文档库 最新最全的文档下载
当前位置:文档库 › 驻波管法吸声系数与声阻抗率测量

驻波管法吸声系数与声阻抗率测量

驻波管法吸声系数与声阻抗率测量
驻波管法吸声系数与声阻抗率测量

驻波管法吸声系数与声阻抗率测量

第一章总则

第1.0.1条为了统一驻波管测量,便于测量数据的相互比较,特制订本规范。

第1.0.2条本规范适用于吸收空气声的吸声材料和吸声构件。采用驻波管测量法向入射时的吸声系数和法向声阻抗率。

第二章测量基本设备

第一节测量装置

第2.1.1条驻波管测量的设备,应由驻波管、声源系统、探测器及输出指示装置等部分所组成,如图2.1.1所示。

第2.1.2条待测试件和声源装置应分别置于驻波管的两端。试件表面应与驻波管轴线互相垂直。

第二节驻波管

第2.2.1条驻波管管内的横截面,一般应采用圆形或正方形。截面面积应均匀,其偏差不应大于0.2%。

第2.2.2条驻波管的管壁,应以密实而且刚硬的材料制成。管壁的内表面应平滑,且无微细缝隙。

第2.2.3条驻波管可划分为两段:一为试件段,供装置试件用;另一为测试段,为驻波管主体。两段的横截面和壁厚必须完全相同,且应同轴连接。如试件段与驻波管主体为整体结构,管壁上供装卸试件用的通道,必须采用厚实的盖板予以严密封闭;盖板应良好固定,其隔声性能应优于或接近管壁的隔声性能。如试件段为筒式可装卸结构,开口端的端面必须平整,且能与驻波管的主体严密结合。闭口端的底板,应以10毫米以上的厚实材料制成,底板与侧壁间应紧配,并应能在试件筒内平滑移动,试件筒与驻波管主体间应相对固定,管道连接部位的外侧应另加套管严密封闭。试件典型装置的要求,可按附录一执行。

第2.2.4条驻波管长度与圆截面内径或方截面边长的比值,宜在10~15范围内。

第2.2.5条驻波管应安装在地面或台架上。采用可装卸的试件筒时,试件筒应另加支承装置。

第三节声源系统

第2.3.1条声源系统,应由声频信号发生器、功率放大器、扬声器等部分组成。

第2.3.2条扬声器应装置在与驻波管相连通的箱体内。箱体的壁面,应用厚实材料制成;壁面与扬声器间,应衬垫隔振材料;箱体内,应充填吸声材料。

第2.3.3条扬声器箱可直接装置在驻波管的末端,也可装在45°或90°弯头上。箱体与驻波管应严密结合,并应衬垫隔振材料,在连接部位,通道截面积应没有突变。

第2.3.4条扬声器必须以纯音信号激发。激发信号,一般由声频信号发生器发生后应经功率放大再馈送至扬声器。信号的频率,应采用1/3倍频程系列的中心频率。

第2.3.5条在测试期间,纯音信号的幅值和频率,应保持稳定。同一次测量中,信号幅值的漂移,不应大于0.2分贝;频率的漂移,不应大于0.5%。

第2.3.6条信号的频率,应能精确测量;其准确度,应优于1%。注:如果只测吸声系数时,其准确度可适当降低。

第四节探测器

第2.4.1条探测器主体为一可移动的传声器。传声器可直接装置在驻波管内,也可借助探管装置在管外。探测器在管内装置部分的截面积总和,不应大于驻波管截面积的5%。

第2.4.2条探测器除受声面外,必须隔离其他一切与外部相通的传声通道。探测器的受声面,必须与驻波管轴线互相垂直。

第2.4.3条探测器的声学中心,应能沿驻波管轴线移动;偏离轴线的距离与圆截面内径或方截面边长的相对比值,不应大于10%。探测器的声学中心的相对位置,应预先加以标定,一般可符合附录二的要求。

第2.4.4条探测器应附有标尺或传动读数装置,与测量频率上限相对应的波长相比较,距离测量的准确度应优于1%。

第2.4.5条探测器装设的传声器部分,必须采取隔振措施,并应保证在移动探测器过程中不会与驻波管管壁或扬声器作刚性接触。

第2.4.6条采用探管探测时,探管的壁厚,不宜小于管径的1/8。探管与传声器间,应作隔振处理。

第五节输出指示装置

第2.5.1条输出的指示装置,一般应由信号放大器、衰减器、滤波器和指示器等部分所组成。

第2.5.2条接收信号自探测器馈送至输出指示装置的电缆,必须采用屏蔽电缆。

第2.5.3条在测试期间,信号放大器的工作状态,应保持稳定。同一次测量中,放大器增益的漂移,不应大于0.2分贝。在正常工作状态,放大器的失真度,不应大于3%。

第2.5.4条衰减器应能连续地或分档地改变信号的相对强弱。分档的衰减器,应预先标定,其测量的准确度,应优于0.2分贝。

第2.5.5条滤波器对偏离中心频率为一倍频程的频率,衰减量应增大30分贝以上。当探测器在驻波管内声压级极大处时,接收信号经过放大、滤波后,其谐频成份应比基频成份低50分贝以上。

第2.5.6条指示器应附有读数装置,并应能精确测量接收信号相对比值或相应的级差;其测量的准确度,应优于2%或0.2分贝。

第2.5.7条指示器的读数装置,可根据指示器指示量的大小直接读数(如指针的偏转角度、接收信号电平的高低等);也可借助经标定的衰减器,改变接收信号的强弱,使它在指示器上指示给定值,然后根据衰减器衰减量进行读数。

第2.5.8条指示器的指示,应能随接收信号的变化迅速地相应变化;采用声级计指示并读数时,一般不宜用“慢档”测量。

第三章测量方法

第一节一般要求

第3.1.1条驻波管的测量,必须先后在声压极大和声压极小两处进行,然后作相对比较。一般应先将探测器移动到声压极大处进行调试,再把探测器移动到声压极小处进行测量。在移动过程中,声源和接收系统的实验条件,必须保持不变。

第3.1.2条驻波管中声压极大值与极小值间的相对比值,即驻波比,由相应接收信号的电压相对比值来确定。

第3.1.3条探测器的声学中心处在试件表面位置时,应把探测器的位置读数作为测量移动距离的起点,一般可遵守附录二的规定。探测器的声学中心移动到声压第一极小处时的

位置读数,应为试件表面至声压第一极小的距离;该距离宜以声波半波长为单位来表示,相应值即为相位因子,可按下式计算:(3.1.3)

第3.1.4条测量相对法向声阻抗率,应观察并记录室温。宜按下式确定空气中的声速:(3.1.4)

第3.1.5条对于给定的频率,宜按下式确定声波半波长:

(3.1.5)

第二节吸声系数的测量

第3.2.1条测试件的吸声系数,应测出各给定频率的驻波比或其倒数。吸声系数可根

据下式计算:

第3.2.2条测量时如直接读出的是声压极大值与极小值间声压级之差,则吸声系数可根据下式计算:(3.2.2)

第3.2.3条驻波比或其倒数、声压级差与吸声系数,也可按附录三查得。

第三节法向声阻抗率的测量

第3.3.1条法向声阻抗率一般为复量,宜以空气特性阻抗为单位来表示,即宜以法向声阻抗率与空气特性阻抗的相对比值来表示,相应值即为相对法向声阻抗率,可按下式计算:(3.3.1-1)(3.3.1-2)

第3.3.2条测量试件的法向声阻抗率,应在按上节规定测量吸声系数的同时,按第3.1.3条规定测量声压第一极小的位置,求出相应的相位因子,然后按下列公式进行计算:

(3.3.2-1)(3.3.2-2)(3.3.2-3)

(3.3.2-4)

第四章测量范围

第一节吸声系数测量范围

第4.1.1条驻波管装置能正常测量的吸声系数范围,应根据空管驻波比确定。空管驻波比为以刚硬反射面代替试件时测得的驻波比,通常以相应的声压级差来表示。在给定的测量频率,空管驻波比与对试件测量所得的相应值相比较,至少应高5分贝。

第4.1.2条在正常测量频率的范围内,驻波管装置能正常测量的最低吸声系数,可遵守表4.1.2的规定。在测量频率的范围内,驻波管的空管驻波比起伏较大时,可将频段细分,然后进行分段评价

第二节测量频率范围

第4.2.1条测量频率的上限,应根据驻波管截面的形状和几何尺寸确定。在正常测量情况下,测量频率的上限,可按下列公式计算:

(4.2.1-1)(4.2.1-2)

第4.2.2条当探测器装置符合第2.4.3条规定的要求时,测量频率的上限,可按下列公式计算:(4.2.2-1)

第4.2.3条测量频率的下限,应根据驻波管测试段的有效长度确定。在正常测量情况下,应保证驻波管内至少有一个声压极大和一个声压极小。测量频率的下限,可按下式计算:(4.2.3)

第4.2.4条在很低频率,如在驻波管内不能测到一个声压极大,但仍可测到一个声压极小,可按附录四的方法进行测量,容许使用的测量频率下限,可扩展到一个倍频程左右。

第五章测量要求

第一节试件的制备与安装

第5.1.1条试件应从待测吸声材料或吸声结构中随机取样而得。同一批材料或结构中至少应制备三个试件。

第5.1.2条试件截面的形状和面积,应与驻波管截面相同。对于较大试件,可用若干相同的单元组合而成。采用试件筒时,也可使用面积大于驻波管截面的薄板状试件,不过这时必须保证试件外侧的严密封闭。典型试件的装置可遵守附录一的规定。

第5.1.3条试件的表面应平整。对于松散材料,应有透声的护面装置,其透声面积应占总面积的30%以上。对于尖劈形吸声结构,应在结构顶端取一假想平面作为试件表面。

第5.1.4条试件应可靠地固定在驻波管内,试件侧面紧贴管壁,但不应受挤压而使它变形。必要时试件的侧面与管壁间的缝隙,应采取适当的密封措施。

第5.1.5条当要求试件具有刚性背面时,试件背面必须平整并与驻波管底板紧贴。底板与驻波管侧壁间应密闭。

第5.1.6条当要求试件背后留有空腔时,应使试件背面和底板间的空气层保持给定的厚度。

第二节测量程序

第5.2.1条进行测量前,应先完成下列准备工作:

一、按第二章各条规定的要求,对驻波管测量设备各部分进行检查。

二、按第4.2.1条至第4.2.4条规定确定测量频率的范围,选取1/3倍频程系列一系列测量频率。如有需要,可加入一些中间频率。

三、作空管测量,测出空管驻波比,按第4.1.1条或第4.1.2条的规定确定可正常测量的最低吸声系数。

四、按照附录二的方法,确定探测器的起始位置。

五、按第5.1.1条至第5.1.6条的规定,制备并安装待测试件。

第5.2.2条测量试件的吸声系数,应按下列规定进行:

一、探测器移到声压极大处时,应调节信号强度,使读数指示满刻度。

二、当探测器移到声压极小处时,必须待指示稳定在极小值上才能进行读数。

三、对于给定测量频率,声压极小值应取三次测量平均值。当相应吸声系数值的最大偏差超过0.02时,应增加测量2~3次,然后取平均。在一般情况下,平均值宜取二位小数,当吸声系数大于0.96时,可取三位小数。

四、对于较高频率,声压第一极小值与第二、第三极小值可能有所不同,管道衰减引起极小值的变化,可按附录五的方法进行修正。

第5.2.3条测量试件法向声阻抗率,应按下列规定进行:

一、按第5.2.2条的规定,测量试件的吸声系数或其相应的驻波比。

二、探测器移到声压第一极小处时,读取试件表面至声压第一极小间距离。对于给定测量频率,距离读数应取三次测量平均值。当读数最大偏差与波长相比较超过1%时,应增加测量2~3次,然后取平均值。

三、按第3.1.4条和第3.1.5条的规定,确定半波长,然后按第3.1.3条的规定,求出相位因子。

四、按第3.3.3条和第3.3.4条的规定,用空气特性阻抗为单位,计算试件的相对法向声阻抗率的模和辐角。

五、如有需要,可按第3.3.5条的规定,计算相对法向声阻率和声抗率。

第三节测量误差

第5.3.1条测量结果的误差,可采用所得平均值的标准偏差表达。

第5.3.2条按第5.2.2条的规定,测量试件吸声系数的误差不应大于0.01。

第5.3.3条按第5.2.3条的规定,测量试件相位因子的误差不应大于1%。

第5.3.4条按第5.2.3条的规定,测量试件相对法向声阻抗率模的相对误差,可由下式计算:(5.3.4)

第5.3.5条按第5.2.3条的规定,测量试件法向声阻抗率辐角的测量误差,可由下式计算:(5.3.5)

第5.3.6条按第5.3.2条至第5.3.5条规定的测量误差,一般不应包括吸声材料或吸声结构本身不均匀性所产生的影响。对同一批试件测量所得结果的标准偏差超出上述规定所得的测量误差时,应以各试件实测数据间的标准偏差作为测量结果不确定度的评价。

第四节测量结果的表达

第5.4.1条测量结果采用表格或曲线的形式给出所有测量频率的实测数据和计算结果。

第5.4.2条实验报告,一般应包括下列内容:

一、吸声材料或吸声构件的名称及制造单位;

二、试件规格(包括几何尺寸、结构及材料容重等);

三、试件安装情况;

四、测量频率及其相应的实测数据和计算结果;

五、测量时的温度和湿度;

六、测量日期;

七、测量单位名称和测量人员姓名。

附录一试件典型装置

附录二探测器声学中心的相对位置

探测器实际探测到的声压位置,并不在探测器受声面(探管口或传声器表面)上,而在其前面一小段距离处,该处即为探测器的声学中心,如附图2.1中A所示。声学中心至探测器受声面的距离δ为与受声面几何寸有关的修正值。

末端的修正值δ,可根据空管实验加以确定。即在空管中以刚硬反射面代替试件,对于给定频率,测出探测器受声面从与刚硬反射面接触处至声压第一极小处间的距离X,末端的修正值δ,可由下式计算:(附2.1)

式中λ为声波波长,可根据本规范第3.1.4条和第3.1.5条的规定求出,也可根据探测器由声压第一极小至第二极小的移动距离测出半波长,再进行计算。在测量频率的范围内,上述测量步骤,应对几个不同的频率进行,然后取平均。

如果实验标定有困难,也可根据下面的半经验半理论公式进行计算:(附2.2)

对于圆形受声面,r取为半径;对于方形受声面,r取为二分之一边长。在实际测量时,应先使探测器受声面与刚硬反射面接触,然后将探测器移过一定的距离X。当距离X与末端的修正值相等时,探测器的声学中心A处在反射面上。这时,应把相应的探测器位置读数作为测量探测器移动距离的起点。

附录三驻波比(s)与其倒数(n)

声压级差(L)和吸声系数(α)间的关系表

附录四测量频率下限的扩展

当测量频率很低时,往往只能找到一个声压极小而找不到声压极大。但这时如果把所能找到的最大声压(例如在试件表面附近)作为声压极大看待,称为“表观声压极大”,然后按通常的方法测定驻波比表观值s′(或吸声系数表观值α′),以及相位因子b值。可根据下式计算出驻波比真实值s:(附4.1)(附4.2)(附4.3)

借助列线图(附图4.1),可在一定的精度范围内,由实验确定的α′值以及b值求出a值,然后可进一步求出相对法向声阻抗率。

附录五管道衰减引起极小值的变化

声波沿管道传播时有轻微的自然衰减,对驻波产生的总效果是使各个声压极小值随试件距离而增加,而极大值的变化一般可忽略不计。对于较高的测量频率,这种极小值的变化对测量结果的影响应加以考虑。设试件声压反射系数的真实值为γP考虑管道衰减时,测得的表观值为γ′P可得:

驻波管法测定吸声材料的吸声系数1

驻波管法测定吸声材料的吸声系数 【实验目的】 (1)了解人耳听觉得频率范围,获得对一些频率纯音得感性认识。 (2)加深对垂直入射吸声系数得理解,熟悉驻波管法是测定材料的吸声系数的方法。 【实验原理】 测量装置 1测试车2导轨3声源箱4驻波管(分低、高频两种) 测量原理 驻波管为一金属(塑料)直管,它的一端可以用夹具安装试件,另一端接好扬声器,声频讯号由声频发生器产生,经放大器进行放大,由扬声器发出单频声波,声波在驻波管内传播,由于管径较小,与音频声波的波长相比,可近似将声波面看作为平面入射波,沿管内直线传播;当入射到试件后,进行反射,由于反射波与入射波传递的方向和相位相反,声压产生叠加,干涉而形成驻波,并在管内某个位置上形成声压极大值Pmax(2 N),t和声压极较小值Pmin,其间距 /m 为l/4波长。

11E E r -=-=γα 式中:α —————吸声系数 γ—————反射系数 Eo —————入射声能(W) Er —————反射声能(W) 令n P P =min max / 称为驻波比..................(1) 故有:24/(1)n n α=+ (2) 一般频谱分析仪或声级计,测试的标称值是声压级,而不是声压P 值,根据声压和声压级的关系,吸声系数可如下计算。 n P P L L L lg 20m in/lg 20m ax /lg 20m in m ax 00=Φ-Φ=-=? 20 2 204*10(110 ) P P L L a = + (3) 【测量方法】 (1) 电路接线正确后,信号发生器等电子仪器电源接通。 (2) 将试件按照要求装在试件筒内,并用凡士林将试件与筒壁接触处的缝隙填 塞,使之严密,然后再用夹具将试件筒固定在驻波管上。 (3) 调节声频发生器的频率,依次发出200、250、315、400、500、630、 800、1000、1250、1600、2000Hz 不同的声频。在设置仪器输出信号的频率时,测量到的声压级波峰值不超过136分贝,声压级波谷值不低于50分贝。 (4) 将滑块移到最远处,,移动仪器屏幕上的光标,到所测量的频率的第一个峰 值位置(1/4波长)缓慢移动滑块,同时读取光标位置显示的声压级,并记录滑块所在位置的刻度,按F7自动计算吸声系数。

建筑吸声产品计权吸声系数计算过程示例

GB/T 16731 —×××× 计权吸声系数w α计算过程示例 图A.1给出一个计算计权吸声系数αw 的例子。将参考曲线向测量计算得到的实用吸声系数曲线移 动,每步移动0.05,直到不利偏差之和尽可能大,但不超过0.10。在这个例子中,不利偏差出现在250Hz 处,而计权吸声系数αw 的结果为0.60。无频谱特性标志。 图A.2给出一个带频谱特性标志的例子。不利偏差与图A.1中的不利偏差一致,因此得到相同的计权吸声系数αw 值。但是,由于被测吸声产品的实用吸声系数在500Hz 处超出移位参考曲线值0.25以上,因此加上了中频频谱特性标志(M )。 图A.1 计权吸声系数αw 的计算例子(αw =0.60) 图A.2 计权吸声系数αw 的计算例子[αw =0.60(M)] 频率 (Hz ) 移位参考 曲线值 实用吸声系数p α 125 — 0.20 250 0.40 0.35 500 0.60 0.70 1000 0.60 0.65 2000 0.60 0.60 4000 0.50 0.55 频率 (Hz ) 移位参考 曲线值 实用吸声系数p α 125 — 0.20 250 0.40 0.35 500 0.60 1.00 1000 0.60 0.65 2000 0.60 0.60 4000 0.50 0.55

GB/T 16731 —×××× 附录B (资料性附录) α结果表达图表示例 1/3倍频带吸声系数 s α的结果表达示例。 本附录给出了按照GB/T 20247-2006测得的1/3倍频带吸声系数 s 注:本示例仅供参考,与本标准中其他示例无关。

材料的吸声系数

材料的吸声系数 吸声系数隔振vibration isolation 材料吸收和透过的声能与入射到材料上的总声能之比,叫吸声系数(α)。 α=Eα/Ei =(Ei-Er)/Ei=1-r 式中:Ei——入射声能;Eα——被材料或结构吸收的声能; Er——被材料或结构发射的声能; r——反射系数。 名词解释 吸音系数是按照吸音材料进行分类的。说明不同材料有不同吸音质量 分贝(db),是声压级大小的单位(声音的大小)。声音压力每增加一倍,声压量级增加6分贝。1分贝是人类耳朵刚刚能听到的声音。20分贝以下,我们认为它是安静。20-40分贝相当于情人耳边的轻轻细语。40-60分贝是我们正常谈话的声音。60分贝以上属于吵闹范围。70分贝很吵,并开始损害听力神经。90分贝会使听力受损。在100-120分贝的房间内呆1分钟,如无意外,人就会失聪(聋)。 吸声原理 当入射声能被完全反射时,α=0,表示无吸声作用;当入射声波完全没有被反射时,α=1,表示完全被吸收。一般材料或结构的吸声系数α=0~1,α值越大,表示吸声能越好,它是目前表征吸声性能最常用的参数。 吸声是声波撞击到材料表面后能量损失的现象,吸声可以降低室内声压级。描述吸声的指标是吸声系数a,代表被材料吸收的声能与入射声能的比值。理论上,如果某种材料完全反射声音,那么它的a=0;如果某种材料将入射声能全部吸收,那么它的a=1。事实上,所有材料的a介于0和1之间,也就是不可能全部反射,也不可能全部吸收。 不同频率上会有不同的吸声系数。人们使用吸声系数频率特性曲线描述材料在不同频率上的吸声性能。按照ISO标准和国家标准,吸声测试报告中吸声系数的频率范围是100-5KHz。将 100-5KHz的吸声系数取平均得到的数值是平均吸声系数,平均吸声系数反映了材料总体的吸声性能。在工程中常使用降噪系数NRC粗略地评价在语言频率范围内的吸声性能,这一数值是材料在250、500、1K、2K四个频率的吸声系数的算术平均值,四舍五入取整到0.05。一般认为NRC小于0.2的材料是反射材料,NRC大于等0.2的材料才被认为是吸声材料。当需要吸收大量声能降低室内混响及噪声时,常常需要使用高吸声系数的材料。如离心玻璃棉、岩棉等属于高NRC吸声材料,5cm厚的24kg/m3的离心玻璃棉的NRC可达到0.95。 分贝、声功率、声强和声压 分贝 人们日常生活中遇到的声音,若以声压值表示,由于变化范围非常大,可以达六个数量级以上,同时声音功率由于人体听觉对声信号强弱刺激反应不是线形的,而是成对数比例关系。所以采用分贝来表达声学量值。所谓分贝是指两个相同的物理量(例A1和A0)之比取以10为底的对数并乘以10(或20)。N = 10lg(A1/A0) 分贝符号为"dB",它是无量纲的。式中A0是基准量(或参考量),A是被量度量。被量度量和基准量之比取对数,这对数值称为被量度量的"级"。亦即用对数标度时,所得到的是比值,它代表被量度量比基准量高出多少"级"。 声功率(W) 声功率是指单位时间内,声波通过垂直于传播方向某指定面积的声能量。在噪声监测中,声功率是指声源总声功率。单位为W。 声功率级: Lw =10lg(W/W0) 式中:Lw——声功率级(dB); W——声功率(W);

声学计算公式大全

当声波碰到室内某一界面后(如天花、墙),一部分声能被反射, 一部分被吸收(主要是转化成热能),一部分穿透到另一空间。 透射系数: 反射系数: 吸声系数: 声压和声强有密切的关系,在自由声场中,测得声压和已知测点到声源的距离,就可计算出该测点之声强和声源的声功率。 声压级Lp 取参考声压为Po=2*10-5N/m2为基准声压,任一声压P的Lp为:

听觉下限: p=2*10-5N/m2 为0dB 能量提高100倍的 P=2*10-3N/m2 为20dB 听觉上限: P=20N/m2 为120dB 1、声压级Lp 取参考声压为Po=2*10-5N/m2为基准声压,任一声压P的Lp为: 听觉下限: p=2*10-5N/m2 为0dB 能量提高100倍的 P=2*10-3N/m2 为20dB 听觉上限: P=20N/m2 为120dB 2、声功率级Lw 取Wo为10-12W,基准声功率级 任一声功率W的声功率级Lw为: 3、声强级: 3、声压级的叠加 10dB+10dB=? 0dB+0dB=? 0dB+10dB=? 答案分别是:13dB,3dB,10dB.

几个声源同时作用时,某点的声能是各个声源贡献的能量的代数和。因此其声压是各声源贡献的声压平方和的开根号。 即: 声压级为: 声压级的叠加 ?两个数值相等的声压级叠加后,总声压级只比原来增加3dB,而不是增加一倍。这个结论对于声强级和声功率级同样适用。 ?此外,两个声压级分别为不同的值时,其总的声压级为

两个声强级获声功率级的叠加公式与上式相同 在建筑声学中,频带划分的方式通常不是在线性标度的频率轴上等距离的划分频带,而是以各频率的频程数n都相等来划分。 声波在室内的反射与几何声学 3.2.1 反射界面的平均吸声系数 (1)吸声系数:用以表征材料和结构吸声能力的基本参量通常采用吸声系数,以α表示,定义式: 材料和结构的吸声特性和声波入射角度有关。

吸声系数测定

实验(8) 吸声系数测定 一、实验目的和要求 厅堂音质设计或是环境噪声的吸声降噪处理,都要借助各种吸声材料和吸声构造的正确使用。因此,了解工程上常用吸声材料的性能和用法,掌握吸声系数的测试方法,对于建筑工作者很有必要。实验要求了解对吸声材料的吸声系数测试方法,掌握驻波管法测量材料的吸声系数。 二、实验内容 用驻波管法测试材料的垂直入射吸声系数。测定19mm厚木丝纤维板的吸声系数。 3、 测试原理 驻波管测量材料的吸声系数是利用声音的驻波干涉原理。物理学上把两列相通的波在同一直线上相向传播而叠加后产生的波称为驻波。实验将待测材料作为阻挡入射声波并使之产生驻波的壁面,由于材料对入射声的吸收作用,反射声的生压会小于入射声压,产生驻波时就会在驻波的波腹和波节的声压大小变化上反映出材料的吸声系数差别来。 本实验用北京世纪建通公司生产的JTZB驻波管做实验。该驻波管为一金属直管,长150cm,内径为10cm,它的一端可以用夹具安装试件,另一端接好扬声器,声频讯号由声频发生器产生,经放大器进行放大,由扬声器发出单频声波,声波在驻波管内传播,由于管径较低小,对于音频声波的波长相比,可近似将声波面看作为平面入射波,沿管内直线传播;当入射到试件后,进行反射,由于反射波与入射波传递的方向和相位相反,声压差生叠加,干涉而形成驻波,并在管内某个位置上形成声压极大值Pmax(N/m2),t和声压极小值Pmin,其间距为1/4波长。 α=1-γ=1-Eγ/E0 式中:α-------吸声系数 γ-------反射系数 E0-------入射声能(W)

Eγ-------反射声能(W) 四、测试设备 驻波管、JTZB声频讯号发生器、GZ022-A功率放大器、探管(传声器)、JTZB专用频谱分析仪等,钢尺 5、 实验步骤 1、 检查电路连接正确后,信号发生器等电子仪器电源接通,并预热5 分钟。 2、 将试件按照要求安装在试件筒内,并用凡士林将厚度为19mm,直径 为100mm的木丝纤维板试件与筒逼接触处的缝隙填塞,使之严密,然后再用夹具将试件筒固定在驻波管上。 3、 调节声频发生器的频率,依次发出 200,250,315,400,500,630,800,1000,1250, 1600,2000Hz的1/3倍频程的声音讯号。 4、移动测试小车,是用专用频谱分析仪,在靠近试件的一端找出200-2000Hz的1/3的第一个声压级极大值和极小值,并记下极大值和极小值读数。 5、每一频率反复测试三次。 6、根据声压级极大值和极小值的差值,查表得到不同频率下的吸声系数。 6、 注意事项 1、安装试件时,试件表面与试件夹齐平,并对周围的细缝用凡士林填封。 2、测试过程中,调节音频发生器频率时,须同时调整读表量程。 3、移动测试小车时需缓慢,准确找到声压的极大值和极小值。7、 实验数据及处理 频率平均平均

常用材料的吸声系数

常用材料的吸声系数: 125 250 500 1000 2000 4000 砖墙、抹光、涂漆0.01 0.01 0.02 0.02 0.02 0.03 厚地毯,铺在水泥地上0.20 0.06 0.14 0.37 0.60 0.65 混凝土墙、粗糙0.36 0.44 0.31 0.29 0.39 0.25 混凝土墙,涂漆0.10 0.05 0.06 0.07 0.09 0.08 丝绒0.30kg/m2,直接挂在墙上0.03 0.04 0.11 0.17 0.24 0.35 丝绒0.43kg/m2,折叠面积一半0.07 0.31 0.49 0.75 0.70 0.60 丝绒0.56kg/m2,折叠面积一半0.14 0.35 0.49 0.75 0.70 0.60 木地板0.15 0.11 0.10 0.07 0.06 0.07 水泥地板0.01 0.01 0.015 0.02 0.02 0.02 普通玻璃(厚3mm~4mm)0.35 0.25 0.18 0.12 0.07 0.04 石膏板, 龙骨50×100mm, 中心距40cm 0.29 0.10 0.05 0.04 0.07 0.09 开口的舞台(与设备有关)0.25 0.30 0.40 0.50 0.65 0.75 很深的包厢0.50 0.55 0.65 0.70 0.80 1.00 通风口0.15 0.22 0.30 0.40 0.45 0.50 大理石或抛光板0.01 0.01 0.01 0.01 0.02 0.02 胶合板(9mm厚)0.28 0.22 0.17 0.09 0.10 0.11 玻璃纤维(厚5cm) 0.15 0.38 0.81 0.83 0.79 0.74 超细玻璃纤维(厚5cm) 0.25 0.41 0.82 0.83 0.89 - 矿渣棉(厚6.0cm)0.25 0.55 0.79 0.75 0.88 - 石棉(厚2.5cm) 0.06 0.35 0.50 0.46 0.52 0.65 甘蔗板(厚1.3cm) 0.12 0.19 0.28 0.54 0.49 0.70 木丝板(厚3cm) 0.05 0.07 0.15 0.56 0.90 - 麻纤维板(厚2cm) 0.09 0.11 0.16 0.22 0.28 - 玻璃棉板(厚5cm) 0.06 0.17 0.48 0.81 0.95 0.90 石棉板(厚0.8cm) 0.02 0.03 0.05 0.06 0.11 0.28 青软木板(厚3.5cm) 0.05 0.06 0.29 0.35 0.34 0.50 工业毛毡(厚2.0cm) 0.07 0.26 0.42 0.40 0.55 0.56 沥青玻璃棉毡(厚3.0cm) 0.11 0.13 0.26 0.46 0.75 0.88 超细玻璃棉毡(厚4.0cm) 0.08 0.24 0.89 0.69 0.77 - 沥青矿棉毡(厚3.0cm) 0.08 0.18 0.50 0.68 0.81 0.89 泡沫玻璃(厚4.0cm) 0.11 0.27 0.35 0.31 0.43 - 树脂棉板(厚5.0cm) 0.06 0.17 0.48 0.81 - - 硬聚氯乙烯泡沫塑料板(厚2.5cm) 0.04 0.04 0.17 0.56 0.28 0.58 酚醛泡沫塑料(厚2.0cm) 0.08 0.15 0.30 0.52 0.56 0.60 聚胺甲酸脂泡沫塑料(厚2.0cm) 0.11 0.13 0.27 0.69 0.98 0.79 微孔聚脂泡沫塑料(厚4.0cm) 0.10 0.14 0.26 0.50 0.82 0.77 粗孔聚脂泡沫塑料(厚4.0cm) 0.06 0.10 0.20 0.59 0.68 0.85 聚氯乙烯塑料(厚0.41cm) 0.03 0.02 0.06 0.29 0.13 0.13 尿荃米波罗(厚3.0cm) 0.10 0.17 0.45 0.67 0.65 0.85 微孔吸声砖(厚9.5cm) 0.41 0.75 0.66 0.76 0.81 - 泡沫石膏(厚2.5cm) 0.06 0.18 0.50 0.70 0.55 0.50

建筑装饰材料的吸声系数如何计算

建筑装饰材料的吸声系数如何计算 来源:网络收集 如何计算建筑装饰材料的吸声系数 测量材料吸声系数的方法有两种,一种是混响室法,一种是驻波管法。混响室法测量声音无规入射时的吸声系数,即声音由四面八方射入材料时能量损失的比例,而驻波管法测量声音正入射时的吸声系数,声音入射角度仅为90度。两种方法测量的吸声系数是不同的,工程上最常使用的是混响室法测量的吸声系数,因为建筑实际应用中声音入射都是无规的。在某些测量报告中会出现吸声系数大于1的情况,这是由于测量的实验室条件等造成的,理论上任何材料吸收的声能不可能大于入射声能,吸声系数永远小于1。任何大于1的测量吸声系数值在实际声学工程计算中都不能按大于1使用,最多按1进行计算。在房间中,声音会很快充满各个角落,因此,将吸声材料放置在房间任何表面都有吸声效果。吸声材料吸声系数越大,吸声面积越多,吸声效果越明显。 用ANSYS来计算样品吸声系数 驻波管法(主要部分是一根圆柱形钢管),管内径9.5cm,管外径10cm,管长100cm,管的一端内放置被测样品(一种吸声材料,形状制成圆柱状,恰好可放入管内,样品厚8cm),管的另一端有一声源(喇叭),向管内发射某一频率的声波,声波经管内空气传播到样品表面,一部分声波被样品吸收,另有一部分声波被反射回来,反射声波与入射声波的传播方向相反,互相叠加后,在管内形成驻波,波腹处形成声压极大值,波节处形成声压极小值,实验中测得距样品最近的声压极大值和极小值,可由公式算出样品的吸声系数。 吸声是声波撞击到材料表面后能量损失的现象,吸声可以降低室内声压级。描述吸声的指标是吸声系数a,代表被材料吸收的声能与入射声能的比值。理论上,如果某种材料完全反射声音,那么它的a=0;如果某种材料将入射声能全

驻波管法吸声系数测量

驻波管法吸声系数测量 1.1引言 任何一项试验都需要做细致的前期准备工作,这样才能保证试验有序合理的进行,同时可以保证试验的延续性、重复性、可比性。前期的工作主要包括对试验对象、试验条件、试验仪器、系统的搭建进行详细的定义和说明。 1.2试验对象和条件 1.2.1待测材料的规定 1、被测材料应为多孔吸声材料; 2、被测材料应制作成直径为30mm和100mm圆形,尺寸误差在2%以内,能过正好装入; 3、材料表面应平整,材料与阻抗管之间的缝隙应用油脂密封; 4、同种材料至少准备两个被测样件。 1.2.2试验环境和设备的规定 试验过程中应保证环境的安静,同时应测量环境的温度。 试验设备应满足GB/T 18696. 1- 2004的规定。 主要实验设备:采集器、功率放大器、驻波管、传声器、线缆、声级校准器、电脑和软件。 1.2.3说明 本节关于被测材料、实验设备、环境等要求未描述者,请参考GB/T 18696. 1- 2004。 1.3试验步骤 1.3.1根据设备使用说明,依次连接好采集器、传感器、功率放大器、线

缆、电脑等设备。 1.3.2检查设备连接无误后,接通电源,将功放输出增益调制最小后,依 次打开功放、采集器、电脑和软件,并在软件里根据选择对应的采集器型号,并设置采样频率,一般设置为50kHz。 1.3.3打开传感器校准功能选项,校准传感器,通常每次测试前均需对对 各通道的传感器进行校准。 1.3.4打开材料吸声系数测量模块,进行材料吸声系数测量: 1) Setting(设置) ?Mode Choose 选择Absorption(吸声系数测试) ?TUBE 选择测试所使用的管,程序会自动给出管的参数,包括:样 品到最近传声器的距离、两个传声器的间距,测试管的内径,以及 测试的有效频率范围。 ?ENVIRONMENT 填写测试环境的大气压、温度,用来计算空气密度、 声速和特性阻抗。缺省设置为101325Pa 及20℃。 2) 按显示内容,布置传声器通道:声源-1通道- 2通道-样品 3) 点击进行测量,等待测量曲线开始稳定,比较平滑后点击 。 4) 点击,变成,按显示内容布置传声器通道:声 源-2通道- 1通道-样品交换传声器位置。 5) 重复2)过程 6) 退出

驻波管法吸声系数与声阻抗率测量规范

更新规范 https://www.wendangku.net/doc/7414704598.html, 中华人民共和国国家标准 驻波管法吸声系数与声阻抗率测量规范 GBJ 88-85 主编单位:同济大学 批准部门:中华人民共和国国家计划委员会 施行日期:1986年6月1日 关于发布《驻波管法吸声系数与声阻抗率测量规范》的通知 计标〔1986〕04号 根据原国家建委(81)建发设字第546号通知的要求,由全国声学标准化技术委员会负责归口组织,具体由同济大学会同有关单位编制《驻波管法吸声系数与声阻抗率测量规范》,已经全国声学标准化技术委员会会审。现批准《驻波管法吸声系数与声阻抗率测量规范》GBJ88—85为国家标准,自一九八六年六月一日起施行。 本规范具体解释等工作由同济大学负责。 国家计划委员会 1985年12月31日 编制说明

本规范是根据原国家基本建设委员会(81)建发设字546号文的要求,由全国声学标准化技术委员会委托同济大学负责编制的。 在本规范的编制过程中,编制单位调查研究了国内有关单位的实践经验和研究成果,收集并分析了国外同类测量标准及有关技术资料,对一些重要内容作了较系统的对比试验以及相应的理论分析,提出了规范征求意见稿。广泛征询了国内各有关单位的意见,并召开了座谈会,经反复修改提出了送审稿。经全国声学标准化技术委员会建筑声学分委员会讨论同意,最后由全国声学标准化技术委员会审查定稿。 本规范共五章及七个附录。内容包括:测量设备、测量方法、测量范围和测量要求。 在本规范施行过程中,希各单位注意积累资料,认真总结经验,如发现有需要修改或补充之处,请将意见和有关资料寄交同济大学声学研究所,以供今后修订时参考。 同济大学 1985年12月更新规范 https://www.wendangku.net/doc/7414704598.html, 第一章 总则 第 1.0.1条 为了统一驻波管测量,便于测量数据的相互比较,特制订本规范。 第1.0.2条 本规范适用于吸收空气声的吸声材料和吸声构件。采用驻波管测量法向入射时的吸声系数和法向声阻抗率。 更新规范 https://www.wendangku.net/doc/7414704598.html, 第二章 测量基本设备 第一节 测量装置 第2.1.1条 驻波管测量的设备,应由驻波管、声源系统、探测器及输出指示装置等部分所组成,如图2.1.1所示。

NRC吸声系数

NRC吸声降噪系数 吸音系数是按照吸音材料进行分类的。说明不同材料有不同吸音质量分贝(db),是声压级大小的单位(声音的大小)。 吸声系数 材料吸收的声能与入射到材料上的总声能之比,叫吸声系数(α)。 α=Eα/Ei =(Ei-Er)/Ei=1-r 式中:Ei——入射声能;Eα——被材料或结构吸收的声能; Er——被材料或结构反射的声能;r——反射系数。 名词解释 声音压力每增加一倍,声压量级增加6分贝。0分贝是人类耳朵刚刚能听到的声音。20分贝以下,我们认为它是安静。20-40分贝相当于情人耳边的轻轻细语。40-60分贝是我们正常谈话的声音。60分贝以上属于吵闹范围。70分贝很吵,并开始损害听力神经。90分贝会使听力受损。在100-120分贝的房间内呆1分钟,如无意外,人就会失聪(聋)。 吸声原理 当入射声能被完全反射时,α=0,表示无吸声作用;当入射声波完全没有被反射时,α=1,表示完全被吸收。一般材料或结构的吸声系数α=0~1,α值越大,表示吸声能越好,它是目前表征吸声性能最常用的参数。 吸声是声波撞击到材料表面后能量损失的现象,吸声可以降低室内声压级。描述吸声的指标是吸声系数a,代表被材料吸收的声能与入射声能的比值。理论上,如果某种材料完全反射声音,那么它的a=0;如果某种材料将入射声能全部吸收,那么它的a=1。事实上,所有材料的a介于0和1之间,也就是不可能全部反射,也不可能全部吸收。 不同频率上会有不同的吸声系数。人们使用吸声系数频率特性曲线描述材料在不同频率上的吸声性能。按照ISO标准和国家标准,吸声测试报告中吸声系数的频率范围是 100-5KHz。将100-5KHz的吸声系数取平均得到的数值是平均吸声系数,平均吸声系数反映了材料总体的吸声性能。在工程中常使用降噪系数NRC粗略地评价在语言频率范围内的

驻波管法测吸声系数实验指导书教材

实验一驻波管法测量吸声材料垂直入射的吸声系数 实验指导书 、实验目的 掌握用阻抗管法(驻波比法)测量吸声材料的吸声系数、声阻抗率的原理及操作方法。 被测试件:海绵或腈纶毛毡 二、实验要求 1?了解阻抗管的结构原理及功能。 2.掌握AWA6122A主波管测量吸声材料的吸声系数的程序。 3 、实验过程和要求参照GB/T18696.1-2004《声学阻抗管中吸声系数和声阻抗的测量 第一部分:驻波比法》。 三、实验环境 1.AWA6122A主波管及测试软件 2.被测材料:海绵样品或腈纶毛毡大管直径960伽,小管直径300伽。 3.信号输出: (1)频率范围:100Hz?10kHz,频率误差<0.1%,土0.33Hz。 (2)信号源输出电压:50m\?5000mV(RMS均方根值)。 (3)频率点:按1/96倍频程可选。 4.幅度测量: (1)频率范围:0.02?20kHz ,频响w± 0.2dB (以1kHz为基准)。 (2)幅度范围:35dB?+136dB。 (3)内置频率跟踪1/3倍频程带通滤波器。 5.使用环境:+10?+35C,相对湿度小于70% 6.电源:50Hz, 220V± 10% 7.通用计算机及打印机 8.声级校准器:四、实验内容 1、实验装置 整个实验系统由计算机、显示器、信号源、测量放大器、测试话筒等五部份组成。机内自动进行线路校正,性能相当稳定。能根据测量到的峰谷值计算吸声系数值,并能显示吸声 系数值与频率刻度的坐标曲线。仪器的输出信号的频率和幅度在规定范围内可自由设定。数据和曲线可以打印输出。 驻波管装置如图1:

扬声器 装压强 榜声器的车子 轨道及折尺 /刚性活塞 材料 L 管(大管测低频):①96x1000 (mm ) 频率范围:90Hz~2075Hz 频率范围:1500Hz~6641Hz 图1驻波管的结构及测量装置简图 2、 测量内容 测量海绵样品腈纶毛毡的吸声系数。 3、 实验原理 吸声系数是描述吸声材料吸声本领的物理量, 它被定义为:被吸声材料吸收的声能 和入射声能之比,通常用符号 a 表示。驻波管主要部分是一根内壁光滑,截面均匀的管子, 管子的末端装以 被测材料的样品, 由扬声器向管子辐射的声波在管中以平面波方式传播, 平 面波在材料表面反射回来, 其结果是在管中建立了驻波声场, 从材料表面算起管中出现了声 压极大和极小的交替分布,利用可移动的探管传声器接收,在测试仪器上测出声压极大与极 小的声级差(或 极大值与极小值的比值) ,用试件的反射系数r 来表示声压的极大值与极小 值,便可确定垂直入射吸声系数。即: P min = P0(1 - r ) 根据吸声系数的定义, 2 % =1-r 定义驻波比s 为: 吸声系数与反射系数的 关系可写成: P max p min 吸声系数可用 驻声系数表示为: 4S 一 2 (1 S)2 因此,只要确定声压极大值和极小值的比值, 即可计算出吸声系数。 如果实际测得的是 声压级的极大值和极小值,计算两者之差为 Lp ,可由下式计算吸声系数: 传声器窄带 放大器滤波器 音频 振蒜器

吸声系数

吸声系数 ● 房间的平均吸声系数 (1)方法一:直接测量 经推导,当室内声场达稳定后立即停止发声,声能密度衰减到原来的百万分之一时,即衰减60分贝的混响时间T 60为: mV a S V T 4)1ln(161.060+--= 式中m 为空气衰减常数(dB/m),与空气温湿度和声频有关,其值可参见导则HJ/T 2.4-1995表2。 当声频低于2000Hz ,且a <0.2时,可简化为:a S V T 161.060=。 通常情况下,T 60是比较容易直观地测出的,因此可用上式求出房间的平均吸声系数a 。 (2)方法二:面积加权平均 查出房间内壁不同表面的吸声系数a i (对应面积为S i ),然后用下式计算a : S a S a i i i ∑= ● 材料的吸声系数 材料吸收声能(包括透射声能在内)和入射声能之比,称为吸声系数。如果声波是垂直入射材料表面的,称作正规入射,一般用a 0表示;如果声波是从各种方向入射的,称为无规入射,一般用a 表示。对同样材质和结构的材料,一般有a>a 0。一般所说的吸声系数均指a 。 a 的测定,一般在混响室中进行。设材料的吸射系数为a ,混响室自身的平均吸声系数为a ,混响室体积为V ,材料的暴露面为S m ,测得混响室自身的混响时间为T 60,0,测出有材料后的混响时间为T 60,则可由下式得到材料的无规入射吸声系数a m : a T T S V a m m +??? ? ??-=0,606011161.0 而用驻波管测出的常为a 0。驻波管为一内部可产生近似平面驻波的封闭管子,在管子一头内贴待测材料,另一头发出单频声波,测出驻波的波腹与波节声压之比(P max /P min ),称为驻波比,以SWR 表示。则待测材料对该种频率声波的正规入射吸声系数a 0: 20)1(4+?=SWR SWR a

驻波管法吸声系数与声阻抗率测量

驻波管法吸声系数与声阻抗率测量 第一章总则 第1.0.1条为了统一驻波管测量,便于测量数据的相互比较,特制订本规范。 第1.0.2条本规范适用于吸收空气声的吸声材料和吸声构件。采用驻波管测量法向入射时的吸声系数和法向声阻抗率。 第二章测量基本设备 第一节测量装置 第2.1.1条驻波管测量的设备,应由驻波管、声源系统、探测器及输出指示装置等部分所组成,如图2.1.1所示。 第2.1.2条待测试件和声源装置应分别置于驻波管的两端。试件表面应与驻波管轴线互相垂直。 第二节驻波管

第2.2.1条驻波管管内的横截面,一般应采用圆形或正方形。截面面积应均匀,其偏差不应大于0.2%。 第2.2.2条驻波管的管壁,应以密实而且刚硬的材料制成。管壁的内表面应平滑,且无微细缝隙。 第2.2.3条驻波管可划分为两段:一为试件段,供装置试件用;另一为测试段,为驻波管主体。两段的横截面和壁厚必须完全相同,且应同轴连接。如试件段与驻波管主体为整体结构,管壁上供装卸试件用的通道,必须采用厚实的盖板予以严密封闭;盖板应良好固定,其隔声性能应优于或接近管壁的隔声性能。如试件段为筒式可装卸结构,开口端的端面必须平整,且能与驻波管的主体严密结合。闭口端的底板,应以10毫米以上的厚实材料制成,底板与侧壁间应紧配,并应能在试件筒内平滑移动,试件筒与驻波管主体间应相对固定,管道连接部位的外侧应另加套管严密封闭。试件典型装置的要求,可按附录一执行。 第2.2.4条驻波管长度与圆截面内径或方截面边长的比值,宜在10~15范围内。 第2.2.5条驻波管应安装在地面或台架上。采用可装卸的试件筒时,试件筒应另加支承装置。 第三节声源系统 第2.3.1条声源系统,应由声频信号发生器、功率放大器、扬声器等部分组成。 第2.3.2条扬声器应装置在与驻波管相连通的箱体内。箱体的壁面,应用厚实材料制成;壁面与扬声器间,应衬垫隔振材料;箱体内,应充填吸声材料。 第2.3.3条扬声器箱可直接装置在驻波管的末端,也可装在45°或90°弯头上。箱体与驻波管应严密结合,并应衬垫隔振材料,在连接部位,通道截面积应没有突变。 第2.3.4条扬声器必须以纯音信号激发。激发信号,一般由声频信号发生器发生后应经功率放大再馈送至扬声器。信号的频率,应采用1/3倍频程系列的中心频率。

实验20&21 吸声系数、噪声

实验5驻波管法测定吸声材料的吸声系数 一、实验目的 1.学习驻波管法测量吸声系数原理 2.测量吸声材料的吸声系数 3.绘制频率特性曲线 二、实验原理 在音质设计中,广泛地要选用各种吸声材料。对吸声材料的吸声系数测试方法的了解,是每个建筑专业设计人员应该掌握的。建筑吸声材料吸声系数的测试方法主要有三种:驻波管法、传递函数法(GB/T18696.2-2002)、混响法。驻波管法是测定材料的吸声系数最方便方法之一。该方法是设备简单易用,方法原理直观好理解。而且相对于后两种动辙几十万设备投入,其经济性明显。所以这种方法最为广泛地应用于生产和科学研究中。本实验方法对应有国标GB/T18696.1-2004 基本原理是:利用电子设备产生正弦信号,通过功率 放大驱使扬声器产生声音(纯音平面声波),使空气产生同 频率的机械振动波,该波(作为入射波)在特定的通道里 向前传播,到达试件表面后部分声能反射(反射波),反射 波和入射波在通道里叠加,产生驻波现象。通过检测到驻 波中的最大、最小声压级,可以带入公式计算出吸声系数。 具体推导如下:入射波沿管内直线传播;当入射到试件后,进行反射,由于反射波与入射波传递的方向相反,声压产生叠加而形成驻波,并在管内某个位置上形成声压极大值Pmax(N/m2)(对应最大声压级Lmax,单位dB), 和声压极较小值Pmin(对应最小声压级Lmin),其间距为1/4波长。 α=1-γ=1-Er/E0 式中:α-----吸声系数 γ-----反射系数 E -----入射声能(W) Er-----反射声能(W) 由于:I=E/S; I=P2/ρ C 可得:α=1-P r 2/P 2 又由于:Pmax=P 0+P r Pmin=P 0-P r 上两式相加或相乘并除上式P 2得: P =( Pmax+ Pmin)/2 Pmax·Pmin/P 02=1-P r 2/P 2=α 所以有: α= Pmax.Pmin/( Pmax+ Pmin)/2=4( Pmax/ Pmin+2+ Pmin/ Pmax) 令Pmax/ Pmin=n 称为驻波比 (1)

吸声系数测试实验报告

实验二吸声系数的测试 一、实验目的 掌握材料吸声系数的测试原理及测试方法。 二、实验原理 采用北京声望电技术有限公司产的SW002驻波管、BSWA VS302USB双声学分析仪和BSWA-100型功率放大器。参照JJF 1223-2009驻波管标准规范(驻波比法)进行测量。如下图所示:测试样的直径为100mm,厚度30mm。选择线性网络,声压级为90dB粉红噪声源。数据处理采用Spectra LAB的声学软件。Sampling Rata 取“48000”,Decimation Ratio 取1,FFT size 取4096。 该试验的主要原理是:当扬声器发出声波在驻波管内传播时,驻波管内形成驻波声场,沿管轴向方向会出现声压极大与极小的交替分布,利用可以移动的探管传声器接收声压信号,然后根据声压极大值与极小值的比值可计算出材料的吸声系数。这种测量方法的缺点是要求手动移动滑块确定探管的位置,步骤比较繁琐,实验耗时也较长。 三、实验材料 三种实验室无标记材料(多层非织造布合成材料),记为试样1、2、3。

四、实验步骤 1、开启设备预热半小时左右。 2、设置实验软件参数。 3、放入试样,移动小车,多次测试并记录数据。 4、处理并分析数据。 五、数据处理及分析 1251602002503154005006308001000125016002000 0.1 0.20.30.40.50.6 0.70.8吸声系数(α) 频率(Hz) 1 2 3d e m o d e m o d e m o d e m o d e m o d e m o d e m o d e m o d e m o d e m o d e m o d e m o d e m o d e m o d e m o d e m o d e m o d e m o d e m o d e m o d e m o d e m o d e m o d e m o d e m o d e m o d e m o d e m o d e m o d e m o d e m o d e m o 本实验参照测试标准和仪器使用说明,按照1/3倍频程,分别取125、160、200、250、315、400、500、630、800、1000、1250、1600、2000Hz 十三个频带进行测试。由实验数据可知,在低中频区域内,符合实际情况,故测试具有代表性。根据多孔材料的吸声机理,在多孔材料内存在许多微细的小孔和间隙,当声波在多孔材料内部传播时,部分声能在传播的过程中转变成热能损耗掉,从而达到吸声的效果。低频声波的波长比较长,所以在材料传播时可以更容易穿过小孔,声能损失也就更少,则吸声系数小;而高频声波的波长比较短,材料内空气分子的振动速度加快,所以声波与孔壁的接触面积增加,摩擦更加剧烈,从而使更多的声能转化为热能损耗掉,则吸声系数大。由上图可知,试样1在400Hz ,试样2、3在800Hz 时吸声系数值分别出现一个陡峰,这可能是由于材料产生共振使振动加剧,声波与孔壁摩擦更加剧烈,从而转化成大量热能损耗掉,所以吸声系数增大。

驻波管法测定吸声资料的吸声系数1[精品]

驻波管法测定吸声资料的吸声系数1[精品] 驻波管法测定吸声材料的吸声系数 【实验目的】 (1)了解人耳听觉得频率范围,获得对一些频率纯音得感性认识。 (2)加深对垂直入射吸声系数得理解,熟悉驻波管法是测定材料的吸声系数的方法。 【实验原理】 测量装置 1测试车 2导轨 3声源箱 4驻波管(分低、高频两种) 测量原理 驻波管为一金属(塑料)直管,它的一端可以用夹具安装试件,另一端接好扬声器,声频讯号由声频发生器产生,经放大器进行放大,由扬声器发出单频声波,声波在驻波管内传播,由于管径较小,与音频声波的波长相比,可近似将声波面看作为平面入射波,沿管内直线传播;当入射到试件后,进行反射,由于反射波与入射波传递的方向和相位相反,声压产生叠加,干涉而形成驻波,并在管2N/m内某个位置上形成声压极大值Pmax(),t和声压极较小值Pmin,其间距为l,4波长。 Er,,1,,,1, E0 , 式中: —————吸声系数 ,—————反射系数 Eo—————入射声能(W)

Er—————反射声能(W) 令称为驻波比………………(1) P/P,nmaxmin 2故有:…………………… (2) ,,,4/(1)nn 一般频谱分析仪或声级计,测试的标称值是声压级,而不是声压P值,根据声压和声压级的关系,吸声系数可如下计算。 ,L,Lmax,Lmin,20lgPmax/,,20lgPmin/,,20lgn00 LP204*10…………………………………(3) a,LP220,(110) 【测量方法】 (1) 电路接线正确后,信号发生器等电子仪器电源接通。 (2) 将试件按照要求装在试件筒内,并用凡士林将试件与筒壁接触处的缝隙填 塞,使之严密,然后再用夹具将试件筒固定在驻波管上。 315、400、500、630、800、(3) 调节声频发生器的频率,依次发出200、250、 1000、1250、1600、2000Hz不同的声频。在设置仪器输出信号的频率时,测量到的声压级波峰值不超过136分贝,声压级波谷值不低于50分贝。 (4) 将滑块移到最远处,,移动仪器屏幕上的光标,到所测量的频率的第一个峰 值位置(1/4波长)缓慢移动滑块,同时读取光标位置显示的声压级,并 记录滑块所在位置的刻度,按F7自动计算吸声系数。 (5) 移动屏幕上的光标,到所要测量的频率的第一个波谷位置,缓慢移动滑块同 时读取光标位置显示的声压级,并记录滑块所在位置的刻度。按F7自动计算吸声系数。 (6) 移动仪器屏幕的光标,到所要测量的频率的第二个波峰、波谷位置,重复(4)、

声学计算公式大全

当声波碰到室某一界面后(如天花、墙),一部分声能被反射, 一部分被吸收(主要是转化成热能),一部分穿透到另一空间。 透射系数: 反射系数: 吸声系数: 声压和声强有密切的关系,在自由声场中,测得声压和已知测点到声源的距离,就可计算出该测点之声强和声源的声功率。

声压级Lp 取参考声压为Po=2*10-5N/m2为基准声压,任一声压P的Lp为: 听觉下限: p=2*10-5N/m2 为0dB 能量提高100倍的 P=2*10-3N/m2 为20dB 听觉上限: P=20N/m2 为120dB 1、声压级Lp 取参考声压为Po=2*10-5N/m2为基准声压,任一声压P的Lp为: 听觉下限: p=2*10-5N/m2 为0dB 能量提高100倍的 P=2*10-3N/m2 为20dB 听觉上限: P=20N/m2 为120dB 2、声功率级Lw 取Wo为10-12W,基准声功率级 任一声功率W的声功率级Lw为: 3、声强级:

3、声压级的叠加 10dB+10dB=? 0dB+0dB=? 0dB+10dB=? 答案分别是:13dB,3dB,10dB. 几个声源同时作用时,某点的声能是各个声源贡献的能量的代数和。因此其声压是各声源贡献的声压平方和的开根号。即: 声压级为: 声压级的叠加 ?两个数值相等的声压级叠加后,总声压级只比原来增加3dB,而不是增加一倍。这个结论对于声强级和声功率级同样适用。

?此外,两个声压级分别为不同的值时,其总的声压级为 两个声强级获声功率级的叠加公式与上式相同 在建筑声学中,频带划分的方式通常不是在线性标度的频率轴上等距离的划分频带,而是以各频率的频程数n都相等来划分。 声波在室的反射与几何声学 3.2.1 反射界面的平均吸声系数 (1)吸声系数:用以表征材料和结构吸声能力的基本参量通常采用吸声系数,以α表示,定义式:

材料的吸声系数修订稿

材料的吸声系数 集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]

材料的吸声系数 吸声系数隔振vibration isolation 材料吸收和透过的声能与入射到材料上的总声能之比,叫吸声系数(α)。α=Eα/Ei =(Ei-Er)/Ei=1-r 式中:Ei——入射声能;Eα——被材料或结构吸收的声能;Er——被材料或结构发射的声能; r——反射系数。 名词解释 吸音系数是按照吸音材料进行分类的。说明不同材料有不同吸音质量分贝(db),是声压级大小的单位(声音的大小)。声音压力每增加一倍,声压量级增加6分贝。1分贝是人类耳朵刚刚能听到的声音。20分贝以下,我们认为它是安静。20-40分贝相当于情人耳边的轻轻细语。40-60分贝是我们正常谈话的声音。60分贝以上属于吵闹范围。70分贝很吵,并开始损害听力神经。90分贝会使听力受损。在100-120分贝的房间内呆1分钟,如无意外,人就会失聪(聋)。 吸声原理 当入射声能被完全反射时,α=0,表示无吸声作用;当入射声波完全没有被反射时,α=1,表示完全被吸收。一般材料或结构的吸声系数α=0~1,α值越大,表示吸声能越好,它是目前表征吸声性能最常用的参数。 吸声是声波撞击到材料表面后能量损失的现象,吸声可以降低室内声压级。描述吸声的指标是吸声系数a,代表被材料吸收的声能与入射声能的比值。理论上,如果某种材料完全反射声音,那么它的a=0;如果某种材料将入射声能全部吸收,那么它的a=1。事实上,所有材料的a介于0和1之间,也就是不可能全部反射,也不可能全部吸收。 不同频率上会有不同的吸声系数。人们使用吸声系数频率特性曲线描述材料在不同频率上的吸声性能。按照ISO标准和国家标准,吸声测试报告中吸声系数的频率范围是100-5KHz。将 100-5KHz的吸声系数取平均得到的数值是平均吸声系数,平均吸声系数反映了材料总体的吸声性能。在工程中常使用降噪系数NRC粗略地评价在语言频率范围内的吸声性能,这一数值是材料在250、500、1K、2K四个频率的吸声系数的算术平均值,四舍五入取整到。一般认为NRC小于的材料是反射材料,NRC大于等的材料才被认为是吸声材料。当需要吸收大量声能降低室内混响及噪声时,常常需要使用高吸声系数的材料。如离心玻璃棉、岩棉等属于高NRC吸声材料,5cm厚的 24kg/m3的离心玻璃棉的NRC可达到。 分贝、声功率、声强和声压 分贝 人们日常生活中遇到的声音,若以值表示,由于变化范围非常大,可以达六个数量级以上,同时声音功率由于人体听觉对声信号强弱刺激反应不是线形的,而是成对数比例关系。所以采用分贝来表达声学量值。所谓分贝是指两个相同的物理量(例A1和A0)之比取以10为底的对数并乘以10(或20)。N = 10lg(A1/A0) 分贝符号为"dB",它是无量纲的。式中A0是基准量(或参考量),A是被量度量。被量度量和基准量之比取对数,这对数值称为被量度量的"级"。亦即用对数标度时,所得到的是比值,它代表被量度量比基准量高出多少"级"。 声功率(W) 是指单位时间内,声波通过垂直于传播方向某指定面积的声能量。在噪声监测中,声功率是指声源总声功率。单位为W。 声功率级: Lw =10lg(W/W0) 式中:Lw——声功率级(dB);

相关文档
相关文档 最新文档