文档库 最新最全的文档下载
当前位置:文档库 › 年产30万吨甲醇_毕业设计

年产30万吨甲醇_毕业设计

年产30万吨甲醇_毕业设计
年产30万吨甲醇_毕业设计

年产30万吨甲醇毕业设计

摘要

合成的,本设计分析了操作条件:温度、压力、原料气组成、空甲醇是由CO和H

2

速和惰性气体对甲醇生产的影响,本设计采用煤为原料,通过GSP气化工艺将原料煤气转化为合成气,通过变换和NHD脱硫脱碳工艺把合成气转化为满足甲醇合成条件的原料气,在列管式等温反应器中合成甲醇,本设计采用XNC-98型催化剂,利用三塔精馏工艺将生成的粗甲醇精制后得到精甲醇。设计的主要内容包括能量衡算和主要设备的选型,能量衡算有物料衡算和热量衡算,主要设备包括甲醇合成塔和精馏塔。

关键词:甲醇;合成;精馏

Abstract

Methanol consists of CO and H2,this design analysis the effects of operation conditions: temperature, pressure, the gas material composition, airspeed and inert gas , this design uses the coal as raw material, through the GSP gasification process will raw materials gas into snags, through the transformation and NHD desulfurization process into the decarburization snags methanol synthesis conditions meet gas material, in the tube type of methanol synthesis isothermal reactor, this design uses the XNC-98 type catalyst, use three tower distillation process will create the thick methanol blended get fine methanol. The design of the main contents include energy calculation and major equipment selection, energy balance calculations have material calculation and heat balance calculations, the main equipment including methanol synthesis tower and rectifying tower.

Key words:Methanol;Synthesis;Rectification

目录

第1章概述 (1)

第2章工艺简介及影响因素 (2)

2.1甲醇合成工艺简介 (2)

2.2操作条件对反应过程的影响 (2)

第3章甲醇生产工艺流程 (5)

3.1甲醇合成工艺流程 (5)

3.2 甲醇精馏工艺流程 (6)

第4章工艺计算 (8)

4.1物料衡算 (8)

4.2能量衡算 (16)

第五章主要设备的计算和选型 (20)

5.1甲醇合成塔的设计 (20)

5.2甲醇精馏塔的设计 (22)

参考文献 (31)

致谢 (32)

第1章概述

由于我国石油资源短缺,能源安全已经成为不可回避的现实问题,寻求替代能源已成为我国经济发展的关键。甲醇不仅是重要的化工原料,而且还是性能优良的能源和车用燃料。随着石油和天然气价格的迅速上涨,煤制甲醇更加具有优势。本设计遵循“工艺先进、技术可靠、配置科学、安全环保”的原则,结合甲醇的性质特征设计年产30万吨煤制甲醇的生产。

甲醇由H

2和CO合成,是最简单的饱和一元醇,俗称木醇、木精,化学式CH

3

OH,

无色澄清液体,微有乙醇样气味,易挥发,易流动;燃烧时无烟有蓝色火焰;能与多种化合物形成共沸混合物。

本次设计主要包括三个部分,第一部分是甲醇合成的工艺流程,第二部分是能量衡算,第三部分是主要设备的计算和选型。第一部分有甲醇合成工艺和甲醇精馏工艺。甲醇合成流程可概述为:首先采用GSP气化工艺将原料煤气转化为合成气,然后通过变换和NHD脱硫脱碳工艺把合成气转化为满足甲醇合成条件的原料气,接着在XNC-98型催化剂的作用下合成甲醇,最后将生成的粗甲醇利用三塔精馏工艺精制后得到精甲醇。第二部分包括物料衡算和能量衡算。第三部分主要是甲醇合成塔和精馏塔的设计。本设计采用固定管板列管合成塔,这种合成塔就是一台列管换热器,催化剂在管内,管间(壳程)是沸腾水,将反应热用于副产3.0MPa~4.0MPa的中压蒸汽。精馏是利用不同物质的挥发度不同,将液体混合物进行多次部分气化,同时又把产生的蒸汽多次部分冷凝,使混合物分离到所要求组分的操作过程。甲醇精馏采用三塔精馏工艺,其具有精馏能耗低,操作稳定,产品质量还等突出优点,但操作相对比较复杂。精馏塔选用的是板式塔,塔内填充适当高度的填料,以增加两种流体间的接触表面。例如应用于气体吸收时,液体由塔的上部通过分布器进入,沿填料表面下降。气体则由塔的下部通过孔隙逆流而上,与液体密切接触而相互作用。结构比较简单,检修比较方便。广泛应用于气体吸收、蒸馏、萃取等操作。

第2章 工艺简介及影响因素

2.1甲醇合成工艺简介

合 成 塔

驰放气

中压蒸汽

锅炉给水

新鲜气

过热蒸汽去锅炉

甲醇合成工段工艺流

程图

粗甲醇去精馏

氢循环

分 离器

合成操作条件1. 反应压力:5.0MPa 2. 反应温度:250~270℃ 3. 流量: 出口 699.8 kmol/h 入口 783.6 kmol/h

2.24 MPa 5.0 MPa

215 ℃ 5.0 MPa

285℃

图1-1 甲醇合成工艺流程图

2.2操作条件对反应过程的影响

(1)温度

在甲醇合成反应过程中,温度对于反应混合物的平衡和速率都有很大影响。对于反应来说,温度升高会使分子的运动加快,分子间的有效碰撞增多,并使分子克服化合时的阻力的能力增大,从而增加了分子有效结合的机会,使甲醇合成反应的速度加快。但是,由于一氧化碳加氢生成甲醇的反应和由二氧化碳加氢生成甲醇的反应均为可逆的放热反应,对于可逆放热反应来讲,温度升高固然使反应速率常数增大,但平衡常数的数值将会降低。因此,选择合适的操作温度对甲醇合成至关重要,所以必须兼顾上述两个方面,温度过低达不到催化剂的活性温度,则反应不能进行。温度太高不仅增加了副反应,消耗了原料气,而且反应过快,温度难以控制,容易使催化剂衰老失活。一般工业生产中反应温度取决于催化剂的活性温度,不同催化剂其反应温度不同。另外为了延长催化剂寿命,反应

初期宜采用较低温度,使用一段时间后再升温至适宜温度。甲醇合成催化床层的操作温度主要是由催化剂的活性温度区决定的。操作温度的控制同样是一个操作费用的控制问题,在设计中,需要延长催化剂的使用寿命,防止催化剂的迅速老化和活性衰减速度加快。一般而言,在催化剂的使用初期,反应温度维持在较底的数值,随着使用时间的增加,逐步提高反应温度。例如副产蒸汽型等温甲醇合成塔采用国产铜系催化剂,使用前期,可控制床层零点温度230~240℃,热点温度260℃左右;后期,可控制床层零点温度260~270℃,热点温度290℃。设计采用的甲醇合成塔为列管式等温反应器,管间走的是沸腾水,可以副产蒸汽,床层内温差很小,接近最佳温度操作曲线。设计中采用的甲醇合成催化剂为国产的铜系XCN-98,由它的性质可知:适合使用的温度范围为200~290℃。

(2)压力

压力是甲醇合成反应过程的重要工艺条件之一。甲醇合成反应时分子数变少,因此增加压力对反应有利,由于压力高,组分的分压提高,因而催化剂的生产强度也提高,操作压力的选用与催化剂的活性有关。早期的高压法合成甲醇工艺采用的是锌基催化剂,由于活性差,需要在高温高压下操作,其操作压力为25~35Mpa,操作温度350~420℃。较高的压力和温度下,一氧化碳和氢生成甲烷、异丁醇等副产物,这些副反应的反应热高于甲醇合成反应,使床层温度提高,副反应加速,如果不及时控制,会造成温度猛升而损坏催化剂。近年来普遍使用的铜基甲醇合成催化剂,其活性温度范围在200~300℃,有较高的活性,对于规模小于30万吨/a的工厂,操作压力一般可降为5Mpa左右;对于超大型的甲醇装置,为了减少设备尺寸,合成系统的操作压力可以升至10Mpa左右。本设计采用的是低压法(入塔压强为5.14MPa)合成甲醇。

(3)气体组成

氢与一氧化碳合成甲醇的化学当量比为2,与二氧化碳合成甲醇的化学当量

比为3,当一氧化碳与二氧化碳都有时,对原料气中氢碳比要求为f=(H

2-CO

2

/(CO+CO

2

)=2.10~2.15,当原料气组成偏离上述值时应调节氢碳比,原料气中氢气过多时,需要在转化前或转化后加入二氧化碳调节合理氢碳比;当氢碳比太低时,需要设置变换工序使过量的一氧化碳变换为氢气,再将过量的二氧化碳除去。

甲醇合成原料气中应保持一定量的二氧化碳,一定量二氧化碳的存在能促进铜基催化剂上甲醇合成的反应速率,适量二氧化碳可使催化剂呈现高活性,此外,在二氧化碳存在下,甲醇合成的热效应比无二氧化碳时热效应要小,催化床温度易于控制,这对防止生产过程中催化剂超温及延长催化剂寿命是有利的。但是,当二氧化碳含量过高时,会造成粗甲醇中含水量增多.降低压缩机生产能力,增加气体压缩与精馏粗醇的能耗。二氧化碳在原料气中的最佳含量,应根据甲醇合成所用的催化剂与甲醇合成操作温度作相应调整。在使用锌-铬催化剂的高压合成装置中,原料气含二氧化碳4~5%时,催化剂寿命与生产能力不受影响,合成设备操作稳定而且可以自热,但是粗甲醇含水量为14~16%。因此,对于锌-

铬催化剂上甲醇合成反应,原料气中二氧化碳低于5%为宜。在采用铜基催化剂时,原料气中二氧化碳可适当增加,可使塔内总放热量减少,以保护铜基催化剂不致过热,延长催化剂使用寿命。

(4)空速

空速的大小意味着气体与催化剂接触时间的长短,在数值上,空速与接触时间互为倒数。一般来说,催化剂活性愈高,对同样的生产负荷所需的接触时间就愈短,空速愈大。甲醇合成所选用的空速的大小,既涉及合成反应的醇净值、合成塔的生产强度、循环气量的大小和系统压力降的大小,又涉及到反应热的综合利用。当甲醇合成反应采用较低的空速时,气体接触催化剂的时间长,反应接近平衡,反应物的单程转化率高。由于单位时间通过的气量小,总的产量仍然是低的。由于反应物的转化率高,单位甲醇合成所需要的循环量较少,所以气体循环的动力消耗小。当空速增大时,将使出口气体中醇含量降低,即醇净值降低,催化剂床层中既定部位的醇含量与平衡浓度增大,反应速度也相应增大。由于醇净值降低的程度比空速增大的倍数要小,从而合成塔的生产强度在增加空速的情况下有所提高,因此可以增大空速以增加产量。但实际生产中也不能太大,否则会带来一系列的问题:(1)提高空速,意味着循环气量的增加,整个系统阻力增加,使得压缩机循环功耗增加。(2)甲醇合成是放热反应,依靠反应热来维持床层温度。那么若空速增大,单位体积气体产生的反应热随醇净值的下降而减少。空速过大,催化剂温度就难以维持,合成塔不能维持自热则可能在不启用加热炉的情况下使床层温度跨掉。国产铜基催化剂,一般要求气体空速在8000~20000h-1之间。空速过低,结炭等副反应加剧,空速过高,系统阻力加大或合成系统投资加大,能耗增加,催化剂的更换周期缩短。空速的选择需要根据每一种催化剂的特性,在一个相对较小的范围内变化。XCN-98的空速要求为6000~15000h-1,本设计空速定为12000 h-1。

(5)惰性气体(CH

4、N

2

、Ar)的影响

合成系统中惰性气体含量的高低,影响到合成气中有效气体成分的高低。

惰性气体的存在引起CO、CO

2、H

2

分压的下降。合成系统中惰性气体含量,取决

于进入合成系统中新鲜气中惰性气体的多少和从合成系统排放的气量的多少。排放量过多,增加新鲜气的消耗量,损失原料气的有效成分。排放量过少则影响合成反应进行。调节惰性气体的含量,可以改变触媒床层的温度分布和系统总体压力。当转化率过高而使合成塔出口温度过高时,提高惰气含量可以解决温度过高的问题。此外,在给定系统压力操作下,为了维持一定的产量,必须确定适当的惰气含量,从而选择(驰放气)合适的排放量。再生产操作初期,催化剂活性较高,循环气中惰性气体含量可控制在20%-30%,在生产操作后期,催化剂活性降低,循环气中惰性气体含量一般控制在15%-25%。

第3章甲醇生产工艺流程

3.1甲醇合成工艺流程

来自脱碳装置的新鲜气(40℃,3.4MPa)与循环气一起经甲醇合成气压缩机(C7001)压缩至5.14MPa后,经过入塔气预热器(E7001)加热到225℃,进入甲醇合成塔(R7001)内,甲醇合成气在催化剂作用下发生。

甲醇合成塔(R7001)为列管式等温反应器,管内装有XNC-98型甲醇合成催化剂,管外为沸腾锅炉水。

反应放出大量的热,通过列管管壁传给锅炉水,产生大量中压蒸汽(3.9MPa 饱和蒸汽),减压后送至蒸汽管网。副产蒸汽确保了甲醇合成塔内反应趋于恒定,且反应温度也可通过副产蒸汽的压力来调节。

甲醇合成塔(R7001)出来的合成气(255℃,4.9MPa),经入塔气预热器(E7001),甲醇水冷器(E7002A,B),进入甲醇分离器(V7002),粗甲醇在此被分离。分离出的粗甲醇进入甲醇膨胀槽(V7003),被减压至0.4MPa后送至精馏装置。甲醇分离器(V7002)分离出的混合气与新鲜气按一定比例混合后升压送至甲醇合成塔(R7001)继续进行合成反应。

从甲醇分离器(V7002)出来的循环气在加压前排放一部分弛放气,以保持整个循环回路惰性气体恒定。弛放气减压后去燃气发电系统;甲醇膨胀槽(V7003)顶部排出的膨胀气去燃料气系统。

合格的锅炉给水来自变换装置;循环冷却水来自界区外部。

汽包(V7001)排污,经排污膨胀槽(V7006)膨胀减压后就地排放。

蒸汽

弛放气

新鲜气

图3-1 合成工艺流程

3.2 甲醇精馏工艺流程

来自甲醇合成装置的粗甲醇(40℃,0.4MPa ),通过预塔进料泵(P8002A,B ),经粗甲醇预热器加热至65℃,进入预精馏塔(T8001),预塔再沸器(E8004)用0.4MPa 的低压蒸汽加热,低沸点的杂质如二甲醚等从塔顶排出,冷却分离出水后作为燃料;回收的甲醇液通过预塔回流泵(P8003A,B )作为该塔回流液。预精馏塔(T8001)底部粗甲醇液经加压塔进料泵(P8004A,B )进入加压精馏塔(T8002),加压塔再沸器(E8005)以1.3MPa 低压蒸汽作为热源,加压塔塔顶馏出甲醇气体(0.6MPa ,122℃)经常压塔再沸器(E8007A ,B )后,甲醇气被冷凝,精甲醇回到加压塔回流槽(V8004),一部分精甲醇经加压塔回流泵(P8005A ,B ),回到加压精馏塔(T8002)作为回流液,另一部分经加压塔甲醇冷却器(E8006)冷却后进入精甲醇计量槽(V8007A ,B )中。加压精馏塔(T8002)塔底釜液(0.6MPa ,125℃)进入常压精馏塔(T8003),进一步精馏。常压塔再沸器(E8007A ,B )以加压精馏塔(T8002)塔顶出来的甲醇气作为热源。常压精馏塔(T8003)顶部排出精甲醇气(0.13MPa ,67℃),经常压塔冷凝冷却器(E8008)冷凝冷却后一部分回流到常压精馏塔(T8003),另一部分打到精甲醇计量槽(V8007A ,B )内贮存。

产品精甲醇由精甲醇泵(P8008A ,B )从精甲醇计量槽(V8007A ,B )送至甲醇罐区装置。

为防止粗甲醇中含有的甲酸、二氧化碳腐蚀设备,在预塔进料泵(P8002A ,

B)后的粗甲醇溶液中配入适量的烧碱溶液,用来调节粗甲醇溶液的PH值。

甲醇精馏系统各塔排出的不凝气去燃料气系统。

由常压精馏塔(T8003)底部排出的精馏残液经废水冷却器(E8009)冷却至40℃后,由废水泵(P8007A,B)送到生化处理装置。

由甲醇精馏来的精甲醇贮存到精甲醇贮槽(V9101A,B)中。精甲醇贮槽为两台10000m3的固定顶贮罐,贮存量按15天产量计。

当甲醇外运时,启动精甲醇泵(P9101A,B),将甲醇输送到甲醇装卸栈台,通过火车鹤管进入火车槽车,通过汽车鹤管进入汽车槽车。

甲醇装卸栈台共设有12台火车鹤管和6台汽车鹤管,根据精甲醇泵(P9101A,B)的能力,至少有三台槽车同时装料。

二甲醚

图3-2 精馏工艺流程

第4章工艺计算

本设计参阅某化学公司的甲醇合成厂的工艺参数资料。具体数据为入塔压力5.14MPa,出塔压力4.9 MPa,副产蒸汽压力3.9 MPa,入塔温度225℃,出塔温度455℃。年产30万吨甲醇,年开工日为330天,采用连续操作,则每小时精甲醇的产量为37.89吨,即37.89 t/h。

本产品(精甲醇)执行国家《GB338—92》标准,具体指标见表4-1。

表4-1 甲醇《GB338—92》

项目

指标

优等品一等品合格品

色度(铂—钴),号≤ 5 10 密度(200C),g/cm30.791~0.792 0.791~0.793

温度范围(0℃,101.325Pa),℃

沸程(包括64.6±0.10C),℃≤

64.0-65.5

0.8 1.0 1.5

高锰酸钾试验,min ≥50 30 20 水溶性试验澄清—水分含量,% ≤0.10 0.15 —

酸度(以HCOOH计),% ≤或碱度(以NH3计),% ≤0.0015 0.003 0.005 0.0002 0.0008 0.0015

羰基化合物含量(以CH2O计),% ≤0.002 0.005 0.01

蒸发残渣含量,% ≤0.001 0.003 0.005 4.1物料衡算

4.1.1精馏工段

精馏工段

通过三塔高效精馏工艺,精甲醇的纯度可达到99.9%,符合精甲醇国家一级

标准。三塔精馏工艺中甲醇的收率达97%。则入预精馏塔的粗甲醇中甲醇量为

39.06t/h。由粗甲醇的组成通过计算可得表4-2。

表4-2 粗甲醇组成

组分百分比产量

甲醇93.40% 1220.25kmol/h 即 27333.6m3/h

二甲醚0.42% 3.81 kmol/h 即 85.5 m3/h 高级醇(以异丁醇计)0.26% 1.47kmol/h 即32.91 m3/h

续表4-2

组分

百分比 产量

高级烷烃(以辛烷计)

0.32% 1.17kmol/h 即26.28m 3

/h 水 5.6% 130.08kmol/h 即 2913.54 m 3

/h

粗甲醇

100%

41.82t/h

注:设计中的体积都为标准状态下

图4-1 合成物料流程图

4.1.2合成工段

4.1.2.1 合成塔中发生的反应

主反应 CO+2H 2=CH 3OH (1)

CO 2+3H 2=CH 3OH +H 2O (2)

副反应 2CO+4H 2=(CH 3O )2+H 2O (3) CO+3H 2=CH 4+H 2O (4)

4CO+8H 2=C 4H 9OH+3H 2O (5) 8CO+17H 2=C 18H 18+8H 2O (6)

CO 2+H 2=CO+H 2O

(7) 4.1.2.2 粗甲醇的合成

工业生产中测得低压时,每生产一吨粗甲醇就会产生1.52 m 3(标态)的甲烷,即设计中每小时甲烷产量为V

甲烷

=V 0×M=1.52×41.82=63.57m 3,

出塔气

入塔气

粗甲醇

出分离器气体

循环气

弛放气

新鲜气

2.85kmol。

由于甲醇入塔气中水含量很少,忽略入塔气带入的水。由反应(3)、(4)、(5)、(6)得出反应(2)、(7)生成的水分为:

n =n

7-n

4

-n

3

-3×n

5

-8×n

6

=130.08-2.85-3.81-1.47×3-1.17×8 = 109.59 kmol

由于合成反应中甲醇主要由一氧化碳合成,二氧化碳主要发生逆变反应生成一氧

化碳,且入塔气中二氧化碳的含量一般不超过5%,所以计算中忽略反应(2)。

则反应(7)中二氧化碳生成了109.59kmol/h,即2454.81 m3/h的水和一氧化碳。4.1.2.3 粗甲醇中的溶解气体量

粗甲醇中气体溶解量查表5MPa、40℃。

得每一吨粗甲醇中溶解其他组成如下表:

表4-3 1吨粗甲醇中合成气溶解情况

气体H2CO CO2N2Ar CH4溶解量(m3/t粗甲醇) 4.364 0.815 7.780 0.365 0.243 1.680

则每小时粗甲醇中的溶解气体量为:

H

2 =MV

1

= 41.82×4.364 = 182.50 m3即8.16kmol

CO=MV

2

=41.82×0.815= 34.08 m3即1.53kmol

CO

2 =MV

3

=4=1.82×7.780 = 325.26m3即14.52kmol

N

2 =MV

4

=41.82×0.365 =15.27m3即0.69kmol

Ar =MV

5

=41.82×0.243 = 10.17m3即0.15 kmol

CH

4 =MV

6

=41.82×1.680 = 70.23 m3即3.15kmol

4.1.2.4 粗甲醇中甲醇扩散损失

40℃时,液体甲醇中释放的溶解气中,每立方米含有37014g的甲醇,假设减压后液相中除二甲醚外,其他气体全部释放出,则甲醇扩散损失

M 1=(V

1

+V

2

+V

3

+V

4

+V

5

+V

6

)×m

=

(182.5+325.26+34.08+15.27+10.17+70.23)×0.037014=23.7kg

即 0.74 kmol,16.58 m3

4.1.2.5 合成反应中各气体的消耗和生成情况

表4-4 弛放气组成

气体CH3OH H2CO CO2N2Ar CH4组成0.61% 81.82% 9.16% 3.11% 3.21% 0.82% 1.89%

表4-5 合成反应中消耗原料情况

消耗项单位

消耗原料气组分

CO CO2H2N2Ar

反应(1)m3/h 24878.79 —49757.58 ——

反应(3)m3/h 171.0 —342.00 ——

反应(4)m3/h 63.57 —190.71 ——

反应(5)m3/h 131.61 —263.28 ——

反应(6)m3/h 210.30 ————

反应(7)m3/h 2454.81 2454.81 2454.81 ——注:括号内的为生成量;反应(1)项不包括扩散甲醇和弛放气中甲醇消耗的原料气量

表4-6 合成反应中生成物情况

生成项单位生成物组分

CH4CH3OH (CH3O)2C4H9OH C18H18H2O

反应(1)m3/h —24878.79 ————

反应(3)m3/h ——85.50 ——85.50 反应(4)m3/h 63.57 ————63.57 反应(5)m3/h ———32.91 —98.70 反应(6)m3/h ————26.28 210.30 反应(7)m3/h —————2454.81

表4-7 其他情况原料气消耗

消耗项单位

消耗原料气组分

CO CO2H2N2Ar CH4

粗甲醇中溶解m3/h 34.08 325.26 182.50 15.27 10.17 70.23 扩散的甲醇m3/h 16.56 —33.15 ———弛放气m3/h 9.16%×G 3.11%×G 81.20%×G 3.21%×G 0.82%×G 1.89%×G 驰放气中甲醇m3/h 0.61%×G — 1.22%×G ———注:G 为驰放气的量,m3/h。

4.1.2.6 新鲜气和弛放气气量的确定

CO 的各项消耗总和 = 新鲜气中CO 的量,即

24878.79+171.00+63.57+131.61+210.30-2454.81+34.08+16.56+0.61%G+9.16%G

=23051.1+9.77%G

同理,原料气中其他各气体的量=该气体的各项消耗总和,由此可得新鲜气

体中各气体流量,如表4-8。

表4-8 新鲜气组成

组分单位CO CO2H2N2Ar CH4

气量m3/h 23051.1

+9.77%G

2780.07+

3.11%G

53672.1+

82.42%G

15.27+

3.21%G

10.17+

0.82%G

6.66+

1.89%G

新鲜气m3/h 79534.08+1.0183G

新鲜气中惰性气体(N

2

+ Ar)百分比保持在0.42%,反应过程中惰性气体的

量保持不变,(N

2

+ Ar)=25.44+4.03%G,则

79534.08+1.0183G=(25.44+4.03%G)/0.42%

解得弛放气的量G =8566.80 m3/h ,由G 可得到新鲜气的量为88257.66 m3/h 由弛放气的组成可得出下表。

表4-9 弛放气组成

气体CH3OH H2CO CO2N2Ar CH4

组成0.61% 81.82% 9.16% 3.11% 3.21% 0.82% 1.89% 气量m3/h 52.26 6956.22 784.71 266.46 274.98 70.29 161.88

表4-10 新鲜气组成(合成气)

气体CH4H2CO CO2N2Ar

组成0.19% 68.81% 27.07% 3.45% 0.33% 0.09% 气量m3/h 168.54 60731.58 23888.07 3046.53 290.25 80.43 4.1.2.7 循环气量的确定

循环气气量的确定

G 1 =G

3

+G

4

+G

5

+G

6

-G

7

-G

8

式中:G1为出塔气气量; G 3 新鲜气气量;G4 循环气气量;

G5 主反应生成气量; G6 副反应生成气量;

G7 主反应消耗气量; G8 副反应消耗气量;

循环气气量计算汇总见下表。

表4-11 循环气组成

气体CH3OH H 2CO CO2N2Ar CH4组成0.61% 81.82% 9.16% 3.11% 3.21% 0.82% 1.89% 气量m3/h 2653.02 353155.92 39838.77 13526.04 13960.98 3566.37 8220.00

循环比R= G

4/G

3

=434921.07/88257.66=4.93

4.1.2.9 入塔气和出塔气组成

G 1 =G

3

+G

4

+G

5

+G

6

-G

7

-G

8

=472268.82m3/h ;21083.34 kmol/h

G 2= G

3

+G

4

=523178.7m3/h ;23356.2 kmol/h G

2

为入塔气气量

表4-12 入塔气组成

气体 CH3OH H2 CO CO2 N2 Ar CH4

组成 0.06% 79.11% 12.18% 3.17% 2.72% 0.70% 1.60% 气m3/h 2653.02 413887.5 63726.84 16572.57 14251.23 3646.80 8388.54 量 kmol/h 13.32 18477.12 2844.96 739.86 636.21 162.81 386.49

表4-13 出塔气组成

气体 H2 CO CO2 N2 Ar CH3OH

组成 76.29% 8.61% 2.93% 3.02% 0.77% 5.84%

气m3/h 360294.63 40657.56 13851.33 14251.23 3646.8 27600.63

量 kmol/h 16084.59 1815.06 618.36 636.81 162.81 1232.16

气体 CH4 (CH3O)2 C4H9OH C18H18 H2O

组成 1.79% 0.018% 0.007% 0.006% 0.62%

气m3/h 8452.11 85.5 32.91 26.28 2912.28

量 kmol/h 377.28 3.81 1.47 1.17 130.02

计算过程:入塔气 CO=循环气中CO+新鲜气中CO

=23888.79+39838.77=63726.84 m3/h

同理可得其他气体气量;

出塔气中CO=入塔气中CO-反应消耗的CO+反应中生成的CO

= 63726.84-24878.79-171.00-63.57-131.61-210.30-16.56

-0.61%×8566.80+2454.81=40657.56 m3/h

同理得其他气体气量。

4.1.2.10 甲醇分离器出口气体的组成

分离器出口气体组分=循环气气体组分+弛放气气体组分;则分离器出口气

体中

CO气量=循环气CO + 弛放气CO

= 39838.68+784.71=40623.48 m3/h 即 1813.56kmol/h ;

同理可算得其他气体的气量。

表4-14 分离器出口气体组成

气体 CH3OH H2 CO CO2 N2 Ar CH4

组成 0.61% 81.82% 9.16% 3.11% 3.21% 0.82% 1.89% 气m3/h 2705.46 360112.02 40623.75 13792.80 14235.66 3636.87 8381.85 量kmol/h 120.78 16076.43 1813.56 615.75 635.52 162.36 374.19

4.1.3变换净化工段

4.1.3.1 调节CO浓度后的变换气的确定

调节CO浓度后的变换气在脱硫脱碳过程中,N

2

+ Ar量基本保持不变,则可

以算得调节CO浓度后的变换气为:(274.98+70.28)/0.41%=84209.76m3/h

调节CO浓度后的变换气的百分比为:H

2 46.84% ;CO 19.74%;CO

2

32.42%;

N 2 0.28%;Ar 0.13%;CH

4

0.04%;NH

3

0.06%;H

2

S 0.48%;COS 0.01% 。

通过计算可得调节CO浓度后的变换气组成:

表4-15 调节CO浓度后的变换气组成

气体 H2 CO CO2 N2 Ar

组成 46.84% 19.74% 32.45% 0.28% 0.13 % 气量m3/h 39443.50 16622.86 27325.82 235.79 109.47

气体 NH3 CH4 H2S COS

组成 0.06% 0.04% 0.45% 0.01%

气量m3/h 50.53 33.68 378.94 8.42

4.1.3.2 变换气和调节CO浓度的水解气的确定

水解气体积百分含量为:H

2 35.39%;CO 45.91%;CO

2

17.87%;N

2

0.15%;

Ar 0.06%;NH

3 0.05% ; CH

4

0.06%; H

2

S 0.5%; COS 0.01%。

变换气体积百分含量为:H

2 52.58%;CO 6.00%;CO

2

40.06%;N

2

0.35%;

Ar 0.17%;NH

3 0.07%; CH

4

0.03%; H

2

S 0.47%;COS 0.01%。

假设变换气气量为x,调节CO浓度的水解气气量为y,则

x+y=调节CO浓度后的变换气气量,即x+y=84209.76 (1)

再由CO的守衡可得式:6%x+45.91%y=16622.86 (2)

联合(1)(2)可算的 x=55219.84m3/h ; y=28990.92m3/h

所以变换气气量为55219.84m3/h,调节CO浓度的水解气气量为28990.92m3/h。

表4-16 变换气组成

气体 H2 CO CO2 N2 Ar

组成 52.85% 6.00% 40.06% 0.35% 0.17% 气量m3/h 30288.08 3313.19 22121.07 193.27 93.87

气体 NH3 CH4 H2S COS

组成 0.07% 0.03% 0.47% 0.01%

气量m3/h 38.65 16.57 259.53 5.52

4.1.3.3 水解气和预变换气组成的确定

在变换炉中CO的转化率为85.88%,已知预变换气中CO的百分率和变换气

中CO的含量,设预变换气为a,则可得式:

0.7a×28.02%×(1-85.88%)=3313.19

解得 a=119631.48 m3/h,即预变换气气量为119631.48m3/h。

脱硫过程中Ar也不变,30%预变换气中Ar=119631.48×0.3×

0.11%=39.48m3/h,水解气中Ar的百分率为0.06%,所以,水解气气量为39.48/0.06%即65797.31 m3/h 。

用来发电的水解气气量=水解气-用来调节CO浓度的水解气气量

=65797.31-28990.92=36806.39m3/h,

已知了水解气和预变换气的气量和两者的哥组分含量,通过计算可得水解气

和预变换气组成如下两个表:

表4-17 水解气的组成

气体 H 2 CO CO 2 N 2 Ar 组成 35.39% 45.91% 17.87% 0.15% 0.06% 气量m 3

/h 23285.67 30207.55 11757.98 98.70 39.48 气体 NH 3 CH 4 H 2S COS 组成 0.05% 0.06% 0.5% 0.01% 气量m 3/h 32.90 39.48 328.90 6.59

表4-18 预变换气组成

气体 H 2 CO CO 2 N 2 Ar 组成 43.87% 28.02% 28.32% 0.24% 0.11% 气量m 3

/h 52484.96 33522.42 33879.64 287.12 131.59 气体 NH 3 CH 4 H 2S COS 组成 0.06% 0.05% 0.49% 0.01% 气量m 3/h 71.78 59.82 586.19 11.96

4.1.3.4 水煤气的确定

由GSP 气化工艺(原料煤为铜川煤)的气化指标可以知道水煤气组成为: H 2 34.30% ;CO 45.43% ;CO 2 18.98 % ;N 2 0.18 % ;Ar 0.09% ;NH 3 0.24 %;CH 4 0.05%;H 2S 0.70 %;COS 0.03% 。

在预变换炉中CO 的转化率为49.56%,设水煤气气量为y ,由水煤气和预变换气的组成,可得式;y ×45.43%×(1-49.56%)=33522.42

解得y=146290.98m 3/h ,即水煤气气量为146290.98m 3/h 算的水煤气组成如下表:

表4-19 水煤气组成

气体 H 2 CO CO 2 N 2 Ar 组成 34.30% 45.43% 18.98% 0.18% 0.09% 气量m 3

/h 50177.81 66459.99 27766.03 263.32 131.66 气体 NH 3 CH 4 H 2S COS 组成 0.24% 0.05% 0.7% 0.03% 气量m 3/h 351.10 73.15 1024.04 43.89

4.1.4气化工段

4.1.4.1 原料煤用量的确定

水煤气中C 元素的量=(66459.99+27766.03+73.15+43.89 /22.4=4211.74 kmol/h 。

原料煤选用的是铜川煤,煤的元素分析为/% :C 67.5;H 4.0 ;S (可燃)

1.73;S(不燃)0.34;O 10.2;N 0.65 ;Cl/(mg/kg)229;F/(mg/kg)104;Na/(mgkg)2180;K/(mg/kg)292 。

原料煤中C=水煤气中C的量∕百分数=4211.74/0.995=4232.90 kmol/h 原料煤用量=原料煤C∕百分数=(4232.90×12)/0.675=75.25t/h

每吨精甲醇用煤量=用煤量∕精甲醇量=75.25/37.89=1.99t(原煤)/t(精甲醇)

其中1.99×0.7=1.40t煤用于合成甲醇;0.59t煤用于发电。

4.2能量衡算

4.2.1合成工段

4.2.1.1 合成塔的热平衡计算

(1)计算公式

全塔热平衡方程式为:∑Q

1 + ∑Qr = ∑Q

2

+ ∑Q

3

+ Q (1)

式中: Q1——入塔气各气体组分焓,kJ/h;

Qr ——合成反应和副反应的反应热,kJ/h; Q2 ——出塔气各气体组分焓,kJ/h;

Q3 ——合成塔热损失,kJ/h;

Q——沸腾水吸收热量,kJ/h。

∑Q

1=∑(G

1

×Cm

1

×Tm

1

)(2)

式中:G1——入塔气各组分流量,m3/h;

Cm1——入塔各组分的比热容,kJ/(m3.k);

Tm1——入塔气体温度,k;

∑Q

2=∑(G

2

×Cm

2

×Tm

2

)(3)

式中:G2——出塔气各组分流量m3/h;

Cm2——出塔各组分的热容,kJ/(m3.k);

Tm2——出塔气体温度,k;

∑Qr= Qr

1 +Qr

2

+Qr

3

+ Qr

4

+ Qr

5

+Qr

6

+ Qr

7

(4)

式中:Qr1、Qr2、Qr3、 Qr4、 Qr5、Qr6、——分别为甲醇、二甲醚、异丁醇、甲烷、辛烷的生成热,kJ/h;

Qr7——二氧化碳逆变反应的反应热,kJ/h

Qr=Gr×△H (5)

式中:Gr——各组分生成量,kmol/h;

△H——生成反应的热量变化,kJ/mol

(2)入塔热量计算

通过计算可以得到5.14Mpa,225℃时各入塔气气体的热容,根据入塔气各气体组分量,算的甲醇合成塔入塔热量如下表:

表4-20 甲醇合成塔入塔热量

气体 CH3OH H2 CO CO2 N2 Ar CH4

热容kJ/(kmol.k) 67.04 29.54 29.88 44.18 29.47 25.16 46.82

气量kmol /h 13.32 18477.12 2844.96 739.86 636.21 62.81 374.49 入塔热量kJ/(h.k) 895.98 545814.12 85010.88 32687.01 18749.1 4096.29 17533.62

入塔热量合计为704784.00 kJ/(h.k)

所以∑Q

1

=704784.00×498.15=3.511×108 kJ/h

(3)塔内反应热的计算

忽略甲醇合成塔中的反应(2)生成的热量,按反应(1)(3)(4)(5)(6)(7)生成

的热量如下表。

表4-21 甲醇合成塔内反应热

气体 CH3OH (CH3 )2O C4H9OH C8H18CH4 CO

生成热kJ/mol 102.37 49.62 200.39 957.98 115.69 -42.92

生成量kmol /h 1220.25 3.81 1.47 1.14 130.08 109.59

反应热kJ/h 124916992.5 189052.20 294573.30 1120836.60 15048955.20 -4703602.80

反应热合计∑Q

1

=1.369×108 kJ/h

(4)塔出口气体总热量计算

表4-22 甲醇合成塔出塔气体组分热容和热量

气体 H 2 CO CO2 N2 Ar CH3OH

热容kJ/(kmol.K) 29.56 30.01 45.04 29.61 25.16 72.05

气量 kmol/h 16084.59 1815.06 618.36 636.21 162.81 1232.16

出塔热量kJ/(h.k) 475460.49 54469.95 27850.92 18834.63 162.81 1232.16

气体 CH4(CH3O)2 C4H9OH C18H18 H2O 合计

热容kJ/(kmol.K) 48.14 18.03 19.23 101.73 36.25

气量 kmol/h 377.28 3.81 1.47 1.14 130.02

出塔热量kJ/(h.k) 18162.27 68.70 28.29 115.98 4713.24 692575.98 出塔气体温度255℃即528.15k

Q

2

=692575.98×528.15=3.658×108kJ/h

(5)全塔热量损失的确定

全塔热损失为4%,即Q

3=(∑Q

1

+ ∑Qr)×4%=(3.511×108+1.369×108)

×4%=1.95×107 kJ/h (6)沸腾水吸收热量的确定

由公式(1)可得Q=∑Q

1 + ∑Qr -∑ Q

2

- ∑Q

3

=1.027×108kJ/h 表4-23 全塔热平衡表

气体气体显热反应热损失热蒸汽吸收热合计

入塔气体kJ/h 3.511×108 1.369 ×108—— 4.880×108

同煤集团年产60万吨甲醇项目污水处理技术方案

同煤集团年产60万吨甲醇项目 污水处理工程 设 计 方 案 山西省聚力环保集团有限公司 2011年08月16日

甲醇废水处理工程技术方案 第一章、概述 甲醇是一种重要的化工产品。在甲醇生产过程中,由精馏塔底排出的约为甲醇产量20%(甚至更高比例)的蒸馏残夜,通常称为甲醇废水。甲醇废水具有强烈的刺激性气味;CODcr高达数万mg/L,其主要成分为甲醇,乙醇,高级醇及醛类;还含有一些长链化合物,当废水冷却时以有色蜡状物析出。 甲醇废水净化处理工程项目,是一项重要的环保工程。为保护环境,防止甲醇废水污染,保护水资源,要求对甲醇废水进行全面治理,要求污水处理后达到规定的排放标准排放。现新建甲醇废水处理系统1套。 第二章、设计依据、规范、范围及原则 2.1设计依据及规范 ●建设单位提供的污水水质、水量和要求等基础资 料; ●《地表水环境质量标准》(GB3838-2002)。 ●室外排水设计规范(GB50014-2006)。 ●《城市污水处理厂附属建筑和附属设备设计标准》 CJJ31—89 ●《城市污水处理工程项目建设标准》 ●《城市污水处理厂污水污泥排放标准》CJ3025—93 ●《民用建筑电气设计规范》GB/T16—92 ●《工业企业设计卫生标准》TJ36—79 ●《工业采暖、通风及空气调节设计规范》TJ19—75 ●《给水排水工程结构设计规范》GBJ69—84 ●《工业与民用10千伏及以下变电站设计规范》

GBJ53—83 ●《低压配电装置及线路设计规范》GBJ54—83 ●其它相关设计与施工规范 ●国内外处理同类型污水的技术参考资料。 2.2设计范围 (1)甲醇废水处理工程建设的必要性和可行性。 (2)甲醇废水处理工程建设规模与主要设计指标。 (3)甲醇废水处理站建设地址。 (4)选择污水处理站的污水处理工艺技术,确定主要建、构筑物的尺寸及主要设备(含电控设备)设计选型。 (5)污水处理站的总平面布置及工艺流程(包括高程)。 (6)污水处理工程建设的投资和技术经济分析。 (7)建设工期和工程进度安排。 (8)主要技术指标和效益分析。 ◆污水处理与利用 调查研究污水的水质水量变化情况,选择技术成熟、经济合理、运行灵活、管理方便、处理效果稳定的方案。 ◆污泥处理与处置 污水处理过程中产生的污泥,应进行稳定处理,防止对环境造成二次污染,并妥善考虑污泥的最终处置。 2.3设计原则 (1)严格遵守我国对环境保护、工业污水处理制定的法律、法规、标准和规范。 (2)服从总体规划要求,合理选择厂址,合理布置排水管网系统。 (3)根据企业的实际情况,因地制宜,按照占地少、投资省、运行费用低、处理效果好、工艺技术先进的原则选择污水处理技术。 (4)注重环境保护,尽可能减少污水处理站对周围环境的影响。 (5)要求污水处理站布局和占地面积合理,与周边环境协调一致。 (6)要求实施方案中各废水处理单元管理简便,安全实用,生产环境和劳动条件良好,处理场地清洁卫生,无二次污染。 (7)要求污水处理系统投资经济合理,运行费用低。

化学工程与工艺专业毕业设计-年产30万吨甲醇生产工艺初步设计

化学工程与工艺专业毕业设计-年产30万吨甲醇生产工艺初步设计

海南大学 毕业设计 题目:年产30万吨甲醇生产工艺初步设计学号:20060124059 姓名:胡文涛 年级:2006级 学院:材料与化工学院 系别:化工系 专业:化学工程与工艺 指导教师:张德拉徐树英 完成日期:2010年5月20日

摘要 甲醇是简单的饱和脂肪醇,分子式为CH3OH。它是重要的化工原料和清洁燃料,用途广泛,在国民经济中占有十分重要的地位。近些年,随着甲醇下游产品的开发及甲醇作为燃料的推广,甲醇的需求量大幅增长。因此,经过分析比较各种生产原料、合成工艺后,本设计采用焦炉煤气为原料年产30万吨甲醇,以满足国内需求。 设计遵循“技术先进、工艺成熟、经济合理、安全环保”等原则,在充分论证国内外各种先进生产方法、工艺流程和设备配置基础上,选用以原料气经“栲胶脱硫、干法脱硫、甲烷转化、催化合成、三塔精馏”工艺路线生产甲醇。设计的重点工艺流程设计论证,甲醇合成工段及三塔精馏工段的工艺计算及设备设计选型。主要设备合成塔选用Lurgi塔,常压精馏塔选用浮阀塔。此外,在设计中充分考虑环境保护和劳动安全的同时,以减少“三废”排放,加强“三废”治理,确保安全生产,消除并尽可能减少工厂生产对职工的伤害。 关键词:煤气脱硫转化合成精馏工艺设计

一.总论 1.概述 1.1甲醇的性质 甲醇是饱和醇系列中的代表,在常温常压下,纯甲醇是无色、不流动、易挥发、可燃的有毒液体,有类似于乙醇的性质。甲醇可与水、丙酮、醇类、酯类及卤代烷类等很多有机溶剂互溶,但不能与脂肪烃类化合物互溶。甲醇是最简单的饱和脂肪醇,具有脂肪醇的化学性能,其化学性很活泼,如氧化反应、氨化反应、酯化反应、羟基化反应、卤化反应、脱水反应、裂解反应等。其主要物理性质如下表: 表1-1 甲醇的主要物理性质[1]项目数值项目数值液体密度/ kg·m-3 793.1 临界常数 蒸汽密度/kg·m-31.43 临界温度 ﹙T c﹚/℃ 240 沸点/℃64.65 临界压力 ﹙p c﹚/MPa 7.97 熔点/℃- 97.8 生成热/kJ·mol -1 闪点/℃气体﹙25℃﹚- 201.22 开杯法16.0 液体﹙25℃﹚- 238.73 闭杯法12.0 燃烧热/kJ·mol

年产15万吨甲醇制乙烯精馏工段工艺设计毕业设计

中国矿业大学银川学院本科毕业设计 (2010 届) 题目年产15万吨甲醇制乙烯精馏工段 工艺设计

1.设计年产15万吨甲醇精馏段,年开车时间7920小时,工艺采用以煤制气为原料合成粗甲醇,经预精馏塔、加压精馏塔和常压精馏塔分离后得到精甲醇的新节能型三塔工艺流程开发的 2.计算条件: ①原料气组成 CH3OH H2O CH3CH2OH 轻馏分杂醇 Wt% 95 3.72 0.1 1.11 0.07 ②精甲醇收集:99.6% ③废水中甲醇含量:50ppm 3.设计要求: ①编写计算说明书,其中包括综述,工艺路线选择,物料衡算与工艺计算,主要塔设备计算,热量衡算等。 ②图纸(3张):甲醇精馏段带控制点工艺流程图,平面布置图,工段主要物料管道图,精馏塔图,主要设备图等 ③说明书可以电脑打字,图纸均为CAD绘图

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

煤制甲醇项目(最终版)

雄伟煤化有限公司 60万t/a煤制甲醇项目建议书 项目人员:曾雄伟毛龙龙方建李永朋 时间:2015年10月

第一部分项目背景 甲醇是结构最为简单的饱和一元醇,又称“木醇”或“木精”,是仅次于烯烃和芳烃的重要基础有机化工原料,用途极为广泛。主要用于制造甲醛、二甲醚、醋酸、甲基叔丁基醚( MTBE) 、甲醇汽油、甲醇烯烃等方面。近年来,国内外在甲醇芳烃方面进行了应用。 我国甲醇工业始于20 世纪50 年代,随着国内经济发展的不断增长,甲醇下游产品需求的拉动,甲醇行业发展迅猛。从2004 年到2012 年甲醇产能和产量大幅增长,2012 年产能首次超过5 000 万t,产量也达到2 640 万t。2013 年我国甲醇产能已达5650 万t,产量约2 878 万t,已经成为世界第一大甲醇生产国,见图1。 从甲醇产能的区域分布来看,甲醇的产能主要集中在西北、山东、华北等地区。从2013 年各省市产量分布情况来看,排名前五的有内蒙、山东、陕西、河南及山西,内蒙古精甲醇的产量达563 万t[2],约占全国总产量20%,其次是山东、陕西、河南和山西,这五省合计约占总产量的63%。内蒙古、山西、陕西等地凭借其资源优势,成为甲醇生

产企业最为青睐的地区,向资源地集中成为我国甲醇产能布局的主导趋势。受资源因素限制,我国的甲醇生产多以煤为原料,并有焦炉煤气和天然气工艺。2013 年我国甲醇产能中,煤制甲醇产能3 610 万t,占比64%,天然气制甲醇产能1 080 万t,占比19%,焦炉煤气制甲醇产能960 万t,占比17%[3]。受国家治理大气污染、加快淘汰钢铁等“两高”行业落后产能以及经济增速放缓等因素的影响,对焦炭的需求将会减少,从而使焦炉煤气制甲醇装置面临原料短缺的局面,因此焦炉煤制甲醇产能会降低。天然气制甲醇装置,则受到天然气供应不足和气价攀升双重制约,也将大幅限产。据金银岛统计数据显示,截至2013 年12月中旬,国内气头装置开工负荷在三成左右,低于国内平均开工水平,甘肃及新疆气头企业普遍停车。2013 年全国甲醇生产企业有300 余家,其中产能在100 万t 以上的企业占总产能的58.9%,形成了神华、中海油、兖矿、远兴能源、华谊、久泰、河南能化、大唐、晋煤、新奥、新疆广汇等18 家百万吨级超大型甲醇生产企业,见表1。这些百万吨甲醇企业大致可以分为三类,第一类是以神华集团、久泰化工为代表的大型化、规模化、基地化的煤制甲醇企业,靠近煤炭资源富集区域,其综合竞争力在当前竞争环境下最强,也符合国家产业政策方向; 第二类是以晋煤集团、河南能源化工集团为代表的,在国内多地分布,有多个较小规模的煤制甲醇装置构成的甲醇企业,在煤价下降的情况下,其竞争力有所提升; 第三类是以“三桶油”为代表的天然气路线企业,在天然气价格高企的情况下,这类企业的产量将受到抑制。

年产40万吨甲醇精馏工艺设计概述

毕业设计(论文)任务书 设计(论文)题目:年产40万吨甲醇精馏工艺设 计 学院:专业:班 级:晋艺 学生:指导教师: 1.设计(论文)的主要任务及目标 (1) 结合专业知识和工厂实习、分析选定合适的工艺参数。 (2) 进行工艺计算和设备选型能力的训练。 (3) 进行工程图纸设计、绘制能力的训练。 2.设计(论文)的基本要求和内容 (1) 本车间产品特点及工艺流程。 (2) 主要设备物料、热量衡算、结构尺寸计算及辅助设备的选型计算。 (3) 参考资料 3.主要参考文献 [1] 谢克昌、李忠.甲醇及其衍生物.北京.化学工业出版社.2002.5~7 [2] 冯元琦.联醇生产.北京.化学工业出版社.1989.257~268. [3] 柴诚敬、张国亮。化工流体流动与传热。北京。化学工业出版社。2000.525-530 4.进度安排 设计(论文)各阶段名称起止日期 1 收集有关资料2010-01-28~2010-02-11 2 熟悉资料,确定方案2010-02-12~2010-02-26 3 论文写作2010-02-27~2010-03-19 4 绘制设计图纸2010-03-20~2010-04-03 5 准备答辩2010-4-10 目录 摘要 (1) 第1章甲醇精馏的工艺原理 2 第1.1节基本概念 2 第1.2节甲醇精馏工艺 3 1.2.1 甲醇精馏工艺原理 3 1.2.2 主要设备和泵参数 3 1.2.3膨胀节材料的选用 6 第2章甲醇生产的工艺计算7 第2.1节甲醇生产的物料平衡计算7 第2.2 节生产甲醇所需原料气量9

2.2.1生产甲醇所需原料气量9 第2.3节联醇生产的热量平衡计算15 2.3.1甲醇合成塔的热平衡计算15 2.3.2甲醇水冷器的热量平衡计算18 第2.4节粗甲醇精馏物料及热量计算21 2.4.1 预塔和主塔的物料平衡计算21 2.4.2 预塔和主塔的热平衡计算25 第3章精馏塔的设计计算33 第3.1节精馏塔设计的依据及任务33 3.1.1设计的依据及来源33 3.1.2设计任务及要求33 第3.2节计算过程34 3.2.1塔型选择34 3.2.2操作条件的确定34 3.2.2.1 操作压力34 3.2.2.2进料状态35 3.2.2.3 加热方式35 3.2.2.4 热能利用35 第3.3节有关的工艺计算36 3.3.1 最小回流比及操作回流比的确定36 3.3.2 塔顶产品产量、釜残液量及加热蒸汽量的计算37 3.3.3 全凝器冷凝介质的消耗量37 3.3.4热能利用38 3.3.5 理论塔板层数的确定38 3.3.6全塔效率的估算39 3.3.7 实际塔板数40 第3.4节精馏塔主题尺寸的计算40 3.4.1 精馏段与提馏段的体积流量40 3.4.1.1 精馏段40 3.4.1.2 提馏段42 第3.5节塔径的计算43 第3.6节塔高的计算45 第3.7节塔板结构尺寸的确定46 3.7.1 塔板尺寸46 3.7.2弓形降液管47 3.7.2.1 堰高47 3.7.2.2 降液管底隙高度h0 47 3.7.3进口堰高和受液盘47 3.7.4 浮阀数目及排列47 3.7. 4.1浮阀数目48 3.7. 4.2排列48 3.7. 4.3校核49 第3.8节流体力学验算49 3.8.1 气体通过浮阀塔板的压力降(单板压降) 49

二期10万吨甲醇项目可研

一概述 本项目利用金塔山60万吨/年焦化与预新购置一产能为60万吨/年焦化企业,合计产能达120万吨焦炭外供的焦炉煤气,以焦炉煤气为原料生产五麟公司二期10万吨/年甲醇项目与现有一起10万吨/年甲醇合并为20万吨/年的产能。 本工程不仅有较好的经济效益,从本质上讲也是一项环保工程,是既符合国家能源发展政策,也符合国家环境保护要求,对焦化行业的持续发展具有重要意义的项目。 二项目研究范围 本项目在公司现有10万吨/年甲醇生产的基础再建二期工程,项目生产装置主要范围如下:(1)主装置区:焦炉气压缩、精脱硫、转化、合成气压缩、甲醇合成、甲醇精馏;(2)公用装置区:空分装置、循环水装置、锅炉、两个5000m3成品罐等;(3)水处理装置:生化处理以及深度处理装置。 三初步研究结论 废水治理本工程废水实行“清污分流”原则,清净下水和雨水直接排入雨水管网;生产废水、初期雨水送焦化厂的污水处理场进行生化处理后,复用于焦化厂;生活污水经化粪池后送到地埋式AO处理装置进行处理,达标后外排。(1)对于废热锅炉产生的排污水,

其中基本不含污染物,可送到焦化厂作为熄焦补充水。(2)焦炉气压缩机气液分离器废水、甲醇精馏汽提塔废水、甲醇合成废水等含污染物较多的废水均送到焦化厂的污水处理场进行处理。焦化厂的污水处理场采用A2/O的处理工艺,规模为200m3/h,其流程为除油、浮选、厌氧、缺氧、好氧、沉淀、混合反应、混凝沉淀,处理后的生化出水送去熄煤,不外排。(3)生活污水经化粪池预处理后,送到地埋式AO法一体式生化处理装置进行处理,其处理规模为3m3/h,处理达标后外排。(4)脱盐水站的酸碱废水经中和后与循环排污水一起送到焦化厂作为熄焦补充水。(5)事故水池有效容积为5500m3,事故水池内的水经检测后,如水质达标,则排入雨水系统;如水质超标,则用泵逐渐送到焦化厂的污水处理装置进行处理。 地面水/地下水环境影响本工程设计采用“清污分流”的原则,对清净下水尽可能采取回用措施,减少废水的外排;同时将生产废水送到焦化厂现有的污水处理装置进行生化处理,并且处理达标后复用于焦化厂,可减少对环境的污染;对于生活污水送到地埋式AO 法一体式生化处理装置进行处理,处理达标后外排;对于其它的清净下水则全部送到焦化厂用于熄焦,可节约大量的新鲜水。因此本工程建成投产后,废水排放也不会对水体产生大的影响。

(最新版)年产30万吨煤制甲醇生产工艺5毕业设计论文

优秀论文审核通过未经允许切勿外传 毕业设计任务书 题目:年产30万吨煤制甲醇生产工艺毕业设计函授站:甘肃石化技师学院 专业:化工工艺 班级: 10高级化工工艺 学生姓名:胡文花 指导教师:王广菊

2013年02月03 毕业设计(论文)任务书 设计(论文)题目:年产30万吨煤制甲醇生产工艺毕业设计 函授站:甘肃函授站专业:应用化工技术(工业分析与检验) 班级:甘化专111 (甘分专111)学生姓名:胡文花 指导教师(含职称):王广菊老师 1.设计(论文)的主要任务及目标 甲醇是一种极重要的有机化工原料,也是一种燃料,是碳化学的基础产品,在国民经济中占有十分重要的地位。近年来,随着甲醇下属产品的开发,特别是甲醇燃料的推广应用,甲醇的需求大幅度上升。为了满足经济发展对甲醇的需求,开展了此20万ta 的甲醇项目。 2.设计(论文)的基本要求和内容 首先是采用GSP气化工艺将原料煤气化为合成气;然后通过变换和NHD脱硫脱碳工艺将合成气转化为满足甲醇合成条件的原料气;第三步就是甲醇的合成,将原料气加压到5.14Mpa,加温到225℃后输入列管式等温反应器,在XNC-98型催化剂的作用下合成甲醇,生成的粗甲醇送入精馏塔精馏,得到精甲醇。然后利用三塔精馏工艺将粗甲醇精制得到精甲醇。 3.主要参考文献 [1]徐振刚,宫月华,蒋晓林.CSP加压气流床气化技术及其在中国的应用前景[J].洁净煤技术,1998,(3):15~18. [2]李大尚.GSP技术是煤制合成气(或H2)工艺的最佳选择[J].煤化工,2005,(3):1~6. [3]林民鸿,张全文,胡新田.NHD法脱硫脱碳净化技术.化学工业与工程技术,1995年,第3期. [4]李琼玖,唐嗣荣,等.近代甲醇合成工艺与合成塔技术(下)[J].化肥设计,2004,42(1):3~8. [5]陈文凯,吴玉塘,梁国华,于作龙.合成甲醇催化剂的研究进展.石油化工,1997年,第26卷. [6]唐志斌,王小虎,付超,于新玲.新型低压甲醇合成催化剂XNC-98的工业应用.石化技术与应用,第5期,第23卷.

甲醇制烯烃工艺_MTO_

纪律和奖罚制度,调动全体试车人员的积极性,经过一年多的工作,于1998年11月15日又开始试车。经过一个多月的投料表明,1.5万t a氯化法钛白的主要技术难关基本上已被攻克,初步实现了连续稳定生产。 5 几点建议 (1)面对世界钛白由跨国集团高度垄断的新局面,国内钛白工业必须加强集中统一领导、统一规划、合理布局,一致对外。 (2)对现有的钛白厂要实行强强联合,对亏损严重、污染大的厂要坚决实行关停并转。 (3)对已引进的3套较大型的钛白粉生产装置,国家应继续给予优惠政策和资金支持,并跨地区、跨部门地组织专家联合进行技术攻关。特别要充分发挥经验丰富的老专家的作用,协同作战,解决工艺、技术难题,提高产品质量,开发新品种,以满足国民经济发展的需要。 (4)由于硫酸法钛白生产三废排放量大,较难处理,而氯化法钛白生产的主要技术难题又已基本被攻克,现在完全可以利用国内技术兴建万吨级以上的氯化法钛白生产装置。建议除了特殊地区外,今后兴建的钛白厂主要应采用氯化法。而且厂址最好能与氯碱厂在一起,以达到优势互补,提高经济效益的目的。 (5)为保护民族工业,扶植国内钛白生产,建议对国外钛白供应商向我国低价倾销钛白粉要进行处罚;要制定相关法律,向其所在国贸易管理机构起诉,并对进口产品征收高额的反倾销税。 ?新产品新装置? 吉化公司乙撑双硬脂酰胺装置建成投产 具有国内领先水平的年产700t乙撑双硬脂酰胺生产装置,在吉化公司研究院建成,并投入批量生产。 乙撑双硬脂酰胺是一种多功能塑料加工助剂,可广泛应用于高分子聚合树脂,如AB S树脂、聚氯乙烯、聚丙烯、酚醛树脂及氨基树脂加工中的润滑剂、防粘剂、粘度调节剂和表面光亮剂等。 该装置是由吉化研究院自行开发、设计的。经半年的运转考核,生产能力达到并超过设计能力(已达800t a以上),其产品经在吉化合成树脂厂引进的10万t a AB S生产装置上应用,性能指标完全满足生产要求。目前,产品已向该公司及国内多家用户批量供货,质量及稳定性已达到国外同类产品水平。 (微笔) 扬子石化大型空分装置投入运行 扬子石化股份公司投资近3亿元的每小时增产氧气2万m3、氮气3.75万m3的大型空气分离装置投入运行。 该空分装置在设计、安装过程中,采用了引进国外先进技术和设备与国内配套设计相结合的办法,装置开停车过程可全部自动调整控制,DCS控制系统达到国际90年代先进水平。(微笔) 甲醇制烯烃工艺(M TO) 一项以天然气为原料经甲醇制取混合烯烃(乙烯+丙烯+丁烯)的工艺技术即M TO工艺,已由美国环球油品公司(UO P)和挪威海德罗(H ydroc)公司联合开发中试成功。 1995年11月,在南非第四次天然气转化国际年会上,UO P和H ydroc公司首次公布了这一工艺技术及其示范装置的运行数据。据称,这一工艺经小试、中试和示范装置长期、连续试验,操作稳定,得到了相互验证,可以用来建设年产50万t乙烯的工业化生产装置。 该技术的工艺流程和设备与炼厂的 型催化裂化装置基本相同,产品分离流程比传统的深冷分离流程简单。 采用M TO工艺生产烯烃,需要大量天然气或甲醇:一套30万t a M TO法乙烯装置,年消耗天然气13亿m3或甲醇150万t。因此,在天然气供应充足而且价格便宜的地方,采用此法生产烯烃,比之石脑油或轻柴油裂解制烯烃,在技术和经济上都具有一定的优越性。 我国对M TO工艺的开发也已经历多年,中试数据与国外很接近,而催化剂性能则优于国外。据了解,中国石油和天然气北方公司正在进行M TO工艺的千吨级工业化试验。(宗言恭) 81 化 工 技 术 经 济 第17卷

年产xxx甲醇项目计划书

年产xxx甲醇项目 计划书 规划设计/投资分析/产业运营

报告摘要说明 甲醇是重要的基础化工原料之一,近年来随着新增产能的陆续投产以 及装置开工水平的提升,甲醇产量稳步增加,区域性紧张局势逐步缓解, 现我国已是全球最大的甲醇生产国。甲醇的广泛应用,昭示了其明朗的市 场前景。近年来,我国甲醇表观消费量明显增加。 近几年国内精细化工领域的规模扩张,为我国甲醇行业创造了全新的 市场空间。同时,随着前期煤炭领域供给侧改革,淘汰落后产能,我国煤 炭原料供应结构得到明显优化,原料端的支撑也促使近年来我国甲醇产量 逐年上升,2019年我国甲醇产能约为8812万吨,同比2018年增长约6.1%,产量约为6216万吨,同比2018年增长11.5%。 该甲醇项目计划总投资12267.53万元,其中:固定资产投资9567.50万元,占项目总投资的77.99%;流动资金2700.03万元,占 项目总投资的22.01%。 本期项目达产年营业收入26781.00万元,总成本费用20418.85 万元,税金及附加244.87万元,利润总额6362.15万元,利税总额7484.56万元,税后净利润4771.61万元,达产年纳税总额2712.95万元;达产年投资利润率51.86%,投资利税率61.01%,投资回报率 38.90%,全部投资回收期4.07年,提供就业职位495个。

截至2017年年底,甲醇行业利润率达48.95%。在利润高位运行的刺激下,甲醇装置恢复或者提负的动能增强。在甲醇装置开工率稳定上升的态势下,2018年甲醇产能增速也将同步加快。 随着环保收紧,焦化产业进入壁垒显著提升,预计焦化产业中期供求偏紧。但是,一方面,焦气化的原料可以从化工焦切换为无烟煤,另一方面,陕西区域情况比较特殊,甲醇供求缺口大,增速快,未来新增产能有望得到有效消化。<

甲醇精馏塔设计说明书

设计条件如下: 操作压力:105.325 Kpa(绝对压力) 进料热状况:泡点进料 回流比:自定 单板压降:≤0.7 Kpa 塔底加热蒸气压力:0.5M Kpa(表压) 全塔效率:E T=47% 建厂地址:武汉 [ 设计计算] (一)设计方案的确定 本设计任务为分离甲醇- 水混合物。对于二元混合物的分离,应采用连续精馏流程。设计中采用泡点进料,将原料液通过预热器加热至泡点后送入精馏塔内。塔顶上升蒸气采用全凝器冷凝,冷凝液在泡点下一部分回流至塔内,其余部分经产品冷却后送至储罐。 该物系属易分离物系,最小回流比较小,故操作回流比取最小回流比的2 倍。塔釜采用间接蒸气加热,塔底产品经冷却后送至储罐。 (二)精馏塔的物料衡算 1、原料液及塔顶、塔底产品的摩尔分率 甲醇的摩尔质量:M A=32 Kg/Kmol 水的摩尔质量:M B=18 Kg/Kmol x F=32.4% x D=99.47% x W=0.28% 2、原料液及塔顶、塔底产品的平均摩尔质量 M F= 32.4%*32+67.6%*18=22.54 Kg/Kmol M D= 99.47*32+0.53%*18=41.37 Kg/Kmol M W= 0.28%*32+99.72%*18=26.91 Kg/Kmol 3、物料衡算 3 原料处理量:F=(3.61*10 3)/22.54=160.21 Kmol/h 总物料衡算:160.21=D+W 甲醇物料衡算:160.21*32.4%=D*99.47%+W*0.28% 得D=51.88 Kmol/h W=108.33 Kmol/h (三)塔板数的确定 1、理论板层数M T 的求取 甲醇-水属理想物系,可采用图解法求理论板层数 ①由手册查得甲醇-水物搦的气液平衡数据,绘出x-y 图(附表) ②求最小回流比及操作回流比 采用作图法求最小回流比,在图中对角线上,自点e(0.324 ,0.324)作垂线ef 即为进料线(q 线),该线与平衡线的交战坐标为(x q=0.324,y q=0.675) 故最小回流比为R min= (x D- y q)/( y q - x q)=0.91 取最小回流比为:R=2R min=2*0.91=1.82 ③求精馏塔的气、液相负荷 L=RD=1.82*51.88=94.42 Kmol/h V=(R+1)D=2.82*51.88=146.30 Kmol/h

年产50万吨甲醇合成工艺初步设计

年产50万吨甲醇合成工艺初步设计 摘要 本设计重点讨论了合成方案的选择,首先介绍了国内外甲醇工业的现状、甲醇原料的来源和甲醇本身的性质及用途。其次介绍了合成甲醇的基本原理以、影响合成甲醇的因素、甲醇合成反应速率的影响。在合成方案里面主要介绍了原料路线、不同原料制甲醇的方法、合成甲醇的三种方法、生产规模的选择、改善生产技术来进行节能降耗、引进国外先进的控制技术,进一步提高控制水平,来发展我国甲醇工业及简易的流程图。在工艺条件中,主要介绍了温度、压力、氢与一氧化碳的比例和空间速度。主要设备冷激式绝热反应器和列管式等温反应器介绍。最后进行了简单的物料衡算。 关键词:甲醇,合成塔

一、综述 (一)国内外甲醇工业现状 甲醇是重要的化工原料,应用广泛,主要用于生产甲醛,其消耗量约占甲醇总量的30%~40%;其次作为甲基化剂,生产甲胺、丙烯酸甲酯、甲基丙烯酸甲酯、甲基叔丁基醚、对苯二甲酸二甲酯;甲醇羰基化可生产醋酸、酸酐、甲酸甲酯、碳酸二甲酯等。其次,甲醇低压羰基化生产醋酸,近年来发展很快。随着碳化工的发展,由甲醇出发合成乙二醇、乙醛、乙醇等工艺正在日益受到重视。国内甲醇装置规模普遍较小,且多采用煤头路线,以煤为原料的约占到78%;单位产能投资高,约为国外大型甲醇装置投资的2倍,导致财务费用和折旧费用高,这些都会影响成本。据了解,我国有近200家甲醇生产企业,但其中10万吨/年以上的装置却只占20%,最大的甲醇生产装置产能也就是60万吨/年,其余80%都是10万吨/年以下的装置。根据这样的装置格局,业内普遍估计,目前我国甲醇生产成本大约在1400,1800元/吨(约200美元/吨),一旦出现市场供过于求的局面,国内甲醇价格有可能要下跌到约2000元/吨,甚至更低。这对产能规模小,单位产能投资较高的国内大部分甲醇生产企业来讲会加剧增。 而以中东和中南美洲为代表的国外甲醇装置普遍规模较大。目前国际上最大规模的甲醇装置产能以达到170万吨/年。2008年4月底,沙特甲醇公司170万吨/年的巨型甲醇装置在阿尔朱拜勒投产,使得

毕业设计开题报告 - 60万吨年甲醇制烯烃装置设计

毕业设计开题报告 题目60万吨/年甲醇制烯烃装置设计 院(系)化学工程学院专业化学工程与工艺年级学号 姓名 指导教师 2015年 3 月 20 日

毕业设计开题报告 题目 60万吨/年甲醇制烯烃装置设计 时间 2015年3月20日至2015年3月30日 本课题的目的意义 ( 含 国 内 外 的 研 究 现 状 分 析 ) 目的意义:本课题的目的是完成60万吨/年甲醇制烯烃装置设计。甲醇制烯烃路线是以石油化工原料制备乙烯和丙烯的替代路线,是以煤或天然气为主要原料,经合成气转化为甲醇,然后再转化为烯烃的路线。以往的烯烃生产严重依赖石油。中国石油和天然气资源短缺,而煤炭资源储量世界第三,生物质资源丰富。因此发展甲醇替代石油路线烯烃生产技术有重要意义。 现状分析:我国是一个多煤少油的国家,石油剩余可采储量仅占世界剩余可采储量l.8%。利用我国丰富的煤炭资源,采用国际上先进的甲醇制烯烃技术,生产出以往只能利用天然气或油作为原料的聚烯烃产品就是一项解决我国能源需求的有力措施。如果在较大的范围内推广煤化工项目,无疑将对我国能源结构调整产生非常深远的影响。 设计(论文)的基本条件 及 设 计 ( 论 文) 依据 设计依据:通过上网查找资料、文献,采用UOP 和Norsk Hydro 两公司合作开发的UOP/Hydro 的MTO 工艺,以甲醇和/二甲醚为原料,经催化转化制取基本化工原料乙烯、丙烯等低碳烯烃,年处理量为60万吨。 基本条件:1、技术成熟。具有代表性的甲醇制烯烃技术主要是UOP/Hydro MTO 技术、大连化物所DMTO 技术、鲁奇MTP 技术。目前,这三项工艺技术已经具备工业化生产的条件。UOP/Hydro 的MTO 工艺采用流化床反应器和再生器,连续稳定操作;采用专有催化剂,催化剂需要在线再生,保持活性;甲醇的转化率达100%,低碳烯烃选择性超过85%,主要产物为乙烯和丙烯;可以灵活调节乙烯/丙烯的比例;乙烯和丙烯达到聚合级。2、掌握技术资料。通过查阅资料,初步掌握了本课题的有关技术资料、生产数据和设计方法。3、学校图书馆、电子图书馆可查阅大量技术资料;学院有图书馆、自习课室、实验室等场所进行毕业设计。 本课题的主要内容、 重点解决的问题 1.对国内外MTO 工艺作深入调查,写出调研报告; 2.明确设计内容及意义,制定设计计划,完成设计开题报告; 3.确定MTO 工艺流程; 4.确定总体方案、设备型式; 5.系统物料平衡计算; 6.系统能量平衡计算; 7.设备工艺尺寸计算; 8.绘制装置工艺流程图、车间平面布置图; 9.按要求编写毕业设计说明书。

年产10万吨甲醇工艺设计

1 总论 1.1 概述 甲醇作为及其重要的有机化工原料,是碳一化学工业的基础产品,在国民经济中占有重要地位。长期以来,甲醇都是被作为农药,医药,染料等行业的工业原料,但随着科技的进步与发展,甲醇将被应用于越来越多的领域。 1)甲醇(英文名;Methanol,Methyl alcohol)又名木醇,木酒精,甲基氢氧化物,是一种最简单的饱和醇。化学分子式为CH3OH。 甲醇的性质;甲醇是一种无色、透明、易燃、易挥发的有毒液体,略有酒精气味。分子量32.04,相对密度0.792(20/4℃),熔点-97.8℃,沸点64.5℃,闪点12.22℃,自燃点463.89℃,蒸气密度 1.11,蒸气压13.33KPa(100mmHg 21.2℃),蒸气与空气混合物爆炸下限6~36.5 % ,能与水、乙醇、乙醚、苯、酮、卤代烃和许多其他有机溶剂相混溶,遇热、明火或氧化剂易燃烧。 甲醇的用途;甲醇用途广泛,是基础的有机化工原料和优质燃料。主要应用于精细化工,塑料等领域,用来制造甲醛、醋酸、氯甲烷、甲氨、硫酸二甲脂等多种有机产品,也是农药、医药的重要原料之一。甲醇在深加工后可作为一种新型清洁燃料,也加入汽油掺烧。 甲醇的毒性及常用急救方法;甲醇被人饮用后,就会产生甲醇中毒。甲醇的致命剂量大约是70毫升。甲醇有较强的毒性,对人体的神经系统和血液系统影响最大,它经消化道、呼吸道或皮肤摄入都会产生毒性反应,甲醇蒸气能损害人的呼吸道粘膜和视力。急性中毒症状有:头疼、恶心、胃痛、疲倦、视力模糊以至失明,继而呼吸困难,最终导致呼吸中枢麻痹而死亡。慢性中毒反应为:眩晕、昏睡、头痛、耳鸣、现力减退、消化障碍。甲醇摄入量超过4克就会出现中毒反应,误服一小杯超过10克就能造成双目失明,饮入量大造成死亡。甲醇中毒,通常可以用乙醇解毒法。其原理是,甲醇本身无毒,而代谢产物有毒,因此可以通过抑制代谢的方法来解毒。甲醇和乙醇在人体的代谢都是同一种酶,而这种酶和乙醇更具亲和力。因此,甲醇中毒者,可以通过饮用烈性酒(酒精度通常在60度以上)的方式来缓解甲醇代谢,进而使之排出体外。而甲醇已经代谢产生的甲酸,可以通过服用小苏打(碳酸氢钠)的方式来中和。甲醇也容易引发大火。一旦发生火灾,救护人员必须穿戴防护服和防

年产10万吨甲醇精馏工段设计毕业设计

毕业设计设计题目:年产10万吨甲醇精馏工段工艺设计

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名:日期:年月日 导师签名:日期:年月日

年产30万吨粗甲醇精馏工段的设计毕业论文

年产30万吨粗甲醇精馏工段的设计毕业论文目录 第1章总论 (1) 1.1 概述 (1) 1.1.1意义及作用 (1) 1.1.2 国外现状 (1) 1.1.3 产品性质与特点 (4) 1.1.4 产品的生产方法概述 (5) 1.2 设计依据 (5) 1.3 设计规模 (6) 1.4 原料及产品规格 (6) 1.4.1 主要原料规格及技术指标 (6) 1.4.2 产品规格 (6) 第2章设计方案 (8) 2.1 工艺原理 (8) 2.2甲醇精馏工艺论证 (8) 2.2.1精馏工艺和精馏塔的选择 (8) 2.2.2单塔精馏工艺 (8) 2.2.3双塔精馏工艺 (9) 2.2.4三塔精馏工艺 (10) 2.2.5双塔与三塔精馏技术比较 (11)

2.2.6精馏塔的选择 (12) 2.3工艺流程简述 (13) 第3章工艺设计计算 (16) 3.1工艺参数 (16) 3.2 物料衡算的意义和作用 (17) 3.2.1 物料衡算 (17) 3.2.2 总物料衡算表 (20) 3.3热量衡算 (21) 3.3.1预塔热量衡算 (23) 3.3.2主塔热量衡算 (25) 3.3.3常压精馏塔能量衡算 (27) 3.4热量衡算表 (31) 第4章主要设备的工艺计算及选型 (32) 4.1理论板数的计算 (32) 4.1.1常压塔理论塔板计算 (32) 4.2常压精馏塔主要尺寸的计算 (34) 4.2.1常压精馏塔设计的主要依据和条件 (34) 4.2.2初估塔径 (36) 4.2.3塔件设计 (38) 4.2.4塔板流体力学验算 (41) 4.2.5 负荷性能 (43) 4.2.6常压塔主要尺寸确定 (46)

年产20万吨煤制甲醇项目环境影响报告书

天富热电股份有限公司 年产20万吨煤制甲醇项目环境影响报告书 (送审稿)

目录 第一章总论 (1) 1.1项目背景和任务由来 (1) 1.2评价目的和指导思想 (3) 1.3编制依据 (5) 1.4评价等级 (7) 1.5评价重点 (7) 1.6评价范围 (7) 1.7评价标准采用 (8) 1.8环境敏感因素及保护目标 (10) 第二章项目所在区域环境概况 (11) 2.1 地理位置 (11) 2.2 自然环境状况 (11) 2.3 生态环境 (16) 2.4 社会环境状况 (17) 2.5 城市规划 (19) 第三章工程分析 (21) 3.1建设项目概况 (21) 3.2建设项目生产工艺过程简述 (27) 3.3配套公用工程 (39) 3.4主要原辅材料供应及消耗 (41) 3.5拟建工程物料、硫、水、汽平衡分析 (42) 3.6施工期污染影响分析及防治对策 (47) 3.7运营期大气污染影响分析及防治对策 (48) 3.8废水污染影响分析及防治对策 (51) 3.9固体废物影响分析及防治对策 (53) 3.10噪声影响分析及防治对策 (54) 3.11非正常生产状况分析 (54) 第四章工艺先进性及清洁生产分析 (58) 4.1生产工艺先进性 (58) 4.2清洁生产评述 (63) 第五章环境空气影响评价 (65)

5.1污染源调查与评价 (65) 5.2环境空气质量现状监测与评价 (67) 5.3污染气象特征分析 (73) 5.4环境空气影响预测与评价 (88) 第六章地表水环境影响评价 (107) 6.1地表水污染源调查与评价 (107) 6.2地表水环境质量现状监测与评价 (110) 6.3废水排放方案及排水去向 (115) 6.4地表水环境影响评价 (115) 第七章地下水环境影响分析 (117) 7.1地下水环境现状监测与评价 (117) 7.2地下水水文地质特征分析 (121) 7.3本工程用水水源可行性分析 (122) 7.4地下水环境影响分析 (125) 第八章噪声影响分析 (129) 8.1声环境现状监测及分析 (129) 8.2施工期的噪声环境影响分析 (130) 8.3运行期声环境影响预测 (132) 8.4本工程拟采取的噪声防治措施 (133) 第九章固体废物影响分析 (135) 9.1拟建甲醇工程固废概况 (135) 9.2固体废物分析 (135) 9.3固体废物的合理处置与综合利用途径 (136) 9.4工程投产后固体废物影响分析 (137) 第十章生态环境影响分析 (138) 10.1 生态环境与生态资源状况 (138) 10.2污染物排放对生态环境的影响 (139) 第十一章环境风险评价 (146) 11.1环境风险评价等级 (146) 11.2环境风险评价范围 (146) 11.3环境风险识别 (146) 11.4源项分析 (150) 11.5环境风险预测 (151)

甲醇精馏塔的设计

《化工设备设计基础》课程设计 题目:甲醇精馏塔的设计 年级:2011级 专业:化学工程与工艺 学号:0116 姓名:高鑫政 指导老师:徐琼 湖南师范大学树达学院 2014 年6 月4 日《化工设备机械基础》课程设计成绩评定栏 设计任务:甲醇精馏塔的设计 完成人:高鑫政学号:0116 评定基元评审要素评审内涵满分评分 设计说明书, 40% 格式规范 设计说明书是否符合 规定的格式要求 10 内容完整 设计说明书是否包含 所有规定的内容 10 设计方案 选材是否合理标准件 选型是否符合要求 10 工艺计算 过程 工艺计算过程是否正 确、完整和规范 10 设计图纸, 30% 图纸规范 图纸是否符合规范、标 注清晰 10 与设计吻合 图纸是否与设计计算 的结果完全一致 15

图纸质量设计图纸的整体质量 的全面评价 5 答辩成绩, 30% PPT质量 PPT画面清晰,重点突 出 10 内容表述答辩表述是否清楚10 回答问题回答问题是否正确10 100 评阅人签名:总分: 评分说明:储罐设计作品的总分=(设计说明书成绩+设计图纸成绩)*0.9+答辩成绩 塔设备设计作品的总分=设计说明书成绩+设计图纸成绩+答辩成绩 设计任务书(十六) 题目:甲醇精馏塔的设计 设计内容: 根据给定的工艺参数设计一筛板塔,具体包括塔体、裙座材料的选择;塔体及封头的壁厚计算及其强度、稳定性校核、筒体和裙座的水压试验应力校核、裙座结构设计及强度校核;塔设备的结构设计;基础环、地脚螺栓计算等 已知工艺参数: 塔体内径/mm 2000 塔高/mm 31000 计算压力/MPa 1.2 设计温度/o C 200 设置地区长沙地震设防烈度8 场地土类Ⅱ类设计地震 分组第二组设计基本地震 加速度 0.2g 地面粗糙度B类塔盘数52 塔盘存留介质100

年产30万吨煤制甲醇合成工段初步设计

目录 第1章概述 (1) 1.1甲醇性质 (1) 1.2甲醇用途 (2) 1.3甲醇生产工艺的发 (2) 1. 4甲醇生产原料 (3) 第2章工艺流程设计 (3) 2.1合成甲醇工艺的选择 (4) 2.1.1甲醇合成塔的选择 (4) 2.1.2催化剂的选用 (4) 2.1.3合成工序工艺操作条件的确定与论证 (6) 第3章工艺流程 (7) 3.1甲醇合成工艺流程 (7) 第4章工艺计算 (8) 4.1物料衡算 (8) 4.1.1合成工段 (9) 4.2能量衡算.................................................................................................................... 错误!未定义书签。 4.2.1煤发电量......................................................................................................... 错误!未定义书签。 4.2.2合成工段......................................................................................................... 错误!未定义书签。第5章主要设备的计算和选型............................................................................................ 错误!未定义书签。 5.1甲醇合成塔的设计.................................................................................................... 错误!未定义书签。 5.2水冷器的工艺设计.................................................................................................... 错误!未定义书签。 5.3循环压缩机的选型.................................................................................................... 错误!未定义书签。 5.4气化炉的选型............................................................................................................ 错误!未定义书签。 5.5甲醇合成厂的主要设备一览表................................................................................ 错误!未定义书签。第6章合成车间设计............................................................................................................ 错误!未定义书签。 6.1厂房的整体布置设计................................................................................................ 错误!未定义书签。 6.2合成车间设备布置的设计........................................................................................ 错误!未定义书签。第7章设计结果评价............................................................................................................ 错误!未定义书签。参考文献.................................................................................................................................. 错误!未定义书签。致谢 ....................................................................................................................................... 错误!未定义书签。 第1章概述 1.1甲醇性质 甲醇俗称木醇、木精,英文名为methanol,分子式CH3OH。是一种无色、 透明、易燃、有毒、易挥发的液体,略带酒精味;分子量32.04,相对密度 0.7914(d420),蒸气相对密度1.11(空气=1),熔点-97.8℃,沸点64.7℃,闪点(开

相关文档
相关文档 最新文档