文档库 最新最全的文档下载
当前位置:文档库 › 汽车钢板弹簧设计计算

汽车钢板弹簧设计计算

汽车钢板弹簧设计计算
汽车钢板弹簧设计计算

1.1单个钢板弹簧的载荷

已知汽车满载静止时汽车前轴荷G1=3000kg,非簧载质量Gu1=285kg,则据此可计算出单个钢板弹簧的载荷:

Fw1=(G1-Gu1)/2=1357.5 kg (1)

进而得到:

Pw1=Fw1×9.8=13303.5 N (2)

1.2钢板弹簧的静挠度

钢板弹簧的静挠度即静载荷下钢板弹簧的变形。前后弹簧的静挠度都直接影响到汽车的行驶性能[1]。为了防止汽车在行驶过程中产生剧烈的颠簸(纵向角振动),应力求使前后弹簧的静挠度比值接近于1。此外,适当地增大静挠度也可减低汽车的振动频率,以提高汽车的舒适性。但静挠度不能无限地增加(一般不超过240 mm),因为挠度过大,即频率过低,也同样会使人感到不舒适,产生晕车的感觉。此外,在前轮为非独立悬挂的情况下,挠度过大还会使汽车的操纵性变坏。一般汽车弹簧的静挠度值通常如表1[2]所列范围内。

本方案中选取fc1=80 mm。

1.3钢板弹簧的满载弧高

满载弧高指钢板弹簧装到车轴上,汽车满载时钢板弹簧主片上表面与两端(不包括卷耳孔半径)连线间的最大高度差[3]。当H0=0时,钢板弹簧在对称位置上工作。考虑到使用期间钢板弹簧塑性变形的影响和为了在车架高度已限定时能得到足够的动挠度值,常取H0∈10-20mm。本方案中H01初步定为18mm。

1.4钢板弹簧的断面形状

板弹簧断面通常采用矩形断面,宜于加工,成本低。但矩形断面也存在一些不足。矩形断面钢板弹簧的中性轴,在钢板断面的对称位置上。工作时,一面受拉应力,一面受压应力作用,而且上、下表面的名义拉应力和压应力的绝对值相等。因材料的抗拉性能低于抗压性能,所以在受拉应力作用的一面首先产生疲劳断裂。除矩形断面以外的其它断面形状的叶片,其中性轴均上移,使受拉应力的一面的拉应力绝对值减小,而受压应力作用的一面的压应力绝对值增大,从而改善了应力在断面上的分布情况,提高了钢板弹簧的疲劳强度并节约了近10%的材料。本方案中选用矩形断面。

1.5钢板弹簧主片长度的确定

钢板弹簧长度L是指弹簧伸直后两卷耳中心之间的距离。增加钢板弹簧长度L能显著降低弹簧刚度,改善汽车行驶平顺性;在垂直刚度c给定的条件下,又能明显增加钢板弹簧的纵向角刚度。钢板弹簧的纵向角刚度,系指钢板弹簧产生单位纵向角时,作用到钢板弹簧上的纵向力矩值。增大钢板弹簧纵向角刚度的同时,能减少车轮扭转力矩所引起的弹簧变形;选用长些的钢板弹簧,会在汽车布置时产生困难。原则上,在总布置可能的条件下,应尽可能将钢板弹簧取长些。根据统计资料,弹簧伸直长度取值规律如表2[4]所示。

本设计方案中,前板簧,L1=32%轴距=1210mm,圆整为L1=1210mm。有效长度Lc1=L-S=1112mm。

1.6钢板弹簧片厚的计算

矩形断面等厚度的钢板弹簧的总惯性矩J0用下式计算:

结合(3)、(4)式可知:总惯性矩J0的变化又会影响到钢板弹簧垂直刚度的变化,也就是影响汽车的平顺性。其中,片厚h的变化对钢板弹簧总惯性矩J0的影响最大。增大片厚h,可减少片数n。

钢板弹簧各片厚度可能有相同和不同两种情况,一般都采用前者。本设计方案中选片厚相等。

片厚的计算公式为:

h=Lc2×σp×δ/(6Efc) (5)

式中σp——许用弯曲应力,由表3查取。

本方案中,选取σp1=460 MPa。

δ为挠度增大系数,为实际板弹簧(近似的等应力梁)的挠度比理论等截面梁挠度的增大系数,由表4查取。

本方案中选取δ1=1.42

将所确定的数据带入(5)式,可求得:

h1=8.6 mm,圆整为9 mm,即前钢板弹簧的厚度为9 mm。

1.7钢板弹簧片宽的计算

有了h以后,再选取钢板弹簧的片宽b 。增大片宽b,能增大卷耳强度,但当车身受侧向力作用倾斜时,弹簧的扭曲应力增大。前悬架用宽的弹簧片,会影响转向轮的最大转角;片宽选取过窄,又得增加片数,从而增加片间的摩擦和弹簧的总厚。推荐片宽与片厚的比值b∕h在6-10范围内选取。本方案选取系数7.7,得b1=7.7×9=69.3mm,圆整为70 mm。

1.8 钢板弹簧片数的计算

片数n少些有利于制造和装配,并可以降低片间的干摩擦,改善汽车行驶平顺性。但片数少了将使钢板弹簧与等强度梁的差别增大,材料利用率变坏。多数钢板弹簧一般片数在6-14片之间选取,总质量超过14t的货车可达20片。用变截面少片簧时,片数在1-4片之间选取。

1.9钢板弹簧各片长度的计算

片厚不变宽度连续变化的单片钢板弹簧是等强度梁,形状为菱形。将由两个三角形钢板弹簧分割成宽度相同的若干片,然后按照长度大小不同依次排列、叠放到一起,就形成接近实用价值的钢板弹簧。实际上的钢板弹簧不可能是三角形,因为为了将钢板弹簧中部固定到车桥上和使两卷耳处能可靠地传递力,必须使他们有一定的宽度。因此,应该用中部为矩形的双梯形钢板弹簧(见图1)替代三角形钢板弹簧才有真正的实用意义。这种钢板弹簧各片具有相同的宽度,但长度不同。钢板弹簧各片长度就是基于实际钢板各片展开图接近梯形梁的形状这一原则来做图的,如图2所示。

则据图2可计算出:

Δ7=55.6/7=7.9;Δ6=2×Δ7=15.8;

Δ5=3×Δ7=23.7;Δ4=4×Δ7=31.6;

Δ3=5×Δ7=39.5;Δ2=6×Δ7=47.4。

进一步可求得:

17=12.3;16=20.2;15=28.1

14=36;13=43.9;12=51.8

最终圆整为:

11=60 cm;12=60 cm;13=52 cm;14=48 cm;

15=40 cm;16=33 cm;17=25 cm。

1.10钢板弹簧刚度的计算

在刚度的验算过程中,应当注意,当弹簧装上汽车后,使得弹簧的有效长度减小,这时候弹簧的刚度就会发生变化,因此,在计算板弹簧的刚度时,应分为两部分进行:按全长计算出供生产检验用的刚度;按有效长度(即减去骑马螺栓中心距后的板弹簧长度)计算板弹簧是检验刚度。刚度的计算公式为:

此处a取1.89,求和200.6+338.7+9401543+2401=5423.3

2钢板弹簧总成自由状态下的弧高及曲率半径的计算

2.1钢板弹簧总成在自由状态下的弧高的计算

钢板弹簧各片装配后,在预压缩和U型螺栓夹紧前,其主片上表面与两端(不包括卷耳孔半径)连线间的最大高度差,称为钢板弹簧总成在自由状态下的弧高H,用下式计算:

H=fc+H0+Δ (10)

式中fc——静挠度;H0——满载弧高;Δ——钢板弹簧总成用U型螺栓夹紧后引起的弧高变化。

前面已确定fc1=80 mm,货车H0在10-20之间选取,此处取H01=18 mm。Δ=0.006f0 ,而f0=L2/(Ah)取A=800,已知L1=1200 mm,h1=9 mm,带入则可得f0=200 mm,进而得Δ=12 mm。

将各数据带入总式,可得前板弹簧总成在自由状态下的弧高:H1=110 mm。

2.2钢板弹簧总成在自由状态下的曲率半径的计算

根据自由状态下的曲率半径公式

R0=L2/(8H) (11)

可得:R01=12002/(8×110)=1430 mm。

3装配后钢板弹簧总成弧高及曲率半径的计算

计算装配后板弹簧总成弧高及曲率半径,首先应确定各叶片的预应力,其次计算出叶片在自由状态下的曲率半径及弧高,最后计算装配后板弹簧总成弧高及曲率半径。

3.1钢板弹簧各叶片预应力的确定

钢板弹簧的所有叶片通常冲压成不同的曲率半径。组装时,用中心螺栓或簧箍将叶片夹紧在一起,致使所有叶片的曲率半径均发生变化。由于组装夹紧时各叶片曲率半径的变化,使各叶片在未受外载荷作用之前就产生了预应力。选取各片弹簧预应力时,要求做到:装配前各片弹簧片间的间隙相差不大,且装配后各片能很好地贴和,为保证主片及与其相邻的长片有足够的使用寿命,应适当降低主片及与其相邻的长片的应力。

为此,选取各片预应力时,可分为下列两种情况:对于片厚相同的钢板弹簧,各片与应力值不宜选取过大;对于片厚不相同的钢板弹簧,片厚可选取大些。推荐主片在根部的工作应力与预应力叠加后的合成

应力在300-350MPa内选取。1-4片长片叠加负的与应力,短片叠加正的预应力。预应力从长片到短片由负值逐渐递增至正值。在确定矩形叶片各片预应力时,理论上如下公式:

σ01h12+σ02h22+σ03h32 +…+σ0khk2=0(12)

3.2叶片在自由状态下的曲率半径及弧高的计算

因钢板弹簧各片在自由状态下和装配后的曲率半径不同,装配后各片产生预应力,其值确定了自由状态下的曲率半径R,各片自由状态下做成不同曲率半径的目的是使各片厚度相同的钢板弹簧装配后能很好地紧贴,减少主片工作应力,使各片工作寿命接近。

矩形断面钢板弹簧自由状态下曲率半径由下式确定:

具体计算过程如下:

1/R0=1/1430=6.1×10-3cm-1

Ehk=2.1×105×9=1.89×105

叶片在自由状态下的曲率半径及弧高的计算如表7所示。

3.3装配后钢板弹簧总成弧高及曲率半径的计算

叶片在自由状态的曲率半径是根据预应力确定的,由于选择预应力的关系,装配后钢板弹簧总成弧高不一定和3.1的计算结果一致,因此,还需要再计算一次装配后的总成弧高。如两者接近便认为合适,否则要调整各片预应力,重新进行计算,如表8。

表中Hk——第k片叶片在自由状态下的弧高,cm;

Hk′——第k片叶片在上一叶片的弧高增大的数值,cm;

Z1-k——当第k片叶片贴合后弹簧的弧高(装配后板簧贴合到上一叶片后的弧高),cm;

Zk——当第k片叶片在贴合到上一叶片后,使上一叶片的弧高增大的数值,cm;

R1-k——第k片叶片贴合于上一叶片后的曲率半径,包括叶片本身的厚度,cm。

由表8可知,装配后板簧的总成弧高为10.51cm,与2.1的计算结果11cm接近相等,说明所选预应力大小是合适的。

4钢板弹簧各片应力的计算及校核

叶片实际应力σk=σ0k+σkc (16)

而σkc=Tkc/Wk (17)

同时Tkc=TcIk/∑Ik (18)

Tc=q1c (19)

且Wk=2Ik/h=0.94×103 mm3。

其中q——弹簧每端满载载荷;Wk——断面模数。

则Tkc=q1cIk/∑Ik=TC /7=395030/7=39503 N·cm

所以,σkc=Tkc /Wk=621 N·mm-2

具体计算如表9所示。

σb60%=940.8. N/mm2,各片实际应力均小于940.8 N/mm2,符合要求。

5结束语

经过上述详细的计算,确定了轻型卡车前钢板弹簧的片数、片宽、片厚、片长、弧高、曲率半径、检验刚度、装配刚度等其它技术参数,并进行校核,验证所选取的参数基本上满足了汽车在空、满载条件下对平顺性、舒适性以及安全方面的要求。

参考文献

[1]邱宣怀.机械设计手册[M].北京:机械工业出版社1991.

[2]中国机械工程学会,中国机械设计大典编委会.中国机械设计大典(第三册)[M].南昌:江西科学技术出版社,2002.

[3]汪曾祥.弹簧设计手册[M].上海:上海科学技术文献出版社,1986.

[4]王望予.汽车设计[M].北京:机械工业出版社.2000-05:181-189.

4.2钢板弹簧设计

4.2.1钢板弹簧的布置方案

钢板弹簧在汽车上可以纵置或者横置。后者因为要传递纵向力,必须设置附加的导向传力装置,使结构复杂、质量加大,所以只在少数轻、微型车上应用。纵置钢板弹簧能传递各种力和力矩,并且结构简单,故在汽车上得到广泛应用。

纵置钢板弹簧又有对称式与不对称式之分。钢板弹簧中部在车轴(桥)上的固定中心至钢板弹簧两端卷耳中心之间的距离若相等,则为对称式钢板弹簧;若不相等,则称为不对称式

钢板弹簧。多数情况下汽车采用对称式钢板弹簧。由于整车布置上的原因,或者钢板弹簧在汽车上的安装位置不动,又要改变轴距或者通过变化轴距达到改善轴荷分配的目的时,采用不对称式钢板弹簧。

4.2.2钢板弹簧主要参数的确定

在进行钢板弹簧计算之前,应当知道下列初始条件:满载静止时汽车前、后轴(桥)负荷

1G 、2G 和簧下部分荷重1u G 、2u G ,并据此计算出单个钢板弹簧的载荷:

2/)(111u W G G F -=和2/)(222u W G G F -=,悬架的静挠度c f 和动挠度d f ,汽车的轴距

等。

1.满载弧高a f

满载弧高a f 是指钢板弹簧装到车轴(桥)上,汽车满载时钢板弹簧主片上表面与两端(不包括卷耳孔半径)连线间的最大高度差(图4—3)。a f 用来保证汽车具有给定的高度。

当a f =0时,钢板弹簧在对称位置上工作。为了在车架高度已限定时能得到足够的动挠度值,常取a f =10~20mm 。

2.钢板弹簧长度L 的确定

钢板弹簧长度L 是指弹簧伸直后两卷耳中心之间的距离。增加钢板弹簧长度L 能显著降低弹簧应力,提高使用寿命;降低弹簧刚度,改善汽车平顺性;在垂直刚度c 给定的条件下,又能明显增加钢板弹簧的纵向角刚度。钢板弹簧的纵向角刚度系指钢板弹簧产生单位纵向转角时,作用到钢板弹簧上的纵向力矩值。增大钢板弹簧纵向角刚度的同时,能减少车轮扭转力矩所引起的弹簧变形;选用长些的钢板弹簧,会在汽车上布置时产生困难。原则上在总布置可能的条件下,应尽可能将钢板弹簧取长些。推荐在下列范围内选用钢板弹簧的长度:轿车:L =(0.40~0.55)轴距;货车前悬架:L = (0.26~0.35)轴距,后悬架:L = (0.35~0.45)轴距。

图4—3 钢板弹簧总成在自由状态下的弧高

3.钢板断面尺寸及片数的确定

(1)钢板断面宽度b 的确定 有关钢板弹簧的刚度、强度等,可按等截面简支梁的计算

公式计算,但需引入挠度增大系数δ加以修正。因此,可根据修正后的简支梁公式计算钢板弹簧所需要的总惯性矩0J 。对于对称钢板弹簧

E c ks L J 48/])[(30δ-= (4—5)

式中,s 为U 形螺栓中心距(mm);是为考虑U 形螺栓夹紧弹簧后的无效长度系数(如刚性夹紧,取5.0=k ,挠性夹紧,取0=k );c 为钢板弹簧垂直刚度(N /mm),c W f F c /=;

δ为挠度增大系数(先确定与主片等长的重叠片数1n ,再估计一个总片数0n ,求得

01/n n =η,然后用)]5.01(04.1/[5.1ηδ+=初定δ);E 为材料的弹性模量。

钢板弹簧总截面系数0W 用下式计算 0W ≥][4/)]([W W ks L F σ- (4—6) 式中,[]W σ为许用弯曲应力。

对于55SiMnVB 或60Si2Mn 等材料,表面经喷丸处理后,推荐[]W σ在下列范围内选取:前弹簧和平衡悬架弹簧为350~450N /2

m m ;后主簧为450~550N /2

m m ;后副簧为220 ~250N /2

m m 。

将式(4—6)代人下式计算钢板弹簧平均厚度p h

[]c

W p Ef ks L W J h 6)(2200σδ-=

= (5—7) 有了p h 以后,再选钢板弹簧的片宽b 。增大片宽,能增加卷耳强度,但当车身受侧向力作用倾斜时,弹簧的扭曲应力增大。前悬架用宽的弹簧片,会影响转向轮的最大转角。片

宽选取过窄,又得增加片数,从而增加片间的摩擦和弹簧的总厚。推荐片宽与片厚的比值

p h b /在6~10范围内选取。

(2)钢板弹簧片厚h 的选择 矩形断面等厚钢板弹簧的总惯性矩0J 用下式计算

12/30nbh J = (5—8)

式中,n 为钢板弹簧片数。

由式(4—8)可知,改变片数n 、片宽b 和片厚h 三者之一,都影响到总惯性矩0J 的变化;再结合式(4—5)可知,总惯性矩0J 的改变又会影响到钢板弹簧垂直刚度c 的变化,也就是影

响汽车的平顺性变化。其中,片厚丸的变化对钢板弹簧总惯性矩了。影响最大。增加片厚九,可以减少片数n。钢板弹簧各片厚度可能有相同和不同两种情况,希望尽可能采用前者。但因为主片工作条件恶劣,为了加强主片及卷耳,也常将主片加厚,其余各片厚度稍薄。此时,要求一副钢板弹簧的厚度不宜超过三组。为使各片寿命接近又要求最厚片与最薄片厚度之比应小于1.5。

最后,钢板断面尺寸b和h应符合国产型材规格尺寸。

图4—4 叶片断面形状

a)矩形断面b)T形断面c)单面有抛物线边缘断面d)单面有双槽的断面

(3)钢板断面形状矩形断面钢板弹簧的中性轴,在钢板断面的对称位置上(图4—4a)。工作时一面受拉应力,另一面受压应力作用,而且上、下表面的名义拉应力和压应力的绝对值相等。因材料抗拉性能低于抗压性能,所以在受拉应力作用的一面首先产生疲劳断犁。除矩形断面以外的其它断面形状的叶片(图4—4b、c、d),其中性轴均上移,使受拉应力作用的一面的拉应力绝对值减小,而受压应力作用的一面的压应力绝对值增大,从而改善了应力在断面上的分布状况,提高了钢板弹簧的疲劳强度和节约近10%的材料。

(4)钢板弹簧片数n 片数n少些有利于制造和装配,并可以降低片间的干摩擦,改善汽车行驶平顺性。但片数少了将使钢板弹簧与等强度梁的差别增大,材料利用率变坏。多片钢板弹簧一般片数在6~14片之间选取,重型货车可达20片。用变截面少片簧时,片数在1~4片之间选取。

4.2.3钢板弹簧各片长度的确定

片厚不变宽度连续变化的单片钢板弹簧是等强度梁,形状为菱形(两个三角形)。将由两个三角形钢板组成的钢板弹簧分割成宽度相同的若干片,然后按照长度大小不同依次排列、叠放到一起,就形成接近实用价值的钢板弹簧。实际上的钢板弹簧不可能是三角形,因为为了将钢板弹簧中部固定到车轴(桥)上和使两卷耳处能可靠地传递力,必须使它们有一定的宽度,因此应该用中部为矩形的双梯形钢板弹簧(图4—5)替代三角形钢板弹簧才有真正的实用意义。这种钢板弹簧各片具有相同的宽度,但长度不同。钢板弹簧各片长度就是基于实际钢

板各片展开图接近梯形梁的形状这一原则来作图的。首先假设各片厚度不同,则具体进行步骤如下:

先将各片厚度i h 的立方值3i h 按同一比例尺沿纵坐标绘制在i 0σ图上(图4—6),再沿横坐标量出主片长度的一半L /2和U 形螺栓中心距的一半s/2,得到A 、B 两点,连接A 、B 即得到三角形的钢板弹簧展开图。AB 线与各叶片上侧边的交点即为各片长度。如果存在与主片等长的重叠片,就从月点到最后一个重叠片的上侧边端点连一直线,此直线与各片上侧边的交点即为各片长度。各片实际长度尺寸需经圆整后确定。

图4—5 双梯形钢板弹簧

图4—6 确定钢板弹簧各片长度的作图法

4.2.4钢板弹簧刚度验算

在此之前,有关挠度增大系数δ、总惯性矩0J 、片长和叶片端部形状等的确定都不够准确,所以有必要验算刚度。用共同曲率法计算刚度的前提是,假定同一截面上各片曲率变化值相同,各片所承受的弯矩正比于其惯性矩,同时该截面上各片的弯矩和等于外力所引起的弯矩。刚度验算公式为

∑=++-=

n

k k k k Y Y a

E

c 1

131

)

(6α (4—9)

其中,)(111++-=k k l l a ;∑==

k

i i

k J

Y 1

1

;∑+=+=

1

1

11

k i i

k J

Y 。

式中,α为经验修正系数,α=0.90~0.94;E 为材料弹性模量;1l 、1+k l 为主片和第(1+k )片的一半长度。

式(6—9)中主片的一半1l ,如果用中心螺栓到卷耳中心间的距离代入,求得的刚度值为钢板弹簧总成自由刚度j c ;如果用有效长度,即)5.0(1'1ks l l -=代入式(6—9),求得的刚度值是钢板弹簧总成的夹紧刚度Z c 。

4.2.5钢板弹簧总成在自由状态下的弧高及曲率半径计算

(1)钢板弹簧总成在自由状态下的弧高0H 钢板弹簧各片装配后,在预压缩和U 形螺栓夹紧前,其主片上表面与两端(不包括卷耳孔半径)连线间的最大高度差(图4—3),称为钢板弹簧总成在自由状态下的弧高0H ,用下式计算 )(0f f f H a c ?++= (4—10)

式中,c f 为静挠度;a f 为满载弧高;f ?为钢板弹簧总成用U 形螺栓夹紧后引起的弧高变化,2

2)

)(3(L f f s L s f c a +-=

?;s 为U 形螺栓中心距;L 为钢板弹簧主片长度。

钢板弹簧总成在自由状态下的曲率半径0208/H L R =。

(2)钢板弹簧各片自由状态下曲率半径的确定 因钢板弹簧各片在自由状态下和装配后的曲率半径不同(图4—7),装配后各片产生预应力,其值确定了自由状态下的曲率半径i R 各片自由状态下做成不同曲率半径的目的是:使各片厚度相同的钢板弹簧装配后能很好地贴紧,减少主片工作应力,使各片寿命接近。

图4—7 钢板弹簧各片自由状态下的曲率半径

矩形断面钢板弹簧装配前各片曲率半径由下式确定 )

2(1000R Eh R R i i

i σ+=

(4—11)

式中,i R 为第i 片弹簧自由状态下的曲率半径(mm);0R 为钢板弹簧总成在自由状态下的曲率半径(mm);i 0σ为各片弹簧的预应力(N /2

m m );正为材料弹性模量(N /2

m m ),取

5101.2?=E N/2m m ;i h 为第i 片的弹簧厚度(mm)。

在已知钢板弹簧总成自由状态下曲率半径0R 和各片弹簧预加应力i 0σ的条件下,可以用式(4—11)计算出各片弹簧自由状态下的曲率半径i R 。选取各片弹簧预应力时,要求做到:装配前各片弹簧片间间隙相差不大,且装配后各片能很好贴和;为保证主片及与其相邻的长片有足够的使用寿命,应适当降低主片及与其相邻的长片的应力。

为此,选取各片预应力时,可分为下列两种情况:对于片厚相同的钢板弹簧,各片预应力值不宜选取过大;对于片厚不相同的钢板弹簧,厚片预应力可取大些。推荐主片在根部的工作应力与预应力叠加后的合成应力在300~350N /2

m m 内选取。1~4片长片叠加负的预应力,短片叠加正的预应力。预应力从长片到短片由负值逐渐递增至正值。

在确定各片预应力时,理论上应满足各片弹簧在根部处预应力所造成的弯矩i M 之代数和等于零,即

∑=n

i i

M

1

(4-12)

i n

i i

W ∑=1

(4-13)

如果第i 片的片长为i L ,则第i 片弹簧的弧高为 i i i R L H 8/2

≈ (4-14)

4.2.6钢板弹簧总成弧高的核算

由于钢板弹簧叶片在自由状态下的曲率半径i R 是经选取预应力i 0σ后用式(4-11)计算,受其影响,装配后钢板弹簧总成的弧高与用式0208/H L R =计算的结果会不同。因此,需要核算钢板弹簧总成的弧高。 根据最小势能原理,钢板弹簧总成的稳定平衡状态是各片势能总和最小状态,由此可求得等厚叶片弹簧的0R 为

∑∑===n

i i

n

i i

i L

R L R 1

10

1

(4-15)

式中,i L 为钢板弹簧第i 片长度。 钢板弹簧总成弧高为 028/R L H ≈ (4-16)

用式(4-16)与用式(4-10)计算的结果应相近。如相差较多,可经重新选用各片预应力

再行核算。

4.2.7钢板弹簧强度验算

(1)紧急制动时,前钢板弹簧承受的载荷最大,在它的后半段出现的最大应力max σ用下式计算

2112'11m a x )()

(W l l c l l m G ++=?σ (4-17)

式中,1G 为作用在前轮上的垂直静负荷;'

1m 为制动时前轴负荷转移系数,轿车:'

1m =1.2~1.4,货车:'

1m =1.4~1.6;1l 、2l 为钢板弹簧前、后段长度;?为道路附着系数,取0.8;

0W 为钢板弹簧总截面系数;c 为弹簧固定点到路面的距离(图4-8)。

(2)汽车驱动时,后钢板弹簧承受的载荷最大,在它的前半段出现最大应力max σ用下式计算

1

'

2202121'22max

)()(bh m G W l l c l l m G ?

?σ+

++= (4-18) 式中,G2为作用在后轮上的垂直静负荷;m ;为驱动时后轴负荷转移系数,轿车:'

2m =1.25~1.30,货车:'

2m =1.1~1.2;?为道路附着系数;b 为钢板弹簧片宽;1h 为钢板弹簧主片厚

度。

此外,还应当验算汽车通过不平路面时钢板弹簧的强度。许用应力[σ]取为1000N /

2m m 。

(3)钢板弹簧卷耳和弹簧销的强度核算 钢板弹簧主片卷耳受力如图4-9所示。卷耳 处所受应力σ是由弯曲应力和拉(压)应力合成的应力

图4—8 汽车制动时钢板弹簧的受力图

图4—9 钢板弹簧主片卷耳受力图

12

1

1)(3bh F bh h D F x

x ++=

σ (4—19) 式中,x F 为沿弹簧纵向作用在卷耳中心线上的力;D 为卷耳内径;b 为钢板弹簧宽度;1h 为主片厚度。

许用应力[σ]取为350N /2

m m 。

对钢板弹簧销要验算钢板弹簧受静载荷时钢板弹簧销受到的挤压应力bd

F s

Z =

σ。其中,s F 为满载静止时钢板弹簧端部的载荷;b 为卷耳处叶片宽;d 为钢板弹簧销直径。

用30钢或40钢经液体碳氮共渗处理时,弹簧销许用挤压应力[Z σ]取为3~4N /2

m m ;用20钢或20Cr 钢经渗碳处理或用45钢经高频淬火后,其许用应力[Z σ]≤7~9N /mm2。 钢板弹簧多数情况下采用55SiMnVB 钢或60Si2Mn 钢制造。常采用表面喷丸处理工艺和减少表面脱碳层深度的措施来提高钢板弹簧的寿命。表面喷丸处理有一般喷丸和应力喷丸两种,后者可使钢板弹簧表面的残余应力比前者大很多。 4.2.8少片弹簧

少片弹簧在轻型车和轿车上得到越来越多的应用。其特点是叶片由等长、等宽、变截面的1~3片叶片组成(图4-10)。利用变厚断面来保持等强度特性,并比多片弹簧减少20%~40%的质量。片间放有减摩作用的塑料垫片,或做成只在端部接触以减少片间摩擦。图4—19所示单片变截面弹簧的端部CD 段和中间夹紧部分AB 段是厚度为1h 和2h 的等截面形,BC 段为变厚截面。BC 段厚度可按抛物线形或线性变化。

图4-10 单片弹簧和少片弹簧 a )单片弹簧 b )少片弹簧

(1)按抛物线形变化 此时厚度x h 随长度的变化规律为21

22)(l x

h h x =,惯性矩

23

2

2)(l x

J J x =,单片刚度为

?

?

????+=

k l l l EJ c 3232)(16ξ

(4—20)

式中,E 为材料的弹性模量;ξ为修正系数,取0.92;l ,2l 如图4-11所示;12

3

2

2bh J =,

其中b 为钢板宽;3

2

1)(

1h h k -=。 弹簧在抛物线区段内各点应力相等,其值为2

2

2

6bh l F s =

σ。

图4-11单片变截面弹簧的一半

(2)按线性变化 此时厚度x h 随长度的变化规律为''B x A h x +=,式中,

1212'l l h h A --=

;1

21221'

l l l h l h B --=。单片钢板弹簧刚度仍用式(4-20)计算,但式中系数k 用'

k 代入

1)1(111)1)(1(4ln 211232

2

3

3'-???

?????-??? ??------+

???

?

??---=βαγαγβββαγk 式中,21/l l =α;21/h h =β;βαγ/=。

当1l >)12(2-βl 或21h <2h 时,弹簧最大应力点发生在''

A

B x =处,此处

'''2B B x A h x =+=,其应力值''max 2/3B bA F s =σ。

当1l ≤)12(2-βl 时,最大应力点发生在B 点,其值3

22max 2/3bh l F s =σ。

max σ应小于许用应力[]σ。

由n 片组成少片弹簧时,其总刚度为各片刚度之和,其应力则按各片所承受的载荷分量计算。少片弹簧的宽度,在布置允许的情况下尽可能取宽些,以增强横向刚度,常取75~100。厚度1h >8mm ,以保证足够的抗剪强度并防止太薄而淬裂。2h 取12~20mm 。

钢板弹簧悬架系统设计规范--完整版

钢板弹簧悬架系统设计规范 1范围 本规范适用于传统结构的非独立悬架系统,主要针对钢板弹簧和液力筒式减振器等主要部件设计参 数的选取、计算、验证等作出较详细的工作模板。 2规范性引用文件 下列文件中的条款通过本规范的引用而成为本规范的条款。凡是注日期的引用文件,其随后所有的 修改单(不包括勘误的内容)或修订版均不适用于本规范,然而,鼓励根据本规范达成协议的各方研究 是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本规范。 QC/T 491-1999汽车筒式减振器尺寸系列及技术条件 QCn 29035-1991汽车钢板弹簧技术条件 QC/T 517-1999汽车钢板弹簧用U形螺栓及螺母技术条件 GB/T 4783-1984汽车悬挂系统的固有频率和阻尼比测定方法 3符号、代号、术语及其定义 GB 3730.1-2001 汽车和挂车类型的术语和定义 GB/T 3730.2-1996 道路车辆质量词汇和代码 GB/T 3730.3-1992 汽车和挂车的术语及其定义车辆尺寸 QC/T 491-1999汽车筒式减振器尺寸系列及技术条件 GB/T 12549-2013汽车操纵稳定性术语及其定义 GB 7258-2017机动车运行安全技术条件 GB 13094-2017 客车结构安全要求 QC/T 480-1999汽车操纵稳定性指标限值与评价方法 QC/T 474-2011客车平顺性评价指标及限值 GB/T 12428-2005客车装载质量计算方法 GB 1589-2016道路车辆外廓尺寸、轴荷及质量限值 GB/T 918.1-1989 道路车辆分类与代码机动车 JTT 325-2013营运客车类型划分及等级评定 凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本规范,凡是不注日期的引用文件,其最新版本适用于本规范。 4悬架系统设计对整车性能的影响 悬架是构成汽车的总成之一,一般由弹性元件(弹簧)、导向机构(杆系或钢板弹簧)、减振装置 (减振器)等组成,把车架(或车身)与车桥(或车轮)弹性地连接起来。主要任务是传递作用在车轮与车架之间的一切力与力矩,缓和由不平路面传给车架的冲击载荷,衰减由冲击载荷引起的承载系统的 振动,保证汽车的正常行驶。悬架结构、性能不仅影响汽车的行驶平顺性,还对操纵稳定性、燃油经济性、通过性等多种

板簧设计教材(200802)

汽车钢板弹簧设计 第一节悬架的定义、功能及其组成 悬架是现代汽车上的主要总成之一,它能够把车架(车身)与车轴(车轮)弹性的连接起来,其主要任务是传递作用在与车架和车轮之间的一切力和力矩,并且缓和由于路面不平而传给车身的冲击载荷,衰减由于冲击载荷引起的承载系统的振动,保证汽车的正常行驶。 悬架通常由弹性元件、导向机构及减振装置组成。弹性元件主要有:钢板弹簧,螺旋弹簧,橡胶弹簧,空气弹簧及油气弹簧等。在长期的发展过程中,由于钢板弹簧具有结构简单,制造成本较低,占用空间小,维修方便等一系列特点,因此目前在世界各国仍都在大量的采用钢板弹簧。 第二节.钢板弹簧的种类 一、按力学性能特点分: 分为等刚度、两极刚度复式钢板弹簧、渐变刚度钢板弹簧。 二、按截面形状分: 分为等截面板簧和变截面板簧 第三节.钢板弹簧的截面形状 目前国内钢板弹簧的截面形状有: a矩形截面b单面双槽截面c带凸肋的截面 弹簧在设计成不对称形状,目的是把断面的中性轴移近受拉表面,减少弹簧的拉应力。此种材料也存在缺点 (1)槽内容易储存泥沙加剧表面腐蚀。

(2)轧制后在沟槽的对应拉面上,表面质量较差,双槽的比单槽的更严重。 这种表面缺陷成为疲劳起源点。 注:在钢板弹簧的设计过程中应优先选择GB1222-84《弹簧钢》所规定的规格。 第四节.钢板弹簧的主要元件结构 一、第一片卷耳形式 钢板弹簧的卷耳形式一般有3种结构,上卷耳、下卷耳和平卷耳(柏林耳)。上卷耳使用的比较多,采用下卷耳主要是为了协调钢板弹簧与转向系的运动,下卷耳在载荷作用下容易张开。平卷耳可以减少卷耳的应力,因为纵向力作用方向和弹簧主片断面的中心线重合,对于不能增加主片厚度但又要保证主片卷耳强度的弹簧多采用平卷耳。但是平卷耳制造上比上述两种卷耳复杂,一般轿车多采用平卷耳或下卷耳。 二、第二片包耳

QCC-JT---汽车钢板弹簧技术条件

QCC-JT---汽车钢板弹簧技术条件

————————————————————————————————作者:————————————————————————————————日期:

Q/CC x x汽车股份有限公司企业标准 Q/CC JT018—2008 代替Q/CC JT018—2006 汽车钢板弹簧技术条件 Technical Requirements of Leaf Spring Used on Vehicle 2008-09-06发布2008-12-01实施xx汽车股份有限公司发布

目次 前言................................................................................. II 1 范围 (1) 2 规范性引用文件 (1) 3 术语和定义 (1) 4 技术要求 (1) 5 检验和试验方法 (3) 6 检验规则 (3) 7 标志、包装、贮存 (4) 8 质量保证 (4) 附录A (规范性附录)汽车用钢板弹簧台架试验方法 (5)

前言 本标准是对Q/CC JT018—2006《汽车钢板弹簧技术条件》的修订。本标准在修订过程中主要参考了GB/T 19844-2005《钢板弹簧》。本标准与Q/CC JT018—2006相比,主要变化如下: ——增加了“3术语和定义”; ——增加了“附录A(规范性附录)”; ——增加了“4.4热处理”中洛氏硬度的数值要求; ——修订了“5 检验和试验方法”细化了具体方法; ——对相关条款进行调换和规范; ——删除了旧版中有关产品“断裂数据”方面的内容。 本标准自实施之日起代替Q/CC JT018—2006。 本标准由xx汽车股份有限公司技术研究院提出。 本标准由xx汽车股份有限公司技术研究院标准化科归口。 本标准由xx汽车股份有限公司技术研究院K-底盘部负责起草。 本标准主要起草人:纪国锋、宗召波。

汽车钢板弹簧悬架的参数化建模及可靠性计算

万方数据

万方数据

所需参数的复选框或单击“selectAll”选项,选择“Donesel”选项; e.输入必要的参数: f.软件按输入的参数自动更新模型。即可完成该钢板弹簧的设计建模(如图4)。 圈4铜板弹簧建梗图 3可靠性计算 3.1计算理论 各种车辆的钢板弹簧大部分为中心受载的筒支叠板弹簧(图 4),按一定的宽度将其截开重叠使用。其工作应力为: 3尸f 仃2石丽 式中,尸为载荷,6、JIl和,分别为板簧的宽度、厚度和长度,Ⅳ为板簧的钢板片数。 严格来说,应考虑叠板之间的摩擦对工作应力的影响.不过工程计算中采用这种近似设计方法是允许的,因此在车辆中的钢板弹簧设计里大多会采用这种近似方法。 根据应力一强度千涉理论,以应力极限状态表示的状态方程 为: 艄一器=尺一砘 式中,,为钢板弹簧的材料强度,基本随机参数向量胙n只‘反^17。 向量瑚均值目的和方差及协方差VamD均为已知,并可视其为服从正态分布的相互独立的随机变量。根据状态函数g㈤对向量朋勺一阶和二阶偏导数,可解出∥批)和DfVar国),然后代人可靠性指标公式,由卢邓。红,经推导整理得到可靠性指标为Ⅲ: 式中:彳=券+器%2+券×o.…2 庐器审+貉砰+将订+静×o.吣2 3.2增加计算关系 在参数设计中已设定了包括板簧基本尺寸、载荷以及材料性能等方面的各项计算必要参数,根据公式(1)的计算关系,在模型“工具”菜单下的“关系”中设置好计算可靠性指标的公式语句如下: TECHNICFoRUM A=3宰LoadE+LengthE/(2+WidmE木N)+3’LoadE+Len垂hE/(2+WidthE“2木N)}WidthS“2+9幸LoadE幸LengthE+O.015^2/ (2+WidthE+N) B=9+LengthE“2+LoadS^2/(4幸WidthE^2+N^2)+9?LoadE^2?LengthS^2/(4夺WidthE^2+N^2)+9木LoadE^24Len西hE^2宰 WidthS^2“4+WidthE“2+N^2)+9+LoadE^2幸Len垂hE^2? O.015“2“WidthE“2+N“2) C=sqn((S仃engtllE^2?N^4—2+StrengthE卑A掌N^2+A^2)/(B+s仃engthS“2+N“4)) 由参数c得到可靠性指标卢,对照正态分布表,则可查出对应的可靠度R。 4实际应用及改进 某车辆的钢板弹簧几何尺寸如表2所示。 表2板簧尺寸、藏荷及材料参数 打开钢板弹簧的建模文件,按2.4.2参数设计运行的步骤输入表2中的数据对模型进行更新,此时钢板弹簧的宽度、片数及跨距发生了变化,在窗口参数栏内,参数c显示为3.377,即可靠性指标卢=3.377,对照正态分布表查得对应的可靠度尺=O.9996,则可根据此结果进行设计处理,如生成零部件工程图、进行设计参数校核等。这与以前根据参数重新建模或修改模型、然后计算可靠性指标的工作流程相比,节省了大量时间、大大减少了繁琐的重复性工作。 针对平台的特点及设计的可逆性要求,此计算流程尚未实现优化设计,如输入可靠度便能计算出可靠性指标、优化板簧的某些尺寸等,这要涉及到复杂的微积分编程,并且还要能满足不同厚度钢板弹簧总成及其他结构形式板簧的建模与计算需求,这些内容有待在后续的设计中完善和提高。 参考文献 【1]张洪欣.汽车设计【M】.北京:机械工业出版社,1996. 【2】陈家瑞.汽车构造fM】.北京:人民交通出版社,1999. 【3】赵殿华,李兰英,朱杉等.钢板弹簧平衡悬架的设计计算程序化【J】.机械工程师,2006.07:50.53. 【4】张义民.汽车零部件可靠性设计【M】.北京:北京理工大学出版社,2000.09. 收稿日期:2008一12.15 2009.04氢辫61万方数据

钢板弹簧悬架系统设计规范--完整版

1 范围 本规范适用于传统结构的非独立悬架系统,主要针对钢板弹簧和液力筒式减振器等主要部件设计参数的选取、计算、验证等作出较详细的工作模板。 2 规范性引用文件 下列文件中的条款通过本规范的引用而成为本规范的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本规范,然而,鼓励根据本规范达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本规范。 QC/T 491-1999 汽车筒式减振器尺寸系列及技术条件 QCn 29035-1991 汽车钢板弹簧技术条件 QC/T 517-1999 汽车钢板弹簧用U形螺栓及螺母技术条件 GB/T 4783-1984 汽车悬挂系统的固有频率和阻尼比测定方法 3 符号、代号、术语及其定义 GB 3730.1-2001 汽车和挂车类型的术语和定义 GB/T 3730.2-1996 道路车辆质量词汇和代码 GB/T 3730.3-1992 汽车和挂车的术语及其定义车辆尺寸 QC/T 491-1999 汽车筒式减振器尺寸系列及技术条件 GB/T 12549-2013 汽车操纵稳定性术语及其定义 GB 7258-2017 机动车运行安全技术条件 GB 13094-2017 客车结构安全要求 QC/T 480-1999 汽车操纵稳定性指标限值与评价方法 QC/T 474-2011 客车平顺性评价指标及限值 GB/T 12428-2005 客车装载质量计算方法 GB 1589-2016 道路车辆外廓尺寸、轴荷及质量限值 GB/T 918.1-1989 道路车辆分类与代码机动车 JTT 325-2013 营运客车类型划分及等级评定 凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本规范,凡是不注日期的引用文件,其最新版本适用于本规范。 4 悬架系统设计对整车性能的影响 悬架是构成汽车的总成之一,一般由弹性元件(弹簧)、导向机构(杆系或钢板弹簧)、减振装置(减振器)等组成,把车架(或车身)与车桥(或车轮)弹性地连接起来。主要任务是传递作用在车轮与车架之间的一切力与力矩,缓和由不平路面传给车架的冲击载荷,衰减由冲击载荷引起的承载系统的

钢板弹簧悬架系统设计规范--完整版

钢板弹簧悬架系统设计规范 1 范围 本规范适用于传统结构的非独立悬架系统,主要针对钢板弹簧和液力筒式减振器等主要部件设计参数的选取、计算、验证等作出较详细的工作模板。 2 规范性引用文件 下列文件中的条款通过本规范的引用而成为本规范的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本规范,然而,鼓励根据本规范达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本规范。 QC/T 491-1999 汽车筒式减振器尺寸系列及技术条件 QCn 29035-1991 汽车钢板弹簧技术条件 QC/T 517-1999 汽车钢板弹簧用U形螺栓及螺母技术条件 GB/T 4783-1984 汽车悬挂系统的固有频率和阻尼比测定方法 3 符号、代号、术语及其定义 GB 3730.1-2001 汽车和挂车类型的术语和定义 GB/T 3730.2-1996 道路车辆质量词汇和代码 GB/T 3730.3-1992 汽车和挂车的术语及其定义车辆尺寸 QC/T 491-1999 汽车筒式减振器尺寸系列及技术条件 GB/T 12549-2013 汽车操纵稳定性术语及其定义 GB 7258-2017 机动车运行安全技术条件 GB 13094-2017 客车结构安全要求 QC/T 480-1999 汽车操纵稳定性指标限值与评价方法 QC/T 474-2011 客车平顺性评价指标及限值 GB/T 12428-2005 客车装载质量计算方法 GB 1589-2016 道路车辆外廓尺寸、轴荷及质量限值 GB/T 918.1-1989 道路车辆分类与代码机动车 JTT 325-2013 营运客车类型划分及等级评定 凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本规范,凡是不注日期的引用文件,其最新版本适用于本规范。 4 悬架系统设计对整车性能的影响 悬架是构成汽车的总成之一,一般由弹性元件(弹簧)、导向机构(杆系或钢板弹簧)、减振装置(减振器)等组成,把车架(或车身)与车桥(或车轮)弹性地连接起来。主要任务是传递作用在车轮与车架之间的一切力与力矩,缓和由不平路面传给车架的冲击载荷,衰减由冲击载荷引起的承载系统的

汽车设计(课程设计)钢板弹簧(DOC)

汽车设计——钢板弹簧课程设计 专业:车辆工程 教师:R老师 姓名:XXXXXX 学号:200XYYYY 2012 年7 月3 日

课程设计任务书 一、课程设计的性质、目的、题目和任务 本课程设计是我们在完成基础课、技术基础课和大部分专业课学习后的一个教学环节,是培养我们应用已学到的理论知识来解决实际工程问题的一次训练,并为毕业设计奠定基础。 1、课程设计的目的是: (1)进一步熟悉汽车设计理论教学内容; (2)培养我们理论联系实际的能力; (3)训练我们综合运用知识的能力以及分析问题、解决问题的能力。 2、设计题目: 设计载货汽车的纵置钢板弹簧 材料选用60Si2MnA ,弹性模量取E=2.1×10MPa 3、课程设计的任务: (1)由已知参数确定汽车悬架的其他主要参数; (2)计算悬架总成中主要零件的参数; (3)绘制悬架总成装配图。 二、课程设计的内容及工作量 根据所学的机械设计、汽车构造、汽车理论、汽车设计以及金属力学性能等课程,完成下述涉及内容: 1.学习汽车悬架设计的基本内容 2.选择、确定汽车悬架的主要参数 3.确定汽车悬架的结构 4.计算悬架总成中主要零件的参数 5.撰写设计说明书 6.绘制悬架总成装配图、零部件图共计1张A0。 设计要求: 1. 设计说明书 设计说明书是存档文件,是设计的理论计算依据。说明书的格式如下: (1)统一稿纸,正规书写; (2) 竖订横写,每页右侧画一竖线,留出25mm空白,在此空白内标出该页中所计算的主要数据; (3) 附图要清晰注上必要的符号和文字说明,不得潦草; 2. 说明书的内容及计算说明项目 (1)封面;(2)目录;(3)原始数据及资料;(4)对设计课题的分析;(5)汽车纵置钢板弹簧简图;(6)设计计算;(7)设计小结(设计特点及补充说明,鉴别比较分析,个人体会等);(8)参考文献。 3. 设计图纸 1)装配总图、零件图一张(0#);

钢板弹簧课程设计46546

目录 1.汽车钢板弹簧结构选择 (4) 2.钢板弹簧结构设计计算 (5) 3.初定片数、截面尺寸 (7) 4.按作图法求各片弦长 (8) 5.挠度计算 (8) 6.钢板弹簧各片应力计算 (8) 7.加预紧力 (9) 8.钢板弹簧各片实际弦长的计算 (13) 9.在自由状态下各片的曲率半径计算 (14) 10.钢板在极限工作下的强度验算 (16) 11.卷耳和销的计算 (17) 12.参考文献 (18) 13.附表1 14.附图

汽车设计课程设计题目 设计题目:汽车钢板弹簧设计 主要技术和性能参数(第二组) 前轴轴负荷(N)空载15144 满载19344 前轴非簧载质量(kg)420 钢板弹簧作用距离L(mm)1300 两个”U”型螺栓中心距S(mm)110 静绕度f c(mm)(满载) 80-90 动绕度f a(mm) 56 钢板弹簧满载时弧高F 28 钢板弹簧卷耳固定点至路面距离C 550

汽车钢板弹簧简介 钢板弹簧是汽车悬架中应用最广泛的一种元件。它是由若干片等宽但不等长(厚度可以相等,也可不等),曲率半径不等的合金弹簧片组合而成的一根近似等强度的弹簧梁。钢板弹簧的第一片(最长的一片)称为主片,其两端弯成卷耳,内装青铜或塑料、橡胶、粉末冶金制成的村套,以便用弹簧销与固定在车架上的之家或吊耳作铰链连接。钢板弹簧主要由主片、副片、弹簧夹、螺栓、套管、螺母等组成。钢板弹簧的中部一般用U形螺栓固定在车桥上。汽车钢板弹簧的材料一般用60Si2Mn、55SiMnVB。

一、汽车钢板弹簧结构选择 1.选择断面形状 有矩形,T形,单面有抛物线边缘,单面有双槽等断面形式 为了提高疲劳强度,选用60Si2Mn材料即最常用的板簧材料为热轧弹簧扁钢。 因为矩形断面钢板弹簧的中性轴,在钢板断面的堆成位置上。工作时,一面受拉应力、另一面受压应力作用,而且上、下表面的名义拉应力和压应力的绝对值相等。故选择矩形断面形式。 2.长度圆整 圆整为“0”“5”尾数 3.叶片端部形状 选用矩形: 4.卷耳、吊耳的结构方案 ①吊耳②卷耳③包耳

钢板弹簧悬架设计

专业课程设计说明书题目:商用汽车后悬架设计 学院机械与汽车学院 专业班级 10车辆工程一班 学生姓名 学生学号 201030081360 指导教师 提交日期 2013 年 7 月 12 日 1

一.设计任务:商用汽车后悬架设计 二.基本参数:协助同组总体设计同学完成车辆性能计算后确定 额定装载质量5000KG 最大总质量8700KG 轴荷分配 空载前:后52:48 满载前:后32:68 满载校核后前:后33::67 质心位置: 高度:空载793mm 满载1070mm 至前轴距离:空载2040mm 满载2890mm 三.设计内容 主要进行悬架设计,设计的内容包括: 1.查阅资料、调查研究、制定设计原则 2.根据给定的设计参数(发动机最大力矩,驱动轮类型与规格,汽车总质量和使用工况,前后轴荷,前后簧上质量,轴距,制动时前轴轴荷转移系数,驱动时后轴轴荷转移系数),选择悬架的布置方案及零部件方案,设计出一套完整的后悬架,设计过程中要进行必要的计算。 3.悬架结构设计和主要技术参数的确定 (1)后悬架主要性能参数的确定 (2)钢板弹簧主要参数的确定 (3)钢板弹簧刚度与强度验算 2

(4)减振器主要参数的确定 4.绘制钢板弹簧总成装配图及主要零部件的零件图 5.负责整车质心高度和轴荷的计算和校核。 *6.计算20m/s车速下,B级路面下整车平顺性(参见<汽车理论>P278 题6.5之第1问)。 四.设计要求 1.钢板弹簧总成的装配图,1号图纸一张。 装配图要求表达清楚各部件之间的装配关系,标注出总体尺寸,配合关系及其它需要标注的尺寸,在技术要求部分应写出总成的调整方法和装配要求。 2.主要零部件的零件图,3号图纸4张。 要求零件形状表达清楚、尺寸标注完整,有必要的尺寸公差和形位公差。在技术要求应标明对零件毛胚的要求,材料的热处理方法、标明处理方法及其它特殊要求。 3.编写设计说明书。 五.设计进度与时间安排 本课程设计为2周 1.明确任务,分析有关原始资料,复习有关讲课内容及熟悉参考资料0.5周。 2.设计计算0.5周 3.绘图0.5周 4.编写说明书、答辩0.5周 3

解放牌汽车后钢板弹簧吊耳课程设计.doc

目录 目录 (1) (一)零件的分析 一、零件的分析 (2) 二、零件的工艺分析 (3) (二)机械加工工艺规程制订 一、确定生产类型 (4) 二、确定毛坯制造形式 (5) 三、选择定位基准 (6) 四、选择加工方法 (7) 五、制定工艺路线 (9) 六、确定加工余量及毛坯尺寸 (10) 七、确定工序尺寸 (13) 八、选择加工设备与工艺装备 (14) 九、确定切削用量和基本时间 (15) 十、本章小结 (21) (三)后钢板弹簧吊耳内侧端面夹具设计 一、接受任务、明确加工要求 (22) 二、确定定位方案、选择定位元件 (23) 三、定位误差分析 (24) 四、铣削力与夹紧力计算 (24) 五、定向键与对刀装置设计 (25) 六、塞尺尺寸 (27) 七、夹紧装置及夹具体设计 (28) 八、夹具设计及操作的简要说明 (28) 九、本章小结 (31) 参考文献 (32)

(一)零件分析: 一、零件的作用: 题目所给定的零件是CA10B解放牌汽车后钢板弹簧吊耳。后钢板弹簧吊耳的主要作用是载重后,使钢板能够得到延伸和伸展,能够起到正 常的缓冲作用。因此骑车后钢板弹簧吊耳零件的加工质量会影响骑车的 工作精度、使用性能和寿命。汽车后钢板弹簧吊耳的主要作用是减震功 能、阻尼缓冲和导向功能。 二、零件的工艺分析: 后钢板弹簧吊耳有两组加工表面,它们之间有一定的位置要求。现分述如下: 1.以Φ60mm两外圆面为加工中心的加工面 2.以Φ30 0+0.045mm孔为中心的加工表面

由以上分析可知:该零件的主要加工表面是平面及孔系。一般来说,保证平面的加工精度要比保证孔系的加工精度容易。因此,对于该零件 来说,加工过程中的主要问题是保证平面的尺寸精度以及孔的尺寸精度 及位置精度,处理好孔和平面之间的相互关系。 该类零件的加工应遵循先面后孔的原则:即先加工零件的基准平面,以基准平面定位加工其他平面。然后再加工孔系。后钢板弹簧吊耳的加 工自然应遵循这个原则。这是因为平面的面积大,用平面定位可以确保 定位可靠夹紧牢固,因而容易保证孔的加工精度。其次,先加工平面可 以先切去铸件表面的凹凸不平。为提高孔的加工精度创造条件,便于对 刀及调整,也有利于保护刀具。 后钢板弹簧吊耳零件的加工工艺应遵循粗精加工分开的原则,将孔与平面的加工明确划分成粗加工和精加工阶段以保证孔系加工精度。 对该零件图进行工艺审核后,可知该零件图视图正确、完整,尺寸、公差及技术要求齐全,加工要求合理,零件的结构工艺性较好。 (二)机械加工工艺规程制订 一、确定生产类型 1)零件年生产纲领 N=Qn(1+α%+β%) =4000×(1+8%+1%)=4360件 2)确定生产类型 查《机械制造工艺学》表1-5,确定该批零件为中批生产类型 二、确定毛坯制造形式 考虑零件在工作过程中要承受交变载荷压力(冲击压力),为增强其强度和冲击韧性,故考虑选用锻件(材料为35号钢,硬度HBS149-187),

汽车钢板弹簧悬架设计(doc41页).doc

汽车钢板弹簧悬架设计 (1)、钢板弹簧种类 汽车钢板弹簧除了起弹性元件作用之外,还兼起导向作用,而多片弹簧片间磨擦 还起系统阻尼作用。由于钢板弹簧结构简单,使用维修、保养方便,长期以来钢板弹 簧在汽车上得到广泛应用。目前汽车使用的钢板弹簧常见的有以下几种。 ① 通多片钢板弹簧,如图1-a 所示,这种弹簧主要用在载货汽车和大型客车上, 弹簧弹性特性如图2-a 所不,呈线性特性。 图1 图2 ② 少片变截面钢板弹簧,如图1-b 所不,为减少弹簧质量,弹簧厚度沿长度方向 制成等厚,其弹性特性如一般多片钢板弹簧一样呈线性特性图2-a 。这种弹簧主要用于 轻型货车及大、中型载货汽车前悬架。 ③ 两级变刚度复式钢板弹簧,如图1-c 所示,这种弹簧主要用于大、中型载货汽 车后悬架。弹性特性如图2-b 所示,为两级变刚度特性,开始时仅主簧起作用,当载 荷增加到某值时副簧与主簧共同起作用,弹性特性由两条直线组成。 ④ 渐变刚度钢板弹簧,如图1-d 所示,这种弹簧多用于轻型载货汽车与厢式客车 后悬架。副簧放在主簧之下,副簧随汽车载荷变化逐渐起作用,弹簧特性呈非线性特 性,如图2-c 所示。 多片钢板弹簧 钢板弹簧计算实质上是在已知弹簧负荷情况下,根据汽车对悬架性能(频率)要 求,确定弹簧刚度,求出弹簧长度、片宽、片厚、片数。并要求弹簧尺寸规格满足弹 簧的强度要求。 荷 载 V :

3.1钢板弹簧设计的已知参数 1)弹簧负荷 通常新车设计时,根据整车布置给定的空、满载轴载质量减去估算的非簧载质量, 得到在每副弹簧上的承载质量。一般将前、后轴,车轮,制动鼓及转向节、传动轴、转向纵拉杆等总成视为非簧载质量。如果钢板弹簧布置在车桥上方,弹簧3/4的质量为非簧载质量,下置弹簧,1/4弹簧质量为非簧载质量。 2)弹簧伸直长度 根据不同车型要求,由总布置给出弹簧伸直长度的控制尺寸。在布置可能的情况下,尽量增加弹簧长度,这主要是考虑以下几个方面原因。 ①由于弹簧刚度与弹簧长度的三次方成反比,因此从改善汽车平顺性角度看,希望弹簧长度长些好。 ②在弹簧刚度相同情况下,长的弹簧在车轮上下跳动时,弹簧两卷耳孔距离变化相对较小,对前悬架来说,主销后倾角变化小,有利于汽车行驶稳定性。 ③增加弹簧长度可以降低弹簧工作应力和应力幅,从而提高弹簧使用寿命。 ④增加弹簧长度可以选用簧片厚的弹簧,从而减少弹簧片数,并且簧片厚的弹簧对提高主片卷耳强度有利。 3)悬架静挠度 汽车簧载质量与其质量组成的振动系统固有频率是评价汽车行驶平顺性的重要参数。悬架设计时根据汽车平顺性要求,应给出汽车空、满载时前、后悬架频率范围。如果知道频率,就可以求出悬架静挠度值c。选取悬架静挠度值时,希望后悬架静挠度值c2小于前悬架静挠度值ci,并且两值最好接近,一般推荐:

钢板弹簧设计说明书

目录 一、确定断面尺寸及片数 ------------------------------------------------------------------------ 2 二、确定各片钢板弹簧的长度 ------------------------------------------------------------------ 4 三、钢板弹簧的刚度验算 ------------------------------------------------------------------------ 5 四、钢板弹簧总成在自由状态下的弧高及曲率半径计算。 ------------------------------- 7 H ------------------------------------------------------------------------------------ 7 1.钢板弹簧总成在自由状态下的弧高 2.钢板弹簧各片自由状态下曲率半径的确定 -------------------------------------------------------------------------------- 8 五、钢板弹簧总成弧高的核算 ---------------------------------------------------------------- 10 六、钢板弹簧的强度验算 ---------------------------------------------------------------------- 11 二、(修改)确定各片弹簧长度--------------------------------------------------------------- 12 三、(修改)钢板弹簧的刚度验算 ------------------------------------------------------------ 14 四、(修改)钢板弹簧总成在自由状态下的弧高及曲率半径计算 --------------------- 15 五、(修改)钢板弹簧总成弧高的核算 ------------------------------------------------------ 17六(修改)钢板弹簧的强度验算 ------------------------------------------------------------- 18七、钢板弹簧各片应力计算 ------------------------------------------------------------------- 18八,设计结果 ------------------------------------------------------------------------------------- 20 九、参考文献 ------------------------------------------------------------------------------------- 21 十、附总成图 -------------------------------------------------------------- 错误!未定义书签。

汽车钢板弹簧悬架设计方案

汽车钢板弹簧悬架设计 (1)、钢板弹簧种类 汽车钢板弹簧除了起弹性元件作用之外,还兼起导向作用,而多片弹簧片间磨擦还起系统阻尼作用。由于钢板弹簧结构简单,使用维修、保养方便,长期以来钢板弹簧在汽车上得到广泛应用。目前汽车使用的钢板弹簧常见的有以下几种。 ①通多片钢板弹簧,如图1-a所示,这种弹簧主要用在载货汽车和大型客车上,弹簧弹性特性如图2-a所不,呈线性特性。 变形 载荷变形 载荷变形载荷 图1 图2 ②少片变截面钢板弹簧,如图1-b所不,为减少弹簧质量,弹簧厚度沿长度方向制成等厚,其弹性特性如一般多片钢板弹簧一样呈线性特性图2-a。这种弹簧主要用于轻型货车及大、中型载货汽车前悬架。 ③两级变刚度复式钢板弹簧,如图1-c 所示,这种弹簧主要用于大、中型载货汽车后悬架。弹性特性如图2-b 所示,为两级变刚度特性,开始时仅主簧起作用,当载荷增加到某值时副簧与主簧共同起作用,弹性特性由两条直线组成。 ④渐变刚度钢板弹簧,如图1-d 所示,这种弹簧多用于轻型载货汽车与厢式客车后悬架。副簧放在主簧之下,副簧随汽车载荷变化逐渐起作用,弹簧特性呈非线性特性,如图2-c 所示。

多片钢板弹簧 钢板弹簧计算实质上是在已知弹簧负荷情况下,根据汽车对悬架性能(频率)要求,确定弹簧刚度,求出弹簧长度、片宽、片厚、片数。并要求弹簧尺寸规格满足弹簧的强度要求。 3.1钢板弹簧设计的已知参数 1)弹簧负荷 通常新车设计时,根据整车布置给定的空、满载轴载质量减去估算的非簧载质量,得到在每副弹簧上的承载质量。一般将前、后轴,车轮,制动鼓及转向节、传动轴、转向纵拉杆等总成视为非簧载质量。如果钢板弹簧布置在车桥上方,弹簧3/4的质量为非簧载质量,下置弹簧,1/4弹簧质量为非簧载质量。 2)弹簧伸直长度 根据不同车型要求,由总布置给出弹簧伸直长度的控制尺寸。在布置可能的情况下,尽量增加弹簧长度,这主要是考虑以下几个方面原因。 ①由于弹簧刚度与弹簧长度的三次方成反比,因此从改善汽车平顺性角度看,希望弹簧长度长些好。 ②在弹簧刚度相同情况下,长的弹簧在车轮上下跳动时,弹簧两卷耳孔距离变化相对较小,对前悬架来说,主销后倾角变化小,有利于汽车行驶稳定性。 ③增加弹簧长度可以降低弹簧工作应力和应力幅,从而提高弹簧使用寿命。 ④增加弹簧长度可以选用簧片厚的弹簧,从而减少弹簧片数,并且簧片厚的弹簧对提高主片卷耳强度有利。 3)悬架静挠度 汽车簧载质量与其质量组成的振动系统固有频率是评价汽车行驶平顺性的重要参数。悬架设计时根据汽车平顺性要求,应给出汽车空、满载时前、后悬架频率范围。如果知道频率,就可以求出悬架静挠度值c δ。选取悬架静挠度值时,希望后悬架静挠度值2c δ小于前悬架静挠度值1c δ,并且两值最好接近,一般推荐:

汽车钢板弹簧设计计算

。 1.1单个钢板弹簧的载荷 已知汽车满载静止时汽车前轴荷G1=3000kg,非簧载质量Gu1=285kg,则据此可计算出单个钢板弹簧的载荷: Fw1=(G1-Gu1)/2=1357.5 kg (1) 进而得到: Pw1=Fw1×9.8=13303.5 N (2) 1.2钢板弹簧的静挠度 钢板弹簧的静挠度即静载荷下钢板弹簧的变形。前后弹簧的静挠度都直接影响到汽车的行驶性能[1]。为了防止汽车在行驶过程中产生剧烈的颠簸(纵向角振动),应力求使前后弹簧的静挠度比值接近于1。此外,适当地增大静挠度也可减低汽车的振动频率,以提高汽车的舒适性。但静挠度不能无限地增加(一般不超过240 mm),因为挠度过大,即频率过低,也同样会使人感到不舒适,产生晕车的感觉。此外,在前轮为非独立悬挂的情况下,挠度过大还会使汽车的操纵性变坏。一般汽车弹簧的静挠度值通常如表1[2]所列范围内。 本方案中选取fc1=80 mm。 1.3钢板弹簧的满载弧高 满载弧高指钢板弹簧装到车轴上,汽车满载时钢板弹簧主片上表面与两端(不包括卷耳孔半径)连线间的最大高度差[3]。当H0=0时,钢板弹簧在对称位置上工作。考虑到使用期间钢板弹簧塑性变形的影响和为了在车架高度已限定时能得到足够的动挠度值,常取H0∈10-20mm。本方案中H01初步定为18mm。 1.4钢板弹簧的断面形状 板弹簧断面通常采用矩形断面,宜于加工,成本低。但矩形断面也存在一些不足。矩形断面钢板弹簧的中性轴,在钢板断面的对称位置上。工作时,一面受拉应力,一面受压应力作用,而且上、下表面的名义拉应力和压应力的绝对值相等。因材料的抗拉性能低于抗压性能,所以在受拉应力作用的一面首先产生疲劳断裂。除矩形断面以外的其它断面形状的叶片,其中性轴均上移,使受拉应力的一面的拉应力绝对值减小,而受压应力作用的一面的压应力绝对值增大,从而改善了应力在断面上的分布情况,提高了钢板弹簧的疲劳强度并节约了近10%的材料。本方案中选用矩形断面。 1.5钢板弹簧主片长度的确定

钢板弹簧设计3

《汽车设计》课程设计任务书48 学生姓名王光湖学号071268106 班级07车辆 一、设计题目:钢板弹簧设计3 二、设计内容 跃进牌货车悬架前钢板弹簧设计 三、设计要求:任选一款跃进牌货车 1)列出其主要参数 2)参考有关车型,选择合理的钢板弹簧结构方案(长度、片数等)3)设计计算(各片长度,断面尺寸和片数,核算刚度) 4)完成装配图设计:绘制装配图(标注尺寸、配合、技术要求、零件明细表和标题栏等) 5)完成弹簧销零件图设计 6)编写设计说明书一份

目录 1设计前言 (3) 2设计内容及汽车参数 (3) 3钢板弹簧基本参数确定 (3) 3.1单个钢板弹簧载荷 (3) 3.2悬架静挠度 (3) 3.3钢板弹簧满载弧高 (4) 3.4钢板弹簧断面形状 (4) 3.5钢板弹簧主片长度计算 (4) 3.6钢板弹簧片厚计算 (4) 3.7钢板弹簧宽度计算 (4) 3.8弹簧片数计算 (5) 3.9钢板弹簧各片长度计算 (5) 4设计总结 (7) 5参考文献 (8)

课程设计说明书 一、设计前言 现在随着人们生活水平的提高以及汽车行业的快速发展,人们对对于汽车的舒适性的要求也是越来越高,而对于汽车舒适性影响较大的就是前钢板弹簧,因为前钢板弹簧直接影响轻型卡车的前桥跳动,前桥的跳动造成车架的颠簸冲击强度增大,降低了卡车的行驶平顺性,所以设计轻型卡车的前钢板弹簧时的钢板弹簧参数的选定尤为重要。 二、设计内容:跃进牌NJ130型载重汽车 汽车主要参数如下: 载重量: 在良好平坦的硬实路面在土路上 2500kg2000kg 轴距:3300mm 轮距: 前轮后轮 1589mm1650mm 外形尺寸: 长宽高 5538mm2344mm2165mm 接近角离去角纵向通过半径 40°32°2.7m 前轴荷: 空载时满载时 1300kg1530kg 后轴荷: 空载时满载时 1410kg3830kg 最大爬坡度最大车速拖挂总质量 30%80km/h3500kg 三、钢板弹簧基本参数的确定 本设计方案中,采用纵置式对称前钢板弹簧。 1.1单个钢板弹簧的载荷 已知汽车满载静止时汽车前轴载荷为G1=1530kg,簧下质量负荷Gu1=230kg,轴距3300mm 单个钢板弹簧的载荷:Fw1=(G1-Gu1)/2=(1530-230)/2*9.8N=6370N

板簧计算

汽车平衡悬架钢板弹簧设 计 东风德纳车桥有限公司 2005年9月15日

一、 钢板弹簧作用和特点 a. 结构简单,制造、维修方便; b. 弹性元件作用; c. 导向作用; d. 传递侧向、纵向力和力矩的作用; e. 多片弹簧片间摩擦还起系统阻尼作用; f. 在车架或车身上两点支承,受力合理; g. 可实现变刚度特性; h. 相比螺旋弹簧和扭杆弹簧而言,单位质量的储能量较小,在同样的使用条件下,钢板弹簧要重一些。 二、 钢板弹簧的种类、材料热处理及弹簧表面强化 1. 目前,汽车上使用的钢板弹簧常见的有以下几种: 1) 普通多片钢板弹簧; 2) 少片变截面钢板弹簧; 3) 两级变刚度复式钢板弹簧; 4) 渐变刚度钢板弹簧 2. 钢板弹簧材料的一般要求 钢板弹簧与其它弹性元件一样,弹簧使用寿命与材料及制造工艺有很大关系,因此选用弹簧材料时应考虑以下几个方面因素 1) 弹性极限 弹簧在弹性极限范围内变形时,希望弹簧储存的弹性变形能要大,而弹簧在单位中单位体积内储存的弹性变形能是与材料的弹性极限平方成正比,而与弹性模量与反比,因此从提高材料贮存的弹性变形能角度看,希望提高材料的弹性极限。一般说材料抗拉强度高,弹性极限也高。弹性极限与材料的化学成分和金相组织有较大关系,在弹簧钢中如果提高碳、硅、锰元素含量,可以提高材料弹性极限。弹簧采用中温回火处理,能够得到具有较高弹性极限的回火屈氏体组织。 2) 弹性模量 弹性模量有两种,即拉伸弹性模量E 和剪切弹性模量G 。材料弹性模量愈小,材料变形和贮存的弹性变形能愈大。从这个角度看,国外采用了弹性模量较低的增强树脂材料弹簧(FRP 弹簧)。 3) 疲劳强度 由于弹簧多在交变载荷下工作,所以要求材料应有较高的疲劳极限,疲劳强度与材料抗拉强度b 和屈服强度s σ成正比,因此为了提高弹簧的疲劳强度,应设法提高材料的抗拉强度b σ和屈服强度与抗拉强度之比(b s σσ)。 4) 淬透性 对于断面较厚的或变截面钢板弹簧,希望用淬透性较好的材料。材料如不能淬透,淬火组织中将含有较多的非马氏体组织,使淬火后硬度降低。虽然可以通过降低回火温度来达到所需要的硬度,但其机械性能较差。为保证材料在整个截面内具有相同的机械性能,要求淬火时不仅表面而且心部也能淬透,且淬火后表面硬度和心部硬度相差不能太大。 综上所述,汽车钢板弹簧材料应具有较高的抗拉强度、屈服极限、疲劳强度及一定冲击韧性。此外要求材料具有良好的淬透性,热处理不易脱碳等性能。 3. 钢板弹簧材料 目前国内使用最多的弹簧钢板材料是钢Mn Si -,如Mn Si 260和MnA Si 260该钢种

汽车钢板弹簧作业

汽车钢板弹簧 服役条件:弹簧在冲击、振动或长期交应力下使用,所以要求弹簧钢有高的抗拉强度、弹性极限、高的疲劳强度。在工艺上要求弹簧钢有一定的淬透性、不易脱碳、表面质量好等碳素弹簧钢即含碳量WC在0.6%-0.9%范围内的优质碳素结构钢。合金弹簧钢主要是硅锰系钢种,它们的含碳量稍低,主要靠增加硅含量W、si提高性能;另外还有硌、钨、钒的合金弹簧钢。近年来,结合我国资源,并根据汽车、拖拉机设计新技术的要求,研制出在硅锰钢基础上加入硼、铌、钼等元素的新钢种,延长了弹簧的使用寿命,提高了弹簧质量。 性能要求:弹簧钢应具有优良的综合性能,如力学性能(特别是弹性极限、强度极限、屈强比)、抗弹减性能(即抗弹性减退性能,又称抗松弛性能)、疲劳性能、淬透性、物理化学性能(耐热、耐低温、抗氧化、耐腐蚀等)。为了满足上述性能要求,弹簧钢具有优良的冶金质量(高的纯洁度和均匀性)、良好的表面质量(严格控制表面缺陷和脱碳)、精确的外形和尺寸。 失效形式一是永久变形,即总成自由弧高降低至严重影响车的性能,二是钢板弹簧断裂,如汽车钢板弹簧(如图)在汽车行驶过程中承受各种应力的作用。其中以反复弯曲应力为主,绝大多数是疲劳破坏。 性能要求有弹簧钢应较高强度以及适当的韧性。有高的弹性极限以及弹性减

退抗力好,较高的屈强比,为防止在交变应力下发生疲劳和断裂,弹簧应具有高的疲劳强度和耐蚀等性能通常为σ0.2≥1160MPa , σb≥1280MPa ,δ10≥5% ,ψ≥25% 。同样材料处理是否正确,其寿命相差也很大。 因而材料通常为淬火得到马氏体后进行回火处理,得到碳化物尚未发生明显的聚集长大,保持弥散的分布状态的回火组织。淬火所造成的第二类内应力几乎全部消除,但未发生再结晶,仍保留马氏体针状结构和强化效果,故而有较高的弹性极限。 材料选择20Cr 碳C:0.18~0.24,硅Si:0.17~0.37,锰Mn:0.50~0.80,铬Cr:0.70~1.00 该钢是我国目前产量最大的几个合金结构钢之一,用途广泛。硬度较高。且此钢比相同含碳量的碳素钢具有较好的淬透性、强度和韧度。为了提高该模具钢的耐磨性,常进行渗碳处理(注意:渗碳时钢的晶粒有长大倾向),然后进行淬火和低温回火,从而保证模具表面具有很高硬度、高耐磨性而心部具有很好的韧度。其中Cr是中强碳化物形成元素,加热时溶入奥氏体的Cr能强烈地提高淬透性。钢中的Cr一部分形成碳化物,另一部分溶入基体产生固溶强化,提高钢的强度和硬度。Cr不仅能使C曲线明显地右移,而且使珠光体和贝氏体转变的C曲线明显分开。常用于制造截面小于30mm的、形状简单的、转速较高的渗碳件或氰化件,如活塞销、小轴等;也可以用于调制钢零件 60Si2Mn碳C :0.57~0.65,硅Si:1.50~2.00,锰Mn:0.60~0.90,铬Cr:≤0.35 Si本身不仅有固溶强化作用,而且能改变钢回火时析出碳化物的数量、尺寸和形态等,提高钢的回火稳定性,因此,对提高材料强度、硬度有好处。当合金元素和C含量在一定的范围内时,Si对弹性减退抗力的贡献居各

相关文档
相关文档 最新文档