文档库 最新最全的文档下载
当前位置:文档库 › 甘油催化氢解制备丙二醇研究进展_王娟

甘油催化氢解制备丙二醇研究进展_王娟

甘油催化氢解制备丙二醇研究进展_王娟
甘油催化氢解制备丙二醇研究进展_王娟

对甘油制备1,3-丙二醇工艺进行设计

对甘油制备1,3-丙二醇工艺进行设计 -发酵法制备1,3-丙二醇 摘要:本设计以甘油为原料,在无氧条件下,利用克雷伯氏菌发酵生产1,3-丙二醇,符合绿色化学的特点。通过测定菌体生物量、葡萄糖浓度、蛋白质浓度、甘油脱水酶、丙醛的浓度,可以初步判定发酵进行程度。设计实验对克雷伯氏菌发酵特性进行研究,分别研究温度、PH、甘油初始浓度、氮源对菌体生长和 1,3-PD 合成的影响。 关键词:1,3-丙二醇、甘油、克雷伯氏菌、厌氧发酵 1 前言 1,3-丙二醇(1,3-PD)是一种重要的化工原料,它可作为化学和医药工业中多种润滑剂、有机溶剂和前体的合成原料。它作为聚酯、聚醚和聚氨酯的重要单体原料合成的聚合物具有生物可降解性、安全无毒、可循环利用等优点,不仅在服装和工程塑料领域得到了广泛应用,在食品、药品和化妆品等领域也开始崭露头角。以 1,3-丙二醇为原料合成的食品添加剂丙二醇酯,是世界六大食品乳化剂之一,目前已被美国、日本和中国等国家及欧盟,联合国粮农组织和世界卫生组织批准使用[]1。20世纪90年代中期,工业上成功开发出了以1,3-PD为原料的新型聚酯材料-聚对苯二甲酸丙二醇酯(PTT), PTT性能优良,因此研究开发低成本的1, 3-PD生产技术成为关注的热点。1,3-PD的生产方法有化学法和生物转化法。 生物法合成 1,3-PD 符合“绿色化学”的特点,利用甘油或葡萄糖等可再生资源为原料,生产清洁,对环境无污染,符合我国可持续发展的需要。近几年,随着以大豆油与菜籽油为原料生产生物柴油产量的迅速增长,产生了大量副产物甘油;用甘油合成附加值更高的 1,3-丙二醇有利于资源的综合利用,引起了如杜邦公司、陶氏化学公司、亨斯迈公司等公司的关注[]2。发酵工程作为生物法合成 1,3-PD 的关键环节更是人们关注的热点。2003 年美国环境保护机构向杜邦授予“绿色化学总统奖”,专门用于表彰该公司对生物基 1,3-PD 工艺开发所作的研究。

CS系列电催化案例-电催化析氢(HER)

CS电化学工作站应用案例-电催化析氢方向 一、前言 1.1背景 进入21世纪以来,随着人类社会的快速发展,对能源的需求越来越大,能 源也成为了国家间竞争的焦点。人类相关的物质活动也离不开能源的支持。现如 今,能源短缺、有限能源的争夺以及能源的过度使用等一系列问题,无一不威胁 着人类的生存与发展。目前,社会发展主要依赖的能源是以煤、石油、天然气为 代表的传统化石燃料,然而,化石燃料的不可再生性、资源有限性制以及带来的 环境污染问题制约了现代经济的发展。因此,人们开始认识到开发探索新能源是 满足能源需求和解决环境污染问题的唯一出路。而氢能作为一种理想的二次能源 以及其清洁、高效、可储存和便于运输等优点,被视为替代煤炭、石油和天然气 等不可再生能源最为理想的能源载体。目前,工业上制备氢气的方法主要包括化 石燃料制氢、水电解制氢、热解水制氢和生物制氢等方法。其中电解水制氢以其 产品纯度高、电解效率高、无污染等诸多优点被广泛采用。由此可见,制备一种 高效稳定的电解水制氢材料,是解决能源危机和环境污染的重要途径。 1.2原理 电催化反应发生在电极与电解液的固液界面层,在酸碱电解液中各有不同的 反应式和不同的反应机理,如下反应等式所示: 酸性电解液:阳极:H2O→2H++1/2O2+2e-(1)阴极:2H++2e-→H2(2)碱性电解液:阳极:2OH-+H2O+1/2O2+2e-(3)阴极:2H2O+2e→H2+2OH-(4)总反应:H2O→H2+1/2O2(5)由等式(1-5)可知,无论是在酸性电解液还是碱性电解液,吸附在阴极催化剂表面 氢原子得两个电子生成一个氢分子,而阳极则发生氧化反应,不断有氧气析出。 所以电解过程中,水不断因为电解而减少并且生成了气体,从而电解液的溶度不 断提高。 上世纪就提出很多关于氢在阴极电解时的机理,虽然有很多争论,但它们的 共同点部分有以下几方面: 第一步主要是放电步骤(Volmer反应): H 3O++e-→H ads +H 2 O(6)

电化学实验一析氢行为

姓名:学号:日期: 一.实验目的 (1)掌握线性扫描技术 (2)掌握三电极体系 (3)掌握Tafel关系 二.实验原理 析氢反应方程:H++e→1/2H 2 线性扫描技术:控制电极电势按指定规律变化,同时测量电极电流随电势的变化。Tafel关系:强极化(但无浓差)发生时,超电势η与通过电极的电流密度j呈线性关系。(课本53页) 三.实验步骤及结果 实验步骤: (1)用18.4mol/L浓硫酸配置50mL0.5mol硫酸溶液(a=1) 取适量水于烧杯中,量取6.8mL浓硫酸,缓慢加入烧杯中并用玻璃棒搅拌,将稀释后的溶液加入250mL容量瓶定容。 (2)用刚玉粉末作为抛光粉处理电极活性表面,以避免副反应干扰实验。(3)使用电化学工作站CHI660E进行线性扫描,为获取准确电势值,采用三电极体系。 工作电极:Φ2mm圆盘电极Au,Ni,GC,Φ0.5mmPt 对电极:钛电极 参比电极:Ag-Agcl,φ Agcl/Ag =0.222V,并使用鲁金毛细管以减小溶液电阻工作电极—绿色夹子,对电极—红色夹子,参比电极—白色电极 参数设置要考虑不同金属的起始终止电势,选定合适sensitivity以避免数据溢出,实验开始前要除去电极表面的气泡。 (4)数据处理:i=i c +i d 基线代表i c 变化,超电势η=-0.222-E,电流密度j=i d /A 使用origin处理i,E数据并绘制η-lnj曲线,找到ab。实验数据: (1)Au电极表面析氢行为

(2)GC 电极表面析氢行为 C u r r e n t (A ) Potential (V) η (V ) lnj (A*m -2) C u r r e n t (A ) Potetial (V)

甘油催化转移氢解制备丙二醇及其反应机理

第40卷第3期2012年6月 浙江工业大学学报 JOURNAL OF ZHEJIANG UNIVERSITY OF  TECHNOLOGYVol.40No.3 Jun.2012 收稿日期:2011-03- 04基金项目:浙江省钱江人才计划基金资助项目(2006R10017 )作者简介:李 菲(1986—),女,山西太原人,硕士研究生,研究方向为生物能源,E-mail:lifeil_290@sohu.com. 通信作者:计伟荣教授,E-mail:weirong.ji@zj ut.edu.cn.甘油催化转移氢解制备丙二醇及其反应机理 李 菲,夏 燕,应惠娟,计伟荣 (浙江工业大学化学工程与材料学院,浙江杭州310032 )摘要:以Raney  Ni为催化剂,甲醇为供氢体,水为溶剂,对甘油催化转移氢解反应进行了研究,探讨了反应温度和甘油浓度对氢解反应的影响, 并对甘油催化转移氢解反应机理进行了初步探索.与传统氢解方法相比,甘油催化转移氢解在较为温和的条件下得到了1,2-丙二醇.在温度为210℃,甘油初始浓度为0.64mol/L,反应时间为12h的条件下,甘油转化率达到54.7%,1,2-丙二醇的选择性为74.1%.一般情况下,在Raney Ni的催化作用下,甘油优先脱去伯位的羟基生成丙酮醇,随后加氢生成1,2-丙二醇. 关键词:甘油;甲醇;1,2-丙二醇;转移氢解;Raney Ni中图分类号:TQ028.4 文献标志码:A 文章编号:1006-4303(2012)03-0275- 04The study  of catalytic transfer hydrogenolysis of glycerol topropy lene glycol and it s mechanismLI Fei,XIA Yan,YING Hui-juan,JI Wei-rong (College of Chemical Engieering &Materials Science,Zhejiang University  of Technology,Hangzhou 310032,China)Abstract:Catalytic transfer hydrogenolysis(CTH)of glycerol was carried out over Raney Nicatalyst in aqueous media with methanol as the hydrogen donor.The effects of the temperatureand initial molar concentration of glycerol on the reaction were investig ated.A reactionmechanism was proposed.In comparison with the glycerol hydrogenolysis using hydrogen gas,the CTH of glycerol could be carried out under relatively mild reaction conditions.At 210℃a54.7%conversion of glycerol was achieved after 12hour reaction with an initial gly cerolconcentration of 0.64mol/L,and the selectivity of 1,2-propylene glycol was up to 74.1%.Ingeneral,the cleavage of the primary hydroxyl group was in preference to the secondary  one overRaney Ni catalyst to produce acetol,which could be hydrogenated further to become 1,2-propylene gly cerol.Key words:glycerol;methanol;1,2-propylene glycerol;transfer hydrogenolysis;Raney Ni 近年来, 生物柴油产业的发展使得其副产物甘油大量生成,导致目前甘油市场严重过剩[1- 3].寻找甘油利用的新途径,对降低生物柴油成本,提高生物 柴油产业链的经济效益有重要意义[4- 5]. 目前,国内外已有许多关于甘油催化氢解生产高附加值产品的 报导,其主要产物为1,2-丙二醇和1,3-丙二醇.1,2-丙二醇和1,3-丙二醇都是重要的化工原料,常作为抗冻剂、溶剂、保护剂等应用于食品、医药、化妆品和涂料等行业中.此外,1,3-丙二醇还是合成新型聚酯 PTT的单体之一[6].早在1987年,Celanese公司[7 ]

硝酸甘油使用注意事项

硝酸甘油使用注意事项 硝酸甘油是防治冠心病心绞痛的特效常用药品之一。研究指出,它对绝大部分心绞痛病人有效。其主要药理作用是松弛血管平滑肌.释放一氧化氮,激活鸟苷酸环化酶,使平滑肌和其他组织内的环鸟苷酸增多,导致肌球蛋白轻链去磷酸化,调节平滑肌收缩状态,引起血管扩张。以扩张静脉为主,其作用强度呈剂量相关性.外周静脉扩张,使血液潴留在外周,回心血量减少,左室舒张末压(前负荷)降低.扩张动脉使外周阻力(后负荷)降低.动静脉扩张使心肌耗氧量减少,缓解心绞痛.对心外膜冠状动脉分支也有扩张作用。可有硝酸甘油片与硝酸甘油注射液两种。本篇主要介绍片剂使用注意点: 1、硝酸甘油片不能吞服,而要放在舌下含服。这是因为吞服的硝酸甘油在吸收过程中,必须通过肝脏,在肝脏中绝大部分的硝酸甘油被灭活,而使药效大大降低。我们每个人的舌头下面有许多血管,医学上叫舌下静脉丛,硝酸甘油极易溶化,当把它含干舌下时,溶化了的药物能直接入血,因此不但起效快,而且药效不会降低。硝酸甘油味稍甜并带有刺激性,所以合格的硝酸甘油不但应溶化得快,而且含在舌下带有烧灼感。这也是药物有效的标志之一。注意药品剂量心绞痛急性发作时,可立即舌下含化一片硝酸甘油,如不见效,隔五分钟再含化一片,可以连续应用三次,若总量达3片后疼痛持续存在,应立即就医。在活动或大便之前5~10分钟预防性使用,可避免诱发心绞痛。 2、硝酸甘油是一种亚硝酸盐,挥发性强,过热见光都极易分解失效。故应放在棕色小玻璃瓶内,旋紧盖密闭保存;有的病人把药放在透明的玻璃瓶或纸袋内保存是不妥当的。硝酸甘油可放在15~30CC的室温下,也可以保存在冰箱中,携带硝酸甘油时,切勿放在贴身的衣服兜里,以免受体温影响降低药效。 3、硝酸甘油的有效期一般为一年,如病人每天反复开盖取药,药物受温度、湿度和光线的影响,有效期只有3一6个月。因此,使用硝酸甘油要注意失效期,每次取药时应快开、快盖,用后盖紧。对随身携带的药物更要及时更换。 4、硝酸甘油是应急抢救药物,每次更换药物都应确定其有效性。 5、含服硝酸甘油时,直取坐位,或靠墙下蹲位。这是因为硝酸甘油能使全身静脉扩张,全身静脉容量增加,病人直立时,由于重力的原因,大量血液积存在下肢,造成相对的血容量不足、血压下降,出现头晕,甚至昏倒。平卧位含药虽不会发生体位性低血压,但因回心血量增加,加重了心脏负荷,也会使药效减弱。硝酸甘油用量过大,会引起面色潮红,搏动性头痛,心悸,血压降低等副作用,此时应减少用量。也有的患者对硝酸甘油比较敏感,即使是小剂量使用也会出现上述症状。更有甚者对其极度敏感,只要一使用就会出现全身冷汗,血压测不到等虚脱症状,这一点需要广大患者引起注意,也要与急性心梗的症状做好鉴别。 6、另外硝酸甘油能禁用于心肌梗塞早期(有严重低血压及心动过速时)、严重贫血、青光眼、颅内压增高和已知对硝酸甘油过敏的患者。于静脉用的硝酸甘油则主要用于急救,需要有医生掌握,从静脉输注。 因此心绞痛病人如能随身携带(或备用)硝酸甘油,可在很大程度上保证了自己的安全。是一种起效快、作用维持时间短的药物。舌下含化后l~2分钟生效,心绞痛即可缓解,作用持续时间一般为10~30分钟。因此,很多病人将它视为“救命药”,经常放在身边。 心内科 季琴花

光催化材料的研究与进展

光催化材料的研究与进展 洛阳理工学院吴华光B08010319 摘要: 光催化降解污染物是近年来发展起来的一种节能、高效的绿色环保新技术.它在去除空气中有害物质,废水中有机污染物的光催化降解,废水中重金属污染物的降解,饮用水的深度的处理,除臭,杀菌防霉等方面都有重要作用,但是作为新功能材料,它也面临着很多局限性:催化效率不高,催化剂产量不高,有些催化剂中含有有害重金属离子可能存在污染现象。但是我们也应当看到他巨大的发展潜力和市场利用价值,作为处理环境污染的一种方式,它以零二次污染,能源消耗为零,自发进行无需监控等优势必将居于污染控制的鳌头。本文介绍了一些关于光催化研究的制备与发展方向的思考,光催化正在以TiO 2 ,ZnO为主导多种非重金属离子掺杂,趋于多样化的制备方法方向发展。 关键字:光催化催化效率 正文: 光催化(Photocatalysis)是一种在催化剂存在下的光化学反应,是光化学与催化剂的有机结合,因此光和催化剂是光催化的必要条件。“光催化”定义为:通过催化剂对光的吸收而进行的催化反应(a catalytic reaction involving light absorption by a catalyst or a substrate)。氧化钛(TiO 2 )具有稳定的结构、优良的光催化性能及无毒等特点,是近年研究最多的光催化剂, 但是,TiO 2 具有大的禁带宽度,其值为3.2 eV,只能吸收波长A≤387 11111的紫外光,不能有效地利用太阳能,光催化或能量转换效率偏低,使它的应用受到限制。因此,研制新型光催化剂、提高光催化剂的催化活性仍是重要的研究课题]1[。复合掺杂不同半导体,利用不同半导体导带和价带能级的差异分离光生载流子,降低复合几率,提高量子效率,成为提高光催化材料性能的有效方法5]-[2。 与一元氧化物如TiO 2 和ZnO等光催化剂相比,复合氧化物光催化剂,如 ZnO- SnO 2TiO 2 -SnO 2 和WO3- TiO 2 等体系具有吸收波长更长和光催化效率更 高等特点因而成为研究热点. 一、常用的光催化剂的制备方法 (一)水热合成法。 热合成反应是在特制的密封容器中(能够产生一定的压力),以水溶液作为反应介质,通过对反应体系加热或接近其临界温度而产生高压,从而进行材料的合成与制备的一种有效方法。 (二)溶剂热合成法 溶剂热合成技术是在水热法的基础上,以有机溶剂代替水作为介质,采用类似水热合成的原理制备纳米材料,极大的扩展水热法的应用范围。 (三)溶胶-凝胶法

聚吡咯改性电极在酸性介质中的抑制析氢反应

0013-4651/2014/161(3)E25/5/ $31.00?电化学学会 聚吡咯改性电极在酸性介质中的抑制析氢反应 田英,a,z刘明,a周小辉,a黄丽萍,b,z刘宗明,a和安宝那 a a环境科学与技术重点实验室,辽宁省教育部门,环境与化学工 程学院,大连交通大学,大连116028,中国 b工业生态与环境工程重点实验室,教育部(MOE),环境科学与 技术学院大连理工大学,大连116024,中国 评估聚吡咯改性电极(PPy)和不锈钢基体电极(SS)抑制析氢反应(HER)。 与覆盖了PPy涂层的电极表现出很强的抑制析氢反应相比,电位低于 -0.5V的SS基体表现出强的析氢反应。Ppy改性电极比SS电极有更高的 线性塔菲尔斜率和两个数量级低的电流密度,进一步确认了前者有强烈 的抑制析氢行为。通过循环伏安法、塔菲尔极化和电化学阻抗光谱学进 一步分析表明覆盖厚PPy涂层的改性电极比薄PPy涂层的改性电极更有 利于抑制析氢反应。结果表明PPy电极是电荷转移的屏障和析氢反应的 抑制剂,提供一个有效的方式来增加有用操作电压窗口,提高伴随着析 氢反应竞争的电化学反应中的电流效率。 ?2013电化学学会。[DOI:10.1149/2.032403jes]版权所有。 手稿提交8.19,2013;12.9,2013收到修订后的手稿;12.20,2013出版 导电聚合物作为一个电催化金属微粒的载体是一直是许多电化学反应的主题,包括电催化析氢反应。将金属颗粒加入导电矩阵的目的是分散前者来增加这些材料的比表面积和显著改善电流效率。导电聚合物的粗糙表面和微孔洞结构比金属基体电极提供了更大的有效表面面积。此外,导电聚合物的微孔结构比基体为金属和合金颗粒提供了更好的电化学反应的场所。许多金属(如Pt,Ir,Ru,Fe,Ni和Cu)和金属间化合物合金(如NiMo, NiW 和CdNi4Al)表现出固有的析氢反应催化活性11-17。由于导电聚合物可以产生大的比表面积面积和表面粗糙度,导电聚合物和金属或者合金颗粒被用作复合材料用于析氢反应,金属或者合金颗粒在聚合物表面实现增加析氢反应的电催化活性。然而,并没有研究表明导电聚合物本身是否能够电催化析氢反应18,19。事实上聚吡咯作为复合催化剂层结构的基体已经在析氢阴极区域显示出相关的的绝缘性能。。我们之前观察到的在电解还原Cu(II) 和Cr(VI)反应中还原性PPy抑制水中水解20,21。Otero等同样报道了在铜的电沉积过程中深度还原的PPy抑制氢气释放22。据作者所知,关于这个现象没有其他文献报道。因此,我们尝试扩展PPy改性电极在析氢反应的抑制作用这项研究,这是非常重要的电化学,因为许多电化学过程很大程度取决于

以甘油为原料两步法制备1,2-丙二醇的工艺研究

以甘油为原料两步法制备1,2-丙二醇的工艺研究利用生物质转化为高附加值的化学产品是绿色化学的一个重要研究方向[1,2]。绿色化学所追求的目标是化学过程不产生污染,并实现高效、高选择性的化学反应,尽可能不生成副产物,实现“零排放”,以达到“原子经济性”反应[3]。 甘油作为一种理想的可再生原料,以其为平台可以提供一条绿色且经济的生产大量化学产品的途径。它作为生物柴油的副产物大量生成,每生产9Kg生物柴油约产生1Kg粗甘油[4,5]。随着生物柴油持续升温,寻找和开发甘油的新用途,将其作为原材料加工成其他产品,不但可以降低生物柴油的生产成本,提高综合经济效益,还可以解决甘油的过剩问题。 目前国外两家公司作开发了利用微生物发酵甘油生成 1,3 -丙二醇的技术。国内清华大学和大连理工大学等单位也在生物发酵法制备 1,3-丙二醇方面进行了研究。并取得了一定成果。虽然微生物对甘油转化为1,3-丙二醇的选择性很高,且反应条件温和操作简单,但是在产率的提高和菌种的选择性上还存在着很多困难。 甘油催化氢解制备丙二醇的机理如下: 甘油催化氢解制备丙二醇的甘油催化氢解制备丙二醇的反应见下图。在催化剂作用和氢气存在的条件下,通过一次C-O断裂,甘油可以转化成1,2-丙二醇和1-3丙二醇。但是由于催化剂种类及反应参数的不同,可能发生以下副反应:在甘油过度氢解时,即经过2~3次C-O键断裂后,得到一元醇( 正丙醇、丙醇)和丙烷。如果经历1次C-C键的断裂则会生成乙二醇。经过2次C -C键的断裂将生成甲醇。甘油经过C-O键和C-C键同时或者交替的断裂可能得到正丙醇、丙醇、甲醇、和甲烷。 甘油的氢解反应甘油催化氢解的反应机理是比较复杂的,由于反应条件、催化剂的不同,甘油氢解制丙二醇的机理也存在着一定的差异。当反应在酸性或者中性条件下进行时,一般认为反应是下面的机理进行。脱水,生间产物烯醇及酮(醛)式互变异构体,之后中间产物进一步发生加氢反应生成1,2 -丙二醇或l,3-丙二醇。实验表明,反应体系中加入钨酸可以加快反应速率,变反应的选择性。但是在使用其他的无机酸如盐酸时,反应转率并不理想。这说明钨酸的酸性并不

光催化材料研究进展概要

光催化材料研究进展 20 世纪以来, 人们在享受迅速发展的科技所带来的舒适和方便的同时, 也品尝着盲目和短视造成的生存环境不断恶化的苦果, 环境污染日趋严重。为了适应可持续发展的需要, 污染的控制和治理已成为一个亟待解决的问题。在各种环境污染中, 最普遍、最重要和影响最大的是化学污染。因而, 有效的控制和治理各种化学污染物是环境综合治理的重点, 开发化学污染物无害化的实用技术是环境保护的关键。目前使用的具有代表性的化学污染物处理方法主要有: 物理吸附法、化学氧化法、微生物处理法和高温焚烧法。这些方法对环境的保护和治理起重大作用, 但是这些技术不同程度的存在着或效率低, 不能彻底将污染物无害化, 产生二次污染, 或使用范围窄, 仅适合特定的污染物而不适合大规模推广应用等方面的缺陷[1]。光催化氧化技术是一门新兴的有广阔应用前景的技术, 特别适用于生化、物化等传统方法无法处理的难降解物质的处理。其中TiO2、ZnO、CdS、WO 3、Fe 2 O 3等半导体光催化技术因其可以直接利用光能而被许多研究者看好[2]。 1.1 TiO 2光催化概述 1.1.1 TiO 2的结构性质 二氧化钛是一种多晶型化合物,常见的n型半导体。由于构成原子排列方式不同,TIO2在自然界主要有三种结晶形态分布:锐钛矿型、

金红石型和板钛矿型。三种晶体结构的TIO2中,锐钛矿和金红石的工业用途较广。和锐钛矿相比,金红石的原子排列要致密得多,其相对密度、折射率以及介电常数也较大,具有很高的分散光射线的能力,同时具有很强的遮盖力和着色力,可用作重要的白色涂料。锐钛矿在可见光短波部分的反射率比金红石型高,普遍拥有良好的光催化活性,在光催化处理环境污染物方面有着极为广阔的应用前景[3]。 1.1.2TiO2光催化反应机理 半导休表面多相光催化的基本原理:用能量高于禁带宽度(Eg)的光照射半导体表面时,价带上的电子被激发,跃迁到异带上,同时在价带产生相应的空穴,这样就半导体内部生成电子(e-)—空穴(h+)随后,.电子-空穴对迁移到粒子表面不同位置、与吸附半导体表面的反应物发生相应的氧化或还原反应,同时激发态的二氧化钛重新回归到基态。与电荷分离相逆的是电子-空穴对的复合过程,这是半导体光催化剂失活的主要原因。电子-空穴对的复合将在半导体体内或表面发生,并释放热量。 1.1.3 TiO2催化剂的局限及改性途径 作为光催化剂,虽然二氧化钛具有其他催化剂难以比拟的无毒、价廉以及稳定等优点。但是目前二氧化钛光催化还存在着一些不足和局限,致使其不能再现实中得到大规模应用。究其原因,主要在于二氧化钛催化剂对太阳光的利用率不高并且其量子产率太低。锐钛矿相和金红石相二氧化铁的带隙分别为3.2eV和3.0 eV,对应的吸收阈值分别为420nm和380nm。它们所吸收的光的波长主要集中在紫外区,

甘油制备1.3-丙二醇

甘油制备1.3-丙二醇 l,3-丙二醇是一种重要的有机化工原料.广泛应用于增塑剂、洗涤剂、防腐剂、乳化剂、聚酯和聚氨酯的合。也可用作防冻剂、溶剂、保护剂等,其中最重要的应用是制备聚对苯二甲酸丙二醇酯(PTT)。PTT是一种性能优异的聚酯材料,是目前国际上合成纤维开发的热点,被专家预测为2l世纪最主要的新纤维品种之一。 世界上已实现工业化生产1。3一丙二醇的合成路线有两条:一种方法是Shell公司的环氧乙烷羰基化法;另一种方法是Degussa公司的丙烯醛水合氧化法。其中环氧乙烷羰基化法设备投资大.技术难度高.其催化剂体系相当复杂.制备工艺苛刻且不稳定.配位体还有剧毒。丙烯醛水合氢化法成本较高.特别是丙烯醛本身属剧毒、易燃和易爆物品,难于储存和运输。由此可见.研究开发以生物柴油副产甘油为原料制备l,3一雨二醇的技术很具竞争性和发展潜力。目前国内外做了大量的研究,主要形成催化氢解法和微生物发酵法两项技术。(1)催化氢解法甘油催化氢解制备1.3一丙二醇是一个较复杂和困难的过程.目前人们刚刚在这方面开始研究。在均相催化体系中加入钨酸和碱性物质如胺或酰胺等,在3lMPa的合成气压力和200℃的温度下反应24h,甘油催化氢解生成1.3丙二醇的产率为21%,选择性为45%。Schiaf等选用Ru配合物为催化剂,在四氢噻吩砜、甲苯和1一甲基吡咯烷酮的混合溶剂中,在5.2MPa的氢压力和110℃的温度下反应19h,l,3丙二醇的选择性为44%,但转化率仅为5%。Shell公司于2000年开发了一种均相体系合成1.3一丙二醇.该法以含铂系金属的配合物为催化剂.加入甲磺酸或i氟甲磺酸作添加物.在水或环丁砜的溶剂中甘油被氢解生成1.3一丙二醇.其选择性可达30.8%。Chaminand等采用氧化锌、活性炭或三氧化二铝负载的cu、Pd或Rh作为催化剂.以钨酸作添加物.在水、环丁砜或二氧杂环已烷等溶剂中研究了甘油催化氢解反应。当温度为180℃、氢压为8MF,a时,产物中1,3一丙二醇与1.2丙二醇的摩尔比最好时可达到2.并认为Fe和Cu等有利于提高1.3一丙二醇的选择性。根据目前的研究结果来看,利用甘油催化氢解制备1,3一丙二醇研究还相对较少,且存在甘油转化率低和产品选择性差的问题,结果不太理想.因此还有待进一步对高效催化剂研究和开发。 (2)生物发酵法与催化氢解法相比,生物发酵法生产1,3丙二醇具有选择性高、操作条件温和等优点,近年来受到特别的重视。德国国家生物技术研究巾心(GBF)、美国杜邦和Genencor 公司等投人大量人力物力研究1.3丙二醇的发酵生产技术。目前研究主要集中在两个方向:其一是从工业甘油出发研究发酵生产1,3一丙二醇;其二是运用现代基因1_程改造菌种.试图将转化葡萄糖为甘油和将甘油转化为1,3丙二醇的两组基因重组到同一细胞内.但基因重组困难,且重组后基因的传代稳定性还有待长时间考验。2001年DuaPont与Denencor申请了多项以葡萄糖为底物.用基因工程菌直接生产1.3丙二醇的专利,已投资建成年产j 万吨的发酵法生产l,3丙二醇的装置。 国内生物法生产l,3一丙二醇的研究起步较晚,研究重点多集中于菌种筛选和发酵工艺优化方面。清华大学、大连理工大学等单位开展生物发酵法生产1,3一丙二醇的研究.虽然比德、美等国起步晚,但研究水平已赶上甚至超过国际先进水平。清华大学以葡萄糖或粗淀粉(如木薯粉)为原料.采用双菌种两步发酵法生产1,3丙二醇的技术.避开了杜邦公司的专利,开发出了直接利用生物柴油的副产粗甘油发酵生产1,3一丙二醇的技术,该技术通过5000L发酵罐实验表明:1,3丙二醇浓度可达70g/L,实现了酶法制备生物柴油和生物柴油副产物甘油发酵生产l,3丙二醇的工艺耦合。在后提取的过程中.研究人员针对发酵过程副产大量的有机酸(盐)的特点.在国际上率先将电渗析脱盐技术引入提取T艺。通过絮凝、浓缩和精馏等工序,制得的1,3一丙二醇产品纯度达到99.92%.收率达80%以上.填补了我国生物法生产1,3一丙二醇的空白。大连理工大学也已在实验室采用膜过滤将脂肪酶催化甲醇与油脂反应生成生物柴油和微生物转化甘油为1,3丙二醇两个过程耦联起来开

MoS2电催化剂的制备及性能研究

第1章MoS2材料的制备及催化性能研究 3.1 引言 本章主要从理论和实验两个方面对MoS2电催化剂进行研究,具体研究内容如下: (1)通过基于密度泛函理论的第一性原理对MoS2模型进行计算,探究MoS2的不同位置对氢原子的结合能力。 (2)通过液相剥离法制备了尺寸不同的MoS2纳米片,详细介绍了其制备工艺,并对其形貌表征及电化学性能进行分析。 (3)通过水热法制备了花状MoS2纳米材料,介绍了这种材料的制备方法,利用TEM、XPS等手段对其结构、成分进行分析。利用LSV和CV法对其电化学性能进行分析。 3.2 理论模型及计算方法 MoS2具有类石墨烯的二维结构,其基本结构层为Mo-S-Mo,层内原子以共价键相互作用,层之间以较弱的范德华力相互作用。这种特殊结构使MoS2较容易被剥离,形成少层甚至单层的MoS2纳米材料。这种材料在电化学析氢反应中表现出较好的催化活性,为了研究MoS2催化析氢反应的活性位点。从而制备具有良好催化性能的催化剂,本课题首先应用了基于密度泛函理论的计算方法,在Material Studio软件中建立单层MoS2结构模型。 3.2.1 Materials Studio仿真软件介绍 Materials Studio为美国Accelrys公司开发的一款软件,在该软件中可以搭建分子、晶体及高分子材料结构模型,并对这些材料进行相关性质的计算与预测。被广泛应用于催化剂、化学反应、固体物理等材料领域。 Materials Studio软件包含多种算法模块,其中Visualizer为建模模块的核心,包含如Castep、DMol3、Discover、Amporphous、COMPASS等多个计算和分析模块。本文主要利用CASTEP模块来完成计算和分析。Castep模块中包含LDA 及GGA两种交换关联函数近似方法,在该模块下通过建立单层MoS2分子模型计算其对氢原子的吸附能力,从而确定MoS2的电催化析氢反应活性位点。 3.2.2模型建立及计算 模型为3×3×1的MoS2超胞模型,如图3-1。为使计算结果更为准确,在正式计算之前先对某些参数进行收敛性测试,首先固定k网格点为3×3×1,对平

硝酸甘油的用法

硝酸甘油的用法 硝酸甘油注射液静脉使用需要避光吗?普通输液器能不能用来输注?玻璃输液瓶、塑料输液瓶、输液袋哪个可以用,那个不可用? 硝酸甘油注射液是临床最常用,也是最为有效的缓解心绞痛急救药物。下面,我们就其临床应用,解答滴速、避光、吸附等几方面的临床问题来讨论。 用药速度:硝酸甘油注射液用药速度如何掌控? 硝酸甘油是把双刃剑,用好了是最为有效的缓解心绞痛的急救药物,用不好则会导致低血压、晕厥甚至致人死亡。临床上因滴药速度不当,造成患者低血压的案例很多,其用药速度是医护人员必须严格掌控的现实命题。 关于硝酸甘油注射液的用药速度,说明书有明确指示:临床用5% 葡萄糖注射液或氯化钠注射液稀释后静脉滴注,开始剂量为 5μg/min,最好用输液泵恒速输入。 用于降低血压或治疗心力衰竭,可每 3~5 分钟增加 5μg/min,如在 20 μg/min 时无效可以 10 μg/min 递增,以后可20 μg/min。患者个体差异很大,静脉滴注无固定适合剂量,应根据个体的血压、心率和其他血流动力学参数来调整用量。使用过程中必须密切注意患者的脉搏和血压。

解答:a、严格遵医嘱调控用药速度;b、最好用输液泵恒速输入,尤其是急救转运过程中的用药;c、严密监测血压、心率,认真听取患者主诉,有条件的应用监护仪。 避光问题:硝酸甘油注射液静脉使用需要避光吗? 硝酸甘油注射液说明书指出:贮藏需遮光、密闭、在阴凉(不超过20°C)处保存;注意事项中要求:静脉使用本品时须采用避光措施。 一次性使用避光输液器说明书标明:产品避光范围 290-450nm, 适用于输注光敏性药物顺铂注射液、注射用硝普钠等。 解答:硝酸甘油注射液临床使用时需要避光。药液瓶外部可套用黑色避光袋,应用一次性避光输液器输液。 吸附问题:硝酸甘油对输液容器有特殊要求吗? 事情往往具有两面性。硝酸甘油的高脂溶性在我们津津乐道其舌下或经皮起效快之余,也带来了吸附问题。许多塑料输液器可以吸附硝酸甘油,其吸附率甚至高达 80%。 硝酸甘油注射液说明书中明确指示:静脉滴注本品时,由于许多塑料输液器可吸附硝酸甘油,因此应采用非吸附本品的输液装置,如玻璃输液瓶,或用聚乙烯(PE)及聚烯烃塑料容器等。 临床使用较多的溶媒是塑料输液瓶包装,材质属于聚丙烯,不属于聚氯乙烯,因此可以放心使用。 1. 普通输液器可以输注硝酸甘油注射液吗?

光催化研究发展综述性报告

光催化研究发展综述性报告 本人申请攻读动力工程与工程热物理专业博士学位,由于对后续能源与新能源技术专业太阳能分解水制氢方向有浓厚的兴趣,通过对相关文献的阅读和参加相关报告,对太阳能光催化分解水制氢有了详细的了解,对其发展简述如下: 1.前言 当今人类社会面临能源和环境两大问题[1-2]。能源的短缺和环境的污染严重制约着人类社会的发展。一方面,社会的高速发展使得人类对于能源的需求越来越大,而我们目前所用的能源还是以传统的化石燃料为主,但是因为化石燃料的不可再生性,或者说是形成的时间周期太长,使得其必有枯竭的一天。据估计,按照目前的开采水平和消耗量,石油还能够维持四十年左右,煤炭最多也就是两百年,而天然气还可以维持大概六十多年。另一方面,化石燃料的燃烧,引起严重的环境污染和对环境的危害,如温室效应、酸雨、光化学烟雾等等,对人类的生存产生了严重的威胁。 研究自然的、社会的、生态的、经济的以及利用自然资源过程中的基本关系,以确保全球的可持续发展已经成为各国都十分关注的一个话题。就像美国,在2009年提出的7870亿美元的巨额经济刺激计划中,把发展新能源定位于抢占未来发展制高点的重要战略产业,并提出在未来的三年的时间里,国内可再生能源产量要增加一倍。而我国人口众多,常规能源储备远低于世界平均水平,而且近几十年来,环境污染也是日益严峻。这使得寻找一种清洁可持续的替代能源变得更加迫切。而我国幅员辽阔,拥有极为丰富的太阳能资源,开发潜力巨大,从长远发展来看完全可以满足国家可持续发展的需求。但太阳能能量密度低、分散性强、不稳定、不连续的缺点使得我们至今仍缺乏对其高效低成本大规模利用的有效手段。但是考虑到占地表约3/4的水域和植物的光合作用,我们是不是可以利用太阳能分解水,制取氢气,而氢气又是是一种无色无臭无味无毒的清洁燃料,

金属磷化纳米材料做电解水析氢材料的研究现状

金属磷化纳米材料做电解水析氢材料的研究现状 氢能,它被视为21世纪最具有发展潜力的清洁能源,虽然人类在200多年前就对它产生了兴趣,但直到20世纪末,中国乃至世界其他国家的科学家才对其开展广泛的研究。氢能,它拥有燃烧热值高,燃烧产物是水,并且燃烧高效、清洁、是一种理想的可再生能源;它的资源非常丰富、且易储存、能量密度也非常的高、燃烧之后的产物是水,能够循环利用、持续发展。但是,随着世界各国能源危机、环境不断的被污染、被破坏等问题的日益突出,人类就迫切希望研究一种可再生能源来解决这个矛盾,因此,电解水析氢就是在这样的背景下得到不断的研究和探讨。而金属磷化物纳米材料作为一种非金属材料,具有储量丰富、价格也比较低廉,且具有较低的析氢过电位,所以用它来做电解水析氢材料的研究是一种不错的选择。 关键词:氢能金属磷化纳米材料可再生能源电解水析氢 金属磷化纳米材料,它拥有半导体性、超导性、铁磁性及优良的催化活性等等一系列的物理、化学特性。它广泛应用于各种领域,如工业催化、电池研究材料、光电子器件等。通过大量实验研究对比发现,金属磷化纳与其他金属、金属氧化物等之间相互比较,在控制合成、相关性、活性等方面都具有很大的优势。因此,可以通过不同的制备方法,合成出结构新颖、并且性能也非常优异的金属磷化纳米材料,来研究其形状结构、还有析氢能力。 金属磷化纳米材料的合成方法包括:气相合成法、液相合成法、固相合成法三种。它的化学反应线路包括:元素直接反应法、有机溶剂中元素之间相互交换反应法、金属里面的有机分子前驱物沉淀反应方法及液相烷基消除反应法等等一系列反应方法。 下面介绍几种一维机构生长的原理,来研究金属磷化钠米材料做电解水析氢的方法。 (1)模板法:这种方法非常的简单、方便、易行。它是让目标材料按照模块的样式、形状、结构进行生长,从而获得与模板一模一样的金属磷化纳米材料结构。这种方法可以简单的分为两种:软模板法、硬模板法。比如:空心磷纳米管可作为硬的模板来提供纳米结构生长所需要的管道支撑,在非常高的温度下,气体前驱物质就在磷纳米管道内进行化学反应,从而产生所需要的金属磷化纳米物。软模板的方法,它是由表面的活性剂及聚合物分子,在不同的溶液中,按照一定的规律、有序的组成所需要的金属磷化纳米物质结构,如胶束物质等等,从而起到一种模板的作用。(2)氧化物协助生长的方法:它主要是利用氧化物协助来生长金属磷化纳米线的一种方法。香港中文大学等教授利用这种方法和原理,已经做了很多非常有成效的研究。把制备的P纳米线最外面一层用磷氧化物进行覆盖、且全部被包围,当P和磷氧化物通过接触,发生一种混合反应,然后把它放置到反应炉子的高温地方,用热蒸的方法作为诱导生长的因子,从而获得磷氧化物包围的P 单晶体纳米线管等等。 (3)液体与溶液与固体生长的方法:这种方法的最大优点是:能够在低温环境中,通过溶液之间的相互反应来制备金属磷化纳米半导体材料。通过加热有机溶剂,然后利用产生的回流,金属有机氧化物与磷等非金属发生一种沉淀的化学反应,从而生成金属磷化纳米化合物。 (4)气体与液体与固体之间生长的方法:这种方法包括气体、液体与固定这三相,并且也包括液体相催化剂、固体之间相互结晶的产物、气体相之间相互反应的产物。由于固体、液体之间的界面是磷晶体生长活性非常高的区域,后续析出来的P晶体依然在这个界面不断生长,并且通过这种方法生长出来的P晶须很自然的就按照一维晶体结构来生长,因此,此种方法得到广泛应用。 通过这些方法得到的金属磷化纳晶体的结构、物相、还有纯度都是非常的好。 下面介绍用金属磷化纳米材料来做电解水析氢的过程:(1)、它主要利用有机P溶剂通过加热的方法,然后合成出金属磷化纳米棒,这种磷化纳米棒具有非常好的、性能也非常高的制氢反应电催化活性。在含有

硝酸甘油服用注意事项

硝酸甘油服用注意事项 本贴收到2朵鲜花 硝酸甘油是防治冠心病心绞痛的特效常用药品之一,它起效快、作用维持时间短,舌下含化后1-2分钟起效,心绞痛既可缓解,作用持续时间一般为10-30分钟。有时病人在解大便前、上楼梯时,也可先含服硝酸甘油片,以预防心绞痛的发作。因此,很多病人将它视为“救命药”,经常放在身边。但是使用硝酸甘油时应注意以下几点: 1)硝酸甘油片不能吞服,而要放在舌下含服。这是因为吞服的硝酸甘油在吸收过程必须通 过肝脏,在肝脏中绝大部分的硝酸甘油被灭活,而使药效大大降低。我们每个人的舌头下 面有许多血管医学上叫舌下静脉丛,硝酸甘油极容易溶化,当把它含在舌下时,溶化了的 药物能直接入血,因此不但起效快,而且药效不会降低。硝酸甘油味稍甜并带有刺激性, 所以合格的硝酸甘油不但应溶化得快,而且含在舌下要有烧灼感,这也是药物有效的标志 之一。 2)硝酸甘油是一种亚硝酸盐,过热见光都极易分解失效。故应放玻璃瓶内,旋紧盖密闭保 存;有人放在明的玻璃瓶或纸袋内保存是透不妥当的。硝酸甘油可放在15~30° C的室温 下,也可以保存在冰箱中,携带硝酸甘油,切勿放在贴身的衣服兜里,以免受体温影响 降低药效。硝酸甘油的有效期一般为1年,如病人每天反复开盖取药,药物受温度、湿 度和光线的影响,其有效期只有3—6个月。因此,使用硝酸甘油要注意失效期,每次取 药时应快开、快盖用后盖紧。对随身携带的药物更要及时更换。硝酸甘油是应急抢救药 物,每次更换药物都应确定其有效性。目前市售药物中,有的含在舌下十几分钟都不溶 化,这种药物不能使用。

3)含硝酸甘油时,宜取坐位,或靠墙下蹲位。这是因为硝酸甘油能使全身静脉扩,静脉容量增加,病人直立时,由于重力的原因大量的血液积存在下肢,造成相对的血容量不足,使血压下降,出现头晕,甚至昏倒。平卧位含药虽不会发生体位性低血压,但因回心血 量增加,加重心脏负荷,也会使药效减弱。 4)硝酸甘油能使脑压和眼压升高,所以青光眼、脑出血时慎用。至于静脉用的硝酸甘油则主 要用于急救,需要有医生掌握,从静脉输注。 硝酸甘油片药品说明 本品用于冠心病心绞痛的治疗及预防,也可用于降低血压或治疗充血性心力衰竭。 【性状】本品为白色片 【用法用量】成人一次用0﹒25-0﹒5毫克(半片-1片)舌下含服。每 5分钟可重复1片,直至疼痛缓解。如果15分钟内总量 达3片后疼痛持续存在,应立即就医,在活动或大便之 前5-10分钟预防性使用,可避免诱发心绞痛。 【不良反应】(1)头痛:可于用药后立即发生,可为剧痛和显持续 性。 (2)偶可发生眩晕、虚弱、心悸和其他体位性低血 压的表现,尤其在直立、制动的患者。 (3)治疗剂量可发生明显的低血压反应,表现为恶 心、呕吐、虚弱、出汗、苍白和虚脱。 (4)晕厥、面红、药疹和剥脱性皮炎均有报告。 【禁忌】禁用于心肌梗塞早期(有严重低血压及心动过速时)、严重 贫血、青光眼、颅内压增高和已知对硝酸甘油过敏的患者。 还禁用于使用枸椽酸西地那非(万艾可)的患者,后者增强 硝酸甘油的降压作用。 【注意事项】(1)应使用能有效缓解急性心绞痛的最小剂量,过 量可能导致耐受现象。片剂用于舌下含服,不可 吞服。 (2)小剂量可能发生严重低血压,尤其在直立位时。 舌下含服用药时患者应尽可能取坐位,以免头晕

光催化氧化反应的研究进展

杨 尧(浙江大学材料与化学工程学院,浙江杭州310027) 摘要:概述了光催化氧化技术降解废水废气的原理,影响因素,提高光催化剂活性的途 径,以及光催化技术在有机合成中的应用。制备高效的催化剂,解决太阳光的利用问题,开发光催化反应器将是今后研究的重点。 关键词:光催化氧化;光催化反应器 以太阳能化学转化和储存为主要背景的半导体光催化特性的研究始于1917年,1972年Fujishima和Honda在Nature杂志发表关于TiO2电极分解水的论文标志着光催化新时代的开始。1977年Bard提出利用半导体光催化反应处理工业废水中的有害物质以后,在半导体微粒悬浮体系中进行光催化消除污染物的研究日趋活跃起来。光催化过程采用半导体材料作为光催化剂,在常温常压下进行,如果利用太阳光作光源,则可大大降低污水处理费用。更主要的是,光催化技术可将污染物降解为无毒的无机小分子物质如CO2、H2O及各种相应的无机离子而实现无害化,为治理水污染提供了一条新的、有潜力的途径。 科学技术的进步和对光催化技术广泛而深入的研究,使光催化技术得到迅速发展。除了利用半导体材料来进行光催化氧化降解废水、废气以外,也有不少研究机构利用该技术为有机合成提供了一条新途径。 1光催化氧化处理废水、废气的研究现状 1.1TiO2光催化氧化处理废水、 废气的原理1976年Garey等首先应用二氧化钛光催化降解水中的氯代联苯并取得成功。三十多年来,TiO2光催化氧化技术迅速发展,研究者已利用TiO2催化降解了水和空气中几千种不同的有毒化合物,其中包括许多难解有机化合物,如有机氯化物、农药、氯酚类、染料类以及近年来倍受人们关注的环境荷尔蒙 类物质。因此,可以说TiO2光催化技术是国内外的研究前沿和开发热点。 TiO2是一种多晶形的化合物,目前研究最多的 是锐钛矿型TiO2。它是一种N型半导体材料,它的光催化活性高,反应速率快,对有机物的降解无选择性且能使之完全矿化。它的能带结构一般由填满电子的低能价带和空的高能导带构成,它们之间由禁带分开,其禁带宽度为3.2eV,根据λg(nm)=l240/Eg(eV)可知,其激发波长为387.5nm。当吸收了波长小于或等于387.5nm的光子后,价带电子被激发,越过禁带进入导带,形成带负电的高活性电子e-,同时在价带上产生带正电的空穴h+。在电场的作用下,电子与空穴发生分离,迁移到粒子表现的不同位置。热力学理论表明,电子具有还原性,空穴具有氧化性。吸附在 TiO2表面的氧俘获电子形成O2-,分布在表面的h+可 以将吸附在TiO2表面OH-和H2O分子氧化成?OH自由基,而?OH自由基的氧化能力是水体中存在的氧化剂中最强的,能氧化大多数的有机污染物及部分无机污染物,并将其最终降解为CO2、H2O等无害物质。由于?OH自由基对反应物几乎无选择性,因而在光催化氧化中起着决定性的作用。 1.2影响光催化氧化的因素 以TiO2为例,TiO2的粒径小,光生电子和空穴 从TiO2体内扩散到表面的时间短,它们在TiO2体内的复合几率减小,到达表面的电子和空穴数量多,因此光催化活性高。 此外,粒径小,比表面积大,有助于氧气及被降解有机物在TiO2表面的预先吸附,则反应速率快,光催化效率必然增大。当颗粒大小为1~10nm时,出 收稿日期:2007-01-18 作者简介:杨尧(1983 ̄),男,浙江大学材料与化学工程学院化工所研究生,应用化学专业。主要从事精细有机化工产品的合成与研究。 光催化氧化反应的研究进展 文章编号:1006-4184(2007)05-0017-05

相关文档