文档库 最新最全的文档下载
当前位置:文档库 › 低噪声放大器-理论

低噪声放大器-理论

低噪声放大器-理论
低噪声放大器-理论

低噪声放大器设计的理论基础

作者:佚名来源:本站整理发布时间:2009-10-20 20:45:05

射频低噪声放大器的ADS设计

本文首先简要介绍了低噪声放大器设计的理论基础,并以2.1-2.4Ghz 低噪声放大器为例,详细阐述了如何利用Agilent 公司的ADS 软件进行分析和优化设计该电路的过程,仿真结果完全满足设计指标,最后对微波电路的容差特性进行了模拟分析,对于S 波段低噪声放大器的设计研究有着重要的参考价值。

关键词:低噪声放大器,匹配,仿真,优化

1. 前言

低噪声微波放大器(LNA)已广泛应用于微波通信、GPS 接收机、遥感遥控、雷达、电子对抗、射电天文、大地测绘、电视及各种高精度的微波测量系统中,是必不可少的重要电路。低噪声放大器位于射频接收系统的前端,其主要功能是将来自天线的低电压信号进行小信号放大。前级放大器的噪声系数对整个微波系统的噪声影响最大,它的增益将决定对后级电路的噪声抑制程度,它的线性度将对整个系统的线性度和共模噪声抑制比产生重要影响。对低噪声放大器的基本要求是:噪声系数低、足够的功率增益、工作稳定性好、足够的带宽和大

的动态范围。

Advanced Design System(ADS)软件是Agilent 公司在HPEESOF 系列EDA 软件基础上发展完善的大型综合设计软件,它功能强大,能够提供各种射频微波电路的仿真和优化设计,广泛应用于通信、航天等领域,是射频工程师的得力助手。本文着重介绍如何使用ADS 进行低

噪声放大器的仿真与优化设计。

2. 低噪声放大器特点及指标

LNA 是射频接收机前端的主要部分,它主要有四个特点。首先,它位于接收机的最前端,这就要求它的噪声系数越小越好。为了抑制后面各级噪声对系统的影响,还要求有一定的增益,但为了不使后面的混频器过载,产生非线性失真,它的增益又不宜过大。放大器在工作频段内应该是稳定的。其次,它所接受的信号是很微弱的,所以低噪声放大器必定是一个小信号放大器。而且由于受传输路径的影响,信号的强弱又是变化的,在接受信号的同时又可能伴随许多强干扰信号输入,因此要求放大器有足够的线型范围,而且增益最好是可调节的。第三,低噪声放大器一般通过传输线直接和天线或者天线滤波器相连,放大器的输入端必须和他们很好的匹配,以达到功率最大传输或者最小的噪声系数,并保证滤波器的性能。第四,应具有一定的选频功能,抑制带外和镜像频率干扰,因此它一般是频带放大器【1】。

2.1 工作频率与带宽

放大器所能允许的工作频率与晶体管的特征频率fT 有关,由晶体管

小信号模型可知,减小偏置电流的结果是晶体管的特征频率降低。在集成电路中,增大晶体管的面积使极间电容增加也降低了特性频率。LNA 的带宽不仅是指功率增益满足平坦度要求的频带范围,而且还要求全频带内噪声要满足要求,并给出各频点的噪声系数。

动态范围的上限是受非线性指标限制,有时候要求更加严格些,则定义为放大器非线性特性达到指定三阶交调系数时的输入功率值。

2.2 噪声系数

在电路某一特定点上的信号功率与噪声功率之比,称为信号噪声比,简称信噪比,用符号Ps/Pn(或S/N)表示。放大器噪声系数是指放大器输入端信号噪声功率比Psi/Pni 与输出端信号噪声功率比

Pso/Pno 得比值。噪声系数的物理含义是:信号通过放大器之后,由于放大器产生噪声,使信噪比变坏;信噪比下降的倍数就是噪声系数。影响放大器噪声系数的因素有很多,除了选用性能优良的元器件外,电路的拓扑结构是否合理也是非常重要的。放大器的噪声系数和信号

源的阻抗有

关,而与负载阻抗无关。当一个晶体管的源端所接的信号源的阻抗等于它所要求的最佳信号源阻抗时,由该晶体管构成的放大器的噪声系数最小。实际应用中放大器的噪声系数可以表示为

Fmin 是当源端为最佳源阻抗时放大器的最小噪声系数,Rn 是噪声阻抗,Γopt 是放大器按最小噪声系数匹配时的最佳源反射系数【2】。

由此可见放大器的输入匹配电路应该按照噪声最佳来进行设计,也就是根据所选晶体管的Γopt 来进行设计。设计输出匹配电路时采用共轭匹配,以获得放大器较高的功率增益和较好的输出驻波比。

2.3 增益

根据线型网络输入、输出端阻抗的匹配情况,有三种放大器增益:工作功率增益GP(operating power gain) 、转换功率增益

GT(transducer power gain)、资用功率增益GA(available power

gain)。

低噪声放大器的增益要适中,太大会使下级混频器输入太大,产生失真。但为了抑制后面各级的噪声对系统的影响,其增益又不能太小。放大器的增益首先与管子跨导有关,跨导直接由工作点的电流决定。其次放大器的增益还与负载有关。低噪声放大器大都是按照噪声最佳匹配进行设计的。噪声最佳匹配点并非最大增益点,以此增益G 要下降。噪声最佳匹配情况下的增益成为相关增益。通常,相关增益比最大增益大约低2-4dB。增益平坦度是指功率最大增益与最小增益之差,它用来描述工作频带内功率增益的起伏, 常用最高增益与最小增

益之差,即△G(dB)表示。

2.4 放大器的稳定性

图1 晶体管放大器电路原理框图

放大器必须满足的首要条件之一是其在工作频段内的稳定性。这一点对于射频电路是非常重要的,因为射频电路在某些工作频率和终端条件下有产生振荡的趋势。考察电压波沿传输线的传输,可以理解这种振荡现象。若传输线终端反射系数Γ0>1,则反射电压的幅度变大(正反馈)并导致不稳定的现象。反之,若Γ0>1,将导致反射电压波的

幅度变小(负反馈)。

当放大器的输入和输出端的反射系数的模都小于1,即Γin<1, Γout<1 时,不管源阻抗和负载阻抗如何,网络都是稳定的,称为绝对稳定;当输入端或输出端的反射系数的模大于1时,网络是不稳定的,称为条件稳定。对条件稳定的放大器,其负载阻抗和源阻抗不能任意选择,而是有一定的范围,否则放大器不能稳定工作【3】。

2.5 输入阻抗匹配

低噪声放大器与其信号源的匹配是很重要的。放大器与源的匹配有两种方式:一是以获得噪声系数最小为目的的噪声匹配,二是以获得最大功率传输和最小反射损耗为目的的共轭匹配。一般来说,现在绝大多数的LNA 均采?笠恢制ヅ浞椒ǎ 庋 梢员苊獠黄ヅ涠 餖NA 向天线的能量反射,同时,力求两种匹配接近。

2.6 端口驻波比和反射损耗

低噪声放大器主要指标是噪声系数,所以输入匹配电路是按照噪声最佳来设计的,其结果会偏离驻波比最佳的共扼匹配状态,因此驻波比

不会很好。此外,由于微波场效应晶体或双极性晶体管,其增益特性大体上都是按每倍频程以6dB 规律随频率升高而下降,为了获得工作频带内平坦增益特性,在输入匹配电路和输出匹配电路都是无耗电抗性电路情况下,只能采用低频段失配的方法来压低增益,以保持带内增益平坦,因此端口驻波比必然是随着频率降低而升高。

3. 低噪声放大器设计仿真及优化

3.1 设计目标

本文低噪声放大器的设计目标是:

频率:2.1GHz~2.4GHz 噪声系数:小于0.5dB (纯电路噪声系数不考

虑连接损耗)

增益:大于15dB 增益平坦度:每10MHZ 带内小于0.1 dB 输入输出驻波比:小于2.0 输入输出阻抗:50Ω

3.2 仿真设计

在较高的频段设计低噪声放大器,通常选用场效应管FET 和高电子迁移率晶体管(HEMT)。影响放大器噪声系数的因素有很多,除了选用性能优良的元器件外,电路的拓扑结构是否合理也是非常重要的。放大器的噪声系数和信号源的阻抗有关,放大器存在着最佳的信号源阻抗Zso,如果所示,此时,放大器的噪声系数应该是最小的,所以放大器的输入匹配电路应该按照噪声最佳来进行设计,也就是根据所选晶体管的Гopt 来进行设计。为了得到较高的功率增益和较好的输出驻波比,输出匹配电路则采用共扼匹配。输入匹配电路在达到最

佳噪声时,放大器的输入阻抗未必恰好与信号源阻抗匹配,因而功率放大倍数不是最大。设计放大器时,首先考虑的是噪声尽可能低,其次才考虑增益的问题。因此,牺牲一点增益来换取噪声系数的降低是必要的,两者之间应该取一个合适的折中。LNA 采用两级放大的方式来实现,为使放大器具有更低的噪声,第一级的工作点应根据最小噪声系数来选取最佳的工作电流。为保证有足够的增益,第二级应从最佳增益条件来考虑,同时兼顾噪声。

具体的设计流程:

1.首先选择合适的器件。选择适用于工作频率且具有可接受的增益和噪声系数的BJT、JEFT 和MESFET。工作频率在6GHz 以下时,大多使用双极晶体管;工作频率在6GHz 以上时,大多选用场效应晶体管。而且,通常要求晶体管的截至频率大于或等于2-3 倍的工作频率。低噪声放大器则要求截至频率更高一些。本文选取NEC 公司低噪声产

品系列的

NE3210S01 N 沟道HJ-FET,其性能如图2 所示,它在2-4GHz 的频宽内增益在18dB 以上,噪声系数在0.5dB 以下,符合设计指标。上网下载并安装NEC 公司提供的ADS Design Kit for NEC Electronics,该工具包集成了NEC 系列低噪声放大器的FET、JBJT、HJ-FET,安装在ADS 中后可以从元件库面板中选择所需的管子。由于Design Kit 中的元器件是已经封装好的晶体管,所以无需再在ADS 中建立其Spice 模型,直接从手册中查到所选取管子在特定偏置下的各个工作点的S 参数,从中选择恰当的工作点,使得以此为依据在电路原理

图中设计偏置电路。合适且稳定的工作点决定了管子的动态范围,是保证放大器不出现平顶失真的前提,而且直接影响放大器的高频稳定性,本文选择典型的静态工作点VDS=2.0V,ID=10mA【4】。

图2 NE3210S01 的S 参数以及增益、噪声特性

2.晶体管S 参数的测量并确定工作点。利用ADS 的S 参数仿真在所需要的频带内求出低噪管的S 参数,并与手册所提供的S 参数对比,通过调整栅源电压VGD 不断修正S 参数最终得到合适的偏置电路。由于外界因素中温度对回路的Q 值影响最大,故偏置电路在S参数仿真时应注意按照提示窗口所给出的信息修改模型的温度,本文管子的仿真环境温度为16.85℃。加好偏置电路之后测试结果如图3 所示VGD=-0.526v, ID=9.87mA,VD=2.0V。

图3 低噪管的I-V 特性

图4 稳定判据μ参数的频率响应曲线

3.低噪管稳定性的判断。稳定性的判断可以通过K-Δ公式或源端和负载端稳定系数圆来判断,前者通常用来判断放大器是否处于绝对稳定的情况。对于低噪声放大器的第一级,主要性能是以降低噪声系数为目标的,故常处于条件稳定的情形,而设计最大增益放大器时采用双端共轭匹配,这时候射频电路必须处于绝对稳定才能保证复数共

轭同时成立。

在S 参数仿真中添加源稳定判别圆和负载稳定判别圆,等增益圆和噪声系数圆等控件,并分别设?貌问 笮。 疚难∪≡鲆娣直鹞?dB、15dB、20dB,噪声系数NF=0.5dB,在仿真后的smith 圆图显示出系列圆图,如图5 所示。找到稳定区域,由于S11 的绝对值小于1,故smith 圆图内处于源稳定判别圆外的ΓS 都是稳定的。但是由输出稳定判别圆可以看出该低噪管在工作频率下输出并非绝对稳定,为了避免自激的发生,实现全频带的稳定性,可以通过负反馈手段使晶体管进入稳定状态。常用的手段是在场管源极串接一电感或者传输线,这样可以改变放大器的输入阻抗,从而通过调整源极影响S11*使之靠近Гopt, 有利于噪声匹配和输入端功率匹配的同时实现,而且实际上源极反馈对放大器噪声的影响很小。本文在低噪管源端串联一个1.0nH 的电感,使晶体管处于绝对稳定状态,由μ判据可以看出在3-6Ghz 频段内放大器都处于绝对稳定状态,如图4 所示。另外在输

出串联一个15Ohm 电阻,用来改善放大器的增益平坦度和输出驻波

比。

4.匹配网络的设计。在增益15dB 的圆上选取尽量靠近最小噪声点的源反射系数作为输入匹配点,如图5 中m1 所示,本文取ΓS=Γopt= 0.768∠9.872 ,这样就获得了最佳噪声系数匹配条件,使放大器满足低噪声的要求的同时又能实现足够的增益。图6 显示出了源稳定系数圆图和负载稳定系数圆图,从标记m3、m4 可以看出两者均与smith 圆图相离,又由于S11,S22 均小于1,故输入输出都满足绝对稳定

条件。

输出匹配点Γout 按照下面公式求出。

图5 噪声系数圆、等增益圆和输入匹配点的确定

图6 源稳定系数圆图和负载稳定系数圆图

经过简单计算得到Γout=0.4973∠-20.2254 ,输出端取共轭匹配,即ΓL=Γout*=0.4973∠20.2254,接下来开始进行输入输出匹配网

络的设计。

设计匹配网络的方法很多,有图解法,计算机辅助设计法等。ADS 提供了多种方便快捷的匹配网络设计工具,如无源电路的集总参数元件、微带单枝节、微带双枝节等多种智能元件,本文利用ADS 的smith 圆图综合工具很清晰方便的实现自动匹配网络设计。其方法是在元件面板列表选择实用Simth 圆图工具Smith Chart Matching,然后在工具菜单栏中选择Smith Chart Utility 工具,输入负载反射系数后,就可以利用ADS 所提供的这种智能元件进行阻抗匹配设计,最后自动生成子网络。由于匹配电路的拓扑结构多样,应选择一种简单且便于实际工程设计的网络结构,本文采用由集总元件构成的无耗L 型网络,如图7 所示为实用Simith 工具自动生成的一种匹配电路拓扑结构,从中可以观察其反射系数在工作频带的频率响应曲线。图8 为圆图综合工具所生成的放大器输出子网络,可以直接添加或复制到

原理图中。

图7 实用史密斯圆图工具

图8 输出匹配子网络

输出匹配网络的设计采用S 参数优化方法,S 参数设计法是将晶体管看做是一个黑盒子,只知道它的端口参数,是从系统或者网络的角度出发来设计放大器。首先设定匹配网络的集总器件为优化变量,优化的目标为噪声系数、增益、输入驻波比、输出驻波比等,给上述原理图增加优化仿真器OPTIM 和优化目标控件GOAL。注意在OPTIM 中设定仿真变量,并将设计目标值作为仿真目标,优化仿真变量设计参数,然后选择适合的优化方式,常用的主要是Random(随机法)和Gradient(梯度法),随机法通常用于大范围搜索时使用,梯度法则用于局域收敛,不同方法有不同的元件变量渐进方式,应根据收敛速度和误差函数公式进行选择。最后选择迭代次数后进行优化仿真,通过不断对优化变量的调整,得到满足稳定性、噪声系数和增益等目标的电路,实际在进行分析的时候,还需要根据具体情况及有关理论加入一些有助于提高电路性能的细节。匹配后仿真原理图如图9 所示,此处把集总元件构成的匹配网络用微带线代替,选取射频介质基板的参数为:介电常数εr=4.3,基板厚度H=0.8mm。

优化结果显示如图10 所示。

图9 匹配后单级放大器电路仿真原理图

图10 匹配后单级放大器电路仿真结果

5.为了进一步改善低噪声放大器的增益、增益平坦度及稳定性,可以采用多级放大器级联的形式满足需求。本文所选择的低噪管具有很低的噪声系数和较高的1dB 压缩点,在仿真中直接将两级相同的单级放大器通过耦合电容进行耦合,前级采用最佳噪声输入匹配,后级采用双共轭匹配,经过匹配网络调谐和进一步优化后,得到性能更加良

好的电路。

需要注意的是,在进行电路优化时可以直接选用集总参数元件电阻、电容、电感等参数连续变化的模型,在系统设计最后,需要把这些优化过的元件替换为器件库中的元件才是可以制作电路、生成版图的。替换时选择与优化结果相近的数值,替换后要重新仿真一次,检验电路性能是否因此出现恶化。最终的仿真原理图和仿真结果如图11 和

图12 所示。

图11 两级级联放大器电路仿真原理图

图12 两级级联放大器电路仿真结果

3.3 电路容差分析

YIELD 分析能够按照变量元件的离散分布分析出产品达到性能目标的合格率,通常我们能够给出我们所采用的器件的连续或离散变化特性,它们符合电子产品的分布特性正态分布、高斯分布或其他分布。

YIELD 分析基于Monte Carlo 方法,需要建立一定数量的随机试验。设计变量在容差范围内变化,随机试验中符合设计目标需要的试验次数(PASSNUMBER)和失败的实验次数将会得到,从而估算出产品的试

验合格率。

首先给电路原理图增加YIELD 仿真器及YIELD 参数,对放大器在所设定目标下的合格率进行分析。设置元件参量变化符合正态分布,δ=±5%,设定设计目标YIELD SPEC ,这里取S 参数、噪声系数和稳定系数为设计目标,YIELD 试验次数设置为250 次。仿真结果如图13a 所示,合格率为71%。为了设计出的产品既要保证合格的指标又要满足较高的合格率,我们必须进行优化合格率设计。YIELD 仿真器

及优化控制器如图14 所示。

图13 优化后的合格率仿真结果

图14 YIELD 优化控制器

从图13b 的表格可以看出,优化设计给出的参数在容差变化范围内对应的产品合格率影响明显,优化后的合格率上升为84%。优化YIELD 仿真分析后得到最大合格率下的电路参数优化值,但最大合格率下的电路参数与最佳性能优化后的电路参数值稍微有些变动。经过对S 参数的再次分析可以看出,最大合格率优化后的电路性能不如最佳参数

优化的性能好。

这表明最佳性能设计不一定达到最大合格率产品,最大合格率设计也不一定输出最佳性能的产品。作为投入批量生产的产品,我们必须选

择最大合格率设计。

4. 结论

从以上的仿真设计分析过程中,我们首先应用了ADS 的S 参数仿真分析,设计出满足稳定性要求的低噪声放大器的初始电原理图并进行最佳性能仿真分析。由仿真结果可以看到,工作频带2.1-2.4Ghz,平均增益20dB, S11 和S22 均在-20dB 以下,噪声系数在0.35dB以

下,输入输出驻波比在1.2 左右,带内无条件稳定,均满足设计指标。最后采用ADS 的合格率仿真器分析最佳性能参数下产品的合格率,并采用了优化合格率分析使产品最终达到高性能与高合格率。

参考文献

【1】陈邦媛. 射频通信电路. 科学出版社.2004

【2】 Reinhold Luding, Pavel Bretchko.射频电路设计—理论及应

用.电子工业出版社,2002

【3】 Matthew M. Radmanesh. Radio Frequency and Microwave Electronics Illustrated. 电子工业出版社,2002

【4】 NEC Data Sheet NE3210S01 X to Ku Band Super Low Noise Amplifier N-channel HJ-FET, 1998

低噪声放大器设计的理论基础

本文首先简要介绍了低噪声放大器设计的理论基础,并以2.1-2.4Ghz 低噪声放大器为例,详细阐述了如何利用Agilent 公司的ADS 软件进行分析和优化设计该电路的过程,仿真结果完全满足设计指标,最后对微波电路的容差特性进行了模拟分析,对于S 波段低噪声放大器的设计研究有着重要的参考价值。

关键词:低噪声放大器,匹配,仿真,优化

1. 前言

低噪声微波放大器(LNA)已广泛应用于微波通信、GPS 接收机、遥感遥控、雷达、电子对抗、射电天文、大地测绘、电视及各种高精度的微波测量系统中,是必不可少的重要电路。低噪声放大器位于射频接收系统的前端,其主要功能是将来自天线的低电压信号进行小信号放大。前级放大器的噪声系数对整个微波系统的噪声影响最大,它的增益将决定对后级电路的噪声抑制程度,它的线性度将对整个系统的线性度和共模噪声抑制比产生重要影响。对低噪声放大器的基本要求是:噪声系数低、足够的功率增益、工作稳定性好、足够的带宽和大

的动态范围。

Advanced Design System(ADS)软件是Agilent 公司在HPEESOF 系列EDA 软件基础上发展完善的大型综合设计软件,它功能强大,能够提供各种射频微波电路的仿真和优化设计,广泛应用于通信、航天等领域,是射频工程师的得力助手。本文着重介绍如何使用ADS 进行低

噪声放大器的仿真与优化设计。

2. 低噪声放大器特点及指标

LNA 是射频接收机前端的主要部分,它主要有四个特点。首先,它位于接收机的最前端,这就要求它的噪声系数越小越好。为了抑制后面各级噪声对系统的影响,还要求有一定的增益,但为了不使后面的混频器过载,产生非线性失真,它的增益又不宜过大。放大器在工作频段内应该是稳定的。其次,它所接受的信号是很微弱的,所以低噪声放大器必定是一个小信号放大器。而且由于受传输路径的影响,信号

的强弱又是变化的,在接受信号的同时又可能伴随许多强干扰信号输入,因此要求放大器有足够的线型范围,而且增益最好是可调节的。第三,低噪声放大器一般通过传输线直接和天线或者天线滤波器相连,放大器的输入端必须和他们很好的匹配,以达到功率最大传输或者最小的噪声系数,并保证滤波器的性能。第四,应具有一定的选频功能,抑制带外和镜像频率干扰,因此它一般是频带放大器【1】。

2.1 工作频率与带宽

放大器所能允许的工作频率与晶体管的特征频率fT 有关,由晶体管小信号模型可知,减小偏置电流的结果是晶体管的特征频率降低。在集成电路中,增大晶体管的面积使极间电容增加也降低了特性频率。LNA 的带宽不仅是指功率增益满足平坦度要求的频带范围,而且还要求全频带内噪声要满足要求,并给出各频点的噪声系数。

动态范围的上限是受非线性指标限制,有时候要求更加严格些,则定义为放大器非线性特性达到指定三阶交调系数时的输入功率值。

2.2 噪声系数

在电路某一特定点上的信号功率与噪声功率之比,称为信号噪声比,简称信噪比,用符号Ps/Pn(或S/N)表示。放大器噪声系数是指放大器输入端信号噪声功率比Psi/Pni 与输出端信号噪声功率比

Pso/Pno 得比值。噪声系数的物理含义是:信号通过放大器之后,由于放大器产生噪声,使信噪比变坏;信噪比下降的倍数就是噪声系数。影响放大器噪声系数的因素有很多,除了选用性能优良的元器件外,电路的拓扑结构是否合理也是非常重要的。放大器的噪声系数和信号

源的阻抗有

关,而与负载阻抗无关。当一个晶体管的源端所接的信号源的阻抗等于它所要求的最佳信号源阻抗时,由该晶体管构成的放大器的噪声系数最小。实际应用中放大器的噪声系数可以表示为

Fmin 是当源端为最佳源阻抗时放大器的最小噪声系数,Rn 是噪声阻抗,Γopt 是放大器按最小噪声系数匹配时的最佳源反射系数【2】。由此可见放大器的输入匹配电路应该按照噪声最佳来进行设计,也就是根据所选晶体管的Γopt 来进行设计。设计输出匹配电路时采用共轭匹配,以获得放大器较高的功率增益和较好的输出驻波比。

2.3 增益

根据线型网络输入、输出端阻抗的匹配情况,有三种放大器增益:工作功率增益GP(operating power gain) 、转换功率增益

GT(transducer power gain)、资用功率增益GA(available power

gain)。

低噪声放大器的增益要适中,太大会使下级混频器输入太大,产生失真。但为了抑制后面各级的噪声对系统的影响,其增益又不能太小。放大器的增益首先与管子跨导有关,跨导直接由工作点的电流决定。其次放大器的增益还与负载有关。低噪声放大器大都是按照噪声最佳匹配进行设计的。噪声最佳匹配点并非最大增益点,以此增益G 要

射频低噪声放大器电路设计详解

射频低噪声放大器电路设计详解 射频LNA 设计要求:低噪声放大器(LNA)作为射频信号传输链路 的第一级,它的噪声系数特性决定了整个射频电路前端的噪声性能,因此作为 高性能射频接收电路的第一级LNA 的设计必须满足:(1)较高的线性度以抑 制干扰和防止灵敏度下降;(2)足够高的增益,使其可以抑制后续级模块的噪 声;(3)与输入输出阻抗的匹配,通常为50Ω;(4)尽可能低的功耗, 这是无线通信设备的发展趋势所要求的。 InducTIve-degenerate cascode 结构是射频LNA 设计中使用比较多的结构之一,因为这种结构能够增加LNA 的增益,降低噪声系数,同时增加输入级 和输出级之间的隔离度,提高稳定性。InducTIve-degenerate cascode 结构在输入级MOS 管的栅极和源极分别引入两个电感Lg 和Ls,通过选择适当的电感 值,使得输入回路在电路的工作频率附近产生谐振,从而抵消掉输入阻抗的虚部。由分析可知应用InducTIve-degenerate cascode 结构输入阻抗得到一个50Ω的实部,但是这个实部并不是真正的电阻,因而不会产生噪声,所 以很适合作为射频LNA 的输入极。 高稳定度的LNA cascode 结构在射频LNA 设计中得到广泛应用,但是当工作频率较高时 由于不能忽略MOS 管的寄生电容Cgd,因而使得整个电路的稳定特性变差。 对于单个晶体管可通过在其输入端串联一个小的电阻或在输出端并联一个大的 电阻来提高稳定度,但是由于新增加的电阻将使噪声值变坏,因此这一技术不 能用于低噪声放大器。 文献对cascode 结构提出了改进,在其中ZLoad=jwLout//(jwCout)-

放大电路的组成及工作原理

2、4 放大电路的组成及工作原理 参考教材:《模拟电子技术基础》孙小子张企民主编西安:西安电子科技大学出版社 一、教学目标及要求 1、通过本次课的教学,使学生了解晶体管组成的基本放大电路的三种类型,掌 握放大电路的组成元器件及各元器件的作用,理解放大电路的工作原理。 2、通过本节课的学习,培养学生定性分析学习意识,使学生掌握理论结合生活 实际的分析能力。 二、教学重点 1、共发射极放大电路的组成元器件及各元器件作用; 2、共发射极放大电路的工作原理。 三、教学难点 1、共发射极放大电路的组成元器件及各元器件作用; 2、共发射极放大电路的工作原理。 四、教学方法及学时 1、讲授法 2、1个学时 五、教学过程 (一)导入新课 同学们,上节课我们已经学习了晶体管内部载流子运动的特性以及由此引起的晶体管的一些外部特性,比如说晶体管的输入输出特性等,在这里,我要强调一下,我们需要把更多的注意力放在关注晶体管的外部特性上,而没有必要细究内部载流子的特点。由晶体管的输出特性,我们知道,当晶体管的外部工作条件不同时,晶体管可以工作在三个不同的区间。分别为:放大区、截止区、饱与区,其中放大区就是我们日常生活中较为常用的一种工作区间。大家就是否还记得,晶体管工作在放大区时所需要的外部条件就是什么不(发射结正偏,集电结反偏)?这节课,我们将要进入一个晶体管工作在放大区时,在实际生活中应用的新内容学习。 2、4放大器的组成及工作原理 一、放大的概念 放大: 利用一定的外部工具,使原物体的形状或大小等一系列属性按一定的比例扩大的过程。日常生活中,利用扩音机放大声音,就是电子学中最常见的放大。其原理框图为: 声音声音 扩音器原理框图 由此例子,我们知道,放大器大致可以分为:输入信号、放大电路、直流电源、输出信号等四部分,它主要用于放大小信号,其输出电压或电流在幅度上得到了放大,输出信号的能量得到了加强。对放大电路的基本要求:一就是信号不失真,二就是要放大。 二、基本放大电路的组成

低噪声放大器设计指南

低噪声放大器设计指南 1.低噪声放大器在通讯系统中的作用 随着通讯工业的飞速发展,人们对各种无线通讯工具的要求也越来越高,功率辐射小、作用距离远、覆盖范围大已成为各运营商乃至无线通讯设备制造商的普遍追求,这就对系统的接收灵敏度提出了更高的要求,我们知道,系统接收灵敏度的计算公式如下: S = -174+ NF+10㏒BW+S/N (1) min 由上式可见,在各种特定(带宽、解调S/N 已定)的无线通讯系统中,能有效提高灵敏度的关键因素就是降低接收机的噪声系数NF,而决定接收机的噪声系数的关键部件就是处于接收机最前端的低噪声放大器。 低噪声放大器的主要作用是放大天线从空中接收到的微弱信号,降低噪声干扰,以供系统解调出所需的信息数据,所以低噪声放大器的设计对整个接收机来说是至关重要的。 2. 低噪声放大器的主要技术指标: 2.1 噪声系数NF 噪声系数的定义为放大器输入信噪比与输出信噪比的比值,即: out out in in N S N S NF //= 对单级放大器而言,其噪声系数的计算为: 222min |1)||1(||4opt s opt s n R NF NF Γ?Γ?Γ?Γ+= 其中 F min 为晶体管最小噪声系数,是由放大器的管子本身决定的, Γopt 、Rn 和Γs分 别为获得 F min 时的最佳源反射系数、 晶体管等效噪声电阻、以及晶体管输入端的源反射系数。 对多级放大器而言,其噪声系数的计算为: NF=NF 1+(NF -1)/G 1+(NF -1)/G 1G +…… (4) 232其中NF n 为第n级放大器的噪声系数,G n 为第n级放大器的增益。 在某些噪声系数要求非常高的系统,由于噪声系数很小,用噪声系数表示很不方便,常常用噪声温度来表示,噪声温度与噪声系数的换算关系为: T e = T 0 ( NF – 1 ) (5) 其中T e 为放大器的噪声温度,T 0 =2900 K,NF为放大器的噪声系数。 NF(dB) = 10LgNF (6) 2. 2 放大器增益G: 放大器的增益定义为放大器输出功率与输入功率的比值: G=P out / P in (7) 从式(4)中可见,提高低噪声放大器的增益对降低整机的噪声系数非常有利,但低噪声放大器的增益过高会影响整个接收机的动态范围。 所以,一般来说低噪声放大器的增益确定应与系统的整机噪声系数、接收机动态范围等结合起来考虑。

运算放大器工作原理是什么

运算放大器工作原理是什么? 运算放大器(Operational Amplifier,简称OP、OPA、OPAMP)是一种直流耦合﹐差模(差动模式)输入、通常为单端输出(Differential-in, single-ended output)的高增益(gain)电压放大器,因为刚开始主要用于加法,乘法等运算电路中,因而得名。一个理想的运算放大器必须具备下列特性:无限大的输入阻抗、等于零的输出阻抗、无限大的开回路增益、无限大的共模排斥比的部分、无限大的频宽。最基本的运算放大器如图1-1。一个运算放大器模组一般包括一个正输入端(OP_P)、一个负输入端(OP_N)和一个输出端(OP_O)。 通常使用运算放大器时,会将其输出端与其反相输入端(inverting input node)连接,形成一负反馈(negative feedback)组态。原因是运算放大器的电压增益非常大,范围从数百至数万倍不等,使用负反馈方可保证电路的稳定运作。但是这并不代表运算放大器不能连接成正回馈(positive feedback),相反地,在很多需要产生震荡讯号的系统中,正回馈组态的运算放大器是很常见的组成元件。 开环回路运算放大器如图1-2。当一个理想运算放大器采用开回路的方式工作时,其输出与输入电压的关系式如下: Vout = ( V+ -V-) * Aog 其中Aog代表运算放大器的开环回路差动增益(open-loop differential gai 由于运算放大器的开环回路增益非常高,因此就算输入端的差动讯号很小,仍然会让输出讯号「饱和」(saturation),导致非线性的失真出现。因此运算放大器很少以开环回路出现在电路系统中,少数的例外是用运算放大器做比较器(comparator),比较器的输出通常为逻辑准位元的「0」与「1」。 闭环负反馈

GSM900低噪声放大器设计

微波电路与系统仿真实验报告 一、实验名称:GSM900频段低噪声放大器仿真 二、实验技术指标: 1.频段:909-915MHz 2.增益:≥17dB 3.噪声系数:<0.7dB 4.输入反射系数:优于-20dB 5.输出反射系数:优于-15dB 6.芯片选择:A TF-54143或VMMK-1218 三、报告日期:2015年12月14日 四、报告页数:共7页 五、报告内容: 1.电路原理图(原理图应标明变量名称的含义,可用文字表述或画图说明) 如下图所示,a为低噪声放大器的原理框图,包括晶体管以及输出输入匹配,在图中未画出部分还有晶体管的偏置电路。对于低噪声放大器设计与最大功率传输的放大器设计不同,最大功率传输放大器的设计必须满足双共轭匹配,而这样噪声的功率也会很大,所以为了获得最小噪声系数,应选择最佳信源反射系数Гopt。此时放大器的输入匹配网络的任务是使管子端口满足如下图b中所示的要求。 (a)微波晶体管放大器原理图(b)最佳噪声匹配放大器的设计步骤为:1、选管;题目指标给出了放大器设计可选择的管子,所以本次设计选择了ATF-54143,查阅ATF-54143晶体管的模型参数,由于ATF-54143晶体管在ADS2011中没有模型,所以本文是查找网络资源下载的ATF-54143的模型文件导入到设计中的,A TF-54143模型如下图所示,左图为晶体管封装模型,右图为内部电路。2、确定工

作电流和工作电压;查阅ATF-54143介绍资料确定Vds和Ids的值,如下图所示,可以看出工作频率为900MHz时的晶体管在不同电压电流下的增益、噪声系数、P1dB、三阶截断功率的值,根据这些值选择Vds=4V,Ids=60mA,此时的Vgg=0.58V。设置电压电流,建立晶 体管的直流偏置电路。

运算放大器的工作原理

运算放大器的工作原理-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

运算放大器的工作原理 放大器的作用: 1、能把输入讯号的电压或功率放大的装置,由电子管或晶体管、电源变压器和其他电器元件组成。用在通讯、广播、雷达、电视、自动控制等各种装置中。原理:高频功率放大器用于发射机的末级,作用是将高频已调波信号进行功率放大,以满足发送功率的要求,然后经过天线将其辐射到空间,保证在一定区域内的接收机可以接收到满意的信号电平,并且不干扰相邻信道的通信。高频功率放大器是通信系统中发送装置的重要组件。按其工作频带的宽窄划分为窄带高频功率放大器和宽带高频功率放大器两种,窄带高频功率放大器通常以具有选频滤波作用的选频电路作为输出回路,故又称为调谐功率放大器或谐振功率放大器;宽带高频功率放大器的输出电路则是传输线变压器或其他宽带匹配电路,因此又称为非调谐功率放大器。高频功率放大器是一种能量转换器件,它将电源供给的直流能量转换成为高频交流输出在“低频电子线路”课程中已知,放大器可以按照电流导通角的不同, 运算放大器原理 运算放大器(Operational Amplifier,简称OP、OPA、OPAMP)是一种直流耦合﹐差模(差动模式)输入、通常为单端输出(Differential-in, single-ended output)的高增益(gain)电压放大器,因为刚开始主要用于加法,乘法等运算电路中,因而得名。一个理想的运算放大器必须具备下列特性:无限大的输入阻抗、等于零的输出阻抗、无限大的开回路增益、无限大的共模排斥比的部分、无限大的频宽。最基本的运算放大器如图1-1。一个运算放大器模组一般包括 一个正输入端(OP_P)、一个负输入端(OP_N)和一个输出端(OP_O)。 图1-1 通常使用运算放大器时,会将其输出端与其反相输入端(inverting input node)连接,形成一负反馈(negative feedback)组态。原因是运算放大器的电压增益非常大,范围从数百至数万倍不等,使用负反馈方可保证电路的稳定运作。但是这并不代表运算放大器不能连接成正回

低噪声放大器设计 论文

低噪声放大器设计 摘要:微弱信号检测就是利用近代电子学和信号处理方法从噪声中提取有用信号,其关键在于抑制噪声。恢复、增加和提取有用信号。与普通放大器相比,低噪声放大器应具有低得多的噪声系数。欲使放大器获得良好的低噪声特性,除使用好的低噪声器件外,还要有周密的设计。本文将从低噪声放大器在通讯系统中的作用,低噪声放大器的主要技术指标以及低噪声放大器的设计方法来论述低噪声放大器,以获得最佳噪声性能的低噪声放大器。重点介绍了低噪声放大器的设计方法。 关键词:低噪声,微弱信号检测,噪声系数,放大器 0.引言 随着现代科学研究和技术的发展,人们越来越需要从强噪声中检测出有用的微弱信号,于是逐渐形成了微弱信号检测这门新兴的科学技术学科,其应用范围遍及光学、电学、磁学、声学、力学、医学、材料等领域。微弱信号检测技术是利用电子学、信息论、计算机及物理学的方法,分析噪声产生的原因和规律,研究被测信号的特点与相关性,检测被噪声淹没的微弱有用信号,或用一些新技术和新方法来提高检测系统输出信号的信噪比,从而提取有用信号。微弱信号检测所针对的检测对象,是用常规和传统方法不能检测到的微弱量。对它的研究是发展高新技术,探索及发现新的自然规则的重要手段,对推动相关领域的发展具有重要的应用价值。目前,微弱信号检测的原理、方法和设备已经成为很多领域中进行现代科学技术研究不可缺少的手段。显然,对微弱信号检测理论的研究,探索新的微弱信号检测方法,研制新的微弱信号检测设备是目前检测技术领域的一大热点。 1.低噪声放大器在通讯系统中的作用 随着通讯工业的飞速发展,人们对各种无线通讯工具的要求也越来越高,功率辐射小、作用距离远、覆盖范围大已成为各运营商乃至无线通讯设备制造商的

低噪声放大器的设计制作与调试

微波电路 CAD 射频实验报告 姓名 班级 学号

实验一低噪声放大器的设计制作与调试 一、实验目的 (一)了解低噪声放大器的工作原理及设计方法。 (二)学习使用ADS软件进行微波有源电路的设计,优化,仿真。 (三)掌握低噪声放大器的制作及调试方法。 二、实验内容 (一)了解微波低噪声放大器的工作原理。 (二)使用ADS软件设计一个低噪声放大器,并对其参数进行优化、仿真。 (三)根据软件设计的结果绘制电路版图,并加工成电路板。 (四)对加工好的电路进行调试,使其满足设计要求。 三、实验步骤及实验结果 (一)晶体管直流工作点扫描 1、启动软件后建立新的工程文件并打开原理图设计窗口。 2、选择File——New Design…进入下面的对话框; 3、在下面选择BJT_curve_tracer,在上面给新建的Design命名,这里命名为BJT Curve; 4、在新的Design中,会有系统预先设置好的组件和控件; 5、如何在Design中加入晶体管;点击,打开元件库; 6、选择需要的晶体管,可以点击查询; 7、对41511的查询结果如下,可以看到里面有这种晶体管的不同的模型; 8、以sp为开头的是S参数模型,这种模型不能用来做直流工作点的扫描; 9、选择pb开头的模型,切换到Design窗口,放入晶体管,按Esc键终止当前操作。 10对41511的查询结果如下,可以看到里面有这种晶体管的不同的模型 11、以sp为开头的是S参数模型,这种模型不能用来做直流工作点的扫描 12、选择pb开头的模型,切换到Design窗口,放入晶体管,按Esc键终止当前操作。

13、按Simulate键,开始仿真,这时会弹出一个窗口,该窗口会现实仿真或者优化的过程信息。如果出现错误,里面会给出出错信息,应该注意查看。 14、仿真结束,弹出结果窗口,如下页图。注意关闭的时候要保存为适宜的名字。另外图中的Marker是可以用鼠标拖动的。由于采用的是ADS的设计模板,所以这里的数据显示都已经设置好了。一般情况下,数据的显示需要人为自行设置。 图2 典型仿真结果图 (二)晶体管S参数扫描 1、选定晶体管的直流工作点后,可以进行晶体管的S参数扫描,本节中选用的是S参数模型sp_hp_AT-41511_2_19950125,这一模型对应的工作点为Vce=2.7V、Ic=5mA; 2、选择File New Design…进入下面的对话框,在下面选择S-Params,在上面命名,为SP_of_spmod; 3、然后新的Design文件生成,窗口如下:

低噪放大器的原理应用及其常用规格

低噪放大器定义: 噪声系数很低的放大器。一般用作各类无线电接收机的高频或中频前置放大器,以及高灵敏度电子探测设备的放大电路。在放大微弱信号的场合,放大器自身的噪声对信号的干扰可能很严重,因此希望减小这种噪声,以提高输出的信噪比。由放大器所引起的信噪比恶化程度通常用噪声系数F来表示。理想放大器的噪声系数 F=1(0分贝),其物理意义是输入信噪比等于输出信噪比。现代的低噪声放大器大多采用晶体管、场效应晶体管;微波低噪声放大器则采用变容二极管参量放大器,常温参放的噪声温度Te可低于几十度(绝对温度),致冷参量放大器可达20K以下,砷化镓场效应晶体管低噪声微波放大器的应用已日益广泛,其噪声系数可低于 2 分贝。放大器的噪声系数还与晶体管的工作状态以及信源内阻有关。为了兼顾低噪声和高增益的要求,常采用共发射极一共基极基联的低噪声放大电路。 低噪放大器的原理: 地球站的品质因数(G/T)主要取决于天线和低噪声放大器(LNA)的性能。接收系统的噪声温度Ts是指折算到LNA输入端的系统等效噪声温度,它主要由天线噪声温度TA、馈线损耗LALA 和低噪声接收机噪声三个部分组成。 低噪放大器的应用: 低噪放大器(LNA)主要面向移动通信基础设施基站应用,例如收发器无线通信卡、塔顶放大器(TMA)、组合器、中继器以及远端/数字无线宽带头端设备等应用设计,并为低噪声指数(NF, Noise Figure)立下了新标竿。目前无线通信基础设施产业正面临必须在拥挤的频谱内提供信号质量和覆盖度的挑战,接收器灵敏度是基站接收路径设计中最关键的要求之一,合适的LNA选择,特别是第一级LNA可以大幅度改善基站接收器的灵敏度表现,低噪声指数也是关键的设计目标,Avago提供了1900MHz下0.48dB同级产品的噪声指数。另一个关键设计为线性度,它影响了接收器分辨紧密接近信号和假信号分别的能力,三阶截点OIP3可以用来定义线性度,在1900MHz和5V/51mA的典型工作条件下,Avago特有的GaAs增强模式pHEMT工艺技术可以带来0.48dB的噪声指数和35dBm的OIP3,在2500MHz和5V/56mA的典型工作条件下,噪声指数为0.59dB,OIP3则为35dBm。通过低噪声指数和高OIP3,这些Avago的新低噪声放大器可以提供基站接收器路径比现有放大器产品更大的设计空间。 LNA经历了早期液氦致冷的参量放大器、常温参量放大器的发展过程,随着现代科学技术的高速发展,近几年已被微波场效应晶体管放大器所取代,此种放大器具有尺寸小、重量轻和成本低的优异特性。特别是在射频特性方面具有低噪声、宽频带和高增益的特点。在C、Ku、Kv 等频段中已被广泛的使用,目前常用的低噪声放大器的噪声温度可低于45K。 在雷达射频接收系统中,对系统性能指标的要求越来越高,其中低噪声放大器是影响着整个接收系统的噪声指标的重要因素。与普通的放大器相比,低噪声放大器作用比较突出,一方面可以减少系统的杂波干扰,提高系统的灵敏度;另一方面可以放大系统的射频信号,保证系统正常工作。因此,低噪声放大器的性能制约着整个接收系统的性能,对整个接收系统性能的提高起了决定性的作用。因此,研制宽频带、高性能、更低噪声的放大器,已经成为微波技术中发展的核心之一。 由放大器所引起的信噪比恶化程度通常用噪声系数F来表示。理想放大器的噪声系数F=1(0分贝),其物理意义是输出信噪比等于输入信噪比。现代的低噪声放大器大多采用晶体管、场效应晶体管;微波低噪声放大器则采用变容二极管参量放大器,常温参放的噪声温度Te可低于几十度(绝对温度),致冷参量放大器可达20K以下,砷化镓场效应晶体管低噪声微波放大器的应用已日益广泛,其噪声系数可低于2分贝。

低噪声放大器设计指南

低噪声放大器设计指南 文件标识:基础知识 当前版本: 1.0 作者:刘明宇 日期:2006.12.2 审阅\修改: 修改日期: 文件存放: 版本历史 版本作者日期修改内容 盖受控章 除非加盖文件受控章,本文一经打印或复印即为非

1.低噪声放大器在通讯系统中的作用 随着通讯工业的飞速发展,人们对各种无线通讯工具的要求也越来越高,功率辐射小、作用距离远、覆盖范围大已成为各运营商乃至无线通讯设备制造商的普遍追求,这就对系统的接收灵敏度提出了更高的要求,我们知道,系统接收灵敏度的计算公式如下: S = -174+ NF+10㏒BW+S/N (1) min 由上式可见,在各种特定(带宽、解调S/N 已定)的无线通讯系统中,能有效提高灵敏度的关键因素就是降低接收机的噪声系数NF,而决定接收机的噪声系数的关键部件就是处于接收机最前端的低噪声放大器。 低噪声放大器的主要作用是放大天线从空中接收到的微弱信号,降低噪声干扰,以供系统解调出所需的信息数据,所以低噪声放大器的设计对整个接收机来说是至关重要的。 2. 低噪声放大器的主要技术指标: 2.1 噪声系数NF 噪声系数的定义为放大器输入信噪比与输出信噪比的比值,即: out out in in N S N S NF //= 对单级放大器而言,其噪声系数的计算为: 222min |1)||1(||4opt s opt s n R NF NF Γ?Γ?Γ?Γ+= 其中 F min 为晶体管最小噪声系数,是由放大器的管子本身决定的, Γopt 、Rn 和Γs分别为获得 F min 时的最佳源反射系数、晶体管等效噪声电阻、以及晶体管输入端的源反射系数。 对多级放大器而言,其噪声系数的计算为: NF=NF 1+(NF -1)/G 1+(NF 3-1)/G 1G + (4) 22其中NF n 为第n级放大器的噪声系数,G n 为第n级放大器的增益。 在某些噪声系数要求非常高的系统,由于噪声系数很小,用噪声系数表示很不方便,常常用噪声温度来表示,噪声温度与噪声系数的换算关系为: T e = T 0 ( NF – 1 ) (5) 其中T e 为放大器的噪声温度,T 0 =2900 K,NF为放大器的噪声系数。 NF(dB) = 10LgNF (6) 2. 2 放大器增益G: 放大器的增益定义为放大器输出功率与输入功率的比值: G=P out / P in (7) 从式(4)中可见,提高低噪声放大器的增益对降低整机的噪声系数非常有利,但低噪

GPS低噪声放大器的设计

NF(dB)=10lg ? 一个微波管的射频绝对稳定条件是K>1,S 11<1-S12S21,S22<1-S12S21。 低噪声放大器的设计 姓名:####学号:################班级:1######## 一、设计要求 1.中心频率为1.45GHz,带宽为50MHz,即放大器工作在1.40GHz- 1.50GHz频率段; 2.放大器的噪声系数NF<0.8dB,S11<-10dB,S22<-15dB,增益 Gain>15dB。 二、低噪声放大器的主要技术指标 低噪声放大器的性能主要包括噪声系数、合理的增益和稳定性等。 1.噪声系数NF 放大器的噪声系数(用分贝表示)定义如下: ?S in N in? ?S out N out? 式中NF为射频/微波器件的噪声系数;S in ,N in 分别为输入端的信号功率和噪 声功率;S out ,N out 分别为输出端的信号功率和噪声功率。 噪声系数的物理含义是,信号通过放大器后,由于放大器产生噪声,使得信噪比变坏,信噪比下降的倍数就是噪声系数。 2.放大器的增益Gain 在微波设计中,增益通常被定义为传输给负载的平均功率与信号源的最大资用功率之比: Gain=P L P S 增益的值通常是在固定的频率点上测到的,低噪声放大器都是按照噪声最佳匹配进行设计的。噪声最佳匹配点并非最大增益点,因此增益Gain要下降。噪声最佳匹配情况下的增益称为相关增益。通常,相关增益比最大增益大概低2~4dB. 3.稳定性 22

只有当3个条件都满足时,才能保证放大器是绝对稳定的。 三、低噪声放大器的设计步骤 1.下载并安装晶体管的库文件 (1)由于ADS2008自带的元器件库里并没有ATF54143的元器件模型,所以 需要从Avago公司的网站上下载A TF54143.zap,并进入ADS主界面,点击【File】——【Unarchive Project】进行安装。 (2)新建工程A TF54143_LNA_1_prj,执行菜单命令【File】—— 【Include/Remove Projects】将A TF54143_prj添加到新建工程中,这样新建工程就能使用器件A TF54143了。 2.确定直流工作点 低噪声放大器的设计的第一步是设置晶体管的直流工作点。 (1)在ADS中执行菜单【File】——【New Design】,在弹出的对话框中的 Schematic Design Templates下拉列表中选择“DC_FET_T”模板,在Name文本框中输入DC_FET_T,单击【OK】,这样DC_FET控件就被 放置在原理图中了。 (2)在原理图中放置器件A TF54143,设置DC_FET控件的参数并连接原理图 如图1所示。 图1完整DC_FET_T原理图 (3)仿真得到A TF54143的直流特性图如图2所示。

功放的工作原理与作用

功放的工作原理与作用 功放的作用就是把来自音源或前级放大器的弱信号放大,以推动扬声器放声。一套良好的音响系统功放的作用功不可没。 功放作为各类音响器材中的大块头,它主要是将音源器材输入的较弱信号进行放大后,产生足够大的电流去推动扬声器进行声音的重放。由于考虑功率、阻抗、失真、动态以及不同的使用范围和控制调节功能,不同的功放在内部的信号处理、线路设计和生产工艺上也不尽相同。 汽车功放电路图 汽车音响系统跟家用音响一样,使用功率放大器才能使整个系统完整。如果是刚接触汽车音响的人,对于在汽车中也安装功率放大器,甚至是安装多个功率放大器,可能会觉得不可思议。这个要从汽车自身来讲开,因为汽车的电源电压一般只有14.4V,功率(P)=电压(U)x电流(I),最多能达到4x55W。如果只用主机自身的功率放大器,只能推动功率小的扬声器,而且音量开大就会失真,声音听起来生硬,缺乏弹性。人耳听觉是有限度的,其下限比所能听到的音量上限还要少,这个可解释为何声音在一开始时感觉比较强烈,慢慢会觉得微弱下去。要让任何声音达到最逼真的状态,对于目前技术还无法解决。挡风玻璃,内装饰,发动机以及车底盘和轮胎在路面行驶时所发出的噪音,对聆听环境造成不可忽视的影响。只能加装功率放大器,才能解决低声压级和后级功率不足的缺陷,来重播音乐的全部信息。如果车用功率放大器内部使用逆变电源,将电源电压提高到40V左右,功率也会随之得到提高,这样便可推动大功率扬声器。由于储备功率加大,提高音量就不会产生失真,音质有力且富有弹性。尤其在推动大尺寸的低音扬声器时,低音区更加延伸,声音变得丰满,这样这个难题就能迎刃而解。

实际上功放是高保真地还原音频信号。我们来打个简单的比方,其实功放就好比复印机工作。为何要把这两个风马不相及的概念扯在一块,听我仔细一一道来。它们的实质作用都是复制某物,正如复印机可以把较小的纸张复印成较大的纸张。假如你去复印A4的纸张原件,那么你除了可以得到A4纸张的复印件,还可以得到A3或A1,甚至更大的纸张,新的复印件其实就是就是原件的放大版,这个你自己根据需要可以去控制调节。功放酷似复印机,复印件并非本源的原件。经过功放加工的信号就是原音频的还原加强版,音量比源音频输入要大。它改变的只是音频输入的音量,而音色并无改变。如果它的音色也改变了.那么它的波长及频率也相应有所改变。对于此话题本文将不做详细且有深度的阐述。这个比方通俗易懂,恰如其分。现在,我想大家对于功放应该有了大致的认识。总而言之.车载功放就是把输入端(主机、CD播放机等等)的音频输入还原放大,同时使它达到足够的强度,以至于能够带动喇叭工作。 功率放大器的工作原理就是靠电压来控制电流通道的大小来达到控制电流大小的目的。利用三极管的电流控制作用或场效应管的电压控制作用将电源的功率转换为按照输入信号变化的电流。因为声音是不同振幅和不同频率的波,即交流信号电流,三极管的集电极电流永远是基极电流的β倍,β是三极管的交流放大倍数,应用这一点,若将小信号注入基极,则集电极流过的电流会等于基极电流的β倍,然后将这个信号用隔直电容隔离出来,就得到了电流(或电压)是原先的β倍的大信号,这现象成为三极管的放大作用。经过不断的电流及电压放大,就完成了功率放大。而场效应管则是用栅极电压来控制源极与漏极的电流,其控制作用用跨导表示,即栅极变化一毫伏,源极电流变化一安,就称跨导为1,功率放大器就是利用这些作用来实现小信号控制大信号,从而使多级放大器实现了大功率的输出,并非真的将功率放大了!它们是转化的电源功率,而不是对能量的放大。以我们目前的技术我们还是要遵守能量守恒定律的。

低噪声放大器

低噪声放大器(Low Noise Amplifier,LNA)广泛应用于射电天文、卫星接收、雷达通信等收信机灵敏度要求较高的领域,主要作用是放大所接收的微弱信号、降低噪声、使系统解调出所需的信息数据。而噪声系数(Noise Figure,NF)作为其一项重要的技术指标直接反映整个系统的灵敏度,所以LNA设计对整个系统的性能至关重要。 1 GPS接收机低噪声放大器的设计 设计的LNA主要指标为:工作频率为1 520~1 600 MHz;噪声系数NF16.0 dB;输入驻波比<2;输出驻波比<1.5。 1.1 器件选择 选择合适的器件,考虑到噪声系数较低、增益较高,所以选择PHEMT GaAsFET低噪声晶体管。在设计低噪声放大器前,首先要建立晶体管的小信号模型,一般公司都会提供具有现成模型的放大器件。这里选择Agilent公司的生产的ATF-54143。1.52~1.60 GHz频带内,设计反τ型匹配网络,该匹配网络由集总元件电感、电容构成。选择电感时,要选择高Q 电感。为了在模拟仿真中能够与实际情况相符合,选用Murata公司的电感和电容模型。这里选用贴片电感型号为LQWl8,贴片电容型号为GRMl8,电感LQWl8在1.6 GHz典型Q值为80。 1.2 直流偏置 在设计低噪声放大器中,设计直流偏置的目标是选择合适的静态工作点,静态点的好坏直接影响电路的噪声、增益和线性度。由电阻组成的简单偏置网络可以为ATF-54143提供合适的静态工作点,但温度性较差。可用有源偏置网络弥补温度性差的缺点,但有源偏置网络会使电路尺寸增加,加大了电路板排版的难度以及增加了功率消耗。在设计实际电路中,要根据具体情况选择有源偏置网络,或是电阻偏置网络。就文中的LNA而言,考虑到结构和成本,这里选择电阻无源偏置网络。采用Agilenl的ATF54143,根据该公司给出的datasheet 指标,设计Vds=3.8 V、Ids=ll mA偏置工作点。因为在电流为llmA时ATF-54143性能较好。电阻R3为100 Ω;R2为680 Ω;R1为60 Ω,如图1所示。

wifi信号放大器的工作原理是什么

wifi信号放大器(增强器、扩展器)工作原理是什么? 因为从事WIFI领域的原因,经常有朋友问我,wifi信号放大器(增强器、扩展器)真的有用吗?回答是肯定的,wifi信号放大器,又叫做无线信号增强器、扩展器,它的主要作用就是用来放大无线wifi信号的,这一点是毋庸置疑的。 wifi信号放大器,或者说是无线信号扩展器,它放大无线信号的原理,实际上和两个无线路由器之间的无线桥接类似。wifi信号放大器会通过无线的方式,和原来无线路由器建立连接,wifi信号放大器自身再提供一个无线信号,从而实现扩大无线信号覆盖范围的目的。 wifi信号放大器在设置上,比两个无线路由器设置无线桥接更加的简单、方便。如果你家里面积比较大,一台无线路由器的信号不能够覆盖所有的区域;那么你可以考虑买一个无线信号放大器回去,用它来放大原来路由器的信号,就可以让无线信号覆盖你家里所有区域了。 WIFI信号放大器模块TMA3008A 7628KN WIFI模块 注意问题: 1、wifi信号放大器的安装位置非常的重要,安装的位置离原来的路由器太远,会导致wifi 信号放大器无法放大原来路由器信号,或者是放大原路由器信号后,网络不稳定。 如果wifi信号放大器安装的位置,离原来路由器非常近,又无法起到放大wifi信号的目的。我们的建议是,把wifi信号放大器,安装在原路由器和原来信号差区域的中间位置,这样对无线信号覆盖范围和网络稳定性起到一个平衡的作用。 2、还有一点大家需要明白,用wifi信号放大器放大原来wifi信号后,无线网络的稳定性、传输速度会受到一定的影响。 如果你的网络的性能有非常搞的要求,那么建议使用电力猫、二级路由器(WIFI路由模块)、无线AP(WIFI AP模块)的方式,来增强无线信号的覆盖范围。

运算放大器的工作原理

运算放大器的工作原理 放大器的作用:1、能把输入讯号的电压或功率放大的装置,由电子管或晶体管、电源变压器和其他电器元件组成。用在通讯、广播、雷达、电视、自动控制等各种装置中。原理:高频功率放大器用于发射机的末级,作用是将高频已调波信号进行功率放大,以满足发送功率的要求,然后经过天线将其辐射到空间,保证在一定区域内的接收机可以接收到满意的信号电平,并且不干扰相邻信道的通信。高频功率放大器是通信系统中发送装置的重要组件。按其工作频带的宽窄划分为窄带高频功率放大器和宽带高频功率放大器两种,窄带高频功率放大器通常以具有选频滤波作用的选频电路作为输出回路,故又称为调谐功率放大器或谐振功率放大器;宽带高频功率放大器的输出电路则是传输线变压器或其他宽带匹配电路,因此又称为非调谐功率放大器。高频功率放大器是一种能量转换器件,它将电源供给的直流能量转换成为高频交流输出在“低频电子线路”课程中已知,放大器可以按照电流导通角的不同, 运算放大器原理 运算放大器(Operational Amplifier,简称OP、OPA、OPAMP)是一种直流耦合﹐差模(差动模式)输入、通常为单端输出(Differential-in, single-ended output)的高增益(gain)电压放大器,因为刚开始主要用于加法,乘法等运算电路中,因而得名。一个理想的运算放大器必须具备下列特性:无限大的输入阻抗、等于零的输出阻抗、无限大的开回路增益、无限大的共模排斥比的部分、无限大的频宽。最基本的运算放大器如图1-1。一个运算放大器模组一般包括一个正输入端(OP_P)、一个负输入端(OP_N)和一个输出端(OP_O)。 图1-1 通常使用运算放大器时,会将其输出端与其反相输入端(inverting input node)连接,形成一负反馈(negative feedback)组态。原因是运算放大器的电压增益非常大,范围从数百至数万倍不等,使用负反馈方可保证电路的稳定运作。但是这并不代表运算放大器不能连接成正

微波低噪声放大器的主要技术指标、作用及方案设计

微波低噪声放大器的主要技术指标、作用及方案设计 随着通讯工业的飞速发展,人们对各种无线通讯工具的要求也越来越高。功率辐射小、作用距离远、覆盖范围大已成为各运营商乃至无线通讯设备制造商的普遍追求,而这也同时对系统的接收灵敏度提出了更高的要求。 1微波低噪声放大器的作用 一般情况下,一个接收系统的接收灵敏度可由以下计算公式来表示: 由上式可见,在各种特定(带宽BW、解调S/N已定)的无线通讯系统中,能有效提高灵敏度的关键因素就是降低接收机的噪声系数NF,而决定接收机噪声系数的关键部件则是处于接收机 前端的低噪声放大器。 图1所示是接收机射频前端的原理框图。由图1可见,低噪声放大器的主要作用是放大天线从空中接收到的微弱信号,降低噪声干扰,以供系统解调出所需的信息数据,所以,低噪声放大器的设计对整个接收机来说是至关重要的。

2微波低噪声放大器的主要技术指标 2.1噪声系数 噪声系数的定义为放大器输入信噪比与输出信噪比的比值,即: 对单级放大器而言,其噪声系数的计算为: 其中Fmin为晶体管 噪声系数,是由放大器的管子本身决定的,Γopt、Rn和Γs分别为获得Fmin时的 源反射系数、晶体管等效噪声电阻以及晶体管输入端的源反射系数。 对多级放大器。其噪声系数的计算应为: 其中NFn为第n级放大器的噪声系数,Gn为第n级放大器的增益。 对噪声系数要求较高的系统,由于噪声系数很小,用噪声系数表示很不方便,故常用噪声温度来表示,噪声温度与噪声系数的换算关系为: 其中Te为放大器的噪声温度,T0=2900K,NF为放大器的噪声系数。 2.2放大器增益 放大器的增益定义为放大器输出功率与输入功率之比: G=Pout/Pin(7)

低噪声放大器的设计

低噪声放大器的设计 参数: 低噪声放大器的中心频率选为2.4GHz,通带为8MHz 通带内增益达到11.5dB,波纹小于0.7dB 通带内的噪声系数小于3 通带内绝对稳定 通带内输入驻波比小于1.5 通带内的输出驻波比小于2 系统特性阻抗为50欧姆 微带线基板的厚度为0.8mm,基板的相对介电常数为4.3 步骤: 1.打开工程,命名为dzsamplifier。 2.新建设计,命名为dzsamplifier。设置框如下: 点击OK后,如下图。

模板为BJT_curve_traver,带有这个模板的原理图可以自动完成晶体管工作点扫描工作。 3.在ADS元件库中选取晶体管。单击原理图工具栏中的, 打开元件库,然后单击,在 搜索“32011”。其中sp开头的原件是S参数模型,可以用来作S参数仿真,但这种模型不能用来做直流工作点扫描。以pb开头的原件是封装原件,可以做直流工作点扫描,此处选择pb开头的。 4.按照下图进行连接

5.将参数扫描控制器中的 【Start】项修改为Start=0. 6.点击进行仿真,仿真结束后,数据显示窗自动弹出。 如下图: 7.晶体管S参数扫描。 (1)重新新建一个新的原理图S_Params,进行S参数扫描。如下图:

点击OK后,出现: (2)在ADS元件库中选取晶体管。单击原理图工具栏中 的,打开元件库,然后单击,在 搜索“32011”。此处选择sp 开头的。 (3)以如图的形式连接。 (4)双击S参数仿真空间SP,将仿真控件修改如下。

(5)点击仿真按钮,进行仿真。数据如下图所示: (6)双击S参数的仿真控件,选中其中的【Calculate Noise】,如图 执行后:

低噪声功率放大器设计

微波电子线路大作业 ——低噪声功率放大器设计 班级:021013班 学号:02011268 姓名:

低噪声放大器的设计 一、设计要求: 已知GaAs FET 在4 GHz 、50 Ω系统中的S 参数和噪声参量为 S11=∠-60°,S21=∠81°, S12=∠26°,S22=∠-60° Fmin= dB Γout=∠100°RN=20 Ω 设计一个低噪声放大器,要求噪声系数为2 dB ,并计算相应的最大增益。 若按单向化进行设计,则计算GT 的最大误差。 二、低噪声放大器设计原理及思路 低噪声放大器功能概述 低噪声放大器是射频/微波系统的一种必不可少的部件,它紧接接收机天线,放大天线从空中接收到的微弱信号。低噪声放大器在对微弱信号放大的同时还会产生附加于扰信号,因此它的设计目标是低噪声,足够的增益,线性动态范围宽。低噪声放大器影响整机的噪声系数和互调特性,分析如下 (1) 系统接收灵敏度: (2) 多个级连网络的总噪声系数 放大器工作组态分类 A 类放大器(导通角360度,最大理论效率50%)用于小信号、低噪声,通常是接收机前端放大器或功率放大器的前级放大。 B 类(导通角180度,最大理论效率%)和 C 类(导通角小于180度,最大理论效率大于% )放大器电源效率高,愉出信号谐波成分高,需要有外部混合电路或滤波电路.由B 类和C 类放大器还可派生出 D 类、 E 类、P 类等放大器。 min 114(dBm/Hz)NF 10log BW(MHz)/(dB) S S N =-+++321112 121 11 n tot A A A A A An F F F F F G G G G G G ---=+++ +

低噪声放大器指标

第1节低噪声放大器指标 低噪声放大器 低噪声放大器(LNA)是射频接收机前端的主要部分。 它主要有四个特点。 1)它位于接收机的最前端,这就要求它的噪声越小越好。为了抑制后面各级噪声对系统的影响,这要求有一定的增益,但为了不使后面的混频器过载,产生非线性失真,它的增益又不能过大。放大器在工作频段内应该是稳定的。 2)它所接收的信号是很微弱的,所以低噪声放大器必定是个小信号放大器。而且由于受传输路径的影响,信号的强弱又是变化的,在接收信号的同时又可能伴随着很多强信号的干扰,因此要求放大器有足够大的线性范围,而且增益最好是可以调节的。 3)低噪声放大器一般通过传输线直接和天线或者天线的滤波器相连,放大器的输入端必须和它们很好的匹配,以达到功率最大传输或者最小的噪声系数,并能保证滤波器的性能。 4)低噪声放大器应该具有一定的选频功能,抑制带外和镜像频率干扰,因此它一般是频带放大器。 低噪声放大器的所有指标都是互相牵连的,甚至是相互矛盾的。这些指标不仅取决于电路的结构,对集成电路来说,还取决于工艺技术。在设计中如何采用折衷的原则,兼顾各项指标,是很重要的。 1)低功耗 LNA是小信号放大器,必须给它设置一个静态偏置。而降低功耗的根本办法是采用低电源电压、低偏置电流,但伴随的结果是晶体管的跨导减小,从而引起晶体管及放大器的一系列指标的变化。 2)工作频率 放大器所能允许的工作频率和晶体管的特征频率Ft有关。减小偏置电流的结果会使晶体管的特征频率降低。在集成电路中,增大晶体管的面积会使极间电容增加,这也降低了特征频率。 3)噪声系数 任何一个线性网络的噪声系数可以表示为: (4.1)

放大电路的组成及工作原理

2.4 放大电路的组成及工作原理 参考教材:《模拟电子技术基础》孙小子张企民主编西安:西安电子科技大学出版社 一、教学目标及要求 1、通过本次课的教学,使学生了解晶体管组成的基本放大电路的三种类型, 掌握放大电路的组成元器件及各元器件的作用,理解放大电路的工作原理。 2、通过本节课的学习,培养学生定性分析学习意识,使学生掌握理论结合生 活实际的分析能力。 二、教学重点 1、共发射极放大电路的组成元器件及各元器件作用; 2、共发射极放大电路的工作原理。 三、教学难点 1、共发射极放大电路的组成元器件及各元器件作用; 2、共发射极放大电路的工作原理。 四、教学方法及学时 1、讲授法 2、1个学时 五、教学过程 (一)导入新课 同学们,上节课我们已经学习了晶体管内部载流子运动的特性以及由此引起的晶体管的一些外部特性,比如说晶体管的输入输出特性等,在这里,我要强调一下,我们需要把更多的注意力放在关注晶体管的外部特性上,而没有必要细究内部载流子的特点。由晶体管的输出特性,我们知道,当晶体管的外部工作条件不同时,晶体管可以工作在三个不同的区间。分别为:放大区、截止区、饱和区,其中放大区是我们日常生活中较为常用的一种工作区间。大家是否还记得,晶体管工作在放大区时所需要的外部条件是什么吗(发射结正偏,集电结反偏)?这节课,我们将要进入一个晶体管工作在放大区时,在实际生活中应用的新内容学习。 2.4放大器的组成及工作原理 一、放大的概念 放大:利用一定的外部工具,使原物体的形状或大小等一系列属性按一定的比例扩大的过程。日常生活中,利用扩音机放大声音,是电子学中最常见的放大。其原理框图为: 声音声音 扩音器原理框图 由此例子,我们知道,放大器大致可以分为:输入信号、放大电路、直流电源、输出信号等四部分,它主要用于放大小信号,其输出电压或电流在幅度上得到了放大,输出信号的能量得到了加强。对放大电路的基本要求:一是信号不失真,二是要放大。

相关文档