文档库 最新最全的文档下载
当前位置:文档库 › 巩固练习_ 不等式的全章复习与巩固_提高

巩固练习_ 不等式的全章复习与巩固_提高

巩固练习_ 不等式的全章复习与巩固_提高
巩固练习_ 不等式的全章复习与巩固_提高

【巩固练习】

一、选择题

1.当x ∈R 时,不等式kx 2-kx +1>0恒成立,则k 的取值范围是( )

A .(0,+∞)

B .[0,+∞)

C .[0,4)

D .(0,4) 2. 若a >1,则11a a +

-的最小值是( ) A .0

B .2

D .3 3.若关于x 的不等式(1+k 2)x≤k 4+4的解集是M ,则对任意实常数k ,总有( )

A .2∈M ,0∈M

B .2?M ,0?M

C .2∈M ,0?M

D .2?M ,0∈M

4.已知x ,y 满足约束条件???≥--≤--0

3201y x y x ,当目标函数z =ax +by(a >0,b >0)在该约束条件下取到最小值52时,a 2+b 2的最小值为( )

A . 5

B . 4

C . 5

D . 2

5.已知不等式1()()9a x y x y

++

≥对任意正实数x ,y 恒成立,则正实数a 的最小值为( ) A .8 B .6 C .4 D .2

6.若a ,b ,c >0

且()4a a b c bc +++=-2a+b+c 的最小值为( )

A

1 B

1 C

.2 D

.2

7.在约束条件0,0,,2 4.

x y y x s y x ≥??≥?+≤?+≤?下,当3≤s≤5时,目标函数z=3x+2y 的最大值的变化范围是( )

A .[6,15]

B .[7,15]

C .[6,8]

D .[7,8]

二、填空题

8.已知点P (x ,y )的坐标满足条件41

x y y x x +≤??≥??≥?,点O 为坐标原点,那么|PO|的最小

值等于________,最大值等于________.

9.(2016 陕西校级模拟)若两个正实数,x y 满足14x y

+=1,且不等式234y x m m +<-有解,则实数m 的取值范围是 .

10.若110a b

<<,已知下列不等式: ①a +b <ab ;②|a |>|b |;③a <b ;④

2b a a b +>; ⑤a 2>b 2;⑥2a >2b .

其中正确的不等式的序号为________.

11.对于c >0,当非零实数a ,b 满足4a 2-2ab +b 2-c =0且使|2a +b|最大时,c b a 421++的最小值为 .

解答题

12.(2016春 宜宾期末)已知定义在R 上的函数2()(3)2(1)f x x a x a =--+-(其中a R ∈)

(1)解关于x 的不等式()0f x >;

(2)若不等式()3f x x ≥-对任意2x >恒成立,求a 的取值范围

13. 解关于x 的不等式ax 2-(a +1)x +1<0.

14.若不等式210x ax ++≥对任意10,2x ??∈ ???

恒成立,求a 的最小值. 15. 制定投资计划时,不仅要考虑可能获得的盈利,而且要考虑可能出现的亏损.某投资人打算投资甲、乙两个项目,根据预测,甲、乙两个项目可能的最大盈利率分别为100%和50%,可能的最大亏损率分别为30%和10%,投资人计划投资金额不超过10万元,要求确保可能的资金亏损不超过1.8万元,则投资人对甲、乙两个项目各投资多少万元,才能使可能的盈利最大?

【答案与解析】

1. 【答案】 C

【解析】 (1)当k =0时,不等式变为1>0成立;

(2)当k ≠0时,不等式kx 2-kx +1>0恒成立,

则20

40k k k >???=--

即0<k <4,所以0≤k <4.

2. 【答案】 D

【解析】 111111

a a a a +=-++-- ∵a >1,∴a -1>0 ∴1112131

a a -++≥+=-. 当且仅当111a a -=

-即a =2时取等号.

3.【答案】A 【解析】424|1k M x x k ??+=≤??+?

?,

∵44222241551111

k k k k k k +-+==-++++22512221k k =++-≥>+。 ∴2∈M ,0∈M.

4. 【答案】B

【解析】由约束条件?

??≥--≤--03201y x y x 作可行域如图,

联立???=----0

3201y x y x =,解得:A(2,1). 化目标函数为直线方程得:()0>+-

b b a x b a y =. 由图可知,当直线b

z x b a y +-=过A 点时,直线在y 轴上的截距最小,z 最小.

∴522=b a +,即0522=-+b a .

则a 2+b 2的最小值为45522=???

? ??-.

故选:B .

5.【答案】C 【解析】只需求1

()()a x y x y

++的最小值大于等于9即可, 又1

()()1a x y x y a a x y y x

++=+?++

11a a ≥++=+,(等号成立当且仅当x y a y x ?=)

所以219+≥

,即280+≥

2≥

4≤-(舍),所以a≥4,即a 的最小值为4.

6.【答案】D

【解析】

由()4a a b c bc +++=-

()()()()4a a b a b c a b a c ?+++=++=-

而2()()a b c a b a c ++=+++≥

2==。 当且仅当a+b=a+c ,即b=c 时等号成立.

7.【答案】D

【解析】如图所示,由图形知A (2,0),C (0,4)。

又由{{

,4,2424x y s x s y x y s +==-?+==-知,B (4-s ,2s -4),C '(0,s)

(1)当3≤s <4时,可行域是四边形OABC ',此时7≤z≤8;

(2)当4≤s≤5时,可行域是△OAC ,此时,z max =8.

8. 【解析】点P (x ,y )满足的可行域△ABC 区域,A (1,1),C (1,3)

由图可知min ||||PO AO =;max ||||PO CO ==

9.【答案】 ()(),14,-∞-+∞

【解析】

不等式23

4

y x m m +<-有解, 2min 3,4y x m m ??∴+<- ??

? 0,0,x y >> 且141,x y

+=

4()()244444y y y x y x x x y x ∴+=++=+≥=, 当且仅当

44x y y x =,即2,8x y ==时取“=” , min ()44

y x ∴+=,故234m m -> ,即(1)(4)0,m m +-> 解得1m <- 或4m >,

∴ 实数m 的取值范围是()(),14,-∞-+∞

10. 【答案】 ①④⑥

【解析】 ∵110a b

<<, ∴b <a <0,故③错,

又b <a <0,可得|a |<|b |,a 2<b 2,故②⑤错.

11. 【答案】-1

【解析】∵4a 2-2ab +b 2-c =0, ∴2216

3)4(4b b a c +-= 由柯西不等式得,

222222|2|]324

3)2(2[])32(2][)43()4[(b a b b a b b a +=?+-≥++- 故当|2a +b|最大时,有3

24324b b a =-

∴b a 2

1=

,c =b 2 ∴1)211(442242122-+=++=++b b b b c b a 当b =-2时,取得最小值为-1.

故答案为:-1

12. 【解析】

(1)()(2)[(1)]f x x x a =---,

()0(2)[(1)]f x x x

a ∴>?---> , 当1a <-时,不等式的解集为()(),21,a -∞-+∞;

当1a =-时,不等式的解集为()(),21,a -∞-+∞;

当1a >-时,不等式的解集为()(),12,a -∞-+∞.

(2)不等式()3f x x ≥-,即2452

x x a x -+≥--恒成立,又当2x >时,2451(2)222

x x x x x -+-=--+≤--- (当且仅当3x =时取“=”号),2a ∴≥-. 13.【解析】 因为ax 2-(a +1)x +1<0?(ax -1)(x -1)<0

(1)当a =0时,(ax -1)(x -1)<0?-x +1<0?x >1;

(2)当a <0时,(ax -1)(x -1)<0?1x a ?

?- ???

(x -1)>0

?1x a

<或x >1; (3)当a >0时,(ax -1)(x -1)<0?1x a ??-

??? (x -1)<0 因为1111a a a a a

---==- ①当10a a

--<即a >1时, 11a <,(ax -1)(x -1)<0?1a

<x <1. ②当10a a

--=,即当a =1时,不等式的解集为?. ③当10a a

-->0,即0<a <1时, 11a <,(ax -1)(x -1)<0?1<x <1a

; 综上所述:原不等式的解集为:

当a <0时为1|1x x x a ?

?<>????

或; 当a =0时为{x |x >1};当0<a <1时为1|1x x a ?

?<<

????; 当a =1时为?;当a >1时为1|

1x x a ??<

. 14.【解析】∵10,,2x ??∈ ???

∴原不等式可变为211(),x a x x x

+≥-=-+ 对一切10,2x ??∈ ???

恒成立, 设1()(),g x x x =-+10,,2x ??∈ ???

∵()g x 在10,2?? ???

上为增函数, ∴()g x 的最大值=15(),22g =- ∴5,2a ≥-a 的最小值为52

-

15. 【解析】 设投资人分别用x ,y 万元投资甲、乙两个项目,

由题意,得

10

0.30.1 1.8

x y

x y

x

y

+≤

?

?+≤

?

?

?

?≥

?

目标函数为z=x+0.5y.

上述不等式组表示的平面区域如图所示,阴影部分(含边界)即为可行域.作直线l0:x +0.5y=0,并作平行于直线l0的一组直线x+0.5y=z,z∈R,与可行

域相交,其中有一条直线经过可行域上的点M,此时z最大,这里点

M是直线x+y=10与直线0.3x+0.1y=1.8的交点.

解方程组

10

0.30.1 1.8

x y

x y

+=

?

?

+=

?

,得

4

6

x

y

=

?

?

=

?

此时,z=4+0.5×6=7(万元).

∴当x=4,y=6时,z取得最大值.

答:投资人用4万元投资甲项目、6万元投资乙项目,才能使可能的盈利最大.

基本不等式练习题及标准答案

基本不等式练习题及答案

————————————————————————————————作者:————————————————————————————————日期:

双基自测 1.(人教A 版教材习题改编)函数y =x +1 x (x >0)的值域为( ). A .(-∞,-2]∪[2,+∞) B .(0,+∞) C .[2,+∞) D .(2,+∞) 2.下列不等式:①a 2+1>2a ;②a +b ab ≤2;③x 2+1 x 2+1≥1,其中正确的个数是 ( ). A .0 B .1 C .2 D .3 3.若a >0,b >0,且a +2b -2=0,则ab 的最大值为( ). A.1 2 B .1 C .2 D .4 4.(2011·重庆)若函数f (x )=x + 1 x -2 (x >2)在x =a 处取最小值,则a =( ). A .1+ 2 B .1+ 3 C .3 D .4 5.已知t >0,则函数y =t 2-4t +1 t 的最小值为________. 考向一 利用基本不等式求最值 【例1】?(1)已知x >0,y >0,且2x +y =1,则1x +1 y 的最小值为________; (2)当x >0时,则f (x )= 2x x 2+1 的最大值为________. 【训练1】 (1)已知x >1,则f (x )=x + 1 x -1 的最小值为________. (2)已知0<x <2 5,则y =2x -5x 2的最大值为________. (3)若x ,y ∈(0,+∞)且2x +8y -xy =0,则x +y 的最小值为________. 考向二 利用基本不等式证明不等式 【例2】?已知a >0,b >0,c >0,求证:bc a +ca b +ab c ≥a +b +c . .

基本不等式经典例题精讲

新课标人教A 版高中数学必修五典题精讲(3.4基本不等式) 典题精讲 例1(1)已知0<x <3 1,求函数y=x(1-3x)的最大值; (2)求函数y=x+ x 1的值域. 思路分析:(1)由极值定理,可知需构造某个和为定值,可考虑把括号内外x 的系数变成互为相反数;(2)中,未指出x >0,因而不能直接使用基本不等式,需分x >0与x <0讨论. (1)解法一:∵0<x <3 1,∴1-3x >0. ∴y=x(1-3x)= 3 1·3x(1-3x)≤3 1[ 2) 31(3x x -+]2= 12 1,当且仅当3x=1-3x ,即x= 6 1时,等号成 立.∴x= 6 1时,函数取得最大值 12 1 . 解法二:∵0<x <3 1,∴ 3 1-x >0. ∴y=x(1-3x)=3x(3 1-x)≤3[ 23 1x x -+ ]2= 12 1,当且仅当x= 3 1-x,即x= 6 1时,等号成立. ∴x= 6 1时,函数取得最大值12 1. (2)解:当x >0时,由基本不等式,得y=x+x 1≥2x x 1? =2,当且仅当x=1时,等号成立. 当x <0时,y=x+ x 1=-[(-x)+ ) (1x -]. ∵-x >0,∴(-x)+ ) (1x -≥2,当且仅当-x= x -1,即x=-1时,等号成立. ∴y=x+x 1≤-2. 综上,可知函数y=x+x 1的值域为(-∞,-2]∪[2,+∞). 绿色通道:利用基本不等式求积的最大值,关键是构造和为定值,为使基本不等式成立创造条件,同时要注意等号成立的条件是否具备. 变式训练1当x >-1时,求f(x)=x+ 1 1+x 的最小值. 思路分析:x >-1?x+1>0,变x=x+1-1时x+1与1 1+x 的积为常数.

初中数学方程与不等式之不等式与不等式组专项训练

初中数学方程与不等式之不等式与不等式组专项训练 一、选择题 1.如果关于x 的不等式组232x a x a >+?? <-?无解,则a 的取值范围是( ) A .a <2 B .a >2 C .a≥2 D .a≤2 【答案】D 【解析】 【分析】 由不等式组无解,利用不等式组取解集的方法确定出a 的范围即可. 【详解】 ∵不等式组232x a x a +?? -?><无解,∴a +2≥3a ﹣2,解得:a ≤2. 故选D . 【点睛】 本题考查了不等式的解集,熟练掌握不等式组取解集的方法是解答本题的关键. 2.若a b <,则下列变形错误的是( ) A .22a b < B .22a b +<+ C .1122a b < D .22a b -<- 【答案】D 【解析】 【分析】 根据不等式的性质解答. 【详解】 ∵a b <,∴22a b <,故A 正确; ∵a b <,∴22a b +<+,故B 正确; ∵a b <,∴1122 a b <,故C 正确; ∵a b <,∴2-a>2-b ,故D 错误, 故选:D. 【点睛】 此题考查不等式的性质,熟记性质定理并运用解题是关键. 3.小明要从甲地到乙地,两地相距1.8千米.已知他步行的平均速度为90米/分,跑步的平均速度为210米/分,若他要在不超过15分钟的时间内从甲地到达乙地,至少需要跑步多少分钟?设他需要跑步x 分钟,则列出的不等式为( ) A .210x +90(15﹣x )≥1.8 B .90x +210(15﹣x )≤1800 C .210x +90(15﹣x )≥1800 D .90x +210(15﹣x )≤1.8

高考不等式经典例题

高考不等式经典例题 【例1】已知a >0,a ≠1,P =log a (a 3-a +1),Q =log a (a 2-a +1),试比较P 与Q 的大小. 【解析】因为a 3-a +1-(a 2-a +1)=a 2(a -1), 当a >1时,a 3-a +1>a 2-a +1,P >Q ; 当0<a <1时,a 3-a +1<a 2-a +1,P >Q ; 综上所述,a >0,a ≠1时,P >Q . 【变式训练1】已知m =a + 1a -2 (a >2),n =x - 2(x ≥12),则m ,n 之间的大小关系为( ) A.m <n B.m >n C.m ≥n D.m ≤n 【解析】选C.本题是不等式的综合问题,解决的关键是找中间媒介传递. m =a + 1a -2=a -2+1a -2 +2≥2+2=4,而n =x - 2≤(12)-2=4. 【变式训练2】已知函数f (x )=ax 2-c ,且-4≤f (1)≤-1,-1≤f (2)≤5,求f (3)的取值范围. 【解析】由已知-4≤f (1)=a -c ≤-1,-1≤f (2)=4a -c ≤5. 令f (3)=9a -c =γ(a -c )+μ(4a -c ), 所以???-=--=+1,94μγμγ???? ??? ? =-=38 ,35μγ 故f (3)=-53(a -c )+8 3(4a -c )∈[-1,20]. 题型三 开放性问题 【例3】已知三个不等式:①ab >0;② c a >d b ;③b c >a d .以其中两个作条件,余下的一个作结论,则能组 成多少个正确命题? 【解析】能组成3个正确命题.对不等式②作等价变形:c a >d b ?bc -ad ab >0. (1)由ab >0,bc >ad ?bc -ad ab >0,即①③?②; (2)由ab >0, bc -ad ab >0?bc -ad >0?bc >ad ,即①②?③; (3)由bc -ad >0, bc -ad ab >0?ab >0,即②③?①. 故可组成3个正确命题. 【例2】解关于x 的不等式mx 2+(m -2)x -2>0 (m ∈R ). 【解析】当m =0时,原不等式可化为-2x -2>0,即x <-1; 当m ≠0时,可分为两种情况: (1)m >0 时,方程mx 2+(m -2)x -2=0有两个根,x 1=-1,x 2=2 m . 所以不等式的解集为{x |x <-1或x >2 m }; (2)m <0时,原不等式可化为-mx 2+(2-m )x +2<0,

基本不等式练习题及答案

双基自测 1.(人教A版教材习题改编)函数y=x+1 x (x>0)的值域为( ). A.(-∞,-2]∪[2,+∞) B.(0,+∞) C.[2,+∞) D.(2,+∞) 2.下列不等式:①a2+1>2a;②a+b ab ≤2;③x2+ 1 x2+1 ≥1,其中正确的个数是 ( ). A.0 B.1 C.2 D.3 3.若a>0,b>0,且a+2b-2=0,则ab的最大值为( ). B.1 C.2 D.4 4.(2011·重庆)若函数f(x)=x+ 1 x-2 (x>2)在x=a处取最小值,则a=( ). A.1+ 2 B.1+ 3 C.3 D.4 5.已知t>0,则函数y=t2-4t+1 t 的最小值为________. 考向一利用基本不等式求最值 【例1】?(1)已知x>0,y>0,且2x+y=1,则1 x + 1 y 的最小值为________; (2)当x>0时,则f(x)= 2x x2+1 的最大值为________. 【训练1】 (1)已知x>1,则f(x)=x+ 1 x-1 的最小值为________. (2)已知0<x<2 5 ,则y=2x-5x2的最大值为________. (3)若x,y∈(0,+∞)且2x+8y-xy=0,则x+y的最小值为________. 考向二利用基本不等式证明不等式 【例2】?已知a>0,b>0,c>0,求证:bc a + ca b + ab c ≥a+b+c. .

【训练2】 已知a >0,b >0,c >0,且a +b +c =1. 求证:1a +1b +1 c ≥9. 考向三 利用基本不等式解决恒成立问题 【例3】?(2010·山东)若对任意x >0,x x 2 +3x +1 ≤a 恒成立,则a 的取值范围 是________. 【训练3】 (2011·宿州模拟)已知x >0,y >0,xy =x +2y ,若xy ≥m -2恒成立,则实数m 的最大值是________. 考向三 利用基本不等式解实际问题 【例3】?某单位建造一间地面面积为12 m 2的背面靠墙的矩形小房,由于地理位置的限制,房子侧面的长度x 不得超过5 m .房屋正面的造价为400元/m 2,房屋侧面的造价为150元/m 2,屋顶和地面的造价费用合计为5 800元,如果墙高为3 m ,且不计房屋背面的费用.当侧面的长度为多少时,总造价最低? 【训练3】 (2011·广东六校第二次联考)东海水晶制品厂去年的年产量为10万件,每件水晶产品的销售价格为100元,固定成本为80元.从今年起,工厂投入100万元科技成本.并计划以后每年比上一年多投入100万元科技成本.预计产量每年递增1万件,每件水晶产品的固定成本g (n )与科技成本的投入次数n 的关系是g (n )= 80 n +1 .若水晶产品的销售价格不变,第n 次投入后的年利润为f (n )万元. (1)求出f (n )的表达式; (2)求从今年算起第几年利润最高?最高利润为多少万元? 【试一试】 (2010·四川)设a >b >0,则a 2+1 ab + 1 a ?a - b ? 的最小值是( ). A .1 B .2 C .3 D .4 双基自测 D .(2,+∞) 答案 C 2.解析 ①②不正确,③正确,x 2+ 1x 2 +1=(x 2+1)+1x 2+1 -1≥2-1=1.答案

最新基本不等式练习题及答案

双基自测 1.(人教A 版教材习题改编)函数y =x +1 x (x >0)的值域为( ). A .(-∞,-2]∪[2,+∞) B .(0,+∞) C .[2,+∞) D .(2,+∞) 2.下列不等式:①a 2+1>2a ;②a +b ab ≤2;③x 2+1 x 2+1≥1,其中正确的个数是 ( ). A .0 B .1 C .2 D .3 3.若a >0,b >0,且a +2b -2=0,则ab 的最大值为( ). A.1 2 B .1 C .2 D .4 4.(2011·重庆)若函数f (x )=x + 1 x -2 (x >2)在x =a 处取最小值,则a =( ). A .1+ 2 B .1+ 3 C .3 D .4 5.已知t >0,则函数y =t 2-4t +1 t 的最小值为________. 考向一 利用基本不等式求最值 【例1】?(1)已知x >0,y >0,且2x +y =1,则1x +1 y 的最小值为________; (2)当x >0时,则f (x )= 2x x 2 +1 的最大值为________. 【训练1】 (1)已知x >1,则f (x )=x + 1 x -1 的最小值为________. (2)已知0<x <2 5,则y =2x -5x 2的最大值为________. (3)若x ,y ∈(0,+∞)且2x +8y -xy =0,则x +y 的最小值为________. 考向二 利用基本不等式证明不等式 【例2】?已知a >0,b >0,c >0,求证:bc a +ca b +ab c ≥a +b +c . .

【训练2】 已知a >0,b >0,c >0,且a +b +c =1. 求证:1a +1b +1 c ≥9. 考向三 利用基本不等式解决恒成立问题 【例3】?(2010·山东)若对任意x >0,x x 2+3x +1≤a 恒成立,则a 的取值范围是 ________. 【训练3】 (2011·宿州模拟)已知x >0,y >0,xy =x +2y ,若xy ≥m -2恒成立,则实数m 的最大值是________. 考向三 利用基本不等式解实际问题 【例3】?某单位建造一间地面面积为12 m 2的背面靠墙的矩形小房,由于地理位置的限制,房子侧面的长度x 不得超过5 m .房屋正面的造价为400元/m 2,房屋侧面的造价为150元/m 2,屋顶和地面的造价费用合计为5 800元,如果墙高为3 m ,且不计房屋背面的费用.当侧面的长度为多少时,总造价最低? 【训练3】 (2011·广东六校第二次联考)东海水晶制品厂去年的年产量为10万件,每件水晶产品的销售价格为100元,固定成本为80元.从今年起,工厂投入100万元科技成本.并计划以后每年比上一年多投入100万元科技成本.预计产量每年递增1万件,每件水晶产品的固定成本g (n )与科技成本的投入次数n 的关系是g (n )= 80 n +1 .若水晶产品的销售价格不变,第n 次投入后的年利润为f (n )万元. (1)求出f (n )的表达式; (2)求从今年算起第几年利润最高?最高利润为多少万元? 【试一试】 (2010·四川)设a >b >0,则a 2+1 ab +1 a (a - b ) 的最小值是( ). A .1 B .2 C .3 D .4 双基自测 D .(2,+∞) 答案 C 2.解析 ①②不正确,③正确,x 2+ 1x 2+1=(x 2 +1)+1x 2+1 -1≥2-1=1.答案 B 3.解析 ∵a >0,b >0,a +2b =2,∴a +2b =2≥22ab ,即ab ≤1 2.答案 A

(完整版)基本不等式题型总结(经典,非常好,学生评价高)

基本不等式 一. 基本不等式 ①公式:(0,0)2 a b a b +≥≥≥,常用a b +≥ ②升级版:22222a b a b ab ++??≥≥ ??? ,a b R ∈ 选择顺序:考试中,优先选择原公式,其次是升级版 二.考试题型 【题型1】 基本不等式求最值 求最值使用原则:一正 二定 三相等 一正: 指的是注意,a b 范围为正数。 二定: 指的是ab 是定值为常数 三相等:指的是取到最值时a b = 典型例题: 例1 .求1(0)2y x x x =+<的值域 分析:x 范围为负,提负号(或使用对钩函数图像处理) 解:1()2y x x =--+- 00x x <∴->Q 1 2x x ∴-+≥=-1 2x x ∴+≤ 得到(,y ∈-∞

例2 .求12(3)3 y x x x =+>-的值域 解:123 y x x =+- (“添项”,可通过减3再加3,利用基本不等式后可出现定值) 12(3)63 x x =+-+- 330x x >∴->Q 12(3)3x x ∴ +-≥- 6y ∴≥, 即)6,y ?∈+∞? 例3.求2sin (0)sin y x x x π=+<<的值域 分析:sin x 的范围是(0,1),不能用基本不等式,当y 取到最小值时,sin x 不在范围内 解:令sin (0,1)t x t =∈, 2y t t =+ 是对钩函数,利用图像可知: 在(0,1)上是单减函数,所以23t t + >,(注:3是将1t =代入得到) (3,)y ∴∈+∞ 注意:使用基本不等式时,注意y 取到最值,x 有没有在范围内, 如果不在,就不能用基本不等式,要借助对钩函数图像来求值域。

方程与不等式专题复习

《方程与不等式》教学与复习指导意见一、2017年《方程与不等式》考纲的要求 二、《方程与不等式》在2015、2016年各地市中考卷所占的分值

三、2015、2016年各地市呈现的类型 (一) 解方程 1、解分式方程: (2) 2 32+=x x 2、解一元二次方程: 3、解方程组: (二)解不等式或不等式组 1、解不等式: (1)2x +1>3 (2)2x <4 2、解不等式组: (4) (6)并把解集在数轴上表示出来 212 x =()220x x +=()2250 x x +-=(4)220 x x -=(3)4 121 x y x y -=?? +=-?()1248x y x y +=?? +=-?()7(3)123 x x --≤解不等式: ,并把解集表示在数轴上 2 6(4)30 3 x x x x --+=+3411x x = +()32321 x x = +()13 (5) 122 x x x -=---210223 x x x ,()ì+>??í?<+??260 310. x x --??(5)10 12 x x ->??≤? ()

(7)求不等式组210 25 x x x +>?? >-?的正整数解. (三)一元二次方程根的判别式 .1、一元二次方程2x 2 +3x+1=0的根的情况是( ) A .有两个不相等的实数根 B . 有两个相等的实数根 C .没有实数根 D . 无法确定 2、命题“关于x 的一元二次方程x 2 +bx+1=0,必有实数解.”是假命题.则在下列选项中,可以作为反例的是( ) 3、若 关于x 的一元二次方程2 310ax x +-=有两个不相等的实数根,则a 的取值范围是 。 4、下列一元二次方程中,没有..实数根的是 A .0322 =--x x B .012 =+-x x C .0122 =++x x D .12 =x 5、关于x 的一元二次方程x 2 +ax -1=0的根的情况是 A.没有实数根 B.只有一个实数根 C.有两个相等的实数根 D.有两个不相等的实数根 (四)方程(组)与不等式(组)的应用 1、方程的应用 闽北某村原有林地120公顷,旱地60公顷.为适应产业结构调整,需把一部分旱地改造为林地,改造后,旱地面积占林地面积的20%.设把x 公顷旱地改造为林地,则可列方程为 A .)120%(2060x x +=- B .120%2060?=+x C .)60%(20180x x +=- D .120%2060?=-x 2、2、方程组的应用 (1)某班去看演出,甲种票每张24元,乙种票每张18元,如果35名学生购票恰好用去

高考数学百大经典例题——不等式解法

典型例题一 例1 解不等式:(1)01522 3>--x x x ;(2)0)2()5)(4(3 2 <-++x x x . 分析:如果多项式)(x f 可分解为n 个一次式的积,则一元高次不等式0)(>x f (或 0)(-+x x x 把方程0)3)(52(=-+x x x 的三个根3 ,2 5 , 0321=-==x x x 顺次标上数轴.然后从右上开始画线顺次经过三个根,其解集如下图的阴影部分. ∴原不等式解集为? ?????><<-3025x x x 或 (2)原不等式等价于 ?? ?>-<-≠????>-+≠+?>-++2450)2)(4(0 50 )2()5)(4(32x x x x x x x x x 或 ∴原不等式解集为{} 2455>-<<--

①0 ) ( ) ( ) ( ) ( < ? ? < x g x f x g x f ②0 ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( < ? = ? ≤ ? ? ? ≠ ≤ ? ? ≤x g x f x f x g x f x g x g x f x g x f 或 或 (1)解:原不等式等价于 ? ? ? ≠ - + ≥ + - + - ? ≥ + - + - ? ≤ + - + + - ? ≤ + - - - + ? ≤ + - - ? + ≤ - )2 )( 2 ( )2 )( 2 )( 1 )( 6 ( )2 )( 2 ( )1 )( 6 ( )2 )( 2 ( 6 5 )2 )( 2 ( )2 ( )2 (3 2 2 3 2 2 3 2 x x x x x x x x x x x x x x x x x x x x x x x x x 用“穿根法” ∴原不等式解集为[)[) +∞ ? - ? - -∞,6 2,1 )2 , (。 (2)解法一:原不等式等价于0 2 7 3 1 3 2 2 2 > + - + - x x x x 2 1 2 1 3 1 2 7 3 1 3 2 2 7 3 1 3 2 )2 7 3 )( 1 3 2( 2 2 2 2 2 2 > < < < ? ?? ? ? ? < + - < + - ?? ? ? ? > + - > + - ? > + - + - ? x x x x x x x x x x x x x x x 或 或 或 ∴原不等式解集为) ,2( )1, 2 1 ( ) 3 1 , (+∞ ? ? -∞。 解法二:原不等式等价于0 )2 )(1 3( )1 )(1 2( > - - - - x x x x )2 ( )1 3 )( 1 )( 1 2(> - ? - - - ?x x x x 用“穿根法” ∴原不等式解集为) ,2( )1, 2 1 ( ) 3 1 , (+∞ ? ? -∞ 典型例题三

基本不等式练习题(带答案)(优.选)

基本不等式 1. 若 a ∈R ,下列不等式恒成立的是 ( ) A .21a a +> B .2111 a <+ C .296a a +> D .2 lg(1)lg |2|a a +> 2. 若0a b <<且1a b +=,则下列四个数中最大的是 ( ) A. 1 2 B.22a b + C.2ab D.a 3. 设x >0,则1 33y x x =-- 的最大值为 ( ) A.3 B.3- C.3- D.-1 4. 设,,5,33x y x y x y ∈+=+R 且则的最小值是( ) A. 10 B. C. D. 5. 若x , y 是正数,且 14 1x y +=,则xy 有 ( ) A.最大值16 B.最小值 116 C.最小值16 D.最大值116 6. 若a , b , c ∈R ,且ab +bc +ca =1, 则下列不等式成立的是 ( ) A .2222a b c ++≥ B .2 ()3a b c ++≥ C . 111a b c + + ≥ D .a b c ++≤ 7. 若x >0, y >0,且x +y ≤4,则下列不等式中恒成立的是 ( ) A .114x y ≤+ B .111x y +≥ C 2≥ D .1 1xy ≥ 8. a ,b 是正数,则 2,2 a b ab a b ++三个数的大小顺序是 ( ) A.22a b ab a b ++ 22a b ab a b +≤≤ + C. 22ab a b a b ++ D.22 ab a b a b +≤ + 9. 某产品的产量第一年的增长率为p ,第二年的增长率为q ,设这两年平均增长率为x ,则有( ) A.2p q x += B.2p q x +< C.2p q x +≤ D.2 p q x +≥ 10. 下列函数中,最小值为4的是 ( ) A.4y x x =+ B.4sin sin y x x =+ (0)x π<< C.e 4e x x y -=+ D.3log 4log 3x y x =+ 11. 函数y =的最大值为 .

不等式典型例题之基本不等式的证明

5.3、不等式典型例题之基本不等式的证明——(6例题) 雪慕冰 一、知识导学 1.比较法:比较法是证明不等式的最基本、最重要的方法之一,它是两个实数大小顺序和运算性质的直接应用,比较法可分为差值比较法(简称为求差法)和商值比较法(简称为求商法). (1)差值比较法的理论依据是不等式的基本性质:“a-b≥0a≥b;a-b≤0a≤b”.其一般步骤为:①作差:考察不等式左右两边构成的差式,将其看作一个整体;②变形:把不等式两边的差进行变形,或变形为一个常数,或变形为若干个因式的积,或变形为一个或几个平方的和等等,其中变形是求差法的关键,配方和因式分解是经常使用的变形手段;③判断:根据已知条件与上述变形结果,判断不等式两边差的正负号,最后肯定所求证不等式成立的结论.应用范围:当被证的不等式两端是多项式、分式或对数式时一般使用差值比较法. (2)商值比较法的理论依据是:“若a,b∈R + ,a/b≥1a≥b;a/b≤1a≤b”.其一般步骤为:①作商:将左右两端作商;②变形:化简商式到最简形式;③判断商与1的大小关系,就是判定商大于1或小于1.应用范围:当被证的不等式两端含有幂、指数式时,一般使用商值比较法. 2.综合法:利用已知事实(已知条件、重要不等式或已证明的不等式)作为基础,借助不等式的性质和有关定理,经过逐步的逻辑推理,最后推出所要证明的不等式,其特点和思路是“由因导果”,从“已知”看“需知”,逐步推出“结论”.即从已知A逐步推演不等式成立的必要条件从而得出结论B. 3.分析法:是指从需证的不等式出发,分析这个不等式成立的充分条件,进而转化为判定那个条件是否具备,其特点和思路是“执果索因”,即从“未知”看“需知”,逐步靠拢“已知”.用分析法证明书写的模式是:为了证明命题B成立,只需证明命题B1为真,从而有…,这只需证明B2为真,从而又有…,……这只需证明A为真,而已知A为真,故B必为真.这种证题模式告诉我们,分析法证题是步步寻求上一步成立的充分条件. 4.反证法:有些不等式的证明,从正面证不好说清楚,可以从正难则反的角度考虑,即要证明不等式A>B,先假设A≤B,由题设及其它性质,推出矛盾,从而肯定A>B.凡涉及到的证明不等式为否定命题、惟一性命题或含有“至多”、“至少”、“不存在”、“不可能”等词语时,可以考虑用反证法. 5.换元法:换元法是对一些结构比较复杂,变量较多,变量之间的关系不甚明了的不等式可引入一个或多个变量进行代换,以便简化原有的结构或实现某种转化与变通,给证明带来新????

中考数学专题练习方程与不等式

方程与不等式 一、选择题(每小题3分,共24分) 1.已知关于的方程的解满足方程,则的值是( ) A. B. C. 2 D. 3 2.已知两数之和是10,比y的3倍大2,则下面所列方程组正确的是( ) A. B. C. D. 3.下列关于的方程中,有实数根的是( ) A. B. C. D. 4.分式方程的解为( ) A. B. C. D. 5.关于的不等式的解集如图,那么的值是() A.-4 B.-2 C.0 D. 2 6.甲、乙、丙三家超市为了促销一种定价相同的商品,甲超市先降价20%,后又降价10%;乙超市连续两次降价15%;丙超市一次降价30%.那么顾客到哪家超市购买这种商品更合算() A.甲 B.乙 C.丙 D.一样 7. 在=-4,-1,0,3中,满足不等式组的值是() A.-4和0 B.-4和-1 C.0和3 D.-1和0 8. ,是关于的一元二次方程的两个实数根,是否存在实数使成立则正确的是结论是( ) A.时成立 B.时成立 C.或2时成立 D.不存在 二、填空题(每小题3分,共24分) 9. 已知关于的一元一次方程的解是=2,则的值为. 10.小明星期天到体育用品商店购买一个篮球花了120元,已知篮球按标价打八折,那么篮球的标价是元. 11. 已知是二元一次方程组的解,则的值为 . 12.已知关于的方程有一个根是,则的值为 . 13.若,是方程的两实数根,那么的值为 . 14.若关于的分式方程有增根,则的值是 . 15.已知直线经过点(1,﹣1),那么关于的不等式的解集是 .

16.小红在解方程组的过程中,错把看成了6,其余的解题过程没有出错,解得此方程组的解为,又已知直线过点(3,1),则的正确值应该是. 三、解答题(本大题共8个小题,满分52分,需要有必要的推理与解题过程). 17.(本题4分)解方程 18.(本题4分)解方程组: 19.(本题6分,每小题3分)解方程: ⑴. ⑵. 20.(本题6分)解不等式组,并将其解集在数轴上表示出来.

高考均值不等式经典例题

高考均值不等式经典例题 1.已知正数,,a b c 满足2 15b ab bc ca +++=,则58310a b c +++的最小值为 。 2.设M 是ABC V 内一点,且30AB AC A =∠=?u u u r u u u r g ,定义()(,,)f M m n p =,其中,,m n p 分别是 ,,MBC MCA MAB V V V 的面积,若1()(,,)2 f M x y =,则14x y +的最小值为 . 3.已知实数1,12 m n >>,则224211n m m n +--的最小值为 。 4.设22110,21025() a b c a ac c ab a a b >>>++-+-的最小值为 。 5.设,,a b c R ∈,且222 ,2222a b a b a b c a b c ++++=++=,则c 的最大值为 。 6.已知ABC V 中,142, 10sin sin a b A B +=+=,则ABC V 的外接圆半径R 的最大值为 。 7.已知112,,339 a b ab ≥≥=,则a b +的最大值为 。 8. ,,a b c 均为正数,且222412a ab ac bc +++=,则a b c ++的最小值为 。 9. ,,,()4a b c R a a b c bc +∈+++=-2a b c ++的最小值为 。 10. 函数()f x =的最小值为 。 11.已知0,0,228x y x y xy >>++=,则2x y +的最小值为 。 12.若*3()k k N ≥∈,则(1)log k k +与(1)log k k -的大小: 。 13.设正数,,x y z 满足22340x xy y z -+-=,则当xy z 取最大值时,212x y z +-的最大值为 。 14.若平面向量,a b r r 满足23a b -≤r r ,则a b ?r r 的最小值为 。 15. 的线段,在该几何体的侧视图与俯视图中,这条棱的投影分别是长为a 和b 的线段,则a b +的最大值为 。 16.设{}n a 是等比数列, 公比q =n S 为{}n a 的前n 项和,记*21 17()n n n n S S T n N a +-=∈,设0n T 为数列{}n T 的最大项,则0n = 。

基本不等式常见题型训练

必修5 基本不等式基本题型训练 一、选择题 1. [2013·常州质检]已知f (x )=x +1 x -2(x <0),则f (x )有( ) A. 最大值为0 B. 最小值为0 C. 最大值为-4 D. 最小值为-4 答案:C 解析:∵x <0,∴-x >0, ∴x +1x -2=-(-x +1 -x )-2≤-2 -x ·1 -x -2=-4, 当且仅当-x =1 -x ,即x =-1时,等号成立. 2. [2013·长沙质检]若0-1)的图象最低点的坐标为( ) A. (1,2) B. (1,-2) C. (1,1) D. (0,2) 答案:D 解析:y =x +12+1x +1=x +1+1 x +1 ≥2,

当x +1= 1 x +1 ,即x =0时,y 最小值为2,故选D 项. 4. 已知m =a +1a -2(a >2),n =(12 )x 2 -2(x <0),则m ,n 之间的大小关系是( ) A. m >n B. m 2,x <0, ∴m =(a -2)+ 1 a -2 +2 ≥2 a -2·1 a -2 +2=4, n =22-x 2<22=4,∴m >n ,故选A. 5. [2013·商丘模拟]若向量a =(x -1,2),b =(4,y )相互垂直,则9x +3y 的最小值为( ) A. 12 B. 23 C. 3 2 D. 6 答案:D 解析:依题意得4(x -1)+2y =0,即2x +y =2,9x +3y =32x +3y ≥232x ×3y =232x +y = 232 =6,当且仅当2x =y =1时取等号,因此9x +3y 的最小值是6,选D. 6. 已知a ,b 为正实数且ab =1,若不等式(x +y )(a x +b y )>m 对任意正实数x ,y 恒成立,则实数m 的取值范围是( ) A. [4,+∞) B. (-∞,1] C. (-∞,4] D. (-∞,4) 答案:D 解析:因为(x +y )(a x +b y )=a +b +ay x +bx y ≥a +b +2≥2ab +2=4,当且仅当a =b ,ay x =bx y 时等号成立,即a =b ,x =y 时等号成立,故只要m <4即可,正确选项为D. 二、填空题 7. [2013·金版原创]规定记号“?”表示一种运算,即a ?b =ab +a +b (a ,b 为正

必修5--基本不等式几种解题技巧及典型例题

均值不等式应用(技巧)技巧一:凑项 1、求y = 2x+ 1 x - 3 (x > 3)的最小值 2、已知x > 3 2 ,求y = 2 2x - 3 的最小值 3、已知x < 5 4 ,求函数y = 4x – 2 + 1 4x - 5 的最大值。 技巧二:凑系数 4、当0 < x < 4时,求y = x(8 - 2x)的最大值。 5、设0 < x < 3 2 时,求y = 4x(3 - 2x)的最大值,并求此时x的值。 6、已知0 < x < 1时,求y = 2x(1 - x) 的最大值。 7、设0 < x < 2 3 时,求y = x(2 - 3x) 的最大值 技巧三:分离 8、求y = x2 + 7x + 10 x + 1 (x > -1)的值域; 9、求y = x2 + 3x + 1 x (x > 0)

的值域 10、已知x > 2,求y = x2 - 3x + 6 x - 2 的最小值 11、已知a > b > c,求y = a - c a - b + a - c b - c 的最小值 12、已知x > -1,求y = x + 1 x2 + 5x + 8 的最大值 技巧四:应用最值定理取不到等号时利用函数单调性 13、求函数y = x2 + 5 x2 + 4 的值域。 14、若实数满足a + b = 2,则3a + 3b的最小值是。 15、若 + = 2,求1 x + 1 y 的最小值,并求x、y的值。 技巧六:整体代换 16、已知x > 0,y > 0,且1 x + 9 y = 1,求x + y的最小值。

17、若x、y∈R+且2x + y = 1,求1 x + 1 y 的最小值 18、已知a,b,x,y∈R+ 且a x + b y = 1,求x + y的最小值。 19、已知正实数x,y满足2x + y = 1,求1 x + 2 y 的最小值 20、已知正实数x,y,z满足x + y + z = 1,求1 x + 4 y + 9 z 的最小值 技巧七:取平方 21、已知x,y为正实数,且x2 + y2 2 = 1,求x 1 + y2的最大值。 22、已知x,y为正实数,3x + 2y = 10,求函数y = 3x + 2y的最值。 23、求函数y = 2x - 1 + 5 - 2x(1 2 < x < 5 2 )的最大值。 技巧八:已知条件既有和又有积,放缩后解不等式 24、已知a,b为正实数,2b + ab + a = 30,求函数y = 1 ab 的最小值。

甘肃省中考数学专题复习 方程与不等式练习

方程与不等式综合检测题 一.选择题(每小题3分,满分24分) 1.已知关于x 的方程)(22x m mx -=+的解满足021=-x ,则m 的值为( ) A)21= m B)2 3=m C)2=m D)3=m 2.已知两数y x ,之和为10,且x 比y 的3倍大2,则下面所列出的方程组正确的为( ) A)???+==+2310x y y x B)???-==+2310x y y x C)???+==+2 310y x y x D)???-==+2310y x y x 3.下列方程中,有实数根的为( ) A)012=+-x x B)012=++x x C)0)2)(1(=+-x x D)01)1(2 =+-x 4.分式方程1 123-=x x 的解为( ) 5.A)1=x B)2=x C)3=x D)4=x 6.若关于x 的不等式22≤+-a x 的解集如图示,则a 的值为( ) A)4- B)2- C)0 D)2 6.甲乙丙三家超市为促销一种定价相同的商品,甲超市先降价20%,后又降价10%;乙超市连续两次降价15%;丙超市一次降价30%;则顾客到哪家超市购买这种商品更合算( ) A)甲 B)乙 C)丙 D)一样 7.在3,0,1,4--=x 中,满足不等式组? ??->+≤2)1(22x x 的x 的值为( ) A)4-和0 B)4-和1- C)0和3 D)1-和0 8.已知21,x x 是关于x 的一元二次方程022 =-+-m mx x 的两个实数根,是否存在实数m 使得0112 1=+x x 成立?则正确的结论为( ) A)0=m 时成立 B)2=m 时成立 C)0=m 或2时成立 D)不存在 二.填空题(每小题3分,满分24分) 9.已知关于x 的方程052=-+a x 的解为2=x ,则a 的值为_________。 10.小明周日到体育用品商店购买一个篮球花费120元,已知篮球按照标价打八折,则篮球的标价为___________元。

高中不等式所有知识及典型例题(超全)

一.不等式的性质: 二.不等式大小比较的常用方法: 1.作差:作差后通过分解因式、配方等手段判断差的符号得出结果; 2.作商(常用于分数指数幂的代数式);3.分析法;4.平方法;5.分子(或分母)有理化; 6.利用函数的单调性;7.寻找中间量或放缩法 ;8.图象法。其中比较法(作差、作商)是最基本的方法。 三.重要不等式 1.(1)若R b a ∈,,则ab b a 22 2≥+ (2)若R b a ∈,,则2 22b a ab +≤(当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥+2 (2)若*,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=”) (3)若* ,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则1 2x x +≥ (当且仅当1x =时取“=”); 若0x <,则1 2x x + ≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 若0>ab ,则2≥+a b b a (当且仅当 b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 4.若R b a ∈,,则2 )2 (2 22b a b a +≤+(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求 它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 5.a 3+b 3+c 3≥3abc (a,b,c ∈ R +), a +b +c 3 ≥3abc (当且仅当a =b =c 时取等号); 6. 1 n (a 1+a 2+……+a n )≥12n n a a a (a i ∈ R +,i=1,2,…,n),当且仅当a 1=a 2=…=a n 取等号; 变式:a 2+b 2+c 2≥ab+bc+ca; ab ≤( a +b 2 )2 (a,b ∈ R +) ; abc ≤( a +b +c 3 )3(a,b,c ∈ R +) a ≤ 2a b a +b ≤ab ≤ a +b 2 ≤ a 2+b 2 2 ≤b.(0b>n>0,m>0; 应用一:求最值 例1:求下列函数的值域(1)y =3x 2+12x 2 (2)y =x +1 x

基本不等式练习题(带答案)

《基本不等式》同步测试 一、选择题,本大题共10小题,每小题4分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 若 a ∈R ,下列不等式恒成立的是 ( ) A .21a a +> B .2 111 a <+ C .296a a +> D .2 lg(1)lg |2|a a +> 2. 若0a b <<且1a b +=,则下列四个数中最大的是 ( ) A. 1 2 B.22a b + C.2ab D.a 3. 设x >0,则1 33y x x =-- 的最大值为 ( ) A.3 B.332- C.3-23 D.-1 4. 设,,5,33x y x y x y ∈+=+R 且则的最小值是( ) A. 10 B. 63 C. 46 D. 183 5. 若x , y 是正数,且 14 1x y +=,则xy 有 ( ) A.最大值16 B.最小值 116 C.最小值16 D.最大值116 6. 若a , b , c ∈R ,且ab +bc +ca =1, 则下列不等式成立的是 ( ) A .2222a b c ++≥ B .2 ()3a b c ++≥ C . 11123a b c + + ≥ D .3a b c ++≤ 7. 若x >0, y >0,且x +y ≤4,则下列不等式中恒成立的是 ( ) A . 114x y ≤+ B .111x y +≥ C .2xy ≥ D .1 1xy ≥ 8. a ,b 是正数,则 2,, 2 a b ab ab a b ++三个数的大小顺序是 ( ) A.22a b ab ab a b +≤≤+ B.22a b ab ab a b +≤≤ + C. 22ab a b ab a b +≤≤+ D.22 ab a b ab a b +≤≤ + 9. 某产品的产量第一年的增长率为p ,第二年的增长率为q ,设这两年平均增长率为x ,则有( ) A.2p q x += B.2p q x +< C.2p q x +≤ D.2 p q x +≥ 10. 下列函数中,最小值为4的是 ( ) A.4y x x =+ B.4sin sin y x x =+ (0)x π<<

相关文档
相关文档 最新文档