文档库 最新最全的文档下载
当前位置:文档库 › 010“电磁学”、“光学”、“热学”总结

010“电磁学”、“光学”、“热学”总结

010“电磁学”、“光学”、“热学”总结
010“电磁学”、“光学”、“热学”总结

对“电磁学”、“光学”、“热学”三篇小结:

在今日大学物理中:电可以转化成热,转化成光,它们在转化过程中保持“能量守恒”,热量辐射电磁波和光,光也是电磁波,电磁波与光只是频率不同,其它一切都相同,低频电磁波可以使无线电天线感应出电流,而高频电磁波表现为电中性。光是粒子,在运动过程中有波动表现,电子遵守“电荷守恒”、“粒子数守恒”。

以上三篇的论述,使今日大学物理的以上理论更加明确,使电、热、光的转化过程完全清晰,使它们之间的关系更加紧密。使电、热,光转化并守恒的本质彻底解析。

电、热、电磁波、光的表现不同,都是是由于电子的运动状态不同,由于电子有磁矩,电子的电磁力相对周围空间具有方向性,由于电磁力的传播速度是有限速度,旋转的电子朝向空间某一方向停留的时间很短,它的电磁力的传播距离与转数成反比,转数较低的电子,传播的电磁力的距离较远,当它经过无线电天线旁时,可以使无线电天线感应出电流,这就是低频电磁波,当电子的转数与可见光频率相一致时,高速运动的电子就是可见光,当旋转的电子的表面线速度超过光速后,它的电磁力已不能辐射到周围空间,这时电子相对周围空间表现为电中性,这就是高频电磁波,也就是高频光。“电子的转数就是电磁波和光的频率”,这就使“光是电磁波,电磁波也是光,光与电磁波只是频率不同,低频电磁波可以使无线电天线感应出电流,而高频电磁波表现为电中性。”的今日大学物理理论得到最严谨、最完美的解释。

在热无规则运动中,大量电子旋转着以无规则运动同处一个空间时,它们的电磁力朝向周围空间各个方向的概率基本相等,电磁力的叠加宏观效果平均可为0,因此,在宏观没有明显电磁力显示。在空气和真空中,当热无规则运动中的电子,以辐射方式运动时,就是电磁波或光。

在电、热、光转化过程中,电子数量守恒,就是能量守恒的本质。

热和光都是电子的一种运动状态,使今日大学物理中:“电可以转化成热,转化成光,热量辐射电磁波和光,光是电磁波,电磁波也是光,光与电磁波只是频率不同,其它一切都相同,低频电磁波可以使无线电天线感应出电流,而高频电磁波表现为电中性。”的理论得到了最严格的解析,使今日大学物理理论的以上相关理论更加明确,逻辑更加严谨,使人们对电、热、光之间的转化关系,不但“知其然,更知其所以然”。

热和光都是电子的不同运动状态,这就使今日大学物理理论中的热学、光学、电磁学在现有理论范畴内,在最严格的程度上实现了最全面的统一,由于已将“分子热运动”中的"分子力"归结为"四项基本作用力",这样,力学。热学、光学、电磁学就全面严格统一在一起,使今日物理学成为一个密不可分的统一体。

物理理论的主要内容就是对电、热、光的讨论,当热和光都是电子的不同运动状态时,自然界中物质存在的基本形式和基本运动规律就得到了明确解析,“量子”、"超弦"可以休矣,一切建立在错误基础之上的所有理论可以休矣,与电、热、光有关的一切理论都可以在此基础得到清晰明确的解析,物理理论中的一切模糊、神玄的概念就都不需要存在了,全部物理理论将变得简洁、明确、严谨、

自洽、合理。一幅简洁清晰的物理图像展现在人们面前。对于大量复杂的自然现象,人们不但“知其然,更知其所以然”。

这在传统理论范围内,在人类已知的宇宙中,地球上的物质种类是最丰富的,地球上的万物又都是由原子构成的,原子又都是由质子、中子、电子构成的,在排除地球之外的影响时,地球上的一切物质存在的形式及变化也应该只是由这三种粒子形成的。由简单构成复杂,这是自然界的规律,在构成地球上的万物及变化的三种粒子中,中子和质子在普遍情况下是不能独立运动的,只有电子是可以容易移动的,地球上与电、热、光有关的绝大多数变化也只能是由可以容易移动的电子形成的,除此之外,没有什么可以新的“东西”可以产生,热和光都是电子的一种运动状态,这是逻辑的必然,自然的必然。本文所得出的结论也正与这一逻辑之必然相一致,也与自然规律相一致。

“鲜明的物理图像”,“明确的物理机理”,“知其然更知其所以然”的结论,是物理理论的最高追求。赵凯华讲到:“理论物理学家不能仅仅埋首于公式的推演,应该询问其物理实质,从中构想出鲜明的物理图像来;实验物理学家不应满足于现象和数据的记录,或某种先进的指标,而要追究其中的物理机理”。高崇寿讲到:“物理学不仅要知道…然?,而且要知道…所以然?。”本文的以上论证已经实现了物理学的这一追求。

现有大学教科书讲到:“……一个理论包含的假设愈少、愈简洁,同时与之符合的事实愈多、愈普遍,它就愈是一个好的理论”(见《新概念物理学·力学》赵凯华、罗蔚茵著P4)。

本文以上论述没有假设,仅以一个电子的不同运动状态严谨、合理的解释了电磁波的本质、光的本质、热的本质,以最少的前提解释最多的物理现象,以上论述不但更加合理的解释了以往理论可以解决的,而且合理解决以往理论不能解决的大量现象,其结论是有史以来最明确、最简洁、最自洽,最严谨、同时与之符合的事实是最多的、与常识最一致的、最容易理解的、最普适的理论,它应该是现有理论中最好的理论。物理理论(自然真理)的简洁性、严谨性、合理性、自洽性、逻辑性、普适性,在这里得到了最好的体现。

费恩曼讲到:“某些东西是十分简单的。如果你不能够立刻看出来它是错误的,而且它比以前的理论更加简单,那么它就是对的了”。“你可以通过它的美和简单性来认出真理”。“真理总是比你想像的更简单”。(《物理定律的本性》

P180[美]R. P 费曼关洪译湖南科学技术出版社2005)。

“大道至简”的中国传统思想在这里得到了最好的体现。

热是旋转的电子。热量辐射辐射的是电磁波和光,电磁波和光也都是旋转的电子形成的,不但使电子、热、电磁波、光的关系明确,而且使“能量”的本质基本清晰,除“原子能”和“化学能”外,“能量”的其它形式都可以在“四项基本作用力”的基础上得到合理解释,这样,“能量”这个物理学中使用最多,涉及范围最广,最神秘最重要的概念的本质就可以得到明确的解析。“能量”这一概念不但物理学中使用,其它领域也都广泛使用,因此对“能量”的解析,将对人类各个方面都具有重要的意义。

本文的论述全部都是在现有基础理论范畴内进行的,仅仅是对现有最基础理论进行了进一步严格归纳和严格推理,从而得出的更严格的结论,这一结论仅仅是使今日大学物理基础理论中的:“电转化成热、转化成光,光是电磁波,电磁波也是光,热辐射也辐射电磁波和光”的理论更加明确、严谨、清晰、简洁。同时使电、热、光转化并守恒的本质得到解析。全部论证都没有超出现有理论的范围,全部论证都与最基础的理论全面自洽,全部论证仅仅是使现有理论中不明确的观点变得明确,不严谨地方变得严谨,不清晰的过程变得清晰,仅此而已。

基础理论的进步将促进物理理论的全面进步。理论的进步将促使相关技术的极大进步。

以上全部论述仅仅是对相关的传统基础理论进行严格归纳、严谨推理、逐步演绎得出的必然结论。对于一切熟悉传统基础理论的人来说,只要进行严格论证,他们自己也可以得出以上相同的结论。以上论证没有一个未加验证的新概念,只有严谨的逻辑推理,因此本文不存在产生歧义的任何条件。

附记;

以往理论之所以没有得出正确的结论,除受时代的局限外,还存在一个重要原因就是:论证过程中使用的许多物理概念内涵不明确(见张绵厘《实用逻辑教程》P33),论证过程不严谨,许多论据没有得到切实验证。论据没有严格按照论证的逻辑规则来使用(见张绵厘《实用逻辑教程》P259-262)造成的。

以往理论之所以没有得出正确的结论的另一个原因是:物理学的许多重要理论都是建立在假说的基础之上的,这些假说还没有上升为真理,却被当作判据来使用,违反了假说在逻辑论证中的定位(见张绵厘《实用逻辑教程》p206---209),违反了逻辑论证规则(见张绵厘《实用逻辑教程》p260---261)造成的。

以往理论之所以没有得出正确结论,还有论证方法问题:在以往的理论中,数学被抬到了超过应有的地位,使许多物理理论变成了数学游戏,尤其是那些被称为现代物理和前沿物理的理论。这也是导致理论难以走上正确道路的根本原因之一,对此费恩曼曾有过告诫。在此我们再将费恩曼的告诫重复一遍,费恩曼在《物理定律的本性》中讲到:“我还要说说在数学同物理学的关系方面的几件更普遍一点的事。数学家们仅仅处理推理的结构,并不真正关心他们所谈论的是什么东西。他们甚至不需要知道他们所谈论的是什么东西或者,像他们自己常说的那样,并不关心他们说的东西是否真正存在。”……“物理不是数学,数学也不是物理学。两者是相辅相成的。但在物理学里你要理解词语同现实世界的联系。你最终必须把脑子里所想的东西转换为语言文字,转换为同现实世界的联系……。只有通过这种方式你才能发现你的结果是否正确。这是一个单凭数学完全无能为力去解决的问题”(《物理定律的本性》费恩曼着关洪译 P51)。

(完整版)面对高考高中电磁学公式总结

高中电磁学公式总结 (一)直流电路 1、电流的定义: I = Q t (微观表示: I=nesv ,n 为单位体积内的电荷数) 2、电阻定律: R=ρ S L (电阻率ρ只与导体材料性质和温度有关,与导体横截面积和长度无关) 3、电阻串联、并联: 串联:R=R 1+R 2+R 3 +……+R n 并联: 11112R R R =+ 两个电阻并联: R=2121R R R R + 4、欧姆定律:(1)部分电路欧姆定律:I U R = U=IR R U I = (2)闭合电路欧姆定律:I =ε R r + 路端电压: U = ε -I r= IR 电源输出功率: P 出 = I ε-I 2r = I R 2 电源热功率: P I r r =2 电源效率: η=P P 出 总=U ε =R R+r (3)电功和电功率: 电功:W=IUt 电热:Q=I Rt 2 电功率 :P=IU 对于纯电阻电路: W=IUt=I Rt U R t 2 2 = P=IU =R I 2 对于非纯电阻电路: W=Iut >I Rt 2 P=IU >R I 2 (4)电池组的串联:每节电池电动势为ε0`内阻为r 0,n 节电池串联时:

电动势:ε=n ε0 内阻:r=n r o (二)电场 1、电场的力的性质: 电场强度:(定义式) E = q F (q 为试探电荷,场强的大小与q 无关) 点电荷电场的场强: E = 2 r kQ (注意场强的矢量性) 2、电场的能的性质: 电势差: U = q W (或 W = U q ) U AB = φA - φB 电场力做功与电势能变化的关系: U = - W 3、匀强电场中场强跟电势差的关系: E = d U (d 为沿场强方向的距离) 4、带电粒子在电场中的运动: ① 加速: Uq =2 1mv 2 ②偏转:运动分解: x= v o t ; v x = v o ; y =2 1a t 2 ; v y = a t a = m Eq (三)磁场 1、几种典型的磁场:通电直导线、通电螺线管、环形电流、地磁场的磁场分布。 2、 磁场对通电导线的作用(安培力):F = BIL (要求 B ⊥I , 力的方向由左手定则判定;若B ∥I ,则力的大小为零) 3、磁场对运动电荷的作用(洛仑兹力): F = qvB (要求v ⊥B, 力的方向也是由左手定则判定,但四指必须指向正电荷的运动方向;若B ∥v,则力的大小为零) 4、带电粒子在磁场中运动:当带电粒子垂直射入匀强磁场时,洛仑兹力提供 向心力,带电粒子做匀速圆周运动。即: qvB = R v m 2

大学物理电磁学考试试题及答案

大学电磁学习题1 一.选择题(每题3分) 1、如图所示,半径为R 的均匀带电球面,总电荷为Q ,设无穷远处的电势 为零,则球内距离球心为r 的P 点处的电场强度的大小与电势为: (A) E =0,R Q U 04επ= . (B) E =0,r Q U 04επ=. (C) 204r Q E επ=,r Q U 04επ= . (D) 204r Q E επ=,R Q U 04επ=. [ ] 2、一个静止的氢离子(H +)在电场中被加速而获得的速率为一静止的氧离子(O + 2)在同一电场中且通过相同的路径被加速所获速率的: (A) 2倍. (B) 22倍. (C) 4倍. (D) 42倍. [ ] 3、在磁感强度为B 的均匀磁场中作一半径为r 的半球面S ,S 边线所在平面的法线方向单位矢量n 与B 的夹角为α ,则通过半球面S 的磁通量(取弯面 向外为正)为 (A) πr 2B . 、 (B) 2 πr 2B . (C) -πr 2B sin α. (D) -πr 2B cos α. [ ] 4、一个通有电流I 的导体,厚度为D ,横截面积为S ,放置在磁感强度为B 的匀强磁场中,磁场方向垂直于导体的侧表面,如图所示.现测得导体上下两面电势差为V ,则此导体的 霍尔系数等于 (A) IB VDS . (B) DS IBV . (C) IBD VS . (D) BD IVS . (E) IB VD . [ ] 5、两根无限长载流直导线相互正交放置,如图所示.I 1沿y 轴的正方向,I 2沿z 轴负方向.若载流I 1的导线不能动,载流I 2的导线可以 自由运动,则载流I 2的导线开始运动的趋势就是 (A) 绕x 轴转动. (B) 沿x 方向平动. (C) 绕y 轴转动. (D) 无法判断. [ ] y z x I 1 I 2

电磁学第二章例题

物理与电子工程学院 注:教案按授课章数填写,每一章均应填写一份。重复班授课可不另填写教案。教学内容须另加附页。

(3)在导体外,紧靠导体表面的点的场强方向与导体表面垂直,场强大小与导体表面对应点的电荷面密度成正比。 A 、场强方向(表面附近的点) 由电场线与等势面垂直出发,可知导体表面附近的场强与表面垂直。而场强大小与面密度的关系,由高斯定理推出。 B 、场强大小 如图,在导体表面外紧靠导体表面取一点P ,过P 点作导体表面 的外法线方向单位矢n ?,则P 点场强可表示为n E E n P ?= (n E 为P E 在n ?方向的投影,n E 可正可负)。过P 点取一小圆形面元1S ?,以1S ?为底作一圆柱形高斯面,圆柱面的另一底2S ?在导体内部。由高斯定理有: 11/) 0(?1 1 2 1 εσφS S E s d E E s d n E s d E s d E s d E s d E s d E n S S n S S S S ?=?=⊥=?= ?= ?+?+?= ?=?????????? ?????? 导体表面附近导体内侧 (导体的电荷只能分布在导体表面,若面密度为σ,则面内电荷为 为均匀的很小,视,且因σσ11S S ??) ∴ ?? ?<>=?? ?<<>>= 反向,,同向,,即,,n E n E n E E E E n n n ?0?0?0 00 00 σσεσ σσεσ

可见:导体表面附近的场强与表面上对应点的电荷面密度成正比,且无论场和电荷分布怎样变化,这个关系始终成立。 C 、0 εσ = E n ?中的E 是场中全部电荷贡献的合场强,并非只是高斯面内电荷S ?σ的贡献。这一点是由高斯定理得来的。P45-46 D 、一般不谈导体表面上的点的场强。 导体内部0=E ,表面外附近0 εσ=E n ?;没提表面上的。 在电磁学中的点、面均为一种物理模型,有了面模型这一概念,场强在带电面上就有突变(P23小字),如果不用面模型,突变就会消失。但不用面模型,讨论问题太复杂了,所以我们只谈“表面附近”而不谈表面上。 补充例:习题2.1.1(不讲) Rd θ 解:利用上面的结果,球面上某面元所受的力:n dS F d ?20 2 εσ= ,利用对称性知,带有同号电荷的球面所受的力是沿x 轴方向: 右半球所受的力:

电磁学题库(附答案)剖析

《电磁学》练习题(附答案) 1. 如图所示,两个点电荷+q 和-3q ,相距为d . 试求: (1) 在它们的连线上电场强度0=E 的点与电荷为+q 的点电荷相距多远? (2) 若选无穷远处电势为零,两点电荷之间电势U =0的点与电荷为+q 的点电荷相距多远? 2. 一带有电荷q =3×10- 9 C 的粒子,位于均匀电场中,电场方向如图所示.当该粒子沿水平方向向右方运动5 cm 时,外力作功6×10- 5 J ,粒子动能的增量为4.5×10- 5 J .求:(1) 粒子运动过程中电场力作功多少?(2) 该电场的场强多大? 3. 如图所示,真空中一长为L 的均匀带电细直杆,总电荷为q ,试求在直杆延长线上距杆的一端距离为d 的P 点的电场强度. 4. 一半径为 R 的带电球体,其电荷体密度分布为 ρ =Ar (r ≤R ) , ρ =0 (r >R ) A 为一常量.试求球体内外的场强分布. 5. 若电荷以相同的面密度σ均匀分布在半径分别为r 1=10 cm 和r 2=20 cm 的两个同心球面上,设无穷远处电势为零,已知球心电势为300 V ,试求两球面的电荷面密度σ的值. (ε0=8.85×10- 12C 2 / N ·m 2 ) 6. 真空中一立方体形的高斯面,边长a =0.1 m ,位于图中所示位 置.已知空间的场强分布为: E x =bx , E y =0 , E z =0. 常量b =1000 N/(C ·m).试求通过该高斯面的电通量. 7. 一电偶极子由电荷q =1.0×10-6 C 的两个异号点电荷组成,两电荷相距l =2.0 cm .把这电偶极子放在场强大小为E =1.0×105 N/C 的均匀电场中.试求: (1) 电场作用于电偶极子的最大力矩. (2) 电偶极子从受最大力矩的位置转到平衡位置过程中,电场力作的功. 8. 电荷为q 1=8.0×10-6 C 和q 2=-16.0×10- 6 C 的两个点电荷相距20 cm ,求离它们都是20 cm 处的电场强度. (真空介电常量ε0=8.85×10-12 C 2N -1m -2 ) 9. 边长为b 的立方盒子的六个面,分别平行于xOy 、yOz 和xOz 平面.盒子的一角在坐标原点处.在 此区域有一静电场,场强为j i E 300200+= .试求穿过各面的电通量. E q L q P

(完整版)高中电磁学公式

三、电磁学 (一)、直流电路 1、电流强度的定义: I = Q t (I=nesv ) 2、电阻定律:( 只与导体材料性质和温度有关,与导体横截面积和长度无关) 3、电阻串联、并联: 串联:R=R 1+R 2+R 3 +……+R n 并联: 111 12 R R R =+ 两个电阻并联: R= R R R R 1212 + 4、欧姆定律:(1)、部分电路欧姆定律:I U R = U=IR R U I = (2)、闭合电路欧姆定律:I = εR r + ε r 路端电压: U = ε -I r= IR R 输出功率: P 出 = I ε-I 2r = I R 2 电源热功率: P I r r =2 电源效率: η= P P 出总 = U ε =R R+r (5).电功和电功率: 电功:W=IUt 电热:Q=I Rt 2 电功率 :P=IU 对于纯电阻电路: W=IUt=I Rt U R t 2 2 = P=IU =( ) 对于非纯电阻电路: W=IUt >I Rt 2 P=IU >I r 2 (6) 电池组的串联每节电池电动势为ε0`内阻为r 0,n 节电池串联时 电动势:ε=n ε0 内阻:r=n r o (7)、伏安法测电阻: R U I =

(二)电场和磁场 1、库仑定律:2 21r Q Q k F =,其中,Q 1、Q 2表示两个点电荷的电量,r 表示它们间的距离,k 叫做 静电力常量,k=9.0×109Nm 2/C 2。 (适用条件:真空中两个静止点电荷) 2、电场强度: (1)定义是:q F E = F 为检验电荷在电场中某点所受电场力,q 为检验电荷。单位牛/库伦(N/C ),方向,与正电荷所受电场力方向相同。描述电场具有力的性质。 注意:E 与q 和F 均无关,只决定于电场本身的性质。 (适用条件:普遍适用) (2)点电荷场强公式:2 r Q k E = k 为静电力常量,k=9.0×109Nm 2/C 2,Q 为场源电荷(该电场就是由Q 激发的),r 为场点到Q 距离。 (适用条件:真空中静止点电荷) (1) 匀强电场中场强和电势差的关系式:d U E = (2) 其中,U 为匀强电场中两点间的电势差,d 为这两点在平行电场线方向上的距离。 3、电势差:q W U AB AB = AB W 为电荷q 在电场中从A 点移到B 点电场力所做的功。单位:伏特(V ),标量。数值与电势零点 的选取无关,与q 及AB W 均无关,描述电场具有能的性质。 4、电场力的功:AB AB qU W =

电磁学试题(含答案)

一、单选题 1、如果通过闭合面S的电通量 e 为零,则可以肯定 A、面S内没有电荷 B 、面S内没有净电荷 C、面S上每一点的场强都等于零 D 、面S上每一点的场强都不等于零 2、下列说法中正确的是 A 、沿电场线方向电势逐渐降低B、沿电场线方向电势逐渐升高 C、沿电场线方向场强逐渐减小 D、沿电场线方向场强逐渐增大 3、载流直导线和闭合线圈在同一平面内,如图所示,当导线以速度v 向v 左匀速运动时,在线圈中 A 、有顺时针方向的感应电流 B、有逆时针方向的感应电 C、没有感应电流 D、条件不足,无法判断 4、两个平行的无限大均匀带电平面,其面电荷密度分别为和, 则 P 点处的场强为 A、 B 、 C 、2 D、 0 P 2000 5、一束粒子、质子、电子的混合粒子流以同样的速度垂直进 入磁场,其运动轨迹如图所示,则其中质子的轨迹是 12 A、曲线 1 B、曲线 23 C、曲线 3 D、无法判断 6、一个电偶极子以如图所示的方式放置在匀强电场 E 中,则在 电场力作用下,该电偶极子将 A 、保持静止B、顺时针转动C、逆时针转动D、条件不足,无法判断 7q 位于边长为a 的正方体的中心,则通过该正方体一个面的电通量为 、点电荷 A 、0 B 、q q D 、 q C、 6 0400 8、长直导线通有电流I 3 A ,另有一个矩形线圈与其共面,如图所I 示,则在下列哪种情况下,线圈中会出现逆时针方向的感应电流? A 、线圈向左运动B、线圈向右运动 C、线圈向上运动 D、线圈向下运动 9、关于真空中静电场的高斯定理 E dS q i,下述说法正确的是: S0 A.该定理只对有某种对称性的静电场才成立; B.q i是空间所有电荷的代数和; C. 积分式中的 E 一定是电荷q i激发的;

电磁学第二章习题答案教程文件

电磁学第二章习题答 案

习题五(第二章 静电场中的导体和电介质) 1、在带电量为Q 的金属球壳内部,放入一个带电量为q 的带电体,则金属球 壳内表面所带的电量为 - q ,外表面所带电量为 q +Q 。 2、带电量Q 的导体A 置于外半径为R 的导体 球壳B 内,则球壳外离球心r 处的电场强度大小 204/r Q E πε=,球壳的电势R Q V 04/πε=。 3、导体静电平衡的必要条件是导体内部场强为零。 4、两个带电不等的金属球,直径相等,但一个是空心,一个是实心的。现使它们互相接触,则这两个金属球上的电荷( B )。 (A)不变化 (B)平均分配 (C)空心球电量多 (D)实心球电量多 5、半径分别R 和r 的两个球导体(R >r)相距很远,今用细导线把它们连接起来,使两导体带电,电势为U 0,则两球表面的电荷面密度之比σR /σr 为 ( B ) (A) R/r (B) r/R (C) R 2/r 2 (D) 1 6、有一电荷q 及金属导体A ,且A 处在静电平衡状态,则( C ) (A)导体内E=0,q 不在导体内产生场强; (B)导体内E ≠0,q 在导体内产生场强; (C)导体内E=0,q 在导体内产生场强; (D)导体内E ≠0,q 不在导体内产生场强。 7、如图所示,一内半径为a ,外半径为b 的金属球壳,带有电量Q , 在球壳空腔内距离球心为r 处有一点电荷q ,设无限远 处为电势零点。试求: (1)球壳外表面上的电荷; (2)球心O 点处由球壳内表面上电荷产生的电势; (3)球心O 点处的总电势。

解: (1) 设球壳内、外表面电荷分别为q 1 , q 2,以O 为球心作一半径为R (a 电场中的电势分布: )111(4 ,03211b a r Q dr E dr E dr E V a r b b a a r +-= ++=

电磁学公式大全

电磁学公式(集锦,不完整):注意所有物理量的单位、矢量性和物理意义! 注意所有公式使用条件!(钦波拜托你了~~最好每个物理量都说一下) 一、电场 库仑定律:■F=kQ1Q2/r2 电场强度:■E=F/q(定义式) ■E=kQ/r2 ■E=U/d 电容:■C=Q/U(定义式) ■C=εS/4πkd 电势(能)■W AB=qU AB(E=qU) ■U AB=φA-φB ■电子偏转 ■电容器 辅助工具: 1.运动学公式: s=v0t+at2/2 v t=v0+at v t2-v02=2as 2.受力分析!! 二、恒定电流 闭合电路欧姆定律:I=E/(R+r) 路端电压:U=E-Ir 电阻串联:R=R1+R2+R3+….Rn 电阻并联:1/R=1/R1+1/R2+…..1/Rn 功率:P=UI=I2R=U2/R=W/t 做功(发热)Q=W=Pt=UIt=I2Rt=U2 t /R 电流(定义)I=Q/t(Q是通过的电荷量,可理解为I=q/t) ■一般做法:计算前先用额定值计算电阻(E.g.灯泡“220V,30A”) ■电路化简 ■改装电表三、磁场 磁感应强度(定义式)B=F/IL(注意垂直性) 磁通量Φ=BSsinθ(注意θ是哪个角??) 安培力F=BIl sinθ(注意θ是哪个角??) 洛伦兹力F=qvB ■左手定则 ■安培定则(右手螺旋定则) ■质谱仪 ■回旋加速器 ■电磁流量计 辅助工具: 匀速圆周运动: F=mv2/r=mrw2 v=rw T=2π/w=1/f 四、电磁感应 法拉第电磁感应定律E=nΔφ/Δt (注意Δφ) 楞次定律:阻碍!!!!! 动生电动势:E=Blvcosθ(注意θ是哪个角??注意方向的变化) ■右手定则 ■(反电动势) 辅助工具: 恒定电流一章 闭合电路欧姆定律:I=E/(R+r)!!!! 还是受力分析!!!!! 记得分段考虑!!!! (自由落体---进入磁场----出磁场)等 五、交变电流 电压:e=NBSwsin(wt+φ)=E m sin(wt+φ) 电流:i=e/(R+r)= (NBSw/(R+r))sin(wt+φ) =I m sin(wt+φ) 有效值:I=0.707Im, E=0.707Em 变压器:U1:U2=n1:n2=I2:I1(P1=P2+P3+…)!!!!!!

电磁场理论习题及答案1

一. 1.对于矢量A u v,若A u v= e u u v x A+y e u u v y A+z e u u v z A, x 则: e u u v?x e u u v=;z e u u v?z e u u v=; y e u u v?x e u u v=;x e u u v?x e u u v= z 2.对于某一矢量A u v,它的散度定义式为; 用哈密顿算子表示为 3.对于矢量A u v,写出: 高斯定理 斯托克斯定理 4.真空中静电场的两个基本方程的微分形式为 和 5.分析恒定磁场时,在无界真空中,两个基本场变量之间的关系为,通常称它为 二.判断:(共20分,每空2分)正确的在括号中打“√”,错误的打“×”。 1.描绘物理状态空间分布的标量函数和矢量函数,在时间为一定值的情况下,它们是唯一的。() 2.标量场的梯度运算和矢量场的旋度运算都是矢量。() 3.梯度的方向是等值面的切线方向。() 4.恒定电流场是一个无散度场。() 5.一般说来,电场和磁场是共存于同一空间的,但在静止和恒定的情况下,电场和磁场可以独立进行分析。() 6.静电场和恒定磁场都是矢量场,在本质上也是相同的。()

7.研究物质空间内的电场时,仅用电场强度一个场变量不能完全反映物质内发生的静电现象。( ) 8.泊松方程和拉普拉斯方程都适用于有源区域。( ) 9.静电场的边值问题,在每一类的边界条件下,泊松方程或拉普拉斯方程的解都是唯一的。( ) 10.物质被磁化问题和磁化物质产生的宏观磁效应问题是不相关的两方面问题。( ) 三.简答:(共30分,每小题5分) 1.用数学式说明梯无旋。 2.写出标量场的方向导数表达式并说明其涵义。 3.说明真空中电场强度和库仑定律。 4.实际边值问题的边界条件分为哪几类? 5.写出磁通连续性方程的积分形式和微分形式。 6.写出在恒定磁场中,不同介质交界面上的边界条件。 四.计算:(共10分)半径分别为a,b(a>b),球心距为c(c

大学物理电磁学公式总结

静电场小结 一、库仑定律 二、电场强度 三、场强迭加原理 点电荷场强 点电荷系场强 连续带电体场强 四、静电场高斯定理 五、几种典型电荷分布的电场强度 均匀带电球面 均匀带电球体 均匀带电长直圆柱面 均匀带电长直圆柱 体 无限大均匀带电平面 六、静电场的环流定理 七、电势 八、电势迭加原理 点电荷电势 点电荷系电势 连续带电体电势 九、几种典型电场的电势 均匀带电球面 均匀带电直线 十、导体静电平衡条件 (1) 导体内电场强度为零 ;导体表面附近场强与表面垂直 。 (2) 导体是一个等势体,表面是一个等势面。推论一电荷只分布于导体表面 推论二导体表面附近场强与表面电荷密度关系 十一、静电屏蔽 导体空腔能屏蔽空腔内、外电荷的相互影

响。即空腔外(包括外表面)的电荷在空腔内的场强为零,空腔内(包括内表面)的电荷在空腔外的场强为零。 十二、电容器的电容 平行板电容器 圆柱形电容器 球形电容器 孤立导体球 十三、电容器的联接 并联电容器 串联电容器 十四、电场的能量 电容器的能量 电场的能量密度 电场的能量 稳恒电流磁场小结 一、磁场 运动电荷的磁场 毕奥——萨伐尔定律 二、磁场高斯定理 三、安培环路定理 四、几种典型磁场 有限长载流直导线的磁场 无限长载流直导线的磁场 圆电流轴线上的磁场 圆电流中心的磁场 长直载流螺线管内的磁场 载流密绕螺绕环内的磁场 五、载流平面线圈的磁矩 m和S沿电流的右手螺旋方向六、洛伦兹力 七、安培力公式 八、载流平面线圈在均匀磁场中受到的合磁力 载流平面线圈在均匀磁场中受到的磁力矩 电磁感应小结 一、电动势 非静电性场强

电源电动势 一段电路的电动势 闭合电路的电动势 当 时,电动势沿电路(或回路)l 的正方向, 时沿反方向。 二、电磁感应的实验定律 1、楞次定律:闭合回路中感生电流的方向是使它产生的磁通量反抗引起电磁感应的磁通量变化。楞次定律是能量守恒定律在电磁感应中的表现。 2、法拉第电磁感应定律:当闭合回路l中的磁通量变化时,在回路中的 感应电动势为 若时,电动势 沿回路l 的正方向,时,沿反方向。对线图,为全磁通。 3、感应电流 感应电量 三、电动势的理论解释 1、动生电动势在磁场中运动的导线l以洛伦兹力为非电静力而成为一电源,导线上的 动生电动势 若,电动 势沿导线l 的正方向,若,沿反方向。动生电动势的大小为导线单位时间扫过的磁通量,动生电动势的方向可由正载流子受洛伦兹力的方向决定。直导线在均匀磁场的 垂面以磁场为轴转动。平面线 圈绕磁场的垂轴转动。 2、感生电动势变化磁场要在周围空间激发一个非静电性的有旋电场E,使在磁场中的导线l成为一电源,导线上的感生电动 势 有旋电场的环流 有旋电场绕磁场的变化率左旋。圆柱域匀磁场激发的有旋电 场 射光互相垂直,

电磁学试题(含答案)

一、单选题 1、 如果通过闭合面S 的电通量e Φ为零,则可以肯定 A 、面S 内没有电荷 B 、面S 内没有净电荷 C 、面S 上每一点的场强都等于零 D 、面S 上每一点的场强都不等于零 2、 下列说法中正确的是 A 、沿电场线方向电势逐渐降低 B 、沿电场线方向电势逐渐升高 C 、沿电场线方向场强逐渐减小 D 、沿电场线方向场强逐渐增大 3、 载流直导线和闭合线圈在同一平面内,如图所示,当导线以速度v 向 左匀速运动时,在线圈中 A 、有顺时针方向的感应电流 B 、有逆时针方向的感应电 C 、没有感应电流 D 、条件不足,无法判断 4、 两个平行的无限大均匀带电平面,其面电荷密度分别为σ+和σ-, 则P 点处的场强为 A 、02εσ B 、0εσ C 、0 2εσ D 、0 5、 一束α粒子、质子、电子的混合粒子流以同样的速度垂直进 入磁场,其运动轨迹如图所示,则其中质子的轨迹是 A 、曲线1 B 、曲线2 C 、曲线3 D 、无法判断 6、 一个电偶极子以如图所示的方式放置在匀强电场 E 中,则在 电场力作用下,该电偶极子将 A 、保持静止 B 、顺时针转动 C 、逆时针转动 D 、条件不足,无法判断 7、 点电荷q 位于边长为a 的正方体的中心,则通过该正方体一个面的电通量为 A 、0 B 、0εq C 、04εq D 、0 6εq 8、 长直导线通有电流A 3=I ,另有一个矩形线圈与其共面,如图所 示,则在下列哪种情况下,线圈中会出现逆时针方向的感应电流? A 、线圈向左运动 B 、线圈向右运动 C 、线圈向上运动 D 、线圈向下运动 9、 关于真空中静电场的高斯定理0 εi S q S d E ∑=?? ,下述说法正确的是: A. 该定理只对有某种对称性的静电场才成立; B. i q ∑是空间所有电荷的代数和; C. 积分式中的E 一定是电荷i q ∑激发的; σ - P 3 I

电磁学-第二版--习题答案

电磁学 第二版 习题解答 电磁学 第二版 习题解答 (1) 第一章 ................................................................................................................................................................ 1 第二章 .............................................................................................................................................................. 16 第三章 .............................................................................................................................................................. 25 第四章 .............................................................................................................................................................. 34 第五章 .............................................................................................................................................................. 38 第六章 .............................................................................................................................................................. 46 第七章 .. (52) 第一章 1.2.2 两个同号点电荷所带电荷量之和为Q 。在两者距离一定的前提下,它们带电荷量各为多少时相互作用力最大? 解答: 设一个点电荷的电荷量为1q q =,另一个点电荷的电荷量为 2()q Q q =-,两者距离为r ,则由库仑定律求得两个点电荷之间的作用力为 2 0() 4q Q q F r πε-= 令力F 对电荷量q 的一队导数为零,即 20()04dF Q q q dq r πε--== 得 122 Q q q ==

大学物理电磁学公式总结

静电场小结 均匀带电长直圆柱面 均匀带电球体 四、静电场高斯定理 点电荷电势 点电荷系电势 连续带电体电势 九、几种典型电场的电势 、库仑定律 、电场强度 三、场强迭加原理 点电荷场强 六、静电场的环流定理 连续带电体场强 '丄一:「 八、电势迭加原理 均匀带电球面 五、几种典型电荷分布的电场强度 1 r>R 1 均匀带电球面

均匀带电长直圆柱面 均匀带电球体 均匀带电球面 均 匀 带 电 长 直 圆 柱 体 无限大均匀带电平面 六、 静电场的环流定理 七、 电势 八、 电势迭加原理 点电荷电势 点电荷系电势 连续带电体电势 九、 几种典型电场的电势 一、 库仑定律 二、 电场强度 三、 场强迭加原理 点电荷场强 点 电 荷 系 强 连续带电体场强 四、 静电场高斯定理 五、 几种典型电荷分布的电场强度 均匀带电球面

均匀带电长直圆柱面 均匀带电球体 均匀带电球面 均 匀 带 电 长 直 圆 柱 体 无限大均匀带电平面 六、 静电场的环流定理 七、 电势 八、 电势迭加原理 点电荷电势 点电荷系电势 连续带电体电势 九、 几种典型电场的电势 一、 库仑定律 二、 电场强度 三、 场强迭加原理 点电荷场强 点 电 荷 系 强 连续带电体场强 四、 静电场高斯定理 五、 几种典型电荷分布的电场强度 均匀带电球面

均匀带电长直圆柱面 均匀带电球体 均匀带电球面 均 匀 带 电 长 直 圆 柱 体 无限大均匀带电平面 六、 静电场的环流定理 七、 电势 八、 电势迭加原理 点电荷电势 点电荷系电势 连续带电体电势 九、 几种典型电场的电势 一、 库仑定律 二、 电场强度 三、 场强迭加原理 点电荷场强 点 电 荷 系 强 连续带电体场强 四、 静电场高斯定理 五、 几种典型电荷分布的电场强度 均匀带电球面

电磁学试题库电磁学第二章试题(含答案)

一、填空题 1、一面积为S 、间距为d 的平行板电容器,若在其中插入厚度为2d 的导体板,则其电容为 ;答案内容:;20d S ε 2、导体静电平衡必要条件是 ,此时电荷只分布在 。 答案内容:内部电场处处为零,外表面; 3、若先把均匀介质充满平行板电容器,(极板面积为S ,极反间距为L ,板间介电常数为r ε)然后使电容器充电至电压U 。在这个过程中,电场能量的增量是 ; 答案内容:2 02U L s r εε 4、在一电中性的金属球内,挖一任意形状的空腔,腔内绝缘地放一电量为q 的点电荷,如图所示,球外离开球心为r 处的P 点的场强 ; 答案内容:r r q E e ∧=204περ; 5、 在金属球壳外距球心O 为d 处置一点电荷q ,球心O 处电势 ; 答案内容:d q 04πε; 6、如图所示,金属球壳内外半径分别为a 和b ,带电量为Q ,球壳腔内距球心O 为r 处置一电量为q 的点电荷,球心O 点的电势 。 答案内容:??? ??++-πεb q Q a q r q 0 41 7、导体静电平衡的特征是 ,必要条件是 。 答案内容:电荷宏观运动停止,内部电场处处为零; 8、判断图1、图2中的两个球形电容器是串连还是并联,图1是_________联,图2是________联。 答案内容:并联,串联; 9、在点电荷q +的电场中,放一金属导体球,球心到点电荷的距离为r ,则导体球上感应电荷在球心处产生的电场强度大小为: 。 答案内容:201 4q r πε ;

10、 一平板电容器,用电源将其充电后再与电源断开,这时电容器中储存能量为W 。然后将介电常数为ε的电介质充满整个电容器,此时电容器内存储能量为 。 答案内容:00W εε ; 11、半径分别为R 及r 的两个球形导体(R >r ),用一根很长的细导线将它们连接起来,使二个导体带电,电势为u ,则二球表面电荷面密度比/R r σσ= 。 答案内容:/r R ; 12、一带电量 为Q 的半径为r A 的金属球A ,放置在内外半径各为r B 和r C 的金属球壳B 内。A 、B 间为真空,B 外为真空,若用导线把A 、B 接通后,则A 球电位 (无限远处u=0)。 答案内容:()0/4c Q r πε ; 13、一平行板电容器的电容为C ,若将它接在电压为U 的恒压源上,其板间电场强度为E ,现不断开电源而将两极板的距离拉大一倍,则其电容为______,板间电场强度为_____。 答案内容: 21C , 21E 。 14、一平行板电容器的电容为C ,若将它接在电压为U 的恒压源上,其板间电场强度为E ,现断开电源后,将两极板的距离拉大一倍,则其电容为________,板间电场强度为_____。 答案内容: 21C , E 不变 二、单选择题 1、将一带电量为Q 的金属小球靠近一个不带电的金属导体时,则有( ) (A )金属导体因静电感应带电,总电量为-Q ; (B )金属导体因感应带电,靠近小球的一端带-Q ,远端带+Q ; (C )金属导体两端带等量异号电荷,且电量q

电磁学公式总结

大学物理电磁学公式总结 ?第一章(静止电荷的电场) 1.电荷的基本性质:两种电荷,量子性,电荷守恒,相对论不变性。 2.库仑定律:两个静止的点电荷之间的作用力 F =kq1q2 e r= r2 3.电力叠加原理:F=ΣF i , q0为静止电荷 4.电场强度:E=F q0 5.场强叠加原理:E=ΣE i 用叠加法求电荷系的静电场: E=(离散型) E=(连续型) 6.电通量:Φe= 7.高斯定律:=Σq int 8.典型静电场: 1)均匀带电球面:E=0 (球面内) E=(球面外) 2)均匀带电球体:E==(球体内) E=(球体外)

3) 均匀带电无限长直线: E= ,方向垂直于带电直线 4) 均匀带电无限大平面: E=,方向垂直于带电平面 9. 电偶极子在电场中受到的力矩: M=p×E ? 第三章(电势) 1. 静电场是保守场: =0 2. 电势差:φ1 –φ2= 电势:φp =∫E 鈥r (p0)(p) (P0是电势零点) 电势叠加原理:φ=Σφi 3. 点电荷的电势:φ= 电荷连续分布的带电体的电势:φ= 4. 电场强度E 与电势φ的关系的微分形式: E=-gradφ=-▽φ=-(i +j +k ) 电场线处处与等势面垂直,并指向电势降低的方向;电场线密处等势面间距小。 5. 电荷在外电场中的电势能:W=q φ 移动电荷时电场力做的功:A 12=q(φ1 –φ2)=W 1-W 2 电偶极子在外电场中的电势能:W=-p?E

?第四章(静电场中的导体) 1.导体的静电平衡条件:E int=0,表面外紧邻处Es⊥表面或导体是个等势体。 2.静电平衡的导体上电荷的分布: Q int=0,σ=ε0E 3.计算有导体存在时的静电场分布问题的基本依据: 高斯定律,电势概念,电荷守恒,导体经典平衡条件。 4.静电屏蔽:金属空壳的外表面上及壳外的电荷在壳内的合场强总为零,因而对壳内无影响。?第五章(静电场中的电介质) 1.电介质分子的电距:极性分子有固有电距,非极性分子在外电场中产生感生电距。 2.电介质的极化:在外电场中固有电距的取向或感生电距的产生使电介质的表面(或 内部)出现束缚电荷。 电极化强度:对各向同性的电介质,在电场不太强的情况下 P=ε0(εr-1)E=ε0X E 面束缚电荷密度:σ’=P?e n 3.电位移:D=ε0E+P 对各向同性电介质:D=ε0εr E=εE D的高斯定律:=q0int 4.电容器的电容:C=Q U

大学物理电磁学题库及答案

一、选择题:(每题3分) 1、均匀磁场的磁感强度B 垂直于半径为r 的圆面.今以该圆周为边线,作一半球面S ,则通过S 面的磁通量的大小为 (A) 2 r 2B . (B) r 2B . (C) 0. (D) 无法确定的量. [ B ] 2、在磁感强度为B 的均匀磁场中作一半径为r 的半球面S ,S 边线所在平面的法线方向单位矢量n 与B 的夹角为 ,则通过半球面S 的磁通量(取弯面向外为正)为 (A) r 2B . (B) 2 r 2B . (C) - r 2B sin . (D) - r 2B cos . [ D ] 3、有一个圆形回路1及一个正方形回路2,圆直径和正方形的边长相等,二者中通有大小相等的电流,它们在各自中心产生的磁感强度的大小之比B 1 / B 2为 (A) 0.90. (B) 1.00. (C) 1.11. (D) 1.22. [ C ] 4、如图所示,电流从a 点分两路通过对称的圆环形分路,汇合于b 点.若ca 、bd 都沿环的径向,则在环形分路的环心处的磁感强度 (A) 方向垂直环形分路所在平面且指向纸内. (B) 方向垂直环形分路所在平面且指向纸外. (C) 方向在环形分路所在平面,且指向b . (D) 方向在环形分路所在平面内,且指向a . (E) 为零. [ E ] 5、通有电流I 的无限长直导线有如图三种形状, 则P ,Q ,O 各点磁感强度的大小B P ,B Q ,B O 间的关系为: (A) B P > B Q > B O . (B) B Q > B P > B O . (C) B Q > B O > B P . (D) B O > B Q > B P . [ D ] 6、边长为l 的正方形线圈,分别用图示两种方式通以电流I (其中ab 、cd 与正方 形共面),在这两种情况下,线圈在其中心产生的磁感强度的大小分别为 (A) 01 B ,02 B . (B) 01 B ,l I B 0222 . (C) l I B 0122 ,02 B . a

电磁学第二章习题答案word精品

习题五(第二章静电场中的导体和电介质) 1、在带电量为Q的金属球壳内部,放入一个带电量为q的带电体,则金属球壳内表面所带的电量为- q,外表面所带电量为q+ Q 2、带电量Q的导体A置于外半径为R的导体 球壳B内,则球壳外离球心r处的电场强度大小

E =Q/4「:;o r 1 2 3 4 5,球壳的电势 V = Q/4 o R 。 3、 导体静电平衡的必要条件是 导体内部场强为零。 4、两个带电不等的金属球,直径相等,但一个是空心,一个是实心的。现使它 们互相接触,则这两个金属球上的电荷(B )。 (A)不变化 (B)平均分配 (C)空心球电量多(D)实心球电量多 5、 半径分别R 和r 的两个球导体(R >r)相距很远,今用细导线把它们连接起来, 使两导体带电,电势为U o ,则两球表面的电荷面密度之比 CR / r 为(B ) 2 2 (A) R/r (B) r/R (C) R /r (D) 1 6、 有一电荷q 及金属导体A ,且A 处在静电平衡状态,则(C) (A) 导体内E=0,q 不在导体内产生场强; (B) 导体内E 工0,q 在导体内产生场强; (C)导体内E=0,q 在导体内产生场强; (D)导体内E M 0,q 不在导体内产生场强 7、如图所示,一内半径为a ,外半径为b 的金属球壳,带有电量 Q , 在球壳空腔内距离球心为r 处有一点电荷q ,设无限远 处为电势零点。试求: (1)球壳外表面上的电荷; ⑵球心O 点处由球壳内表面上电荷产生的电势; ⑶球心O 点处的总电势。 解:(1)设球壳内、外表面电荷分别为 qi , q,以O 为球心作一半径为R(avRvb) 的高斯球面S,由高斯定理..E ?dS = qL ~q ,根据导体静电平衡条件 a r

电磁学公式总结

大学物理电磁学公式总结 第一章(静止电荷的电场) 1.电荷的基本性质:两种电荷,量子性,电荷守恒,相对论不变性。 2.库仑定律:两个静止的点电荷之间的作用力 F == 3.电力叠加原理:F=ΣF i 4.电场强度:E=, q0为静止电荷 5.场强叠加原理:E=ΣE i 用叠加法求电荷系的静电场: E=(离散型) E=(连续型) 6.电通量:Φe= 7.高斯定律:=Σq int 8.典型静电场: 1)均匀带电球面:E=0 (球面内) E=(球面外) 2)均匀带电球体:E==(球体内) E=(球体外)

3)均匀带电无限长直线:E=,方向垂直于带电直线 4)均匀带电无限大平面:E=,方向垂直于带电平面 9.电偶极子在电场中受到的力矩:M=p×E 第三章(电势) 1.静电场是保守场:=0 2.电势差:φ1–φ2= 电势:φp=(P0是电势零点) 电势叠加原理:φ=Σφi 3.点电荷的电势:φ= 电荷连续分布的带电体的电势:φ= 4.电场强度E与电势φ的关系的微分形式: E=-gradφ=-▽φ=-(i+j+k) 电场线处处与等势面垂直,并指向电势降低的方向;电场线密处等势面间距小。 5.电荷在外电场中的电势能:W=qφ 移动电荷时电场力做的功:A12=q(φ1–φ2)=W1-W2 电偶极子在外电场中的电势能:W=-p?E

第四章(静电场中的导体) 1.导体的静电平衡条件:E int=0,表面外紧邻处Es⊥表面或导体是个等势体。 2.静电平衡的导体上电荷的分布: Q int=0,σ=ε0E 3.计算有导体存在时的静电场分布问题的基本依据: 高斯定律,电势概念,电荷守恒,导体经典平衡条件。 4.静电屏蔽:金属空壳的外表面上及壳外的电荷在壳内的合场强总为零,因而对壳内无影响。第五章(静电场中的电介质) 1.电介质分子的电距:极性分子有固有电距,非极性分子在外电场中产生感生电距。 2.电介质的极化:在外电场中固有电距的取向或感生电距的产生使电介质的表面(或 内部)出现束缚电荷。 电极化强度:对各向同性的电介质,在电场不太强的情况下 P=ε0(εr-1)E=ε0X E 面束缚电荷密度:σ’=P?e n 3.电位移:D=ε0E+P 对各向同性电介质:D=ε0εr E=εE D的高斯定律:=q0int 4.电容器的电容:C=

相关文档