文档库 最新最全的文档下载
当前位置:文档库 › 光电检测实验报告

光电检测实验报告

光电检测实验报告
光电检测实验报告

光电检测技术课程设计

光电脉搏检测电路题目:

小组人员姓名:

专业:

班级:

小组人员学号:

指导教师:

年月日

光电脉搏检测电路

摘要:本电路由光电池、放大器等构成,实现对光电脉搏信号的提取和放大。采用目前效果较好光电池的电流转电压电路实现对脉搏的测量。整个电路的简化能够有效减小器件间匹配和级联引起的干扰,提高脉搏测量精度。在实验测试过程中,采用该光电式脉搏传感器对人体的脉搏进行实时测量,得到比较理想的脉搏波形,为实现脉搏信息的提取和分析提供了参考方案。

一、系统设计

1.系统目标设计及意义

设计制作一个光电脉搏测试仪,通过光电式脉搏传感器对手指末端透光度的监测,间接检测出脉搏信号,并在显示器上显示所测的脉搏跳动波形,要求测量稳定、准确、性能良好。

2.设计思想

(1)传感器:利用指套式光电传感器,指套式光电传感器的换能元件用硅光电池,由于心脏的跳动,引起手指尖的微血管的体积发生相应的变化(当心脏收缩时,微血管容积增大;当心脏舒张时,微血管容积减少),当光通过手指尖射到硅光电池时,产生光电效应,两极之间产生电压由于指尖的微血管内的血液随着心脏的跳动发生相应于脉搏的容积变化,因而使光透过指尖射到硅光电池时也发生相应的强度变化, 而非血液组织(皮肤、肌肉、骨格等)的光吸收量是恒定不变的, 这样就把人体的脉搏(非电学量) 转换为相应于脉博的电信号, 方便检测。(2)按正常人脉搏数为60~80次/min,老人为100~150次/min,在运动后最高跳动次数为240次/ min设计低通放大器。5Hz以上是病人与正常人脉搏波体现差异的地方,应注意保留。

(3)测量中考虑到并要消除的干扰有:环境光对脉搏传感器测量的影响、电磁干扰对脉搏传感器的影响、测量过程中运动的噪声还有50Hz干扰。

(4)由于透过指尖射到硅光电池的光强很小,输出短路电流约为0.1uA~3 uA,所以总共放大106倍以便于观察。传感器得到的脉搏信号极为微弱,很容易淹没在噪声及干扰信号之中,所以对取得的微弱信号先进行放大后再滤波。设计两极放大,因为三级放大个别电路板的零点漂移大得足以达到满幅,测量不准确。每个单级放大器的放大倍数不大于30,以免自激振荡。

3. 整体框图

本系统共分为三个模块:

方框图中各部分的作用是:

(1)传感器:将脉搏的跳动转换为电压信号,放大104倍。 (2)一级放大电路:对微弱信号进行放大,放大约5倍

(3)二阶低通滤波电路: 滤除干扰信号并进一步放大,再放大20倍。

4. 单元电路的设计 ⑴光发射电路

光发射电路采用了常见恒流源电路,通过稳压管使流过R1的电流为一定值,进而保证流过LED 的电流为恒定值。

图1光发射电路

(2)光电信号转换电路

图2 光电信号转换电路

如图,换能元件为硅光电池(由于软件仿真没有硅光电池,故用一个交流信号源代替),脉搏信号的拾取实际上是光透过指尖射到硅光电池时发生相应的强度变化,从而产生硅光电池电流的微弱变化,再经过放大而得到的。所拾取的信号为电压信号。

电路的输出为:1g Vi i R =-?

R1过大,稳定性差,容易产生漂移误差,影响增益精度,考虑到灵敏度和线性度的协调,选R 1=20K Ω,使得输出达到mv 级。为了抑制高频干扰和消除运放输入偏置电流的影响 ,接入电容C 1、电阻R 2和电容C 2,电容的取值是基于脉搏信号的频率考虑。

(3)一级反向放大电路

图3 一级反向放大电路

为了与前面匹配,并使选用器件简便,选择R3=20KΩ,为满足放大5倍,选用R4=100KΩ。

得理想放大倍数H=-R4/R3=-5倍

C3用来隔直;C4用以防止放大器自激并起到低通作用,为了不影响有用信号又能滤掉50HZ干扰,C4不能太大也不能太小,取C4=0.01μF将频率截止到31HZ 恰好。

(4)后置二阶低通放大电路

按人体脉搏在最高跳动次数240 次/min 计算,据归一化法设计低通放大器,如图3 所示。转折频率由R6、C5、R7和C6决定,放大倍数由R7和R5的比值决定,R8用来减小输入阻抗不平衡的影响。

图4 二阶低通放大电路

二阶低通滤波器的传递函数:

256

56756

756715671()1111()()R Vo s R R R C C S Vo s S C R R R R R C C -

?

=

++++

理想放大倍数为H=-R7/R5=-20倍。 0.707倍零频增益高频转折频率:

f H =14Hz

低频特性满足条件,不影响有用信号。 5.整体电路为:

输入信号:

输出信号:

总结:

1..利用血液是高度不透明的液体,光照在一般组织中的穿透性要比在血液中大几十倍的特点,可通过光电传感器对脉搏信号进行检测,并通过光电传感技术进行数据处理,实现智能化的脉搏测试技术。

2.应用透射式光电传感器:红色发光二极管发出光线,透过手指照射到光敏三极管上进行光电转换

3.由于放大倍数较大,入射光强不要太强,否则会使输出饱和,且不同的人脉搏波强度不同,为适应不同条件下的检测,最好的办法是把一级放大电路的反馈电阻用一个可调电阻和普通电阻串联。

4.本文设计的脉搏传感器目前仅能提供脉搏的振幅及频率,尚不能用于医学实践。若对传感器采集的信号经过进一步的波形分析及借助医生的经验,可对临床诊断提供帮助。

光电实验报告

长春理工大学 光电信息综合实验一实验总结 姓名:__________ 学号:S1******* 指导教师:__________ 专业:信息与通信工程 学院:电子信息工程 2016年5月20号

实验一:光电基础知识实验 1、实验目的 通过实验使学生对光源,光源分光原理,光的不同波长等基本概念有具体认识。 2、实验原理 本实验我们分别用了普通光源和激光光源两种。普通光源光谱为连续光谱,激光光源是半导体激光器。在实验中我们利用分光三棱镜可以得到红橙黄绿青蓝紫等多种波长的光辐射。激光光源发射出来的是波长为630纳米的红色光。 3、实验分析 为了找到光谱需要调节棱镜,不同的面对准光源找出光谱,棱镜的不同面对准光源产生的光谱清晰度不同,想要清晰的光谱就需要通过调节棱镜获得。 实验二:光敏电阻实验 1、实验目的 了解光敏电阻的光照特性,光谱特性和伏安特性等基本特性。 2、实验原理 在光线的作用下,电子吸收光子的能量从键和状态过渡到自由状态,弓I起电导率的变化,这种现象称为光电导效应。光电导效应是半导体材料的一种体效应。光照越强,器件自身的电阻越小。光敏电阻无极性,其工作特性与入射光光强,波长和外加电压有关。 3、实验结果

当光敏电阻的工作电压(Vcc)为+5V时,通过实验我们看出来改变光照度的值,光源的电流值是发生变化的。光照度增加电流值也是增加的。测得实验数据如表2-1 : 表光敏电阻光照特性实验数据 得到的光敏电阻光照特性实验曲线: 光敏电阻伏安特性实验数据 型号:G5528 电压 (U) 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 照度 (Lx) 50 电流 (mA 0 0.05 0 .11 0. 17 0.2 4 0.29 0.35 0 .42 0. 48 0.5 4 0.6 100 电流 (mA 0 0.09 0 .19 0.: 28 0.3 8 0.48 0.58 0 .67 0. 77 0.8 7 0.95 150 电流 (mA 0 0.12 0 .24 0.: 37 0.4 9 0.62 0.74 0 |.87 0. 98 1.1 2 1.19 表2-2光敏电阻伏安特性实验数据 光敏电阻光照 特 光照度 (Lx) 20 40 60 80 电流mA 0.37 0.52 0.68 0.78 寺性实验数据 100 120 140 160 180 0.88 1.00 1.07 1.18 1.24

电气检测技术试验报告

本科生实验报告 实验课程电气测试技术学院名称核技术与自动化工程学院专业名称电气工程及其自动化学生姓名刘恒学生学号50504 指导教师王洪辉实验地点逸夫楼6C801 实验成绩 二O—四年十二月 填写说明 1、适用于本科生所有的实验报告(印制实验报告册除外); 2、专业填写为专业全称,有专业方向的用小括号标明; 3、格式要求: ①用 A4 纸双面打印(封面双面打印)或在 A4 大小纸上用蓝黑色水笔书写。 ②打印排版:正文用宋体小四号,倍行距,页边距采取默认形式(上下,左右,页 眉1.5cm,页脚1.75cm)。字符间距为默认值(缩放100%间距:标准);页码用小五号字底 端居中。 ③具体要求: 题目(二号黑体居中); 摘要(“摘要”二字用小二号黑体居中,隔行书写摘要的文字部分,小 4 号宋体);关 键词(隔行顶格书写“关键词”三字,提炼 3-5 个关键词,用分号隔开,小 4 号黑体); 正文部分采用三级标题; 第1章XX (小二号黑体居中,段前行) XXXXX小三号黑体XXXXX(段前、段后行) 1.1.1 小四号黑体(段前、段后行) 参考文献(黑体小二号居中,段前行),参考文献用五号宋体,参照《参考文献著录规则

( GB/T 7714-2005)》。

实验一 金属箔式应变片性能 一单臂电桥 (910 型 998B 型) 1.1实验目的 (1) 了解金属箔式应变片,单臂单桥的工作原理和工作情况。 (2) 观察了解箔式应变片的结构及粘贴方式; (3) 测试应变梁变形的应变输出; (4) 熟悉传感器常用参数的计算方法。 实验原理 本实验说明箔式应变片及单臂单桥的工作原理和工作情况。应变片是最常用的测力 传感元 件。当用应变片测试时,应变片要牢固地粘贴在测试体表面,当测件受力发生形 变,应变片的敏感栅随同变形,其电阻也随之发生相应的变化,通过测量电路,转换成 电信号输出显示。 电桥电路是最常用的非电量电测电路中的一种, 当电桥平衡时,桥路对臂电阻乘积 R1、R2 R3 R4中,电阻的相对变化率分别为 2迟;用四个应变片组成二个差对工作,且 R R1=R2=R3=R4=R, R 仆 R 。 由此可知,单臂、半桥、全桥电路的灵敏度依次增大。 所需单元及部件:直流稳压电源、差动放大器、双平衡梁、测微头、一片应变片、 F/V 表、主、副电源。 旋转初始位置:直流稳压电源打到 2V 档,F/V 表打到2V 档,差动放大增益最大。 实验步骤 了解所需单元、部件在试验仪上的所在位置,观察梁上的应变片, 应变片为棕色衬 底箔式结 构小方薄片。上下二片梁的外表面各贴二片受力应变片和一片补偿应变片, 测 微头在双平行梁前面的支座上,可以上、下、前、后、左、右调节。 将差动放大器调零:用连线将差动放大器的正(+)、负(-)、地短接。将差动放大 器的输 出端与F/V 表的输入插口 Vi 相连;开启主、副电源;调节差动放大器的增益到 最大位置,然后调整差动放大器的调零旋钮使 F/V 表显示为零,关闭主、副电源。 相等,电桥输出为零,在桥臂四个电阻 R1/R1、差动状态工作,则有

照度实验报告

照度实验报告 一、背景 作业场所的合理采光与照明,对生产中的效率、卫生和安全都有重要的意义。它是工作 场所设计中的重要项目,无论是天然采光还是人工照明,其主要目的都是给人们的生活和生 产提供必需的视觉条件。 适当的照度设计应遵循工效学的原则,使照度设置达到保证物体的轮廓立体视觉,有利 于辨认物体的高低,深浅,前后远近及相对位置,有利于眼睛的辨色能力,有利于大视野, 降低疲劳、减少错误和工伤事故的发生。提高照度值可以提高识别速度和主体视觉,从而提 高工作效率和准确度。但照度值提高到使人产生眩光时,会降低工作效率。此外,利用照明 设计对人的情绪的影响,根据场所功能的需求,可使光环境对人产生兴奋或抑制的作用。在 绿色照明理念的指导下,人工照明应考虑节能和环保的要求。 二、实验目的 正确熟悉和使用照度计,采集光环境数据,并通过分析数据来判断光环境的照度是否合 理,假如不合理则提出合理的改善措施。 三、实验场所 上海海洋大学图书馆二楼大厅自习室(室外) 四、实验要求 1、照度采集 2、对自习室的照度情况进行分析 3、分析光照度合理性,并提出改善措施 五、分析 1、主观分析 (1)、主观评价调查数据 (2)、主观评价结果分析 a、计算每个项目的评分s(n): s(n)= 式中,s(n)为第n个项目的评分 p(m)为第m个状态的分值,其中,p(1)=0,p(2)=10,p(3)=50,p(4)=100, v (n,m)为第n个评价项目的第m个状态所得的票数。所以: s(1)= s(2)= s(3)= s(4)= s(5)= s(6)= =16.4 =10.8 =12.4 =12.6 =12.4 =12.6 s(7)= s(8)= s(9)= s(10)= b、计算总的光环境指数 s s= =9.2 =8.2 =9.4 =10 式中,w(n)为第n个评价项目权值,设其权值均为1 所以: s=11.4 为了便于分析和确定评价结果,本方法将光环境质量按光环境的指数范围分为四个质量 等级,其质量等级的划分及其含意如下表所示: 因为10<11.4<=50所以根据上表的结论,本实验的光环境质量等级为3,含义是: 问题较大 2、客观分析(照度数据采集及分析)(1)、照度采集现场 在进行照度值测量的时间点上我们选择了一个晴朗的下午2点~3点之间,光照十分充足, 因为时间和条件的限制就没有对阴天和晚上进行测量和分析。 图书馆二楼自习室现场

光电阴极实验报告..

光电阴极实验报告 院系:电子工程与光电技术学院 专业:真空电子技术 班级: 09046201 姓名:李子龙(0904620114) 唐少拓(0904620119) 张伦(0904620124) 完成时间: 2013.1.10 指导老师:张俊举

实验一 光电阴极光谱响应测试 1. 实验目的 通过本实验,了解光电阴极工作原理,掌握相关实验器件的使用方式,学会测试光电阴极的光谱响应 实验原理 光电阴极的光谱响应,或者光谱响应特性,是阴极的光谱灵敏度随入射光谱的分布。具体来说,若照射到阴极面上的单色入射光的辐射功率为()λW ,阴极产生的光电流为()λI ,则阴极的光谱灵敏度为 将阴极对应入射光谱中每一单色光的光谱灵敏度连成一条曲线,便得到了光谱响应曲线。 本实验采用图2所示的实验装置,实验基本框图如图1。用单色仪对光源辐射进行分光,用光电阴极测量单色光,得到输出电流()λI ,根据表标定的光功率用公式) () ()(λλλW I S = 计算后得到光电阴极的光谱响应度,最后画出光谱响应曲线。 图1 光电阴极光谱响应度测试装置 2. 实验仪器简介 1. 由光源(氙灯、氘灯和溴钨灯) 2. 电源 3. 光栅单色仪 4. 光电流计 5. 工控机等组成

实验器件及其相关: a)光源 在进行光谱响应测试时,首先要选取合适的辐射源。本测试辐射源选用GY-9型氢氘灯(GY-10高压球形氙灯)和GY-1型溴钨灯,以获得相应范围的单色光,通过组合使用,能够在200~1600nm范围内有合适的光功率。实物如图3.1所示: 图2 测试所需光源及其电源外形图 氘灯/氙灯用来产生近紫外光谱,溴钨灯则产生可见及近红外范围内的光谱,测试时,根据测试要求选用其中的一种或几种。 b)光栅单色仪 光栅单色仪的作用是将复色光色散,从而得到光谱范围内的单色光,其突出的优点是波段范围宽广,在全波段色散均匀,单色光的波长可以达到非常精确的程度。本测试实验所采用的是北京赛凡光电公司的71SW301型光栅单色仪。实物如图3所示:

检测技术实验报告

《检测技术实验》 实验报告 实验名称:第一次实验(一、三、五) 院(系):自动化专业:自动化 姓名:XXXXXX学号: XXXXXXXX 实验室:实验组别: 同组人员:实验时间:年月日评定成绩:审阅教师:

实验一金属箔式应变片――单臂电桥性能实验 一、实验目的:了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。 二、实验仪器:应变传感器实验模块、托盘、砝码、数显电压表、±15V、±4V电源、万 用表、导线等。 三、实验原理:电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应 变效应,描述电阻应变效应的关系式为:ΔR/R=Kε,式中ΔR/R为电阻丝电阻相对变化,K为应变灵敏系数,ε=Δl/l为电阻丝长度相对变化。金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感组件,如图1-1所示,四个金属箔应变片分别贴在弹性体的上下两侧,弹性体受到压力发生形变,上面的应变片随弹性体形变被拉伸,对应为模块面板上的R1、R3,下面的应变片随弹性体形变被压缩,对应为模块面板上的R2、R4。 图2-1 应变式传感器安装示意图 图2-2 应变传感器实验模板、接线示意图图2-3 单臂电桥工作原理

通过这些应变片转换被测部位受力状态变化、电桥的作用完成电阻到电压的比例变化,如图1-2所示R5、R6、R7为固定电阻,与应变片一起构成一个单臂电桥,其输出电压 E为电桥电源电压,式1-1表明单臂电桥输出为非线性,非线性误差为 四、实验内容与步骤 1、图1-1应变传感器上的各应变片已分别接到应变传感器模块左上方的R1、R 2、R 3、 R4上,可用万用表测量判别,R1=R2=R3=R4=350Ω。 2、从主控台接入±15V电源,检查无误后,合上主控台电源开关,将差动放大器的输入 端Ui短接,输出端Uo2接数显电压表(选择2V档),调节电位器Rw4,使电压表显示为0V。Rw4的位置确定后不能改动。关闭主控台电源。 3、将应变式传感器的其中一个应变电阻(如R1)接入电桥与R5、R6、R7构成一个单 臂直流电桥,见图1-2,接好电桥调零电位器Rw1,直流电源±4V(从主控台接入),电桥输出接到差动放大器的输入端Ui,检查接线无误后,合上主控台电源开关,调节Rw1,使电压表显示为零。 4、在应变传感器托盘上放置一只砝码,调节Rw3,改变差动放大器的增益,使数显电 压表显示2mV,读取数显表数值,保持Rw3不变,依次增加砝码和读取相应的数显表值,直到200g砝码加完,计下实验结果,填入下表1-1,关闭电源。 五、实验数据处理: 利用matlab拟合出的曲线如下:

逸出功的测定实验报告

光电效应测普朗克常数 在近代物理学中,光电效应在证实光的量子性方面有着重要的地位。1905 年爱因斯坦在普朗克量子假说的基础上圆满地解释了光电效应,约十年后密立根以精确的光电效应实验证实了爱因斯坦的光电效应方程,并测定了普朗克常数。而今光电效应已经广泛地应用于各科技领域,利用光电效应制成的光电器件(如:光电管、光电池、光电倍增管等)已成为生产和科研中不可缺少的器件。 【实验目的】 1. 测定光电效应的基本特性曲线,加深对光的量子性的理解; 2. 学习验证爱因斯坦光电方程的实验方法,并测定普朗克常数。 【实验仪器】 ZKY—GD1光电效应测试仪、汞灯及电源、滤色片(五个)、光阑(两个)、光电管、测试仪(含光电管和微电流放大器) 图1 实验仪器实物图 【实验原理】 1.光电效应与爱因斯坦方程 用合适频率的光照射在某些金属表面上时,会有电子从金属表面逸出,这种现象叫做光电效应,从金属表面逸出的电子叫光电子。为了解释光电效应现象,爱因 斯坦提出了“光量子”的概念,认为对于频率为的光波,每个光子的能量为

式中,为普朗克常数,它的公认值是=6.626。 按照爱因斯坦的理论,光电效应的实质是当光子和电子相碰撞时,光子把全部能量传递给电子,电子所获得的能量,一部分用来克服金属表面对它的约束,其余的能量则成为该光电子逸出金属表面后的动能。爱因斯坦提出了著名的光电方程: (1)式中,为入射光的频率,为电子的质量,为光电子逸出金属表面的初速 度,为被光线照射的金属材料的逸出功,为从金属逸出的光电子的最大初动能。 由(1)式可见,入射到金属表面的光频率越高,逸出的电子动能必然也越大,所以即使阴极不加电压也会有光电子落入阳极而形成光电流,甚至阳极电位比阴极电位低时也会有光电子落到阳极,直至阳极电位低于某一数值时,所有光电 子都不能到达阳极,光电流才为零。这个相对于阴极为负值的阳极电位被称为光电效应的截止电压。 显然,有 (2)代入(1)式,即有 (3)由上式可知,若光电子能量,则不能产生光电子。产生光电效应的最低频率是,通常称为光电效应的截止频率。不同材料有不同的逸出功,因

光电实验报告.

长春理工大学 光电信息综合实验—实验总结 姓名:赵儒桐 学号:S1******* 指导教师:王彩霞 专业:信息与通信工程 学院:电子信息工程 2016年5月20号

实验一:光电基础知识实验 1、实验目的 通过实验使学生对光源,光源分光原理,光的不同波长等基本概念有具体认识。 2、实验原理 本实验我们分别用了普通光源和激光光源两种。普通光源光谱为连续光谱,激光光源是半导体激光器。在实验中我们利用分光三棱镜可以得到红橙黄绿青蓝紫等多种波长的光辐射。激光光源发射出来的是波长为630纳米的红色光。 3、实验分析 为了找到光谱需要调节棱镜,不同的面对准光源找出光谱,棱镜的不同面对准光源产生的光谱清晰度不同,想要清晰的光谱就需要通过调节棱镜获得。 实验二:光敏电阻实验 1、实验目的 了解光敏电阻的光照特性,光谱特性和伏安特性等基本特性。2、实验原理 在光线的作用下,电子吸收光子的能量从键和状态过渡到自由状态,引起电导率的变化,这种现象称为光电导效应。光电导效应是半导体材料的一种体效应。光照越强,器件自身的电阻越小。光敏电阻无极性,其工作特性与入射光光强,波长和外加电压有关。 3、实验结果

当光敏电阻的工作电压(Vcc )为+5V 时,通过实验我们看出来改变光照度的值,光源的电流值是发生变化的。光照度增加电流值也是增加的。测得实验数据如表2-1: 表2-1 光敏电阻光照特性实验数据 得到的光敏电阻光照特性实验曲线: 图2.1 光敏电阻光照特性实验曲线 表2-2 光敏电阻伏安特性实验数据

通过实验我们看出光敏电阻的光电流值随外加电压的增大而增大,在光照强度增大的情况下流过光敏电阻的电流值也是增大的,得到数据如表2-2。 得到的伏安特性如下: 图2.2 光敏电阻伏安特性曲线 由光敏电阻的光谱特性可知光敏电阻对不同波长的光,接收的光灵敏度是不一样的,测量对应各种颜色的光透过狭缝时的电流值,得到数据如下表: 得到的光谱特性曲线如图:

光电效应实验报告

大学物理实验报告 学生:黄晨学号:5502211059 专业班级:应用物理学111班班级编号:S008实验时间:13时00 分第3周星期三座位号:07 教师编号:T003成绩: 光电效应 一、实验目的 1、研究光电管的伏安特性及光电特性;验证光电效应第一定律; 2、了解光电效应的规律,加深对光的量子性的理解; 3、验证爱因斯坦方程,并测定普朗克常量。 二、实验仪器 普朗克常量测定仪 三、实验原理 当一定频率的光照射到某些金属表面上时,有电子从金属表面逸出,这种现象称为光电效应,从金属表面逸出的电子叫光电子。实验示意图如下 图中A,K组成抽成真空的光电管,A为阳极,K为阴极。当一定频率v的光射到金属材料做成的阴极K上,就有光电子逸出

金属。若在A、K两端加上电压后光电子将由K定向的运动到A,在回路中形成电流I。 当金属中的电子吸收一个频率为v的光子时,便会获得这个光子的全部能量,如果这些能量大于电子摆脱金属表面的溢出功W,电子就会从金属中溢出。按照能量守恒原理有 大学物理实验报告 学生:黄晨学号:5502211059 专业班级:应用物理111 班级编号:S008实验时间:13 时00分第03周星期三座位号:07 教师编号:T003成绩:此式称为爱因斯坦方程,式中h为普朗克常数,v为入射光频。v存在截止频率,是的吸收的光子的能量恰好用于抵消电子逸出功而没有多余的动能,只有当入射光的频率大于截止频率时,才能产生光电流。不同金属有不同逸出功,就有不同的截止频率。 1、光电效应的基本实验规律 (1)伏安特性曲线 当光强一定时,光电流随着极间电压的增大而增大,并趋于一个饱和值。 (2)遏制电压及普朗克常数的测量

化工产品分析检测技术实验报告_图文.

前言 仪器分析是一种科学实验的手段,利用它可以获取所需要的信息,仪器分析实验的目的是通过实验教学,包括严格的基本操作训练,实验方案设计,实验数据处理,谱图解析,实验结果的表述及问题分析,掌握仪器的原理、结构、各主要部件的功能及操作技能,了解各种仪器分析技术在科学研究领域的应用,培养理论联系实际、利用掌握的知识解决问题的能力,培养良好的科学作风和独立从事科学实践能力。 在这门课程的学习中,我们了解了原子吸收光谱法、紫外可见分光光度法、红外光谱法、气相色谱法、高效液相色谱法、离子色谱法等仪器分析的方法。其中,我们重点学习了离子色谱法和原子吸收光谱法,并进行了实验操作,下面介绍一下原子吸收光谱法和离子色谱法测浓度。 二、原子吸收光谱法 1.原子吸收光谱法概述: 光谱仪器的产生原子吸收光谱作为一种实用的分析方法是从1955年开始的。这一年澳大利亚的瓦尔什(A.Walsh发表了他的著名论文“原子吸收光谱在化学分析中的应用”奠定了原子吸收光谱法的基础。50年代末和60年代初, Hilger, Varian Techtron及Perkin-Elmer公司先后推出了原子吸收光谱商品仪器,发展了瓦尔西的设计思想。到了60年代中期,原子吸收光谱开始进入迅速发展的时期。电热原子吸收光谱仪器的产生1959年,苏联里沃夫发表了电热原子化技术的第一篇论文。电热原子吸收光谱法的绝对灵敏度可达到10-10g,使原子吸收光谱法向前发展了一步。原子吸收分析仪器的发展随着原子吸收技术的发展,推动了原子吸收仪器的不断更新和发展,而其它科学技术进步,为原子吸收仪器的不断更新和发展提供了技术和物质基础。近年来,使用连续光源和中阶梯光栅,结合使用光导摄象管、二极管阵列多元素分析检测器,设计出了微机控制的原子吸收分光光度计,为解决多元素同时测定开辟了新的前景。微机控制的原子吸收光谱系统简化了仪器结构,提高了仪器的自动化程度,改善了测定准确度,使原子吸收光谱法的面貌发生了重大的变化。

光电探测技术实验报告

光电探测技术实验报告 班级:08050341X 学号:28 姓名:宫鑫

实验一光敏电阻特性实验 实验原理: 光敏电阻又称为光导管,是一种均质的半导体光电器件,其结构如图(1)所示。由于半导体在光照的作用下,电导率的变化只限于表面薄层,因此将掺杂的半导体薄膜沉积在绝缘体表面就制成了光敏电阻,不同材料制成的光敏电阻具有不同的光谱特性。光敏电阻采用梳状结构是由于在间距很近的电阻之间有可能采用大的灵敏面积,提高灵敏度。 实验所需部件: 稳压电源、光敏电阻、负载电阻(选配单元)、电压表、 各种光源、遮光罩、激光器、光照度计(由用户选配) 实验步骤: 1、测试光敏电阻的暗电阻、亮电阻、光电阻 观察光敏电阻的结构,用遮光罩将光敏电阻完全掩 盖,用万用表测得的电阻值为暗电阻 R暗,移开遮光罩,在环境光照下测得的光敏电阻的 阻值为亮电阻,暗电阻与亮电阻之差为光电阻,光 电阻越大,则灵敏度越高。 在光电器件模板的试件插座上接入另一光敏电阻, 试作性能比较分析。 2、光敏电阻的暗电流、亮电流、光电流 按照图(3)接线,电源可从+2~+8V间选用,分别在暗光和正常环境光照下测出输出电压V暗和V亮则暗电流L暗=V暗/R L,亮电流L亮=V亮/R L,亮电流与暗电流之差称为光电流,光电流越大则灵敏度越高。 分别测出两种光敏电阻的亮电流,并做性能比较。 图(2)几种光敏电阻的光谱特性 3、伏安特性: 光敏电阻两端所加的电压与光电流之间的关系。 按照图(3)分别测得偏压为2V、4V、6V、8V、10V、12V时的光电流,并尝试高照射光源的光强,测得给定偏压时光强度的提高与光电流增大的情况。将所测得的结果填入表格并作出V/I曲线。 注意事项: 实验时请注意不要超过光电阻的最大耗散功率P MAX, P MAX=LV。光源照射时灯胆及灯杯温度均很高,请勿用手触摸,以免烫伤。实验时各种不同波长的光源的获取也可以采用在仪器上的光源灯泡前加装各色滤色片的办法,同时也须考虑到环境光照的影响。

现代检测技术实验报告

实验一金属箔式应变片单臂电桥性能实验 一、实验目的 了解金属箔式应变片的应变效应,掌握单臂电桥工作原理和性能。 二、实验内容 将应变式传感器的其中一个应变片接入电桥作为一个桥臂,构成直流电桥,利用应变式传感器实现重量的测量。 三、实验所用仪表及设备 应变式传感器实验模板、应变式传感器、砝码(每只约20g)、数显表、±15V电源数、±4V电源、数字万用表。 四、实验步骤 1、根据图1-1,应变式传感器已装于应变传感器模板上。传感器中各应变片已接入模板左上方的R1、R 2、R 3、R4标志端。加热丝也接于模板上,可用万用表进行测量判别,R1=R2=R3=R4=350Ω,加热丝阻值约为50Ω左右。 图1-1 应变片传感器安装示意图 2、实验模板差动放大器调零,方法为: (1)接入模板电源±15V,检查无误后,合上主控台电源开关,将实验模板增益调节电位器Rw3顺时针调节到大致中间位置;(2)将差放的正、负输入端与地短接,V o1输出端与数显电压表输入端Vi相连,调节实验模板上调零电位器RW4,使数显表显示为零(数显表的切换开关打到2V档),完毕后关闭主控台电源。 3、参考图1-2接入传感器,将应变式传感器的其中一个应变片R1接入电桥作为一个桥臂,它与R5、R6、R7接成直流电桥(R5、R6、R7在模块内已连接好),检查接线无误后,合上主控台电源开关,用数字万用表测量主控台到应变式传感器模块上的±5V、±15V电压值是否稳定?若电压波动值大于10mV,应反复拔插相应的电源连接线,直至电压稳定,不再波动为止,然后粗调节Rw1,再细调RW4使数显表显示为零。 4、在传感器托盘上放置1只砝码,读取数显表显示值,依次增加砝码并读取相应的数显表数值,记下实验结果填入表1-1。

光电探测实验报告

光电探测技术 实验报告 班级:10050341 学号:05 姓名:解娴

实验一光敏电阻特性实验 一、实验目的 1.了解一些常见的光敏电阻的器件的类型; 2.了解光敏电阻的基本特性; 3.测量不同偏置电压下的光敏电阻的电压与电流,并作出V/A曲线。 二、实验原理 伏安特性显示出光敏电阻与外光电效应光电元件间的基本差别。这种差别是当增加电压时,光敏电阻的光电流没有饱和现象,因此,它的灵敏度正比于外加电压。 光敏电阻与外光电效应光电元件不同,具有非线性的光照特性。各种光敏电阻的非线性程度都是各不相同的。 大多数场合证明,各种光敏电阻均存在着分析关系。这一关系为 式中,K为比例系数;是永远小于1的分数。 光电流的增长落后于光通量的增长,即当光通量增加时,光敏电阻的积分灵敏度下降。 这样的光照特性,使得解算许多要求光电流与光强间必需保持正比关系的问题时不能利用光敏电阻。 光照的非线性特性并不是一切光敏半导体都必有的。目前已有就像真空光电管—样,它的光电流随光通量线性增大的光敏电阻的实验室试样。光敏电阻的积分灵敏度非常大,最近研究出的硒—鎘光敏电阻达到12A/lm,这比普通锑、铯真空光电管的灵敏度高120,000倍。

三、实验步骤 1、光敏电阻的暗电流、亮电流、光电流 按照图1接线,电源可从+2V~+8V间选用,分别在暗光和正常环境光照下测出输出电压V暗和V亮。则暗电流L暗=V暗/RL,亮电流L亮=V亮/RL,亮电流与暗电流之差称为光电流,光电流越大则灵敏度越高。 2、伏安特性 光敏电阻两端所加的电压与光电流之间的关系即为伏安特性。按照图1接线,分别测得偏压为2V、4V、6V、8V、10V时的光电流,并尝试高照度光源的光强,测得给定偏压时光强度的提高与光电流增大的情况。将所测得的结果 填入表格并做出V/I曲线。 图1光敏电阻的测量电路 偏压2V4V6V8V10V12V 光电阻I 四、实验数据 实验数据记录如下: 光电流: E/V246810 U/V0.090.210.320.430.56 I/uA1427.54255.270.5 暗电流:0.5uA 实验数据处理:

光电管特性研究

光电管特性的研究 光电效应是指在光的作用下,从物体表面释放电子的现象,所逸出的电子称为光电子。这种现象是1887年赫兹研究电磁波时发现的。在光电效应中,光不仅在被吸收或发射时以能量h 的微粒出现,而且以微粒形式在空间传播,充分显示了光的粒子性。 1905年爱因斯坦引入光量子理论,给出了光电效应方程,成功地解释了光电效应的全部实验规律。1916年密立根用光电效应实验验证了爱因斯坦的光电效应方程,并测定了普朗克常量。爱因斯坦和密立根都因为光电效应方面的杰出贡献,分别获得1921年和1923年诺贝尔物理学奖。而今光电效应已经广泛地应用于各科技领域,例如利用光电效应制成的光电管、光电倍增管等光电转换其间,把光学量转换成电学量来测量。光电元件已成为石油钻井、传真电报、自动控制等生产和科研中不可缺少的元件。 一、教学目的 1、了解光电效应实验的基本规律和光的量子性。 2、测定光电管的伏安特性,研究光电流强度与加在光电管两极间电压的关系。 3、测定光电管的光电特性,研究光电流强度与照在光电管阴极上光通量的关系。 二、教学要求 1、实验三小时完成。 2、观察光电管结构和光电效应现象,理解光的量子性。 3、测定光电管的伏安特性,研究光电流强度与加在光电管两极间电压的关系。 4、测定光电管的光电特性,研究光电流强度与照在光电管阴极上光通量的关系。 5、用所学过的知识解释本次实验所测得的曲线,并对实验结果进行评价,写出合格的实验报告。 三、教学重点和难点 1、重点:通过光电管的伏安特性和光电特性,掌握光电效应迈的实验原理。

2、难点:最小二乘法处理数据。 四、讲授内容(约20分钟) 采用讲授、讨论、演示相结合的教学方法。 1、光电效应的实验原理。 2、与学生们共同探讨光电效应在现代生产生活中的应用。 (1)光电管 利用饱和电流与照射光强的线性关系,实现光信号和电信号之间的转换。如:光控继电器、自动控制、自动计数、自动报警等。 (2)光电倍增管 光电倍增管可使光电阴极发出的光电子增至48 10~10倍,在探测弱光方面得到广泛的应用。 (3)光电成像器件 光电导摄像管等,可以将辐射图像转换成或增强为可观察、记录、传输、存储和进行处理的图像,广泛地应用于天文学、空间科学、电视等领域。 3、光电管的伏安特性曲线的特点和光电特性的特点,留给学生思考如何用所学知识解释这些特点,并在实验报告中回答。 4、结合仪器演示实验的主要步骤。 (1)测光电管的伏安特性曲线 ⑴按教材图5.12-4接好线路,使光电管阳极为高电势,检查正负极插线无误后,打开光电效应仪的电源开关,并预热10分钟。 ⑵选取合适的小灯电流值。测量前先测出小灯泡与光电管阴极间的初始间 r,并记录。 距0 ⑶研究光电管正向伏安特性。由于光电管的伏安特性为非线性曲线,因此,在非线性区域,测试点应多一些。 ⑷测临界截止电压。将光电管接线的极性对调,即在光电管两极加上反向电压,使光电管阳极为负电势,慢慢增大反向电压,记下使光电流刚好为零的电压值,即为临界截止电压。 ⑸研究光电管在不同光强照射下的伏安特性,采用两种方法。

光电信息技术实验报告(DOCX 42页)

光电信息技术实验报告(DOCX 42页)

华中科技大学 实验课程学生实验报告 实验课程名称光电信息技术实验 专业班级光电1107班 学生姓名李悌泽 学号 u201115116 课程负责人陈晶田、黄鹰

目录 实验一阿贝原理实验 (3) 实验二激光平面干涉仪实验 (7) 实验三用原子力显微镜(AFM)进行纳米表面形貌分析10 实验四光电直读光谱仪实验 (14) 实验五光谱法物质成分分析实验 (20) 实验六光电透过率实验 (24) 实验七摄像机原理与视频图像叠加实验 (29) 实验八、光谱透过率实验 (33) 实验九红外报警器的设计与调试 (42)

实验一阿贝原理实验 一、实验目的 1.熟悉阿贝原理在光学测长仪器中的应用。 二、实验原理 1.阿贝比较原则: 此为万能工具显微镜的结构图,其特点是标准件与被测件轴线不在一条线上,而处于平行状况。产生的阿贝误差如下:

只有当导轨存在不直度误差,且标准件与被测件轴线不重合才产生阿贝误差。阿贝误差按垂直面、水平面分别计算。 在违反阿贝原则时,测量长度为l的工件引起的阿贝误差是总阿贝误差的l/L。为避免产生阿贝误差,在测量长度时,标准件轴线应安置在被测件轴线的延长线上。 2.阿贝测长仪 阿贝测长仪中,标准件轴线与被测件轴线为串联型式,无阿贝误差,为二阶误差。

三、实验内容 1.用万能工具显微镜进行测长实验 测量1角,5角硬币及圆形薄片的直径,用数字式计量光栅读数,每个对象测量10次,求算术平均值和均方根值。 实验步骤: 瞄准被测物体一端,在读数装置上读数,再瞄准物体另一端,在读书装置上再读一个数据,两次读数之差即为物体长度。 2.阿贝测长仪进行长度测量实验 采用传统目视法读数,实验步骤同上。 四、实验数据与分析 1.万能工具显微镜数据结果

一般检查实验报告

竭诚为您提供优质文档/双击可除 一般检查实验报告 篇一:检测技术实验报告 《检测技术实验》 实验名称:院(系):姓名:实验室:同组人员:评定成绩: 实验报告 第一次实验(一、三、五)自动化专业:自动化xxxxxx 学号:xxxxxxxx实验组别:实验时间:年月日审阅教师:实验一金属箔式应变片――单臂电桥性能实验 一、实验目的:了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。 二、实验仪器:应变传感器实验模块、托盘、砝码、数显电压表、±15V、±4V电源、万 用表、导线等。 三、实验原理:电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应 变效应,描述电阻应变效应的关系式为:ΔR/R=Kε,

式中ΔR/R为电阻丝电阻相对变化,K为应变灵敏系数,ε=Δl/l为电阻丝长度相对变化。金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感组件,如图1-1所示,四个金属箔应变片分别贴在弹性体的上下两侧,弹性体受到压力发生形变,上面的应变片随弹性体形变被拉伸,对应为模块面板上的R1、R3,下面的应变片随弹性体形变被压缩,对应为模块面板上的R2、R4。 图2-1应变式传感器安装示意图 图2-2应变传感器实验模板、接线示意图 图2-3单臂电桥工作原理 通过这些应变片转换被测部位受力状态变化、电桥的作用完成电阻到电压的比例变化,如图1-2所示R5、R6、R7为固定电阻,与应变片一起构成一个单臂电桥,其输出电压e为电桥电源电压,式1-1表明单臂电桥输出为非线性,非线性误差为 四、实验内容与步骤 1、图1-1应变传感器上的各应变片已分别接到应变传感器模块左上方的R1、R 2、R 3、 R4上,可用万用表测量判别,R1=R2=R3=R4=350Ω。 2、从主控台接入±15V电源,检查无误后,合上主控台电源开关,将差动放大器的输入 端ui短接,输出端uo2接数显电压表(选择2V档),

大物实验报告 光电效应

试验名称:光电效应法测普朗克常量h 实验目的:是了解光电效应的基本规律。并用光电效应方法测量普朗克常量和测定光电管的 光电特性曲线。 实验原理 光电效应实验原理如图8.2.1-1所示。其中S 为真空光电管,K 为阴极,A 为阳极。当无光照射阴极时,由于阳极与阴极是断路,所以检流计G 中无电流流过,当用一波长比较短的单色光照射到阴极K 上时,形成光电流,光电流随加速电位差U 变化的伏安特性曲线如图8.2.1-2所示。 1. 光电流与入射光强度的关系 光电流随加速电位差U 的增加而增加,加速电位差增加到一定量值后,光电流达到饱和值和值I H ,饱和电流与光强成正比,而与入射光的频率无关。当U= U A -U K 变成负值时,光电流迅速减小。实验指出,有一个遏止电位差U a 存在,当电位差达到这个值时,光电流为零。 2. 光电子的初动能与入射频率之间的关系 当U=U a 时,光电子不再能达到A 极,光电流为零。所以电子的初动能等于它克服电场力作用的功。即 a eU mv =2 2 1 (1) 根据爱因斯坦关于光的本性的假设,每一光子的能量为hv =ε,其中h 为普朗克常量,ν为光波的频率。所以不同频率的光波对应光子的能量不同。光电子吸收了光子的能量h ν之后,一部分消耗于克服电子的逸出功A ,另一部分转换为电子动能。由能量守恒定律可知 A mv hv += 22 1 (2) 式(2)称为爱因斯坦光电效应方程。

3. 光电效应有光电存在 实验指出,当光的频率0v v <时,不论用多强的光照射到物质都不会产生光电效应,根据式(2), h A v = 0,ν0称为红限。 爱因斯坦光电效应方程同时提供了测普朗克常量的一种方法:由式(1)和(2)可得: A U e hv +=0,当用不同频率(ν1,ν2,ν3,…,νn )的单色光分别做光源时,就有 A U e hv +=11 A U e hv +=22 ………… A U e hv n n += 任意联立其中两个方程就可得到 j i j i v v U U e h --= )( (3) 由此若测定了两个不同频率的单色光所对应的遏止电位差即可算出普朗克常量h ,也可由ν-U 直线的斜率求出h 。 因此,用光电效应方法测量普朗克常量的关键在于获得单色光、测得光电管的伏安特性曲线和确定遏止电位差值。 实验内容 通过实验了解光电效应的基本规律,并用光电效应法测量普朗克常量。 1. 在577.0nm 、546.1nm 、435.8nm 、404.7nm 四种单色光下分别测出光电管的伏安特性曲线,并根据此曲线确定遏止电位差值,计算普朗克常量h 。 本实验所用仪器有:光电管、单色仪(或滤波片)、水银灯、检流计(或微电流计)、直流电源、直流电压计等. j i j i v v U U e h --= )(,求斜率,得到普朗克常量h. 入射光波长λ/nm 365nm

传感器检测技术实验报告

《传感器与检测技术》 实验报告 姓名:学号: 院系:仪器科学与工程学院专业:测控技术与仪器实验室:机械楼5楼同组人员: 评定成绩:审阅教师:

传感器第一次实验 实验一 金属箔式应变片——单臂电桥性能实验 一、实验目的 了解金属箔式应变片的应变效应及单臂电桥工作原理和性能。 二、基本原理 电阻丝在外力作用下发生机械形变时,其电阻值发生变化,这就是电阻应变效应。 金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它反映被测部位受力状态的变化。电桥的作用是完成电阻到电压的比例变化,电桥的输出电压反映了相应的受力状态。单臂电桥输出电压 1/4o U EK ε=,其中K 为应变灵敏系数,/L L ε=?为电阻丝长度相对变化。 三、实验器材 主机箱、应变传感器实验模板、托盘、砝码、万用表、导线等。 四、实验步骤 1. 根据接线示意图安装接线。 2. 放大器输出调零。 3. 电桥调零。 4. 应变片单臂电桥实验。

由matlab 拟合结果得到,其相关系数为0.9998,拟合度很好,说明输出电压与应变计上的质量是线性关系,且实验结果比较准确。 系统灵敏度S = ΔU ΔW =0.0535V/Kg (即直线斜率),非线性误差= Δm yFS = 0.08 10.7 ×100%= 0.75% 五、思考题 单臂电桥工作时,作为桥臂电阻的应变片应选用:(1)正(受拉)应变片;(2)负(受压)应变片;(3)正、负应变片均可以。 答:(1)负(受压)应变片;因为应变片受压,所以应该选则(2)负(受压)应变片。 实验三 金属箔式应变片——全桥性能实验 一、实验目的 了解全桥测量电路的优点 二、基本原理 全桥测量电路中,将受力方向相同的两应变片接入电桥对边,相反的应变片接入电桥邻边。当应变片初始阻值R1=R2=R3=R4、其变化值1234R R R R ?=?=?=?时,其桥路输出电压 3o U EK ε=。其输出灵敏度比半桥又提高了一倍,非线性误差和温度误差都得到了改善。 三、实验器材 主机箱、应变传感器实验模板、托盘、砝码、万用表、导线等。 四、实验步骤 1.根据接线示意图安装接线。 050 100150200 x y

光电探测实验报告

* * 光电探测技术 实验报告

* * 班级:10050341 学号:05 姓名:解娴 实验一光敏电阻特性实验 一、实验目的 1.了解一些常见的光敏电阻的器件的类型; 2.了解光敏电阻的基本特性; 3.测量不同偏置电压下的光敏电阻的电压与电流,并作出V/A曲线。

二、实验原理 伏安特性显示出光敏电阻与外光电效应光电元件间的基本差别。这种差别是当增加电压时,光敏电阻的光电流没有饱和现象,因此,它的灵敏度正比于外加电压。 光敏电阻与外光电效应光电元件不同,具有非线性的光照特性。各种光敏电阻的非线性程度都是各不相同的。 大多数场合证明,各种光敏电阻均存在着分析关系。这一关系为 I kα =Φ Φ 式中,K为比例系数;是永远小于1的分数。 光电流的增长落后于光通量的增长,即当光通量增加时,光敏电阻的积分灵敏度下降。 这样的光照特性,使得解算许多要求光电流与光强间必需保持正比关系的问题时不能利用光敏电阻。 光照的非线性特性并不是一切光敏半导体都必有的。目前已有就像真空光电管—样,它的光电流随光通量线性增大的光敏电阻的实验室试样。光敏电阻的积分灵敏度非常大,最近研究出的硒—鎘光敏电阻达到12A/lm,这比普通锑、铯真空光电管的灵敏度高120,000倍。 三、实验步骤 1、光敏电阻的暗电流、亮电流、光电流 按照图1接线,电源可从+2V~+8V间选用,分别在暗光和正常环境光照下测出输出电压V暗和V亮。则暗电流L暗=V暗/RL,亮电流L亮=V亮/RL,亮电流与暗电流之差称为光电流,光电流越大则灵敏度越高。 2、伏安特性 光敏电阻两端所加的电压与光电流之间的关系即为伏安特性。按照图1

-光电定向实验报告

光电定向实验 李康华 (哈尔滨工业大学威海校区光电科学系,威海264209) 摘要:采用四象限探测器作为光电定向实验,学习四象限探测器的工作原理和特性,同时掌握四象限探测器定向的工作方法。实验中,四象限探测器的四个限区验证了具有完全一样的光学特性,同时四象限的定向具有较良好的线性关系。 关键词:光电定向四象限探测器 1、引言 随着光电技术的发展,光电探测的应用也越来越广泛,其中光电定向作为光电子检测技术的重要组成部分,是指用光学系统来测定目标的方位,在实际应用中具有精度高、价格低、便于自动控制和操作方便的特点,因此在光电准直、光电自动跟踪、光电制导和光电测距等各个技术领域得到了广泛的应用。光电定向方式有扫描式、调制盘式和四象限式,前两种用于连续信号工作方式,后一种用于脉冲信号工作方式。,由于四象限光电探测器能够探测光斑中心在四象限工作平面的位置,因此在激光准直、激光通信、激光制导等领域得到了广泛的应用[1]. 本光电定向实验装置采用激光器作为光源,四象限探测器作为光电探测接收器,采用目前应用最广泛的一种光电定向方式现直观,快速定位跟踪目标方位。定向原理由两种方式完成:1、硬件模拟定向,通过模拟电路进行坐标运算,运算结果通过数字表头进行显示,从而显示出定向坐标;2、软件数字定向,通过AD 转换电路对四个象限的输出数据进行采集处理,经过单片机运算处理,将数据送至电脑,由上位机软件实时显示定向结果。 本实验系统是根据光学雷达和光学制导的原理而设计的,利用其光电系统可以直接、间接地测定目标的方向。采用650nm激光器做光源,用四象限探测器显示光源方向和强度。通过实验,可以掌握四象限光电探测器原理,并观测到红外可见光辐射到四象限探测器上的位置和强度变化。并利用实验仪进行设计性实验等内容,将光学定向应用到各领域中[2]。 2、实验原理 2.1、系统介绍 光电定向是指用光学系统来测定目标的方位,在实际应用中具有精度高、价格低、便于自动控制和操作方便的特点,因此在光电准直、光电自动跟踪、光电制导和光电测距等各个技术领域得到了广泛的应用。采用激光器作为光源,四象限探测器作为光电探测接收器,根据电子和差式原理,实现可以直观、快速观测定位跟踪目标方位的光电定向装置,是目前应用最广泛的一种光电定向方式。该

光电探测器特性测量实验报告

实验1 光电探测器光谱响应特性实验 实验目的 1. 加深对光谱响应概念的理解; 2. 掌握光谱响应的测试方法; 3. 熟悉热释电探测器和硅光电二极管的使用。 实验内容 1. 用热释电探测器测量钨丝灯的光谱特性曲线; 2. 用比较法测量硅光电二极管的光谱响应曲线。 实验原理 光谱响应度是光电探测器对单色入射辐射的响应能力。电压光谱响应度 ()v R λ定义为在波长为λ的单位入射辐射功率的照射下,光电探测器输出的信号 电压,用公式表示,则为 () ()() v V R P λλλ= (1-1) 而光电探测器在波长为λ的单位入射辐射功率的作用下,其所输出的光电流叫做探测器的电流光谱响应度,用下式表示 () ()() i I R P λλλ= (1-2) 式中,()P λ为波长为λ时的入射光功率;()V λ为光电探测器在入射光功率 ()P λ作用下的输出信号电压;()I λ则为输出用电流表示的输出信号电流。为简 写起见,()v R λ和()i R λ均可以用()R λ表示。但在具体计算时应区分()v R λ和()i R λ,显然,二者具有不同的单位。 通常,测量光电探测器的光谱响应多用单色仪对辐射源的辐射功率进行分光来得到不同波长的单色辐射,然后测量在各种波长的辐射照射下光电探测器输出的电信号()V λ。然而由于实际光源的辐射功率是波长的函数,因此在相对测量中要确定单色辐射功率()P λ需要利用参考探测器(基准探测器)。即使用一个光

谱响应度为()f R λ的探测器为基准,用同一波长的单色辐射分别照射待测探测器和基准探测器。由参考探测器的电信号输出(例如为电压信号)()f V λ可得单色辐射功率()=()()f P V R λλλ,再通过(1-1)式计算即可得到待测探测器的光谱响应度。 本实验采用单色仪对钨丝灯辐射进行分光,得到单色光功率()P λ ,这里用响应度和波长无关的热释电探测器作参考探测器,测得()P λ入射时的输出电压为()f V λ。若用f R 表示热释电探测器的响应度,则显然有 ()()f f f V P R K λλ= (1-3) 这里f K 为热释电探测器前放和主放放大倍数的乘织,即总的放大倍数。在本实验中=100300f K ?,f R 为热释电探测器的响应度,实验中在所用的25Hz 调制频率下,=900/f R V W 。 然后在相同的光功率()P λ下,用硅光电二极管测量相应的单色光,得到输出电压()b V λ,从而得到光电二极管的光谱相应度 ()() ()()()b b f f f V K V R P V R K λλλλλ= = (1-4) 式中b K 为硅光电二极管测量时总的放大倍数,这里=150300b K ?。 实验仪器 单色仪、热释电探测器组件、光电二极管探测器组件、选频放大器、光源。

相关文档