电压表串联的灯泡发生了断路。此两种情况电流表均无示数。 若一个灯泡亮另一个灯泡不亮,则一定是某个灯泡发生了短路,如果电压表此时有示数,则一定是和电压表串联的灯泡发生了短路,如果电压表此时无示数,则一定是和电压表并联的灯泡发生了短路。此两种情况电流表均有示数 3、用电压表电流表排查电路故障 A、用电压表判断电路故障,重要结论:电压表有示数说明和电压表串联的线路正常,和电压表并联的线路有故障。若电路中只有一处故障则电压表无示数时,和电压表并联的线路一定正常。

《电力系统继电保护》思考题与习题解答共10页文档

《电力系统继电保护》思考题与习题解答 第1章 1-1 什么是故障、不正常运行方式和事故?它们之间有何不同?又有何联系? 答:在电力系统运行中,电气元件发生短路、断线时的状态均视为故障状态。 在电力系统中,三相短路、两相短路、两相接地短路、一相接地短路、两点接地短路(实际上也属相间短路)和断线统称为电力系统的故障。 在电力系统中可能会出现各种各样的故障,但最常见且最危险的故障就是各种类型的短路。 电力系统的不正常工作状态是指电力系统中电气元件的正常工作遭到破坏,但没有发生故障的运行状态。常见的不正常运行状态主要是:过负荷,过电压、系统振荡,频率降低等。 事故是指系统或其中一部分的正常工作遭到破坏,电能质量变到不能容许的程度,以致造成对用户的停止供电(或少送电)或造成人身伤亡和电气设备的损坏。前者称为停电事故,后者称为人身和设备事故。 不正常工作状态的性质、后果和危害性有别于故障,长时间的不正常运行有可能造成故障。电力系统中发生故障和不正常运行状态时,都可能在电力系统中引起事故。 故障和不正常运行方式不可以避免,而事故则可以避免发生。 1-2 什么是主保护和后备保护?远后备保护和近后备保护有什么区别和特点? 答:主保护:是为满足电力系统稳定和设备安全要求,能以最快速度有选择

地切除被保护设备和线路故障的保护。 后备保护:是当主保护或断路器拒动时用来切除故障的保护。它又分为远后备保护和近后备保护两种。 远后备保护:指主保护或断路器拒动时,由相邻元件的保护来实现的后备保护。 远后备保护的性能比较完善,它对相邻元件的保护装置、断路器、二次回路和直流电源引起的拒动,均能起到后备作用,且实现简单、经济。但远后备保护将使停电的范围扩大,不能满足选择性和速动性的要求。 近后备保护:当主保护拒动时,由本元件的另一套保护来实现的后备保护;当断路器拒动时,由断路器失灵保护来实现后备保护。 由于近后备保护与主保护安装在同一元件上,所以近后备保护能满足选择性要求。 1-3 继电保护装置的任务及其基本要求是什么? 答:继电保护装置是指能反应电力系统中电气元件发生故障或不正常运行状态,并动作于断路器跳闸或发出信号的一种自动装置。它的基本任务是:(1)自动、迅速、有选择性地将故障元件从电力系统中切除,使故障元件免于继续遭到破坏,保证其他无故障部分迅速恢复正常运行。 (2)反应电气元件的不正常运行状态,并根据运行维护的条件(如有无经常值班人员)而动作于信号,以便值班人员及时进行处理,或由装置自动进行调整,或将那些继续运行就会引起损坏或发展成为事故的电气设备予以切除。此时保护应有一定的延时,以免造成保护的误动作。 (3)继电保护装置还可以与电力系统中的其他自动化装置配合,在条件允许

电力系统中现代电网调度运行方式的运用

电力系统中现代电网调度运行方式的运用 发表时间:2019-11-25T09:53:08.100Z 来源:《基层建设》2019年第24期作者:徐睿 [导读] 摘要:对于电网调度工作来说,其在电力系统中发挥着重要的作用。 江苏无锡供电公司江苏无锡 214061 摘要:对于电网调度工作来说,其在电力系统中发挥着重要的作用。确保电网调度工作的顺利开展是保证电力系统平稳、安全运行的基本保障。但是,对于以往电力系统中电网调度的运行方式来说,已经不能适应现阶段电力系统的发展,因而进行电网调度运行方式的研究与创新格外重要。面对这种情况,有必要深入分析电力系统中现代电网调度运行方式的运用,为电力系统中电网调度工作的进步和发展提供有利支持。 关键词:电力系统;现代;电网调度;运行方式;运用 1现代电网调度运行方式在其应用过程中的问题 1.1管理工作较为薄弱 电网调度运行管理存在管理人员配置不合理、技术手段不先进等方面的问题,这是造成电网调度运行管理水平不高的具体表现。现阶段我国电力调度运行技术虽然得到了一定的发展,但是并不能满足实际管理工作需要。而在电力系统规模不断扩大的情况下,技术人员配置问题也越来越明显,电力系统维护养护工作又比较落后,导致整个电力网络运行效率较低。 1.2技术漏洞导致的不安全因素 总体而言,如果电力调度工作中存在着相应的技术漏洞,那么就会给调度工作带来一系列的不安全因素。比如说专业技术人员的知识水平不达标,或者是电力部门的技术手段、专业设备的配置存在问题,都可能导致调度工作存在技术漏洞。这样一来,将严重影响到电力系统的安全性与稳定性。此外,在我国目前的电网运行调度工作中,电力部门的工作人员还存在着严重的违规操作的调度行为。这样一来,将会给整个电网系统的发展造成严重的影响。 2电力系统中电网调度运行改善的措施 2.1建立健全管理制度 电力部门要加强管理制度的完善工作,进而提升现代电网调度运行方式的运用质量。一般来说,现阶段操作票方面出现的问题比较多,因而电力部门要结合自身单位的具体状况完善操作票方面的管理制度。一方面,在进行操作票的制作过程中,要统一规范操作票的模式,以免出现混乱的局面。另一方面,还应该对调度工作人员进行这方面的培训,熟悉电网方式。不仅如此,在展开具体的调度操作以及工作申请审批时,调度方式部门一定要严格地执行审查制度,不能让不合理的运行方式影响电网运行。 2.2安全方面的改善 安全工作是电力企业生产过程中的一项最为重要的工作,并且调度安全事关整个电力系统的安全性与平稳运行的状态。要想提高电网调度的安全性,应该从以下几个方面着手:第一,各个部门一定要把安全责任制落实到位。如果出现安全事故,要做到可以明确地追究责任。只有如此,才可以很好地降低生产过程里出现问题的概率。第二,当调度工作中一旦有安全事故发生,要及时的启动安全救急方案,进而将安全事故的风险与损失降到最低。另外,工作人员还要对日常生产工作中发现的各种安全隐患进行跟踪调查,进而可以起到防患于未然的作用。此外,电力调度部门应该定时定期地进行事故模拟演习,这么做能够帮助员工们有效地解决事故造成的问题,让员工可以快速有效地应对事故,降低损失与影响。 2.3加强对调度人员的培训 电力部门调度人员的业务水平直接关系到调度工作的整体质量,因此电力部门要做好调度人员的培训工作。一方面,电力企业要定期的对调度人员进行培训,进而使员工可以不断的学习到新技术、新理论、新知识。另一方面,电力部门要提升员工对于工作环境的熟悉程度,同时还要提升调度人员的操作技术,一旦调度工作存在安全事故,调度人员要能及时判别并且能够及时的处理。 3案例分析 3.1项目情况简介 某220kV站一般情况下,是经过220千伏的三回线路与主网连接。按负荷预测的情况,220千伏双回路开断接入系统作业的时候,该站最高负荷为550兆瓦。在进行作业的时候,要对该站连接主电网的2条220千伏线路实行停电施工,这样看来施工具有非常大的难度。如果仅存的一条220kV线路出现跳闸,那么该变电站所在的某网区供电能力降低到205兆瓦,会造成超过50%的负荷损失,项目会遇到大面积停电和减供负荷事故。如何合理优化电网运行方式,做到尽可能额降低工程施工的风险,还不会因为停电施工导致大面积停电事故是非常值得研究的问题。 3.2电力系统中现代电网调度运行方式的运用 3.2.1坚持政府及公司的主导,加强风险的联防联控 为确保接入系统风险得到有效控制,确保电网稳定运行,某局按照公司的统一部署要求,加强风险联防联控。坚持在政府及公司的主导下开展工作。紧紧依靠地方政府及公司专业帮扶,多次现场检查指导的管控要求,结合220kV站接入系统施工的风险特点,向市委市政府领导汇报,并就220kV站接入系统施工期间可能引发该市大面积限电的风险向市政府、工信委、安监局作了报备。 3.2.2多专业会商,从源头上全面辨识存在的风险 从整体的施工作业项目来看,相关的会议纪要风险以及工作经验反馈都是需要仔细进行把控的。各专业管理部门都要以防范电网风险为首,将多专业联合进行的项目风险管理协调会尽早落实。公司各专业部门的相关要求也要尽早地让各专业部门进行交接。在公司各专业的相关人士的指挥、指导下,确定好相关的工作思路,明确风险把控方案,严格地执行相关规范,具体的做法有:第一,和基建、线路专业人员进行现场勘察,方式人员对施工现场有了进一步了解,对工期安排等问题也有了进一步认识。第二,和调度、运检专业人员细化停电方案,做好事故预案,防范电网风险。第三,和二次、自动化等专业人员做好运行方式的优化工作。 3.2.3承接细化总体工作方案,逐级传递安全生产管控风险职责 根据总体工作方案要求,涉及工作的办公室、营销、设备、安监、系统、输电、变电8个部门积极承接公司及局220kV站接入系统风险管控工作检查反馈会、会商会等会议纪要的风险管控要求,从“人机料法环”(4M1E)5个方面制定管控措施,完成各自专业风险管控子方

电力系统继电保护复习题解析

一、单项选择题(选考15题,共30分) 1.反应故障时电流增大而动作的保护为( B ) A.低电压保护B.过电流保护C.过负荷保护D.过电压保护 2.电力系统发生故障时,由故障设备(或线路)的保护首先切除故障,是继电保护( B )的要求。 A.速动性B.选择性C.可靠性D.灵敏性 3.为防止电压互感器一、二次绕组间绝缘损坏击穿时,高电压窜入二次回路,危及人身安全,应将二次侧(B ) A.屏蔽B.接地C.设围栏D.加防护罩 4.在中性点非直接接地电网中的并联线路上发生跨线不同相两点接地短路时,如果保护的动作时限相等,则两相不完全星形接线电流保护只切除一条线路的机会为( B )A.100%B.2/3 C.1/D.0 5.功率方向继电器的潜动是指( B ) A.只给继电器加入电流或电压时,继电器不动作。B.只给继电器加入电流或电压时,继电器就动作。 C.加入继电器的电流与电压反相时,继电器动作。D.与加入继电器的电流电压无关。 6.以下不属于功率方向继电器90°接线方式的是( C ) A.U AB、I C B.U BC、I A C.U AC、I B D.U CA、I B 7.在中性点直接接地电网中发生接地短路时,零序电压最高处为(C ) A.保护安装处B.变压器接地中性点处C.接地故障点处D.发电机接地中性点处 8.中性点经消弧线圈接地电网通常采用的补偿方式是( C )A.完全补偿B.欠补偿C.过补偿D.不补偿 9.反应相间短路的阻抗继电器接线方式是(A )A.0°接线B.90°接线C.3U o,3I o D.27°接线 10.阻抗继电器的精确工作电流是指,当φK=φsen,对应于( B ) A.Z act=0.8Z set时加入阻抗继电器的电流B.Z act=0.9Z set时加入阻抗继电器的电流 C.Z act=Z set时加入阻抗继电器的电流D.Z act=1.1Z set时加入阻抗继电器的电流 11.在具有分支电源的电路中,由于助增电流的影响,一般有(B ) A.测量阻抗增大,保护范围也增加。B.测量阻抗增大,保护范围缩小。 C.测量阻抗减小,保护范围缩小。D.测量阻抗减小,保护范围增加。 12.电力系统振荡时,阻抗继电器误动作,原因是(C ) A.振荡中心在保护范围以外B.振荡中心在保护的反方向C.振荡中心在保护范围内D.振荡中心在相临线路上 13.实现输电线路纵差保护必须考虑的中心问题是( C )A.差动电流B.励磁涌流C.不平衡电流D.冲击电流 14.在比率制动差动继电器中,制动线圈的作用是抑制(B )A.励磁涌流B.稳态不平衡电流C.暂态不平衡电流D.短路电流15.对于大型发电机,反应转子表层过热的主保护是(C ) A.低电压起动的过电流保护B.复合电压起动的过电流保护C.负序电流保护D.阻抗保护 16.“四性”是对动作于跳闸的继电保护提出的基本要求,以下不属于“四性”要求的是(C)A.可靠性B.灵敏性C.灵活性D.速动性 17.过电流继电器的返回系数(B)A.小于0 B.小于1 C.大于l D.等于l

电力系统故障的智能诊断综述

电力系统故障的智能诊断综述 发表时间:2016-06-30T14:34:41.580Z 来源:《电力设备》2016年第9期作者:李艳君蒋杰李玉玲李飞翔 [导读] 在电力系统中,设备故障诊断和厂站级的故障诊断经过了几十年的发展和改革,现今已经较为成熟,而电力系统层面的故障才刚刚开始。 李艳君蒋杰李玉玲李飞翔 (国网新疆检修公司新疆乌鲁木齐 830000) 摘要:常用的智能故障诊断技术有专家系统、人工神经网络、决策树、数据挖掘等,专家系统技术应用最广,最为成熟,但是也需要结合使用其他智能技术来克服专家系统技术自身的缺点。智能故障诊断技术的发展趋势主要有多信息融合、多智能体协同、多种算法结合等,并向提高智能性、快速性、全局性、协同性的方向发展。基于此,本文就针对电力系统故障的智能诊断进行分析。 关键词:电力系统;故障;智能诊断 引言 文章对电力系统故障的智能诊断进行了详细的阐述,通过对电力系统的简介,和对故障诊断的发展阶段进行了简要的分析,并阐述了电力系统故障的智能诊断实际应用存在的问题及对策,文章最后指出了电力系统故障的智能诊断的发展趋势。望文章的阐述推动电力系统故障的智能诊断的发展。 1电力系统概述 电力系统是由发电厂、送变电线路、供配电所和用电等环节组成的电能生产与消费系统。电力系统的主要功能是将自然界中的能源,通过先进的发电动力装置,将能源转换为电能。在通过输电线路和变压系统,将电能传送到各个用户。为了实现这一功能,电力系统在各个环节和不同层次还具有相应的信息与控制系统,对电能的生产过程进行测量、调节、控制、保护、通信和调度,以保证用户获得安全、优质的电能。 2电力系统故障智能诊断技术及发展现状 2.1智能故障诊断技术 传统的故障诊断方法分为基于信号处理和基于数据模型,均需要人工进行信息的处理和分析,缺乏自主学习能力。随着人工智能技术这一新方法的产生及发展,为故障诊断提供了初步的自动分析和学习的途径。人工智能技术能够存储和利用故障诊断长期积累的专家经验,通过模拟人大脑的逻辑思维进行推理,从而解决复杂的诊断问题。 目前在电网故障诊断领域出现了包括专家系统、人工神经网络、决策树理论、数据挖掘、模糊理论、粗糙集理论、贝叶斯网络、支持向量机及多智能体系统等技术以及上述方法的综合应用。 目前,在对电网故障智能诊断领域的研究中,依靠单一智能技术的系统多,信息的综合利用研究较少,协同技术的研究应用更少;投入运行的诊断系统多为专家系统,但是离线运行的多,在线运行的很少。即使广泛投入使用的专家系统也同样存在着:(1)知识的获取和管理问题,难以获取较高适应度和准确度的知识。(2)推理的效率问题。(3)故障诊断的在线应用问题,目前仅限于离线故障诊断,该结论不能指导对电网的实际控制。(4)故障诊断的动态分析问题,缺乏故障的动态分析,从而屏蔽了很多有用的细节,尤其是各元件之间的相互关联关系等。基于以上问题,采用决策树方法可以对系统信息进行归类梳理,可以提高专家系统的速度;通过粗糙集方法建立清晰的数学模型;采用数据挖掘和关联性规则可以提高故障诊断分析的准确度。这几种方法的结合应用有助于提高故障诊断的智能水平、效率和准确度。 2.2电力系统故障智能诊断发展现状 电力系统连锁故障分析理论与应用中提到,电力系统故障智能诊断是相对传统的故障诊断而言的。在传统的故障诊断方法可划分为两类。其一是关于信号出路的方法。其二是数学模型的方法。这些都需要人为地区判断和分析,这些方法应用是没有自动化的处理能力。故障的智能诊断是将传统的方法,与当下先进的计算机技术有效的结合,形成的人工智能技术的新方法,对电力系统的故障进行智能的诊断,这是故障诊断技术发展的新时期。 3智能故障诊断面临的问题和对策 3.1智能故障诊断面临的问题 知识的获取和管理问题,也可以说是规则的表达和维护问题。知识是专家系统行为的核心,如何根据系统的变化,获取具有较高适应度和准确度的知识(规则)。对知识的一致性、冗余性、矛盾性和完备性进行检验、维护和管理,是专家系统亟需解决的首要问题。 推理的效率问题,也可以说是如何解决规则组合爆炸的问题。规则库的规模增大以后,搜索的运算量迅速增长,尽管人们提出了许多算法,规则组合爆炸的问题还是没有得到满意的解决。 故障诊断的在线应用问题。以往的故障诊断离线运行,只能告诉调度员已有故障是如何发展的,因为运行方式的多变性,离线故障诊断结论不一定能够指导调度员对电网的实际控制;只有做到在线运行,才能及时帮助调度员进行控制决策。 故障诊断的动态分析问题。以往的故障诊断只能进行静态分析,忽略了故障动态过程的大量有用的细节,尤其是采用了高速保护的大型电网,更加需要分析动态过程,例如快速相继开断过程中的顺序和相互关系、复杂故障中各元件之间的相互影响、电压崩溃的动态过程、运行方式切换或调度控制过程对电网的影响等。 3.2智能故障诊断面临问题的解决对策 对于知识的获取和管理问题,可以采用提高故障诊断系统的学习能力的方法,如 ANN、数据挖掘、仿生学方法等。这些智能方法都有其优点和局限性,需要有针对性地应用。 对于推理的效率问题,可以采用计算速度更快的计算机硬件和软件算法,通信速度更快的数据采集和传输手段;数据挖掘是从各种复杂故障中发现最常见的故障或分解出简单故障的有力手段;建立系统的故障案例库,可以降低决策分析的计算量,提高诊断推理的效率。 对于故障诊断的在线应用和动态分析问题,可以采用更能够反映电网实时运行状态的信息,如广域量测系统、高速保护信息系统和故障录波信息系统、稳定控制系统等提供的动态数据;实时进行电网的灵敏度分析,动态分析电网的健康状况;增量挖掘技术只处理实时的

相关文档